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Abstract 

Most psychiatric disorders emerge during childhood and adolescence. This is also a 

period that coincides with the brain undergoing substantial growth and reorganisation. 

However, it remains unclear how a heightened vulnerability to psychiatric disorder relates to 

this brain maturation. Here, we propose ‘developmental computational psychiatry’ as a 

framework for linking brain maturation to cognitive development. We argue that through 

modelling some of the brain’s fundamental cognitive computations, and relating them to brain 

development, we can bridge the gap between brain and cognitive development. This in turn 

can lead to a richer understanding of the ontogeny of psychiatric disorders. We illustrate this 

perspective with examples from reinforcement learning and dopamine function. Specifically, 

we show how computational modelling deepens an understanding of how cognitive processes, 

such as reward learning, effort learning, and social learning might go awry in psychiatric 

disorders. Finally, we sketch the promises and limitations of a developmental computational 

psychiatry. 

 

  



  3 

The importance of development in psychiatry 

Psychiatric disorders are strongly rooted in development, with most mental health 

problems emerging during childhood and adolescence (Kessler et al., 2005; Paus, Keshavan, 

& Giedd, 2008). This holds for classic developmental psychiatric disorders, such as dyslexia 

or attention-deficit/hyperactivity disorder (ADHD), but also for disorders that are typically 

associated with adulthood, such as obsessive-compulsive disorder (OCD), depression or 

personality disorders. While developmental disorders are typically being diagnosed around 

school entry, OCD rises during early adolescence, and depression and psychosis during late 

teenage years (Box 1; Kessler et al., 2005). These well-described temporal patterns underpin 

the notion that development plays a crucial role in the emergence of psychiatric disorders. 

Ignoring these sensitive developmental periods for the emergence of psychiatric disorders risks 

a neglect of critical mechanisms that cause psychiatric disorder (Frankenhuis & Fraley, 2017).  

Despite the relevance of development for psychiatry, the bulk of research is focused on 

adult disorders such that developmental issues are still left in the shadows. Here, we advocate 

that characterising developmental trajectories of psychiatric disorders is of utmost importance 

for understanding the core mechanisms that lead to psychiatric disorders. We start by outlining 

why an understanding of brain computations is likely to be pivotal for understanding typical 

and atypical brain development. We then highlight the importance of computational modelling 

for understanding cognitive development and its relation to brain maturation. We discuss this 

in the context of reinforcement learning and the developmental trajectory of brain dopamine 

function. Finally, we consider the promises and challenges of developmental computational 

psychiatry.  
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The importance of computations in developmental psychiatry 

For decades, neuroscientists have investigated the functional anatomy of cognition, i.e. 

finding out where in the brain a process takes place. This endeavour has been incredibly  

successful, showing among a range of key findings that faces consistently activate the fusiform 

face area (Kanwisher, McDermott, & Chun, 1997), that working memory maintenance involves 

dorsolateral prefrontal cortex (Curtis & D’Esposito, 2003), and that parts of the medial 

prefrontal cortex responds to errors (Iannaccone et al., 2015). Although such approaches have 

widely been applied to psychiatry (e.g., Schumann et al., 2010), they only had modest success 

when it comes to understanding psychiatric disorders. In our view this might be related to the 

issue of asking the wrong question. We suggest that rather than asking where something is 

impaired in the brain we need instead to ask how it goes awry. In other words we need to 

understand the computations performed by the brain, and how these computations go wrong in 

order to fully understand the mechanisms that underlie psychiatric disorders. 

 

Computations in the brain  

Fundamental for understanding brain function is to determine what computations are 

performed in neuronal populations that support a particular cognitive process. Although 

cognitive constructs, such as learning, cognitive flexibility or decision making, allow us to 

understand behaviour at a psychological level, it is unlikely that the brain adheres to this 

notional taxonomy. Equally, it is unlikely that a single brain region is responsible for a 

construct such as cognitive flexibility. Instead it is likely that most expressions of cognition are 

the product of multiple distinct processes that necessitate different computations, in turn 

executed by separate neural populations. A disordered cognitive flexibility can thus arise from 

multiple distinct impairments, which may share little more than them contributing to what we 

call cognitive flexibility. We thus need to try to understand how neuronal populations integrate 
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information to compute what we conceptualise as a cognitive process. Only by parcellating the 

computational mechanisms underlying cognition can we truly understand which processes go 

awry in pathology. 

 A promising way to bridge the gap between neural activity and cognition builds on the 

idea that the brain is a sophisticated information-processing machine. How can we understand 

such a complex device? One approach is to exploit working principles of artificial intelligence 

and relate these to brain processes. The goal of artificial intelligence is to create machines 

capable of learning and reasoning with minimal instruction (e.g., Dayan, Hinton, Neal, & 

Zemel, 1995). This has enabled the creation of powerful algorithms that solve complex tasks, 

such as playing Chess or Go (Silver et al., 2016) without a necessity to provide detailed prior 

instruction. We as investigators can take a lead from the algorithms used in artificial 

intelligence and assess how an artificial agent might solve a task faced by human agents. The 

predictions from such models can then be used to analyse whether cognitive processes 

approximate similar principles, and if so, which neural systems support these.  

 

Computational modelling from neurons to cognition 

Computational models for understanding the workings of the brain can broadly be 

divided into two types of models. One class describes what these neural populations are 

computing (i.e. the algorithm), and the other explain how such an algorithm is implemented at 

a neural level (Hauser, Fiore, Moutoussis, & Dolan, 2016). We can label these classes as 

algorithmic and implementation models as per the nomenclature proposed by Marr (1982) (Fig. 

1).  
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Figure 1. Understanding the neurocomputational mechanisms driving developmental psychiatric 

symptoms. Computational modelling in developmental psychiatry allows us to understand how the 

emergence of psychiatric symptoms during development is linked to atypical brain maturation. To 

bridge the gap between brain (e.g. disrupted dopamine signalling) and symptoms (e.g. indecisiveness 

or apathy), we can employ computational models. Implementation models simulate neural population 

activity and make predictions about how aberrant neural function might cause cognitive deficits. 

Alternatively, we can use algorithmic models that describe the computations underlying cognitive 

processes. These models allow us to parse a behaviour (e.g. decision making) into its component 

computations (here: reinforcement learning, detailed in Fig. 2), which allows us to relate them to neural 

substrates that perform these computations. By connecting brain maturation to the development of 

specific computational processes, we can understand how aberrant developmental trajectories might 

lead to psychiatric disorder. 

 

Implementation models describe how (populations of) neurons process information and 

how they interact in order to solve a task. These models can capture how computations unfold 

in the brain (e.g., Hunt et al., 2012), but their complexity render it difficult to model more 

sophisticated aspects of cognition. Although these models have substantial potential for 

developmental computational psychiatry (e.g., Krystal et al., 2017), in the interest of brevity 

we focus on algorithmic models alone in the remainder of this article.  

Algorithmic models come in various flavours, such as reinforcement learning (Sutton 

& Barto, 1998), Bayesian models (Friston et al., 2014), but also deep neural networks (Yamins 

et al., 2014; Zipser & Andersen, 1988). An advantage of these models is that they provide a 
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principled understanding of the computational mechanisms that underlie cognitive processes, 

and thus allow to link cognitive mechanisms to symptoms. However, linking these 

computational principles to their neuronal implementation is not always trivial (cf. Hauser, 

Fiore, et al., 2016).  

It is worth noting that both types of models are ‘generative’ rather than ‘descriptive’ 

models. This means they make mechanistic predictions how a behaviour (or neural activity) is 

generated. A key advantage of generative models is that they can be used to make 

(probabilistic) predictions about how an agent would perform and through simulation can be 

assessed how well the model describes actual human behaviour (cf. Maia & Frank, 2011). In 

what follows, we focus on algorithmic models describing the role of dopamine in learning and 

we explain why these mechanisms are of interest to developmental psychiatry. 

 

Algorithmic models: dopamine and reinforcement learning 

Reinforcement learning (RL) comprises a multitude of models, which adhere to a core 

principle that agents seek to maximise reward over time (Sutton & Barto, 1998). RL allows an 

agent to learn about its environment through a process of trial and error and by so doing the 

agent can learn to maximise its future reward. 

A key aspect of RL (Fig. 2) is the idea that the agent forms predictions about what is 

going to happen conditional on performing a certain action in a specific environment (state). 

These predictions are continuously evaluated and refined. To perform this refinement, the agent 

compares what happened following an action (outcome, R) with what it had predicted would 

happen prior to taking the action (expectation, R ). The difference between an experienced 

outcome and a predicted outcome forms a quantity referred to as a prediction error (PE). The 

PE indicates whether an outcome is better or worse than expected (positive or negative PE 

respectively), and how much the expectation deviated from the outcome (magnitude of PE). 
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This PE is then used to update future predictions leading to a refinement of the agent’s model 

of the environment. 

 

Figure 2. Understanding the neural mechanisms of reinforcement learning. One of the most 

successfully used algorithms for computational neuroscience is prediction error-based reinforcement 

learning. To make decisions that lead to a rich harvest, our robot Joko has to try to pick the best (in this 

case largest) apples. To decide which tree to choose from, he forms an expectation about how good 

each tree is, based on what he has collected so far (left panel). After he has made a choice (middle), he 

re-evaluates how good the tree is, based on the size of the currently harvested apple. To do this he 

computes a prediction error (PE), the difference between what he expected (  ) and what he actually 

got (R). Here, the apple was much larger than expected, which elicited a positive PE. For his subsequent 

decision (right), he updates his expectation for the blue tree using the PE. In the example, his expectation 

increased because he experienced a positive PE. The influence of this PE on his expectation is 

moderated by a learning rate α, which determines how much weight to ascribe to current over previous 

experiences. Through iterative interactions with the environment, PE-based learning allows Joko to 

converge on the most accurate belief regarding which tree produces the biggest apples (cf. Rescorla & 

Wagner, 1972). Some of the subfigures are used from freepik.com. 
 

RL is a method used in artificial intelligence (Sutton & Barto, 1998), but what does the 

brain have to do with it? In the mid to late 1990s it was discovered that PE signals had a direct 

correlate in the brain, where phasic release of dopamine during reward learning accorded with 

predictions of so-called temporal-difference RL models (Montague, Dayan, & Sejnowski, 

1996; Schultz, Dayan, & Montague, 1997).  Neurons in dopaminergic midbrain (Fig. 3a), 

located in the substantia nigra and the ventral tegmental area, fired when an outcome was more 

rewarding than expected (positive PE), but decreased their firing rate when an outcome was 

worse than expected (negative PE). 

R
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Since then, PEs have been found not only in the dopaminergic midbrain, but also in 

dopamine target regions, such as the ventral striatum (O’Doherty et al., 2004; O’Doherty, 

Dayan, Friston, Critchley, & Dolan, 2003), which belongs to the mesolimbic dopamine 

pathway (Fig. 3). Activation in this area increases with a positive reward PE, i.e. if an outcome 

is more rewarding than anticipated, and decreases when the outcome is less rewarding (i.e. 

negative PE) (e.g., Rutledge, Dean, Caplin, & Glimcher, 2010; Hauser, Eldar, & Dolan, 2017; 

O’Doherty et al., 2003). Although human studies use methods (such as functional MRI) which 

cannot directly measure neurochemicals, such as dopamine, pharmacological manipulations 

have shown that the PE signal in humans most likely reflects phasic dopamine activity 

(Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006), and that dopamine-boosting  drugs 

restore blunted reward PEs seen in older adults (Chowdhury et al., 2013). In what follows, we 

discuss how the concept of prediction errors provides a fundamental understanding of how the 

brain is able to learn in various contexts. 

 

Prediction errors beyond reward 

PEs have mainly been investigated in the context of reward learning. More recently, it 

was discovered that PE-based learning is a more general motif for learning, and is exploited in 

other domains. Besides reward learning, PE signals are important for learning about pain 

(Seymour et al., 2004, 2005; Eldar, Hauser, Dayan, & Dolan, 2016), effort (Hauser, Eldar, et 

al., 2017), and social evaluation (Will, Rutledge, Moutoussis, & Dolan, 2017). Importantly, 

these PEs appear to be encoded in dopaminergic target regions. 

The ventral striatum is a key region for the expression of PEs not only for learning 

about food or monetary rewards, but also about social rewards such as approval (Jones et al., 

2011, 2014). Recently, we showed that such striatal PEs not only drive learning about social 

approval, but also the subjective value people attribute to themselves (i.e., self-esteem) based 
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on learning how much others value them (Fig. 3b; Will et al., 2017). We used a social 

evaluation task wherein subjects repeatedly reported on their self-esteem after receiving 

approval and disapproval feedback from strangers (Fig. 3b). We found that subjects’ self-

esteem was strongly influenced by PEs that capture the difference between expected and 

received social feedback, such that self-esteem depends both on being liked and on being liked 

more than expected. These social approval PEs were encoded in ventral striatum and feedback 

induced updates in self-esteem updates were reflected in ventromedial prefrontal cortex 

(vmPFC) activity. Together, these results show that learning how much others value us, and 

updating of self-esteem, rely on mechanisms akin to those used in non-social reward learning 

at both an algorithmic (i.e., prediction error driven) and neural (i.e., shared neural circuitry) 

level. 

 

 
Figure 3. Dopamine pathways in learning. (a) The majority of dopamine neurons are located in 

dopaminergic midbrain nuclei of ventral tegmental area and the substantia nigra (yellow). Dopamine is 

then released through several ascending projections. The two main pathways are mesolimbic 

projections (red) and mesocortical projections (blue). The mesolimbic projections target areas such as 

the ventral striatum and mature in early adolescence. The mesocortical pathway targets areas of the 

prefrontal cortex, such as dorsomedial prefrontal cortex (dmPFC), and does not mature until late 

adolescence. (b) Using a computational model inspired by models of value-based decision-making, we 

showed that the ventral striatum responds to prediction errors that represent the difference between a 

received and expected social reward in the form of social approval. People used such social approval 

prediction errors to learn how much others value them and to update the value they attribute to the self, 

i.e., their self-esteem. (c) Mesolimbic and mesocortical pathways have different functions in learning. 
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While the former is critical for learning about rewards, the latter is implicated in processes such as effort 

learning. Both learning signals are simultaneously encoded in the dopaminergic midbrain (middle), but 

show a spatial segregation, where reward PEs are primarily encoded in dorsomedial areas (red) and 

effort PEs in ventrolateral areas of the midbrain. The distinct developmental trajectories of these 

pathways (Box 1) pose critical questions about the development of the functions they subserve and how 

they are related to the emergence of psychiatric symptoms, such as apathy. Figures in panel (b) are in 

part taken from Will et al. (2017) and (c) from Hauser et al. (2017). 

 

The dopamine system not only consists mesolimbic pathways that project to ventral 

striatum, but also a mesocortical pathway that projects to several prefrontal regions, including  

dorsomedial prefrontal cortex (dmPFC; Paus, 2001). Given that dmPFC has been found to 

encode effort associated with a choice option (Croxson, Walton, O’Reilly, Behrens, & 

Rushworth, 2009; Kurniawan, Guitart-Masip, Dayan, & Dolan, 2013; Walton, Bannerman, 

Alterescu, & Rushworth, 2003), we speculated that it may also encode an effort PE signal. To 

formally test this we tasked subjects to learn about the reward and effort associated with a 

stimulus (Hauser, Eldar, et al., 2017). Subjects had to simultaneously learn both features in 

order to make good decisions. We found that subjects used PE-like learning mechanisms during 

reward and effort learning. Using functional MRI, we also found that both types of PEs were 

encoded in the dopaminergic midbrain (Fig. 3c). However, these PEs seemed to be processed 

along different pathways, with reward PEs expressed in ventral striatum and effort PEs 

expressed in dmPFC. Moreover, we found that the encoding of these PEs in the latter region 

was related to subjects’ apathy, a trait characterised by a loss of motivation to exert effort for 

rewarding outcomes (Marin, 1991). 

 

Computations beyond prediction errors 

Besides simple PE-based learning, other RL-related mechanisms have been discovered 

in the brain during more complex tasks. For example, when an unobservable model of task 

structure is guiding behaviour, in alignment with ‘model-based’ planning (Daw, Gershman, 

Seymour, Dayan, & Dolan, 2011; Keramati, Smittenaar, Dolan, & Dayan, 2016; Wunderlich, 
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Smittenaar, & Dolan, 2012). Moreover, evidence for forward and backward planning in both 

spatial and non-spatial tasks suggests that the brain might solve complex, hierarchical planning 

by exploiting core RL principles (Johnson & Redish, 2007; Kurth-Nelson, Economides, Dolan, 

& Dayan, 2016; Wunderlich, Dayan, & Dolan, 2012). These more complex computations are 

still very much subject to ongoing investigations to the extent that there is current discussion 

about the computational framework within which PE and dopamine should be considered in 

general (Friston et al., 2014; Gershman & Schoenbaum, 2017; Wang et al., 2018) and the role 

of other neurotransmitters in computing such signals (e.g. Iglesias et al., 2013). A close 

exchange between basic cognitive neuroscience and developmental psychiatry is thus critical. 

Importantly, if we want to understand why these computations may change with 

development, and how this could be relevant for the emergence of psychiatric disorder, we 

need to understand how neural systems that support these computations, such as dopamine, 

develop and mature. 

 

From brain anatomy to cognition: tracing developmental trajectories 

The brain undergoes fundamental structural change throughout childhood and 

adolescence, and the developmental trajectories extend into the third and fourth decades of life 

(Foulkes & Blakemore, 2018; Giedd et al., 1999, 2015). After an initial increase in gray matter 

size there is then a relative decrease during adolescence (cf Box 1; Paus, 2010). This decline is 

thought to be driven by a pruning of cortical connections, meaning that neural connections 

become more selective, possibly supporting a more efficient information-processing capability. 

In white matter, there is a monotonic increase throughout development, probably driven by 

axonal myelination (Ziegler et al., 2018). Myelination provides insulation for connections 

between neural populations (Virchow, 1854) and supports fast and reliable information 

transmission. 
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Importantly, this structural development is not homogeneous across the entire brain, 

but rather has specific trajectories in different regions (Gogtay et al., 2004). While primary 

sensory and motor areas show early maturation, higher cognitive areas of the prefrontal cortex 

are among the last to fully develop. These distinct developmental trajectories are likely to drive 

– at least in part – the maturation of distinct computational mechanisms. It is thus of little 

surprise that motor skills ripen prior to complex reasoning skills. 

 

Dopamine development 

Although we have a good understanding of how cortical regions mature, we know much 

less about developmental trajectories of neurotransmitter function, such as dopamine. Given 

the importance of dopamine in signalling PEs, its role in reinforcement learning, and its 

supposed involvement in many development-related psychiatric disorders (e.g., Denys, Zohar, 

& Westenberg, 2004; Hauser et al., 2014; Hauser, Iannaccone, et al., 2017; Tripp & Wickens, 

2012), it is critical to understand its ontogeny. A key challenge in tracing dopamine 

development is that neural populations that release dopamine – and neurotransmitters in 

general – are located in small structures in the midbrain. These areas present a challenge for 

traditional neuroimaging methods (Hämmerer et al., 2018) as they are among the most 

susceptible to movement and other development-related artefacts (Kasper et al., 2017). A 

second challenge is that structural integrity of these brainstem nuclei carries little information 

about the maturity of a system as a whole. The effectiveness of a neurotransmitter system 

depends on multiple factors, such as the pattern of its branching projections and the 

configuration of receptors in its target regions.  

 To obtain a proxy for dopamine development in humans, scientists have turned to its 

development in rodents (cf. Ernst & Luciana, 2015). Research here has focused on the 

development of three aspects of the dopamine system: Development of dopamine neurons, 
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growth of dopamine projections, and density of dopamine receptors (Box 1). Dopamine 

neurons emerge relatively early in brain development. At 6-8 weeks after conception, the foetal 

human brain possesses functioning dopamine neurons (Sundström et al., 1993). With dopamine 

neurons in place at birth, the system still needs at least another two decades to fully mature. 

For dopamine to be effective, dopamine-sensitive receptors must be available at target sites. 

The availability of dopamine receptors, such as D1- and D2-receptors, differs substantially 

between brain regions as a function of maturation stage. In the ventral parts of striatum, 

dopamine receptor density increases during childhood and peaks around onset of puberty 

(Caballero, Granberg, & Tseng, 2016). During adolescence, receptor density in the striatum 

shrinks again with an overall loss of approximately 25% of its receptor population (Caballero 

et al., 2016).  

Dopamine receptors in prefrontal cortex show a later maturation than in the striatum. 

Prefrontal receptor expression does not peak until late adolescence, and then continues to prune 

well into adulthood (Naneix, Marchand, Di Scala, Pape, & Coutureau, 2012). These findings 

highlight that dopamine in limbic areas including ventral striatum have a different 

developmental trajectory compared to prefrontal cortex. The distinction between striatal and 

prefrontal dopamine development is particularly pronounced when investigating the 

maturation of dopamine projections. Dopamine projections to the striatum develop during 

childhood, suggesting that most of the mesolimbic pathway is in place in early adolescence 

(Coyle & Campochiaro, 1976). The mesocortical pathway, however, shows protracted 

development. Most dopamine projections only reach prefrontal cortex during late adolescence, 

a process that continues into adulthood (Caballero et al., 2016; Naneix et al., 2012). Some of 

the projections are connections that originally terminated in the striatum and that during 

adolescence expand into prefrontal areas, leading to a relative decrease of mesolimbic 

connections (Reynolds et al., 2018). This makes mesocortical projections the only known long-
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range connections in the brain that continue their growth throughout adolescence (Hoops & 

Flores, 2017). Interestingly, dopamine maturation is also mirrored in structural maturation of 

the target brain regions, where striatum appears to mature before prefrontal cortex (Giedd et 

al., 2015). 

 A caveat to the above concerns extrapolating these dopamine findings to humans. 

Development is much faster in rodents than in humans (weeks vs. decades), while the mature 

rodent brain is less complex than the human brain, especially in prefrontal cortex. It thus 

remains challenging to fully understand dopamine development in humans (cf. Box 2). 

 

 

Computational mechanisms in development and psychiatry  

So far, we have discussed why computational modelling is important for understanding 

how the brain processes information. Moreover, we have seen that the anatomical bases on 

which these computations build upon change fundamentally, often continuing into adulthood. 

In what follows, we will highlight why it is critical to bring these two perspectives together to 

understand how psychiatric disorders might emerge from atypical brain development. 

 

Development of computational abilities 

Despite the importance of computational mechanisms in development, there is 

surprisingly little, and in addition purely cross-sectional, research on how these mechanisms 

change with age. Decision making and learning are relatively complex cognitive processes and 

it is reasonable to assume these processes have protracted developmental trajectories 

(Palminteri, Kilford, Coricelli, & Blakemore, 2016).  

A small number of studies have investigated the development of PE-based learning in 

the context of reward processing. Using a reward learning task in children, adolescents and 
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adults, Cohen et al. (2010) investigated how reward PEs differ in various phases of 

development. Interestingly, the authors found a quadratic relationship between age and PE 

encoding activity in the striatum. This means that adolescents showed the strongest responses 

for positive reward PEs, stronger than both children and adults (Cohen et al., 2010). This striatal 

hyper-responsiveness could be modulated by activity in the network wherein it is embedded, 

such as the connectivity between striatum and vmPFC which appears to strengthen with age 

(van den Bos, Cohen, Kahnt, & Crone, 2012). This suggests that striatal hyper-responsivity is 

downregulated in adulthood via prefrontal control, in line with the general notion that 

prefrontal cortex acts to balance a mesolimbic dopamine system (Galvan, 2010). Adolescent 

hypersensitivity not only relates to rewarding stimuli, but also to losses, where enhanced PEs 

in the insula are associated with increased learning for these stimuli (Hauser, Iannaccone, 

Walitza, Brandeis, & Brem, 2015; also cf. Davidow, Foerde, Galván, & Shohamy, 2016). Next 

to nothing is known about the development of other forms of PE learning, such as learning 

about social evaluation or effort. We highlight below why it is essential to characterise the 

development of these PEs (longitudinally) to understand how psychiatric symptoms emerge. 

For more complex aspects of decision making, such as model-based reasoning, some 

first developmental studies have started to surface (Hartley & Somerville, 2015; van den Bos, 

Bruckner, Nassar, Mata, & Eppinger, 2017). An important aspect of reinforcement learning 

algorithms is knowing that one’s environment has hidden, unobservable connections and 

inferring these is at the core of ‘model-based’ reasoning. Studies of model-based decision 

making indicate this form of reasoning only comes online during adolescence, and does not 

reach full maturity until early adulthood (Decker, Otto, Daw, & Hartley, 2016; Potter, Bryce, 

& Hartley, 2017). 

Another challenging decision making process is to arbitrate between choice options, 

especially if one has to arbitrate between exploring a novel option and exploiting a well-known 
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option. Humans solve this exploration-exploitation trade-off using different strategies, such 

information-directed or random exploration (Gershman, 2018; Kidd & Hayden, 2015; Wilson, 

Geana, White, Ludvig, & Cohen, 2014). These exploration strategies show distinct 

developmental patterns, with younger children using simpler, random exploration while 

adolescents start using complex information-directed exploration (Somerville et al., 2017).  

These findings underline that the development of neuro-computational mechanisms is 

not a unitary process, but rather the result of multiple developmental trajectories that are at 

work (cf. Box 1). These trajectories are hypothesised to determine how decisions are made at 

each specific developmental stage. In order to fully understand how these different 

computational strategies emerge, we need more sophisticated longitudinal investigations of 

decision making and relate these to structural and functional brain development. 

 

Computational deficits in psychiatric disorders 

Decision making and learning deficits are common across psychiatric disorders 

(Montague, Dolan, Friston, & Dayan, 2012). A putative dopamine deficit in several disorders 

has led to a growing literature on aberrant RL-related computations in psychiatry. However, 

almost no studies have investigated how psychiatric disorders are related to developmental 

aspects of these deficits. Here, we briefly summarise some key results that are related to PE 

processing and reinforcement learning to subsequently sketch out how a developmental 

perspective can change the way we understand how these impairments arise. 

Impaired reward PE learning has been observed in a number of psychiatric disorders. 

These include psychosis (Gradin et al., 2011; Murray et al., 2007), alcohol abuse (Reiter et al., 

2016), OCD (Hauser, Iannaccone, et al., 2017; Hauser, Eldar, & Dolan, 2016), ADHD (Hauser 

et al., 2014), and depression (Gradin et al., 2011; Kumar et al., 2008; though see Rutledge et 

al., 2017 for contrary findings). However, a relative heterogeneity of where in the brain these 
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impairments were found renders it difficult to understand whether impaired PE-learning forms 

a general, transdiagnostic feature of psychopathology, or whether there are distinct 

impairments in specific disorders. Unified approaches and comparable settings across disorders 

would therefore be desirable. 

The development of such deficits has hardly been studied. In a study of ADHD patients, 

PE impairments seem to be present already during adolescence, and these deficient learning 

signals render patients to manifest more exploratory decision making using random exploration 

(Hauser et al., 2014). Based on knowledge that different forms of exploration have distinct 

developmental trajectories (Somerville et al., 2017)  a critical question arises as to when during 

development these impairments emerge, and whether ADHD patients show distinct 

developmental trajectories in their exploration strategies compared to typically developing 

children. This would allow to trace when the developmental trajectories of exploration and PE 

learning deviate from normal development and how such impaired maturation drives ADHD 

symptoms. 

While PEs involved in reward learning exemplify a relatively basic computation with 

an early development, it is likely that other computational aspects of decision making lead to 

deficits only at a later stage. For example, OCD has been associated with deficits in model-

based reasoning in the reward domain (Gillan et al., 2011, 2015; Gillan, Kosinski, Whelan, 

Phelps, & Daw, 2016; Voon et al., 2015). Knowing this model-based reasoning does not fully 

develop until adolescence (Decker et al., 2016) renders critical the question as to when this 

deficit emerges in OCD patients.  

 

 

The importance of a developmental computational psychiatry 
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So far we have highlighted several contexts where mechanistic understanding of 

aberrant developmental trajectories could provide insight into psychiatric disorders (cf. Box 3). 

However, we also believe that developmental computational psychiatry is likely to be even 

more fundamental for some psychiatric deficits, where aberrant developmental trajectories are 

likely to be the driving causative factor. We highlight this in two examples, apathy and self-

esteem. 

 

Apathy as aberrant maturational separation of dopamine pathways? 

Apathy is characterised by a lack of motivation and an inability to expend effort to 

realise goal-directed actions (Chong, 2018; Marin, 1991). It is a transdiagnostic feature present 

in several neurological and psychiatric disorders (Pessiglione, Vinckier, Bouret, Daunizeau, & 

Le Bouc, 2017) and may arise from a similarly impaired mechanism in all these disorders 

(Chong, 2018). We also know that many apathy-related disorders, such as depression or 

schizophrenia, emerge during adolescence (Kessler et al., 2005; Paus et al., 2008) and that 

reinforcement learning is already altered in youth at risk for psychosis (Waltz et al., 2015). As 

a fundamental component of negative symptoms, apathy is a key determinant of long-term 

disability in schizophrenia (Green, Horan, Barch, & Gold, 2015). Recent computational 

theories have characterised apathy as an imbalanced trade-off between reward and effort 

(Chong, 2018; Green et al., 2015; Pessiglione et al., 2017). An inflated representation of effort 

or a diminished expectation of reward can lead to a belief that an action is not worth carrying 

out, which in turn leads to apathetic behaviour. We recently showed that apathy is related to 

how subjects learn about the effort and reward associated with a stimulus. More specifically, 

we showed that effort and reward PEs overlap in dmPFC to a greater degree in non-clinical 

adults with increased apathy (Hauser, Eldar, et al., 2017). This suggests that the mesolimbic 
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and the mesocortical pathways might be less well differentiated in such subjects and this 

overlap might bias the reward and effort representations. 

As seen above, mesocortical projections are among the last brain pathways to mature 

(Hoops & Flores, 2017). Only during adolescence do these projections extend from ventral 

striatum to prefrontal target areas. This suggests that a spatial separation of effort and reward 

PEs as seen in adults might not be present before the mesocortical pathway is fully matured. 

This also hints that apathy (as part of a disorder or as an independent symptom) might arise if 

mesocortical growth and signalling goes awry during adolescence, where for example 

projections meant to target striatum extend into prefrontal areas. Such aberrant growth during 

adolescence might lead to a failure of segregation of learning signals and lead to an imbalance 

between striatal and prefrontal dopamine (Elert, 2014). 

To test this hypothesis, we need to employ a fully developmental computational 

psychiatric approach, where we trace learning of reward and effort in a longitudinal fashion 

using computational neuroimaging. Having characterised a canonical developmental 

trajectory, we should then assess development in individuals at risk for apathy and ask whether 

a misguided unfolding in dopaminergic pathways leads to symptoms such as apathy. Although 

such endeavours are complex and resource-intense, without a developmental perspective such 

putative maladaptive developmental patterns will remain undetected. 

 

 

 

Self-esteem instability as vulnerability for adolescent-onset psychiatric disorders 

Low or fragile self-esteem is present in almost every psychiatric disorder. It is a core 

characteristic of depression (Orth & Robins, 2013), anxiety (Sowislo & Orth, 2013), and eating 

disorders (O’Dea & Abraham, 2000), all conditions that commonly have their onset in 
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adolescence (Kessler et al., 2005). Adolescence is also the period where we are particularly 

sensitive to what peers think of us and it is a period when we are more likely to internalize 

social rejection in our self-view (Rodman, Powers, & Somerville, 2017). This greater 

propensity to internalize rejection may be a key driver for the elevated risk of developing mood 

or anxiety disorders during adolescence (Davey, Yücel, & Allen, 2008; Sowislo & Orth, 2013). 

However, the precise mechanisms that underlie this vulnerability remain to be investigated. 

A good example of how computational psychiatry may help us uncover such 

mechanisms is our study where we showed that healthy adults use social PEs to update their 

self-esteem based on how much others value them (Will et al., 2017). Crucially, adults who 

give more weight to social PEs when updating their self-esteem report more mental health 

symptoms than those who give less weight to social PEs. Individual variation in such 

vulnerability to mental health problems was associated with distinct neural processing of social 

PEs and self-esteem updates. Together, these findings provide mechanistic insight into how 

social feedback is internalized into self-views at both an algorithmic and neural level, which 

cannot be observed from subjective reports or behaviour alone.  

Given that PEs during non-social learning seem overexpressed during adolescence 

(Cohen et al., 2010; Hauser et al., 2015), we hypothesize that a similar overexpression in social 

PEs may drive adolescents’ greater propensity to internalize rejection. As such an increased 

tendency to give more weight to social PEs when updating self-evaluative beliefs may represent 

a mechanistic explanation for adolescence as a period of increased vulnerability to depression 

when faced with repeated social rejection.  

Such insights not only inform our understanding of how psychiatric disorders arise, but 

can also inform treatment. Depressed adults with unstable self-esteem are more responsive to 

certain treatments than those with a stable low self-esteem (Roberts, Shapiro, & Gamble, 1999). 

However, self-esteem instability may stem from a range of different sources, including greater 
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sensitivity to social feedback. A computational modelling approach allows for a 

neurobiologically plausible parameterization of such vulnerabilities (e.g., greater self-esteem 

instability as a result of giving more weight to social PEs when updating self-esteem). By 

phenotyping individuals along such newly defined computational dimensions, this type of 

approach could help identify subgroups of depressed adolescents with unstable self-esteem 

who might benefit more from therapies targeting self-esteem reactivity than patients whose 

self-esteem is less open to change.  

Multiple disorders that first emerge in adolescence (e.g. depression, anxiety disorders, 

eating disorders) share similar vulnerability, including declines in self-esteem preceded by 

adversity in the interpersonal domain (e.g. peer rejection, romantic breakup) (Allen & Badcock, 

2003; Davey, Yücel, & Allen, 2008; Sowislo & Orth, 2013). A computational psychiatry 

approach has the potential to uncover whether the onset of these different disorders during 

adolescence stems from similar or distinct mechanisms, with important ramifications for 

treatment. Computational models can also aid in determining how existing treatments (e.g. 

cognitive behavioural therapies or drugs) impact on psychosocial functioning through 

quantifying how they modulate parameters in our models (e.g. decreases in self-esteem 

instability through a decrease in weight given to social PEs). Such endeavours have the 

potential to provide mechanistic insights into the efficacy of treatments that exceed the limits 

of purely descriptive observations of self-esteem instability.  

 

 

Conclusions 

In this article, we advocate a consilience between the fields of computational psychiatry 

and developmental neuroscience to establish a field of developmental computational 

psychiatry. We highlight why such a computationally inspired framework is likely to be critical 
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for understanding how the brain processes information, and how this might go awry during 

sensitive periods in development. We illustrate how computational mechanisms are likely to 

follow specific developmental pathways, because the anatomical substrates upon which they 

are grounded continue to develop throughout the second and early third decade of life. We 

highlight the potential insights that a developmental perspective on computational psychiatry 

can provide and how key questions related to psychopathology are only addressable by 

employing a developmental perspective. We believe that developmental computational 

psychiatry can allow us to begin to unravel why so many psychiatric disorders emerge during 

this period of development. 
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Box 1: Trajectories in cognition, brain and psychiatry 

A key challenge in developmental 

computational psychiatry is to determine how 

developmental trajectories across multiple 

systems interact. We need to understand how 

the development of a neurotransmitter system 

influences the emergence of a specific 

cognitive skill, and how an impaired unfolding 

of this trajectory might promote the emergence 

of a psychiatric disorder (even decades later in 

life). A striking feature of brain development 

(a) is a heterogeneity in developmental 

trajectories. Although many prefrontal brain 

areas follow a general pattern of gray and white 

matter maturation, there is considerable variability both between areas and between 

individuals. Even within a single neuromodulatory system, such as the dopaminergic system, 

there are likely to be strikingly different trajectories. For example, dopamine receptors in 

ventral striatum increase in number mainly during childhood, while cortical receptors show a 

much later maturation (cf. main text). (b)  Cognitive functions also show a relative 

heterogeneity in terms of development. Interestingly, these cognitive trajectories parallel the 

developmental trajectories of the brain systems with which they are associated (e.g. mesolimbic 

connections and reward learning). (c) To establish a link between brain, computation and the 

emergence of psychiatric disorders we need to establish normative developmental trajectories 

and assess when and how they deviate in psychiatric patients. It is thereby critical to note that 

these trajectories themselves are likely to be highly malleable, so that events taking place in a 
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child’s environment can alter a developmental trajectory. A prime example is early life stress 

and adverse childhood experiences (Sheridan & McLaughlin, 2014), where such experiences 

can have a profound impact on brain structure, function and reward learning (Dennison et al., 

2017; Hanson et al., 2017; Kamkar, Lewis, van den Bos, & Morton, 2017; Will, Crone, van 

Lier, & Güroğlu, 2016; Will, van Lier, Crone, & Güroğlu, 2016). A further challenge is that 

developmental trajectories are unlikely to obey chronological age, but instead are influenced 

by factors known to modulate brain maturation, such as puberty (Blakemore, Burnett, & Dahl, 

2010; Giedd et al., 2006; Herting et al., 2014, 2017), where hormones impact on behaviour and 

brain development (Peper & Dahl, 2013), with known effects of testosterone on reward and 

social status processing (Cardoos et al., 2017). All trajectories in this Figure are speculative 

illustrations with dashed lines indicating trajectories that are based little or no empirical data.  
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Box 2: Challenges for Developmental Computational Psychiatry 

Developmental computational psychiatry faces several challenges, some of which 

fundamentally limit our abilities to generate novel insight. Here, we provide an incomplete list 

of what we consider key challenges: 

 Understanding the development of neurotransmitters (e.g. dopamine). Understanding this 

in humans is inherently limited because imaging techniques, such as positron-emission-

tomography (PET) are not practical for developmental neuroimaging.  

 Sensitive tasks for development. A key to understanding the development of 

computational mechanisms is to use tasks that measure computations reliably and 

objectively, and at the same time are viable for research with younger children. To date, 

most computational tasks have not been systematically evaluated in terms of reliability 

and other key psychometric criteria, as well as in terms of their sensitivity to 

computational modelling.  

 Longitudinal developmental studies of computational tasks are sparse. We need to 

rigorously examine how computational mechanisms develop, and overcome limitations 

in tasks, such as accounting for practice effects, the limitations to use deception in social 

tasks, or the low reliability of some computational tasks.  

 For understanding a cognitive process, we need to have adequate computational models 

that describe the computations that are carried out by the brain. To overcome these 

challenges, the field needs a close collaboration between experts in computational 

modelling, computational neuroscience, developmental scientists and experts in 

psychiatry. 

 The understanding of a neurocognitive process is limited by the quality of the 

computational model that was used. If we our model is insufficient because (i) it captures 

the data only partially, (ii) it is not generalizable to other tasks/data, (iii) it is too complex 
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(i.e. overfitting), then insight will be limited. Additional practical challenges, such as 

uncertainty about the model parameters, accounting for decision noise, or how to define 

a model space need careful consideration. A detailed discussion of the challenges in 

computational psychiatry and computational modelling in general can be found 

elsewhere (e.g., Dayan, Dolan, Friston, & Montague, 2015; Nassar & Frank, 2016; van 

den Bos et al., 2017). 
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Box 3: What can we learn from Developmental Computational Psychiatry? 

We should hail scientific endeavours (and most other endeavours too) based on their 

outcomes, not their promises. Nevertheless it is of importance to sketch out what 

developmental computational psychiatry can offer to improve patients’ lives.  

Psychiatric disorders are enigmatic and psychiatry as a field lags behind many areas of 

medicine in terms of mechanistic understanding. A key aim of developmental computational 

psychiatry is to address the neurobiological mechanisms that underlie psychiatric disorders, 

particularly with respect to how deficits arise during childhood and adolescence. The reality is 

that we are still operating with purely descriptive classifications, with only limited biological 

validity. More challenging is the likelihood that a single diagnosis lumps together several 

neurobiological disorders that may be entirely distinct in their pathomechanisms (Stephan et 

al., 2016). A computational perspective could help tease apart different underlying 

neurobiological disorders. In addition, a developmental perspective can help address when in 

development an impairment arises, and how external influences such as adverse events, chronic 

stress or poor parenting lead to a derailing of neurocognitive developmental trajectories. We 

suggest developmental computational psychiatry offers a unique toolset to unravel mechanisms 

that underlie interactions between these complex features of a person’s biography, environment 

and brain development. 

Understanding the developmental mechanisms also holds promises for intervention. If 

we are able to align diagnosis better with a neurobiological deficit, then we can use 

interventions that directly target that specific deficit, for example modulating a specific 

component of the dopamine system. Finding new mechanisms might even lead to the 

development of novel treatments that target these causative mechanisms.  

Establishing new markers does not have to involve expensive neuroimaging, an 

unrealistic avenue at a time where budgets of health care services are overstretched. A more 
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promising avenue is to develop tasks and computational models that act as a proxy for detecting 

aberrant brain functioning. Neuroimaging thereby would only come into play when 

investigating these aberrant mechanisms and to evaluate the potential of such behavioural 

markers, rather than being necessary for actual clinical diagnoses. Developmental 

computational psychiatry by identifying computational principles arising from task analysis 

has the potential to improve pharmacological interventions, but equally interventions that target 

psychological processes (cf. Moutoussis, Shahar, Hauser, & Dolan, 2017). 
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