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Summary 

Knowledge of a species’ potential distribution and the suitability of available habitat are 

fundamental for effective conservation planning and management. However, the quality 

of information on the distribution of species and their required habitats is highly 

variable in terms of accuracy and availability across taxa and regions, particularly in 

tropical landscapes where accessibility is especially challenging. Species distribution 

models (SDMs) provide predictive tools for addressing gaps for poorly surveyed 

species, but they rarely consider biases in geographical distribution of records and their 

consequences. We applied SDMs and variation partitioning analyses to investigate the 

relative importance of habitat characteristics, human accessibility, and their joint effects 

in the global distribution of the Critically Endangered blue-throated macaw (Ara 

glaucogularis), a species endemic to the Amazonian flooded savannas of Bolivia. The 

probability of occurrence was skewed towards more accessible areas, mostly secondary 

roads. Variability in observed occurrence patterns was mostly accounted for by the pure 

effect of habitat characteristics (76.2%), indicating that bias in the geographical 

distribution of occurrences does not invalidate species-habitat relationships derived 

from niche models. However, observed spatial covariation between landuse at a 

landscape scale and accessibility (joint contribution: 22.3%) may confound the 

independent role of landuse in the species distribution. New surveys should prioritize 

collecting data in more remote (less accessible) areas better distributed with respect to 

landuse composition at a landscape scale. Our results encourage wider application of 

partitioning methods to quantify the extent of sampling bias in datasets used in habitat 

modelling for a better understanding of species-habitat relationships, and add insights 

into the potential distribution of our study species and opportunities for its conservation.  
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Introduction 

 

Knowledge of a species’ potential distribution and the suitability of available habitat are 

fundamental for effective conservation planning and management, providing a basis for 

many assessment schemes (IUCN 2001). However, the quality of information on the 

distribution of species and their required habitats varies greatly across taxa and regions 

worldwide (Collen et al. 2008). For many species, geographical distributions mostly 

describe species limits based on expert knowledge, but often no information on species 

occurrence or density within those limits is available (Jetz et al. 2012). This is 

particularly challenging for species in tropical landscapes, where difficult accessibility 

to unpopulated areas has limited survey efforts and prevented obtaining high-quality 

census data (Collen et al. 2008, Raxworthy et al. 2003). When available, this data is 

often limited to small samples of observed localities obtained in limited recent surveys 

or from historical records in museum collections (Pearson et al. 2007).  

These limitations hold for our knowledge of the distribution of many parrot species. 

Parrots (Psittaciformes) are among the most threatened bird taxa of the world, with 

nearly one third of total species threatened under IUCN criteria (IUCN 2016). The 

likelihood of parrot species being classified as threatened has been recently related to 

their life history traits, socio-economic factors (linked to anthropogenic threats such as 

logging, agriculture spread, hunting and trapping), and the historical distribution size of 

the species (Olah et al. 2016). Despite the fact that some parrot species have received 

conservation attention (Toft and Wright 2015), the distribution of many species in 

remote and difficult to access habitats has prevented obtaining basic biological and 

distributional information (e.g., Tella et al. 2013).  
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Species distribution models (SDMs) can provide valuable predictive tools for 

filling information gaps and can produce continuous predictions of potential distribution 

for poorly surveyed species.  They may thereby better depict a species’ actual 

distribution (Botero-Delgadillo et al. 2012b) and can be helpful for effective 

conservation management (Ferrer-Sánchez and Rodríguez-Estrella 2016, Peterson et al. 

2011). Presence-only models, particularly, rely solely upon species presences and 

environmental data, and can provide accurate predictions of species’ distributions with 

reduced numbers of known occurrences (Elith et al. 2006, Phillips et al. 2006). 

However, these models should account for potential spatial biases in geographical and 

environmental information to be useful (Phillips et al. 2006). One common bias in 

distributional data is the high concentration of observations along highly accessible 

areas such as roads and rivers (Kadmon et al. 2004, Reddy and Dávalos 2003). 

Although widely recognized, the potential effects of this bias on modelled distributions 

are often not considered, including the few cases when the distribution of tropical 

parrots has been modelled (Botero-Delgadillo et al. 2012a, Marini et al. 2010, 

Monterrubio-Rico et al. 2010, Pidgeon et al. 2015). 

In this study we use species distribution models to disentangle the relative 

importance of habitat characteristics, accessibility and the combination of these factors 

in the distribution of the Critically Endangered blue-throated macaw (Ara 

glaucogularis) throughout its known range in the wild. Historically, this was a poorly-

known species endemic to Bolivia, not discovered in the wild until 1992, and 

considered among the most threatened species in the world with a population size 

estimated between 250 and 300 individuals (BirdLife International 2015). Individuals 

are concentrated in three subpopulations with a maximum of 16 known breeding pairs 

occurring over a vast region (Berkunsky et al. 2014). As it has been found in other 
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Endangered macaw species (Pacífico et al. 2014, Tella et al. 2013), breeding individuals 

might constitute a small fraction of the overall population. However, due to logistic 

difficulties and limited accessibility to a large part of its distributional range, population 

size and the breeding and global distribution of the species could have been 

underestimated. This species exclusively inhabits an expansive region of Amazonian 

flooded savannahs in the Llanos de Moxos, Beni Department, Bolivia, where it occupies 

forest islands dominated by palms and, secondarily, gallery forests (BirdLife 

International 2015, Yamashita and De Barros 1997). The few geographic records 

available for this species impeded accurate estimates of its area of occupancy, which 

was previously estimated between 9,236 and 61,500 km2 (Herzog et al. 2012, BirdLife 

International 2015).  Surveys of remote, potential areas where unknown populations of 

the species could persist have been highlighted as important conservation actions 

(BirdLife International 2015). Our modelling approach aims to identify potential spatial 

bias of previous surveys to more accessible areas, and to offer a better prediction of its 

potential (or even actual) distribution, to guide further surveys, research and 

management actions. 

 

Methods 

 

Study area and data compilation 

 

The study area is located in the Beni department, north-eastern Bolivia and comprises 

approximately 200,000 km2 (Fig. 1). The region is made up of seasonally flooded 

savannahs interspersed with a complex mosaic of forest islands, gallery forest, 

grasslands and cerrado (Mayle et al. 2007, Yamashita and De Barros 1997). Forest 
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patches are restricted to areas that are elevated just enough to avoid flooding. Most of 

these are eroded relicts of natural or man-made levees or terraces of abandoned river 

channels (Hanagarth and Beck 1996). Annual precipitation ranges from 1,300 to 2,000 

mm and is mostly concentrated from November to May (Hanagarth and Beck 1996). 

Human settlements currently inhabit the region at low densities, but there is an 

extensive human use of nearly the entire region, with cattle-ranching being the primary 

economic activity (Mayle et al. 2007).  

The breeding population of blue-throated macaw in the study area has been 

monitored intensively since 2002 (Berkunsky et al. 2014, J.A. Díaz unpubl. data). Each 

year, known breeding sites and other potentially suitable areas were searched 

intensively for Blue-throated macaws from early August to January. Potentially suitable 

areas were considered to be fragments of gallery forest and forest islands located close 

(1-3km) to areas where the species was already known to occur. Additionally, other 

areas with similar vegetation structure and areas where local people reported the 

presence of blue-throated macaws were also explored. The access to the surveyed areas 

was done either by car, airplane, horseback, or on foot. Most records consisted of visual 

observations of individuals, but occasionally presence was confirmed by acoustical 

contacts or identification of recently moulted feathers. In total, 79 occurrences were 

recorded throughout the study period (33 with evidence of reproduction, i.e., active 

nests of breeding pairs detected).   

Occurrence locations were entered into a Geographic Information System at 10 

arcseconds (~30m) resolution. We compiled data on 6 variables to represent habitat 

variability and accessibility in the study area (Table 1). Climatic variability was low in 

the study area, and thus we preferred to focus only on the fine-grain habitat suitability 

and accessibility which are likely to be more important at fine spatial scales (Herzog et 
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al. 2012). These variables were derived at 10 arcseconds to match the species 

occurrence data. Additionally, we used spatial statistics to derive a landuse variable 

related to the dominant landscape composition at 1km radius around each ~30m pixel. 

For this we used “focal statistics” in ArcMap 9.3 with the “majority” statistic. 

 

Modelling 

 

We built a SDM (Peterson and Soberón 2012) to estimate the probability of distribution 

of blue-throated macaw using the occurrence data and environmental variables. Models 

were conducted using all occurrence data to maximize sample size, although similar 

results were obtained when only considering occurrences with evidence of reproduction 

(Supplementary Information, Appendix 1). SDMs were implemented in Maxent 3.3.3k 

software (Elith et al. 2011). We selected 500 iterations for model convergence and 

employed the default regularization procedure to prevent overfitting (Phillips and Dudík 

2008). To construct the models, random samples of background pixels (10,000) within 

the study area were used as pseudoabsences (Phillips and Dudík 2008). To address our 

questions, we followed a hierarchical approach and ran Maxent with three models based 

on different combinations of the variable sets, namely an environmental model that 

included single habitat variables (habitat); an accessibility model that included single 

variables of human accessibility (access); and a habitat and accessibility model that 

included both habitat variables and variables of human accessibility (habitat+access). 

Model accuracy was assessed by dividing the species occurrence data into random 

training (70%) and test (30%) datasets. To reduce uncertainty caused by sampling 

artefacts of training and test data, we conducted 10 replicates for each model. Models 

were evaluated on the test data using the Area Under the receiver operating 
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characteristics Curve (AUC) and test gain as threshold-independent assessment 

measures (Phillips et al. 2006). Note that AUC values in MAXENT are used for the 

problem of classifying presences vs. background points (which may or may not be true 

absences; Phillips et al. 2006). AUC values range from 0 to 1, where 1 indicates perfect 

model performance and 0.5 indicates predictive discrimination no better than random. 

We also calculated the true skill statistic (TSS). TSS ranges from −1 to +1, where +1 

indicates perfect agreement and values of zero or less indicate a performance no better 

than random (Allouche et al. 2006). Additionally, model significance was tested using 

threshold-dependent binomial probability tests. For this, we used the 10 percentile 

training presence and the maximum sensitivity plus specificity values as thresholds (Liu 

et al. 2005, Botero-Delgadillo et al. 2015). Note that specificity values defined by 

MAXENT use predicted area, rather than true commission (Phillips et al. 2006).We 

used a partitioning procedure (Maxent jackknife test) to take into account the co-

linearity between spatially related variables. This allows the ‘pure’ effect of each 

variable/variable set to be separated from joint effects that cannot unambiguously be 

attributed to one variable/variable set or another due to spatial collinearity. This 

procedure entailed the calculation of incremental improvement in performance of a 

model with a particular variable/variable set compared with the equivalent model 

without that variable/variable set. We also calculated model performance for each 

variable/variable set when used in isolation. The estimated contributions were based 

upon the test gain.  

Finally, we calculated total surface of suitable area for the species according to 

Maxent models in the whole study area and in the species extent of occurrence (EOO), 

that is, the, the area within the Minimum Convex Polygon, MCP, including all known 

locations of the species. For this task, model predictions were transformed into binary 
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maps (i.e. presence/absence) using as thresholds the 10 percentile training presence and 

the maximum sensitivity plus specificity values (Liu et al. 2005, Botero-Delgadillo et 

al. 2015).  

 

Results 

 

Occurrence patterns and accessibility 

 

Probability of occurrence near roads and rivers was greater than that expected from a 

spatially random distribution (Table 2), indicating that the distribution of occurrence 

points was skewed towards more accessible areas (Fig. 2). Among accessibility 

variables, distance to secondary roads showed both the highest model performance 

when used in isolation and the highest pure contribution in multivariate models (Figs 

3a, c).  

 

Occurrence patterns and habitat 

 

Among habitat variables, distance to palms followed by land use composition at the 

landscape level (~1km) showed the highest model performance when used in isolation 

(Fig. 3a). Interestingly, the presence of forest at a local scale (~30 m) was a poor 

predictor when used in isolation. In contrast, pure contribution of this variable was high 

when used in combination with the other habitat variables (Figs 3b). This is because 

probability of occurrence increased with the presence of forest at a local scale (~30m 

resolution) only when forest patch size was low and thus surrounded by other habitat 
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types at the landscape scale (Fig. 2). That is, occurrence probability increased in forest 

islands dominated by palms.  

 

Partitioning the effect of habitat and accessibility  

 

The predictive model including both habitat and accessibility variables was more 

accurate than the model which only considered habitat (Table 2). However, the 

magnitude of these differences was low and model predictions were similar (Fig 4). 

Habitat variables showed the highest pure contribution to the habitat+access model 

(76.2%) according to Maxent jackknife test, indicating that their main effect was not 

related to their spatial covariation with accessibility. However, some degree of spatial 

covariation between both variable sets was found (joint contribution of habitat and 

accessibility variables: 22.3%, Supplementary Information, Appendix 2). This was 

mainly related to covariation of landuses at the landscape scale with distance to 

secondary roads (note the reduction in pure effect of these two variables in the 

habitat+access model, Fig. 3d). Broadly, the presence of forest at the landscape scale 

(used as a measure of continuous forest) was more common with increasing distance 

from secondary roads (Supplementary Information, Appendix 2).  

According to the habitat+access model, suitable habitats occupied 29,183 km2 or 

56,064 km2 in the whole study area, when using the 10 percentile training presence or 

the maximum sensitivity plus specificity thresholds. This value was reduced to 12,347 

km2 or 19,249 (10 percentile and maximum sensitivity plus specificity thresholds, 

respectively) when only considering the area within the actual known distribution range 

of the species (i.e., that included in the MCP containing all occurrence points). 
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Discussion 

 

The spatial distribution of species represents the cumulative effects of many different 

factors that are often difficult to separate. Sampling bias towards more accessible areas 

is a common phenomenon in biodiversity databases, but models based on such 

databases rarely take them into account in model predictions (Yackulic et al. 2013). 

When accessibility bias allows covering enough environmental variability to 

disentangle the pure contribution of habitat variables on observed patterns (Ferrer-Paris 

et al. 2014), results of SDMs could be used confidently. However, in other situations, 

the difficulty in determining which factors ultimately determine observed species 

distributions makes the usefulness of SDMs controversial. Therefore, future effort 

should be dedicated to quantifying the extent of different sources of sampling bias in 

datasets used in habitat modelling as well as exploring the consequences of such bias on 

model predictions. Partitioning methods, such as those present in this study, can help 

clarify the proportion of the total variance that might be accounted for by uncertainty 

due to joint effects of different variable sets.  

Our study revealed the contrasting importance of habitat characteristics and habitat 

accessibility in the spatial distribution of a Critically Endangered and still poorly-known 

species inhabiting tropical South America. As with other bird species (Kadmon et al. 

2004, Reddy and Dávalos 2003), occurrence probability of the blue-throated macaw 

decreased with the distance to human pathways (mostly to secondary roads). This 

pattern may result from different, not mutually exclusive processes. It could reflect 

biases in bird surveys towards more accessible areas and a poorer coverage of the most 

remote ones, but it could also result from ecological processes since distributions of 

species may respond negatively as well as positively to landscape humanization. (e.g., 
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Carrete et al. 2009, Ferrer-Sánchez and Rodríguez-Estrella 2016, Cardador et al. 2016). 

For this species, all known breeding sites are within private and highly managed cattle 

ranches, and recent occurrence models obtained at a smaller spatial scale showed that, 

contrarily to other sympatric macawss (blue-and-yellow Ara ararauna and red-and-

green Ara chloropterus), the blue-throated macaw does not appear to avoid human 

settlements (Berkunsky et al. 2016). This might suggest that blue-throated macaws 

prefer more human-altered areas and/or that they are displaced towards those areas by 

stronger congeneric competitors (see discussion below). However, since all sampled 

locations (not only presences but also absences) were skewed towards more accessible 

areas (see Appendix 3 in Supplementary Information), we could not separate the effects 

of habitat selection from sampling bias in observed patterns. In any case, the bias in the 

spatial distribution of occurrences in relation to secondary roads did not mask the 

independent contribution of most environmental factors on observed patterns (with the 

exception of forest at the landscape scale), probably because road and river networks are 

distributed throughout the entire study site, reaching areas in most of the sampled 

habitat types (Kadmon et al. 2004, Leitão et al. 2011).  

Although the good fit of a model does not necessarily imply causation, our 

explanatory models suggest that the most suitable areas for this species are forest 

islands containing palms, which is consistent with the previously described association 

of the species with these habitats (Herrera and Hennessey 2007, Yamashita and De 

Barros 1997). According to our models, the amount of suitable habitat for the species is 

predicted to be between 29,183 km2 and 56,064 km2. These estimates are closer to the 

upper limit of the variability range described for the species (9,236 - 61,500 km2) 

(Herzog et al. 2012). Predicted suitable habitat appears to be very large in comparison 

with the distribution of known records of the species. Clearly, factors beyond these 
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measured environmental variables are currently constraining the spatial distribution of 

the species.  

Our SDMs may inform a deeper analysis of the conservation status, threats and 

potential for the recovery of this species. The critical status of this bird is attributed to 

habitat loss and trapping for the pet-trade (BirdLife International 2015). Population 

viability analyses suggest that further or even small annual increases in habitat loss (2 

%) and trapping (3 %) would significantly increase its extinction risk over the next 50 

years (Bouzat and Strem 2012). The habitat loss hypothesis is challenged by our SDMs, 

which show the current extent of suitable habitat for the species could currently hold a 

much larger, healthier population; in fact, congeneric macaws are present in the same 

region at high densities (Berkunsky et al. 2015, 2016). Regarding the wild-bird trade 

hypothesis, trade on the most attractive parrot species (including macaws) has been 

related to their population decline and current threatened status (Tella and Hiraldo 

2014). However, legal international export of wild parrots was banned in Bolivia in 

1984 (BirdLife International 2015), and trade in blue-throated macaws does not appear 

to have been any more intensive relative to other Bolivian species since that time. For 

example, international trade in red-fronted macaws (Ara rubrogenys), an Endangered 

species also endemic to Bolivia, was more intense than trade in blue-throated macaws in 

recent decades (www.cites.org), and current domestic trade in blue-throated macaws is 

negligible compared to the very high rates of red-fronted macaws annually poached and 

traded (Tella et al. 2013, Pires et al. 2016). Despite that, the current population of red-

fronted macaws (Tella et al. 2013) is at least three times higher than the estimated for 

blue-throated macaws, and the breeding population of blue-throated macaw seems not 

being recovering (Berkunsky et al. 2014). However, in contrast to birds captured for the 

pet trade that usually involve young individuals (but see Pires et al. 2016), adult 

http://www.cites.org/
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macaws were hunted in the Beni region for making traditional headdresses. Population 

viability analyses indicate that the blue-throated macaw, as many other long-lived 

species, is highly sensitive to adult mortality (Bouzat and Strem 2012) and thus the 

species could have been largely affected by this activity. However, this activity has been 

largely reduced nowadays and is not likely to be the main cause impeding the recovery 

of the species (BirdLife International 2015, M. Herrera, com. pers.). 

Other less considered factors such as low breeding performance or other 

abiotic/biotic constraints (e.g., microhabitat selection or interspecific interactions) could 

be maintaining the population at low-density, thus limiting the access and use of all 

suitable habitats. In this regard, it is known that only an average of 4.3 nestlings per 

year fledged from all known nests (n=19) despite of intense management for improving 

breeding success (Berkunsky et al. 2014). The entire population may be already too 

small and scattered through such a large region that behavioural, demographic and/or 

genetic-related Allee effects (Courchamp et al. 1999, Tella 2001) might currently 

impede the species’ recovery. On the other hand, key ecological factors acting at a 

smaller scale not measured in this study, such as the number of tree cavities for 

breeding, the size and habitat deterioration of the forest islands, or food availability 

(palm fruits) could also be related (Berkunsky et al. 2015, Yamashita and De Barros 

1997). Additionally, other factors such as interspecific interactions might also be 

important. Previous studies on the region have shown that the occurrence of a rich 

community of parrots depends upon local abundance of tree cavities in forest patches 

(Berkunsky et al. 2015), which suggests that interspecific competition might be high. 

Blue-throated macaws share their preference for nesting in large cavities of dead palms 

and trees with the larger-bodied blue-and-yellow macaw and red-and-green macaw (J.A. 

Díaz unpubl. data). Observations conducted in another Amazonian region showed that 
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blue-and-yellow nesting macaws engage in frequent intra- and inter-specific agonistic 

interactions in an area of up to 100 m around the nest, causing even infanticide and 

nesting failures (Renton 2004). Interference competition of nesting macaws may thus 

exclude potential breeders, effectively limiting nest availability where palm cavities are 

clumped in space (Renton 2004), as it is the case of palm forest islands where blue-

throated and blue-and-yellow macaws coexist (Berkunsky et al. 2015). As blue-and-

yellow macaws are larger, more aggressive, and far more abundant (Berkunsky et al. 

2014, J.A. Díaz unpubl. data), they might be limiting the access to reproduction of blue-

throated macaws even after the supplementation of artificial nests (see also Renton 

2014). This may explain why the breeding population has not increased after a long-

term program of nest-site provisioning within the species’ breeding areas (Berkunsky et 

al. 2014). More specific studies are needed to determine whether and to what extent 

microhabitat selection (including food availability across the annual cycle) and 

interspecific interactions may be limiting the actual abundance and distribution of this 

Critically Endangered species.      

Finally, population numbers and distribution range of the species could be actually 

larger than those recorded here, but limited surveys in less accessible areas limit our 

current knowledge. Future monitoring programs could directly benefit from results of 

SDMs provided in this study, which can be iteratively refined (as more observational 

data is collected), for conducting new surveys in the best suitable habitat patches.  As a 

first step, new surveys should prioritize collecting empirical data in more remote (less 

accessible) areas and better distributed with respect to landuse composition at a 

landscape scale (particularly with better representation of continuous forest). 

Additionally, our SDMs should also help for an optimal design of potential 

reintroduction or population reinforcement programs that are projected for the species 
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(BirdLife International 2015). Such programs may benefit from validated estimates of 

the occurrence and distribution of true optimal habitats for the species (White et al. 

2014), and a misunderstanding of these fundamentals may lead to inappropriate 

conservation management efforts. Refining SDMs with new surveys would aid in the 

optimal selection of release sites based both on habitat suitability and distance –

connectivity- to the patches currently occupied by the species. This SDM-based 

approach could also help to increase the success of a number of translocation projects of 

parrots (White et al. 2012) and many other animal taxa (Pérez et al. 2012). Importantly, 

new studies should also consider finer habitat-demographic linkages, beyond species 

occurrences, since habitat-related choices made by individuals may be in some 

occasions decoupled from fitness outcomes (e.g., Cardador et al. 2015).  

 

Supplementary Material 

 

The supplementary materials for this article can be found at journals.cambridge.org/bci 
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 1 

Table 1. Variable description and information sources. All variables were derived at 10 arcseconds (~30m) resolution.  

Variable Description Source 

Habitat   

Forest Categorical variable with two levels, describing the 

presence of forest  

Global Landcover Facility 2010 

Palms Minimum Euclidian distance to habitat categories 

including palm species, used as a proxy of food 

availability  

Superintendencia Agraria 2007, Bolivia (Cobertura de Uso 

Actual de la Tierra 2007) 

Landscape Categorical variable with 6 levels, describing the 

dominant habitat at 1km2 radius: cultivated land, forest, 

grassland, shrubland, wetlands and water and urban areas. 

Global Landcover Facility 2010 

Accessibility   

Rivers Minimum Euclidian distance to rivers Sistema de Informacion Territorial de Apoyo a la Producción, 

Bolivia (SITAP 2009) 

Main roads Minimum Euclidian distance to main roads Administración Boliviana de Carreteras 2008 

Secondary roads Minimum Euclidian distance to secondary  roads Administración Boliviana de Carreteras 2008 

 2 

 3 

 4 
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Table 2. Model performance of Maxent models based on different sets of variables 

using AUC, TSS and Test gain values. Note that for each set of variables, AUC, TSS 

and test gain (TG) values are averaged values across 10 replicate models calibrated 

using different randomly selected subsamples of total data (N = 79 records). Model 

significance was tested using threshold-dependent binomial probability tests, using the 

10 percentile training presence (10p TP) and the maximum sensitivity plus specificity 

values (MSPS) as thresholds. The number of significant replicate models is provided. 

Variable sets AUC TSS TG 10p TP MSPS 

Habitat 0.88 0.65 1.50 all p<0.01 all p<0.01 

Accessibility 0.70 0.33 0.36 all p<0.01 all p<0.01 

Habitat+Accessibility 0.89 0.66 1.52 all p<0.01 all p<0.01 
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Figure captions 19 

 20 

Figure 1. Study area. 21 

 22 

Figure 2. Partial response curves illustrating the relationships between probability of 23 

occurrence of the blue-throated macaw and our set of environmental and accessibility 24 

variables. These curves show how the shape of the response changes for a particular 25 

variable, while all other variables are held at their mean sample value. Mean response 26 

curve of the 10 replicate Maxent runs (red) and standard deviation (blue, two shades for 27 

categorical variables) are shown. 28 

 29 

Figure 3. Performance of environmental and accessibility variables in univariate 30 

models (a) and independent contribution (b–d) of individual variables to multivariate 31 

models using different combinations of variables. Mean variable contributions and their 32 

standard deviations are calculated based on 10 replicate runs. The model contributions 33 

are based on test gain from Maxent. 34 

 35 

Figure 4. Predicted distributions of the blue-throated macaw in Bolivia. Predicted 36 

distributions are based on Maxent models using occurrence data (dots, N=79) and 37 

different sets of variables: habitat, accessibility and habitat+accessibility. Note that 38 

models developed for each set of variables were calibrated using 10 different randomly 39 

selected subsamples of total data. Averaged predictions are shown. 40 
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Figure 3. 89 

 90 

 91 

 92 

 93 

 94 

 95 

 96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 



31 
 

Figure 4. 104 
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