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Abstract

This thesis is concerned with the evolution of oceanic nonlinear internal waves

over variable one-dimensional and two-dimensional topography. The methodology

is based on a variable-coefficient Korteweg-de Vries (vKdV) equation and its vari-

ants, including the Ostrovsky equation which takes rotation into account and a

Kadomtsev-Petviashvili (KP) equation which extends these one-dimensional models

to two space dimensions. In addition, a fully nonlinear and non-hydrostatic three-

dimensional primitive equation model, MIT general circulation model (MITgcm), is

invoked to provide supplementary analyses. First, the long-time combined effect of

rotation and variable topography on the evolution of internal undular bore is stud-

ied; then an initial mode-2 internal solitary wave propagating onto the continental

shelf-slope in a three-layer fluid is investigated. After that, the research is extended

to two-dimensional space in which submarine canyon and plateau topography are

implemented to examine a mode-1 internal solitary wave propagating over these

topographic features. Finally, the topographic effect on internal wave-wave interac-

tions is examined using an initial ‘V-shape’ wave representing two interacting waves

in the framework of the KP equation.
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Impact Statement

The present investigation on oceanic nonlinear internal waves over variable to-

pography has both economic and academic value. Internal waves can pose potential

hazards on offshore drilling platform and cause loss of money, which indicates that

a prediction system for the intensity and arrival time of internal waves around the

platform will be beneficial. In addition, the induced mixing by the breaking of in-

ternal waves in the coast can boost biological productivity, hence the knowledge of

wave propagations will guide us to determine those areas. Nowadays, global climate

change has been drawing much attention, and recent research has demonstrated that

internal waves are important in redistributing heat and momentum in the ocean.
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EXP3, except that an envelope is imposed on the initial V-shape wave. 144
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Chapter 1

Introduction

1.1 Oceanic internal waves

Interest in the internal waves commonly observed in the coastal oceans, straits

and fjords has been particularly strong during the last several decades owing to their

important role on the marine ecosystem, marine geology and on coastal engineering.

These internal waves occur in the interior of the ocean, but have a surface signature,

manifested as a small modulation on the surface roughness, which can be recorded

by satellite images. The restoring force of internal waves is buoyancy, measured

by the buoyancy frequency N , where N2 is a measure of the vertical gradient of

the background density. It is much weaker (usually of order O(10−2 − 10−3)) than

gravity exerted on the same water parcel, which implies that even induced by a

small disturbance, internal waves can have large amplitudes and strong currents.

This can be explained dynamically when considering a simple model. Assuming a

perturbation is acted on a fluid parcel, which amounts to an amount of kinetic energy

is input to the system, then when the density gradient is small, this parcel has to

move a large distance to convert that kinetic energy to potential energy. One of the

strongest internal solitary waves on record has an amplitude of 240m, and a peak

current velocity of 2.55m/s, captured at a mooring site deployed in the northern

22
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South China Sea at the bottom depth of 3847m, see Huang et al. [55]. The scale of

these waves implies that they can pose potential hazards for underwater drilling, see

Osborne et al. [86].

Figure 1.1: Schematic illustrating a three-day life cycle of the internal waves originat-
ing from the Luzon Straight in the South China Sea (Figure adopted from Simmons

et al. [98]).

In general, internal waves can be further categorised into linear internal waves

and nonlinear internal waves, depending on their dynamical characteristics. The

frequencies ω of linear internal waves are always larger than the local inertial fre-

quency f = 2Ω sinφ, where Ω is the rotation rate of the earth and φ is the latitude,

and smaller than the buoyancy frequency N , that is f < ω < N . By far, the most

energetic linear internal waves are the near-inertia waves with frequencies ω ≈ f

and internal tides at the astronomical frequencies (dominantly the semidiurnal (two

cycles per day) M2 tides). The former is usually generated due to the energy input

from wind, while the latter is mainly due to the interaction between barotropic tidal

currents and abrupt topographic features, see Alford [5, 6], as well as nonlinear waves

forming due to nonlinear steepening, and they can be generated at the topographic

site by critical flow (Froude number Fr = u/c = 1, where u is a characteristic flow

velocity and c is the wave propagation speed), or by tidal beams at the critical slope.

Internal waves can propagate several thousand kilometers away from the genera-
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tion sites before their eventual breaking and dissipation, see Ray and Mitchum [92].

After radiating from the generation sites, due to complicated oceanic background

circumstances, internal waves may undergo nonlinear steepening and transform into

nonlinear internal waves, often characterised as internal solitary waves. Figure 1.1

exhibits a typical life cycle of oceanic internal waves. In this thesis we only consider

the evolution and propagation of internal solitary waves.

A large number of observations demonstrate the existence of internal solitary

waves (ISWs) in numerous locations around the world’s oceans, both from field mea-

surements, see Ramp et al. [91], Shroyer and Nash [97], Huang et al. [55] and remote

sensing images, see Zhao et al. [122], Da Silva et al. [21], Liu et al. [73]. Nevertheless,

due to the complicated oceanic background, in addition to an isolated ISWs, nonlin-

ear wave trains in a form of unsteady undular bores were also recorded and ISWs are

often seen as the leading waves in internal undular bores. Unlike surface waves, ISWs

can have an infinite set of modes. Here the terminology of “mode” indicates the verti-

cal structure of the particle displacement, and hence the corresponding temperature,

pressure, horizontal and vertical particle velocity fields, which are linked through the

underlying Euler equations. Indeed, the emergence of multi-modes has been affirmed

by plenty of observations, see figure 1.2 for instance. In general, mode-1 waves have

been most commonly observed, although mode-2 and even mode-3 waves are also

recorded, see Guo et al. [49], Yang et al. [113, 112], Shroyer and Nash [97], Liu et al.

[73]. It was found that the energy transfer between different modes can emerge, for

example, Vlasenko et al. [105] pointed out that interaction between mode-1 nonlinear

internal waves and topography can result in a generation of mode-2 waves; Guo and

Chen [47] examined the propagation of mode-2 waves over a shoaling topography, in

which the conversion from the second to first mode was noticed.

Figure 1.3 illustrates the schematic of mode-1 and mode-2 internal solitary waves,

which are the main interest in the ocean. Mode-1 wave can be either depression
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Figure 1.2: Time series of the temperature field in the South China Sea, reported by
Guo et al. [49]

(negative) or elevation (positive) wave, so do mode-2 waves, but with a more complex

structure. For mode-2 waves, an elevation wave is often called a “convex wave” as the

upper (lower) pycnocline interface is displaced upwards (downwards). In contrast, a

mode-2 depression wave is a “concave” wave, with an hourglass-shaped structure, as

the upper (lower) pycnocline interface is displaced downwards (upwards). Although

mode-2 internal waves are usually not as energetic as mode-1 waves, they can be

significant for mixing shelf waters especially as their location is usually in the middle

of the pycnocline, and hence they can be effective in eroding the barrier between the

upper mixed layer and the deep water below.

Since internal waves can propagate for long distances over several inertial periods,

the effect of the earth’s background rotation will become significant. Farmer et al.

[27] examined this problem with in-situ measurements and theoretical models and

found that the rotational effect can suppress the emergence and evolution of internal

solitary waves to some extent. This is understandable in the framework of the KdV-

type equation, as the rotational effect is manifested as a low wavenumber dispersive

term, in addition to the usual high wavenumber dispersion. Helfrich [51], Grimshaw

and Helfrich [39] showed that due to the rotation, an initial large-amplitude solitary
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(a) (b)

Figure 1.3: Schematic map shows the vertical displacement of mode-1 (a) and mode-
2 (b) internal waves. In both panels, the left wave is the elevation wave, whereas the

right is the depression wave.

wave decays into inertia-gravity waves, and eventually the leading disturbance forms

into a coherent envelope wave packet. Later, Grimshaw et al. [46] corroborated

this by laboratory experiments and furthermore they also found that even for more

general inertia-gravity waves which are not originated from the radiation of ISWs, the

involvement of the rotational effect can also lead to the emergence of nonlinear wave

packets, albeit the time scale for this process has a possibility to be unrealistically

long depending on the specific circumstances, also see Stastna et al. [100]. Then

Grimshaw et al. [44] showed that the combined effect of shoaling and rotation is to

induce a secondary trailing wave packet following the leading internal solitary waves

in a realistic transect in the SCS.

The oceanic topography is essentially variable, especially at the coastal area.

Indeed, the topographic effect on the propagation of internal solitary waves has

been heavily studied and is now well understood, see the reviews by Grimshaw

[37], Grimshaw et al. [42, 43]. Nonetheless, a large portion of the previous work

was based on one-dimensional topography, whereas it is two-dimensional in reality.

Although a few investigations considered the two-dimensional bathymetry, such as
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Vlasenko and Stashchuk [104], Zhang et al. [121], they based their analyses on the

numerical results of the Navier-Stokes equations, whose abilities to accurately sim-

ulate the phenomena, particularly for small-scale features, are highly dependent on

the spatial and temporal grid steps and the parameterisation schemes implemented

in the model. Furthermore, it is usually not easy to analytically explain and under-

stand the results of the primitive equations, as they could include lots of dynamical

processes of different scales and the interactions between them and can even render

the features of main interest as distorted or hidden.

Due to complicated bathymetry, there can be more than one potential generation

site for internal waves in the coastal ocean. For instance, in the South China Sea,

three parts of the Luzon Straight are indicated as the major generation sites, as shown

in figure 1.4, and also see Jan et al. [57], Alford et al. [7], Guo and Chen [48]. Further,

after radiating from their generation sites, due to the variable oceanic background,

ISWs can undergo refraction and reflection, see Liu and Hsu [72], Ramp et al. [91], Cai

and Xie [15]. These factors jointly create the possibility that interactions between

two or more internal solitary waves can occur. Indeed, in the world’s ocean, a large

number of wave interactions have been recorded using satellite Synthetic Aperture

Radar (SAR) images; for instance, in the South China Sea, see Hsu et al. [54], Chen

et al. [19]; in the Mid-Atlantic Bight, see Xue et al. [111]; off the cost of South-west

Africa, see Zheng et al. [123]; a complete coverage is available in the internal wave

atlas, see Jackson [56]. Satellite images themselves are usually unable to provide

the interior wave structure and the associated motions, but nevertheless, Wang and

Pawlowicz [107] investigated four cases of internal wave interactions in the Strait

of Georgia using sequential photogrammetrical images acquired from an aircraft,

and importantly, supplementary simultaneous collections of water column properties

measured by a surface vessel.
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Figure 1.4: The bathymetry of the South China Sea. Three red rectangles indicate
the potential generation sites, see Guo and Chen [48]. The transparent inset, adopted
from Zhao et al. [122], shows the existence of the multiple-wave ISW packets (solid
line) and single-wave ISW packets (dashed line), which is a collection of the satellite
images acquired from 1995 to 2001. An Envisat-1 Advanced SAR satellite image on
02:20 UTC, 31-07-2010 is also imposed, where some wave crestlines are accentuated

in red lines.
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1.2 Theoretical background

Solitary waves were first observed by John Scott Russell on the Union Canal in

1834, see Russell [94]. Russell also conducted some laboratory experiments, in which

elevation surface solitary waves were reproduced by dropping a weight at one end of

a water tank, and the waves travelled with speed c where

c2 = g(h+ a) , (1.1)

where a is the amplitude of the wave, h is the depth of the water at rest and g is the

acceleration of gravity. Then both Boussinesq [14] and Rayleigh [93] achieved the

formula (1.1) in an inviscid incompressible fluid with a long-wave assumption and

also found the sech2 wave profile, although a simple equation describing this wave

profile was not given until the work by Korteweg & de Vries in 1895, see Korteweg

and de Vries [67], who presented the well-known Korteweg-de Vries (KdV) equation,

Ut + UUx + Uxxx = 0 , (1.2)

which embodies the cumulative and competing nonlinear and dispersive effects. Note

that here subscripts x and t denote derivatives and for convenience, any desired co-

efficients have been absorbed into the variables x, t and U . It turned out the KdV

equation was actually already available in the footnote on page 360 of Boussinesq’s

book in 1877, see Boussinesq [13]. However, Boussinesq’s expression for the wave

velocity is only valid when the wave vanishes at infinity, while this is not necessary

in the theory of Korteweg and de Vries, see de Jager [22] for more details. Never-

theless, solitary waves did not get much attention until Zabusky and Kruskal [119]

numerically integrated the KdV equation to investigate nonlinear wave interactions

in a simple model. They found that the solitary waves held a prominent property
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of retaining their wave profiles and speeds when they propagate and even after colli-

sions with other solitary waves. This persistence of the waves inspired them to name

these waves as ‘solitons’ after particles, such as photon, proton, etc. to accentuate

that these waves can retain their identities in a collision. There is, however, an

exception: they interact at a small incident angle, as found by Miles [79, 80] who

pointed out that depending on the amplitudes and angles, a Mach stem (that is a

resonant phase shift) can arise in the interaction zone. Importantly, Gardner et al.

[29] pointed out that the KdV equation was integrable through the inverse scattering

transform. Then Zakharov and Shabat [120] found that this method also could be

used for the nonlinear Schrödinger equation which is another physically significant

equation for wave dynamics. Using these ideas, Ablowitz et al. [2, 3] further de-

veloped this method to apply to a wide class of nonlinear evolution equations, see

the book by Ablowitz and Segur [1]. Moreover, large-amplitude solitary waves and

their breaking were investigated by Longuet-Higgins, see Longuet-Higgins and Fen-

ton [76], Longuet-Higgins [75]. Nowadays it is recognised that a KdV-type equation

can be used to describe a large number of physical problems. Thus both the KdV

equation and the corresponding soliton theory are now an active research field, see

the book by Drazin and Johnson [24].

In 1893, the Norwegian oceanographer Fridtjof Nansen first revealed the existence

of oceanic internal waves in the Arctic Ocean when he sailed a ship which, occasion-

ally, experienced strong resistance to forward motion in apparently calm conditions

at the surface. Nevertheless, a quantitative measurement for internal waves was

not available until the 1960s. By virtue of the development of modern instruments

for in-situ observation, Perry and Schimke [90] recorded groups of internal waves

with a maximum amplitude 80m and a wavelength 2000m on the main thermo-

cline at 500m in water which is 1500m deep in the Andaman Sea, which is among

the earliest quantitative measurements of oceanic internal waves. Then Ziegenbein
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[125, 126] illustrated clear observational evidence of internal solitary waves in the

Strait of Gibraltar. These waves were also observed with associated surface waves

in the Andaman Sea by Osborne and Burch [85]. They exhibited a paradigm for

the implementation of the KdV equation to internal solitary waves. These early ob-

servers were aware that these internal solitary waves could be described by the KdV

equation and especially an exact (asymptotic) solution of rank-ordered internal soli-

tary waves exists, as found by Gardner et al. [29]. Subsequently, several theories on

nonlinear internal waves have been proposed and have been scrutinised and validated

by their implementations to the analyses of data from both in-situ observations and

laboratory experiments, see the recent review by Helfrich and Melville [52].

In the context of nonlinear internal waves, Benney [12], Benjamin [10] first de-

rived the KdV equation for the description of uni-directional weakly nonlinear long

waves. Based on this classic KdV equation, several variants emerged, including the

extended KdV equation incorporating an additional cubic nonlinear term U2Ux c.f.

expression (1.2), see references of Lee and Beardsley [70], Djordjevic and Redekopp

[23], Grimshaw et al. [40]; the rotation-modified KdV equation including the earth’s

rotation −
´
x
f 2/(2c)U dx where f is the Coriolis frequency (or called local inertial

frequency as before) and c is the linear phase speed, see Ostrovsky [87], Grimshaw

[35]; the KdV equation with bottom friction, see the book by Grimshaw [36]. Other

forms of dissipation can be used, see Grimshaw et al. [41]; the KdV equation in-

cluding the effect of background shear and continuous stratification, see Grimshaw

[34], Zhou and Grimshaw [124], in which they also showed that the effects of slowly

varying depth can be accounted for by including a weak additional term, see also Hol-

loway et al. [53]; a two-dimensional version of the KdV equation is the Kadomtsev-

Petviashvili (KP) equation, see Kadomtsev and Petviashvili [59], Grimshaw [34].

Note that theoretically a KdV-type equation is only applied to the case that the

wavelength is large with respect to the depth, that is in the shallow water, whereas
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the weakly nonlinear Benjamin-Ono (BO) equation was derived for infinitely deep

fluids, see Benjamin [10], Ono [84] and for intermediate depth, the Intermediate Long

Wave (ILW) equation proposed by Joseph [58], Kubota et al. [68] can be considered.

However, several investigations concluded that KdV-type theories still have a good

performance even for large-amplitude waves which are formally beyond the scope of

the weakly nonlinear assumption, see for instance Koop and Butler [66], Small et al.

[99], Ostrovsky and Stepanyants [88]. Through comparisons with laboratory ex-

perimental data, Ostrovsky and Stepanyants [88] pointed out that KdV-type model

provides satisfactory results, sometimes even outside its formal validity, while the BO

and ILW equations have narrower ranges of validity and fail to make good predictions

beyond these ranges. They also cautioned that the interpretation of observational

data using the BO and ILW equations should be given much care, although Wang

and Pawlowicz [106] achieved a better result with the BO equation than the KdV

equation when they considered large-amplitude nonlinear internal waves in deep wa-

ter.

Although the KdV equation has been successfully and widely used to study the

properties of solitary wave solutions as well as to interpret data from in-situ mea-

surements and laboratory experiments, the weakly nonlinear assumption (the BO

and ILW equations are also based on this) limits their applications especially when

large-amplitude waves are involved. As a useful extension of the weakly nonlinear

two-layer extended KdV equation (with cubic nonlinear term), the Miyata-Choi-

Camassa (MCC) equations with full nonlinearity and weak dispersion were derived

by Miyata [82, 83], Choi and Camassa [20]. Despite that MCC equations are only for

a two-layer fluid, these equations are bi-directional (c.f. the uni-directional feature

of the KdV equation), and Choi and Camassa [20] illustrated very good agreement

with both results from laboratory experiments and numerical solutions of the Euler

equations. Then later Ostrovsky and Grue [89] obtained uni-directional evolution
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equations which take nonlinear dispersive effects into account. These equations gen-

erally agree very well with the MCC equations and further preclude the intrinsic

Kelvin-Helmholtz instability at high wavenumbers in the MCC equations. Never-

theless, a more accurate way to investigate solitary waves is in the framework of the

Euler equations without assumptions of weak nonlinearity or/and weak dispersion.

The Dubreil-Jacotin-Long (DJL) equation describes the streamline displacement in

the form of a strongly nonlinear elliptic partial differential equation, which amounts

to the full set of stratified Euler equations, see the early references by Long [74] and

later Benjamin [10], Tung et al. [103].

One of the distinctions between surface waves and internal waves is that the

latter can have different vertical modes, whereas there is only one for the former,

as mentioned in section 1.1, see also figure 1.3. However the aforementioned KdV-

type theories are only able to accommodate a single mode, therefore to examine the

energy flow between different modes, Gear and Grimshaw [30] developed coupled

KdV equations, each is the KdV equation with an additional linear coupled term, to

study the interactions between internal waves of different modes, also see Grimshaw

[38]. Recently, Alias et al. [8, 9] further developed this to also take the effect of

rotation and background shear into consideration.

Nowadays by virtue of the rapid development of the techniques of computational

fluid dynamics together with the availability of powerful supercomputers, a compre-

hensive oceanic model possessing the ability of resolving a large number of dynamical

processes simultaneously, such as ice melting, solar radiation input, wave propaga-

tion, meso-scale eddies generation, is available for the eventual purpose of prediction,

although at this stage the results are far from satisfactory. These models are based

on the primitive Navier-Stokes equations and usually it is impractical to simulate in

a large domain with a sufficiently fine resolution to resolve very small-scale dynamics

such as turbulence, which means several parameterisation schemes are necessary to
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represent the contributions of these unresolved phenomena. In addition to the vali-

dation of sufficient observational data, a deep insight on the dynamical processes is

also indispensable for the design of parameterisation schemes. However, the Navier-

Stokes equations themselves are generally not convenient to explore properties of a

specific phenomenon and so that reduced theories are needed. Because theoretical

investigations of internal solitary waves are still very important, in this thesis we

use a set of KdV-type equations to examine internal solitary waves over variable to-

pography, supplemented by the simulations using the MIT general circulation model

(MITgcm), which numerically solves the full Navier-Stokes equations.

1.3 Outline

The structure of this thesis is arranged as follows:

• Chapter 2 presents the KdV-type theory both in a constant and a variable

environment, which forms the theoretical basis of this thesis.

• Chapter 3 focuses on the evolution of nonlinear internal waves over variable

topography in the presence of rotation. The relevant paper is Yuan et al. [117].

The large-amplitude internal waves commonly observed in the coastal ocean

often take the form of unsteady undular bores. Hence, here we examine the

long-time combined effect of variable topography and background rotation on

the propagation of internal undular bores, using the framework of a variable-

coefficient Ostrovsky equation, that is the KdV equation with a rotational

term.

• Chapter 4 examines the evolution of mode-2 internal solitary waves over a

shoaling topography jointly using the variable-coefficient KdV equation and

the MITgcm. The relevant paper is Yuan et al. [116]. Two configurations are
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considered. One is a mode-2 internal solitary wave propagating up a slope, from

one three-layer system to another three-layer system. The other configuration

is when the lower layer in the three-layer system goes to zero at a transition

point on the slope, and beyond that point, there is a two-layer fluid system. A

mode-2 internal solitary wave propagating up the slope cannot exist past this

transition point. Instead it is extinguished and replaced by a mode-1 bore and

trailing wave packet which moves onto the shelf.

• Chapter 5 investigates two-dimensional topographic effects on the propagation

of mode-1 internal solitary waves in the framework of the variable- coefficient

KP equation and the relevant paper is Yuan et al. [118]. To illustrate the theory,

we use a typical monthly averaged density stratification, for the propagation

of an internal solitary wave over either a submarine canyon or a submarine

plateau. The evolution is essentially determined by two components, nonlinear

effects in the main propagation direction, and diffraction modulation effects in

the transverse direction.

• Chapter 6 is devoted to topographic effects on wave interactions between two

oblique internal solitary waves using a variable-coefficient KP equation. This

work is submitted to the Journal of Fluid Mechanics and under review. In the

absence of rotation and background shear, the model set-up featuring idealised

shoaling topography and continuous stratification is motivated by the large

expanse of continental shelf in the South China Sea. When the bottom is flat,

the evolution of an initial wave consisting of two branches of internal solitary

waves can be categorised into six patterns depending on the respective ampli-

tudes and the oblique angles measured counterclockwise from the transverse

axis. Using theoretical multi-soliton solutions of the constant-coefficient KP

equation, we select three observed patterns and examine each of them in detail

both analytically and numerically. The effect of shoaling topography leads to
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a complicated structure of the leading waves and the emergence of two types

of trailing wave trains. Further, the case when the along-crest width is short

compared with the transverse domain is of interest and is examined and it is

found that although the topographic effect can still modulate the wave field,

the spreading effect in the transverse direction is dominant.

• Chapter 7 presents some future possible work.



Chapter 2

Formulation

2.1 KdV-type equation

As introduced in Chapter 1, a number of variants of KdV-type theory, derived

from the Euler equations based on the assumption of weakly nonlinear long waves,

can be used to model internal waves in the ocean when different dynamical factors

(such as rotation, variable topography etc.) are taken into account. In the absence

of dissipation, following Grimshaw [34, 35], oceanic internal waves can be described

by the KdV-type equation,

{At + cAx + αAAx + βAxxx}x +
γ

2
Ayy = δA , (2.1)

where A(x, y, t) is the amplitude of the wave, x, y and t are space and time variables

respectively, and subscripts denote derivatives. Here x is chosen to be along the

primary wave propagation direction, where the waves have a linear long-wave phase

speed c, while y is the transverse direction where there are weak diffraction effects.

The nonlinear coefficient α, dispersive coefficients β, γ and rotational coefficient δ

are determined by the waveguide properties, and for the specific oceanic application,

are defined below.

37
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To leading order in an asymptotic expansion, the vertical particle displacement

relative to the basic state is

ς(x, y, z, t) = A(x, y, t)ϕ(z), (2.2)

where ϕ(z) is the modal function, defined by the solution of

{
ρ0 (c− u0)

2 ϕz

}
z
+ ρ0N

2ϕ = 0 , for − h < z < 0 , (2.3)

ϕ = 0 at z = −h , (c− u0)
2 ϕz = gϕ at z = 0 . (2.4)

Here ρ0(z) is the background density distribution of a stable stratified fluid, which is

mostly characterised by the buoyancy frequency N , represented by ρ0N
2 = −gρ0z,

and u0(z) is a background horizontal shear flow. Note that if the rigid lid approxi-

mation is assumed, then the free surface boundary condition is replaced by ϕ = 0 at

z = 0. The coefficients α, β and γ in equation (2.1) are given by

Iα = 3

ˆ 0

−h

ρ0 (c− u0)
2 ϕ3

z dz , (2.5)

Iβ =

ˆ 0

−h

ρ0 (c− u0)
2 ϕ2 dz , (2.6)

Iγ = 2

ˆ 0

−h

ρ0(c− u0)
2ϕ2

z dz . (2.7)

I = 2

ˆ 0

−h

ρ0 (c− u0)ϕ
2
z dz , (2.8)

whereas the coefficient δ is given by

Iδ = f 2

ˆ 0

−h

ρ0Φϕz dz , ρ0(c− u0)Φ = ρ0(c− u0)ϕz − (ρ0u0)zϕ . (2.9)

Note that when there is no shear flow, u0(z) ≡ 0, the coefficients γ and δ are simplified
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as

γ = c , (2.10)

δ =
f 2

2c
, (2.11)

where f is the Coriolis frequency. Note that in this case, since β > 0, then the normal

situation βδ > 0 holds. In contrast, when there is a shear flow, for sufficiently strong

shear it is possible to have the anomalous case when βδ < 0. This is unlikely

in oceanic conditions, although that case has been looked at in Grimshaw et al.

[45], Whitfield and Johnson [108].

2.2 Variable background

In the presence of a slowly varying background, specifically when the fluid depth

h varies slowly with x and y, the KdV-type equation (2.1) is replaced by

{
At + cAx +

cQx

2Q
A+ αAAx + βAxxx

}
x

+
γ

2
Ayy = δA , (2.12)

where Q = c2I (see (2.8) for the definition of I) is the linear magnification factor

so that QA2 is the linear long-wave wave-action flux. For simplicity here we assume

that the background density ρ0(z) and shear flow u0(z) do not vary with x , y. If they

did then an extra term is needed in the KdV part of the equation (the terms inside

the bracket in (2.12)), see Zhou and Grimshaw [124]. The modal equation now also

depends parametrically on x and y, that is ϕ = ϕ(z;x, y), c = c(x, y), and hence the

coefficients α, β, γ, δ,Q also depend (slowly) on x and y. Since the modal equations

(2.3, 2.4) are homogeneous, ϕ can be non-dimensionalised with the maximum value

1, and the linear magnification factor Q can be normalised to be unity at the initial

location. It is useful to express equation (2.12) in non-dimensional variables based

on a length scale h0 (a typical depth), and a velocity scale c0 (a typical linear long
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wave speed), so that the time scale is t0 = h0/c0. For instance in an ocean setting,

h0 = 500m and c0 = 1m/s can be chosen as a typical scaling. If needed, the density

ρ0 can also be scaled with ρ00 = 1000 kg/m3. Then we have

A = h0Ã , x = h0x̃ , t =
h0t̃

c0
, (c, u) = c0(c̃, ũ) ,

α =
c0
h0

α̃ , β = c0h
2
0β̃ , γ = c0γ̃ , δ =

c0
h2
0

δ̃ . (2.13)

As a consequence, equation (2.12) is recovered in the˜ variables, and also all ex-

pressions (2.5 - 2.11) hold in the˜variables. Note that with f = 10−4 s−1 (approx-

imately located at latitude 43◦ N) and in the absence of a background shear flow,

δ̃ ∼ f 2h2
0/2c

2
0 ∼ 10−3 ≪ 1, while c̃, α̃, β̃, γ̃ are relatively order unity. As expected, in

this oceanic application the rotational term can be regarded as a small perturbation

to the usual KdV-type equation.

Formally, in terms of a small parameter ϵ, the square of the ratio of horizontal to

vertical scale, used in the asymptotic derivation of equation (2.12), the coefficients

depend on slow variables x̂ = ϵ3x and ŷ = ϵ3y, and the corresponding amplitude

is ϵ2A(ϵx, ϵ2y, ϵt). As a consequence, to keep equation (2.12) in a valid asymptotic

regime, in essence, the y-variations should be suppressed vis-à-vis the x-variations,

since x is the dominant direction. Although this property might seem to impose

another limitation on any application, in practice this is often the situation in the

real ocean, that is, if the wave propagation direction is selected to be x, then the

variations along the transverse y direction are much smaller. Also note that the

derivation of equation (2.12) by Grimshaw [34] was along the ray path determined

by the linear long wave speed c, and then taking account of diffraction relative to

this ray. But here we choose the x-direction as the ray, consistent with our choice of

topography being symmetric about that axis.

It is clear that the first two terms of equation (2.12) are dominant terms, and
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hence we can transform it to an asymptotically equivalent “spatial” evolution form

for A(X,T ),

X =

ˆ x

x0

dx

c
− t , T =

ˆ x

x0

dx

c
, (2.14)

{
AT +

QT

2Q
A+ µAAX + λAXXX

}
X

+
σ

2
Ayy = ηA , (2.15)

µ =
α

c
, λ =

β

c3
, σ = cγ , η = cδ . (2.16)

All terms are now of the same order, that is, A ∼ ϵ2, ∂/∂X ∼ ϵ, ∂/∂T ∼ ϵ3,

∂/∂y ∼ ϵ2 and η ∼ ϵ4. Here the coefficients µ, λ,Q, σ, η depend on T and y, but note

that in the absence of a background shear flow, η = f 2/2 is independent of T and

y. But note that the y-dependence in these coefficients is order O(ϵ3), much slower

than the y-variation of A, which is order O(ϵ2) formally. Further simplifications are

U = A
√

Q ,

{
UT +

µ√
Q
UUX + λUXXX

}
X

+
σ

2
Uyy = ηU , (2.17)

Without loss of generality, we can assume that the wave propagate in the positive

x-direction, so that λ > 0. Then (2.17) can be further transformed exactly to

{Us + νUUX + UXXX}X + τUyy = ζU , (2.18)

where s =

ˆ T

0

λ(T ′) dT ′ , ν =
µ

λ
√
Q

, τ =
σ

2λ
, ζ =

η

λ
. (2.19)

Equation (2.18) can be written in an alternative form,

Us+νUUX+UXXX+τVyy = ζV , VX = U , V = −
ˆ +∞

X

U(s,X ′, y) dX ′ , (2.20)

where we assume that both U, V → 0 as X → +∞, since linear waves have negative
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group velocity. This equation has two important conservation laws,

ˆ +∞

−∞
U dx = [V ]∞−∞ = 0 , (2.21)

∂

∂s

ˆ +∞

−∞

U2

2
dX + τ

∂

∂y

ˆ +∞

−∞
UVy dX = 0 , (2.22)

for solutions U(s,X, y) localised (or periodic) in X, which represent conservation of

mass and wave action flux respectively.

It is useful to clarify here the relationship between the wave amplitude in the

transformed space and the wave amplitude in the physical space. For a solitary wave

in the transformed space (X, y, s), along a fixed y section line (y = 0 for instance),

the maximum amplitude at “time” s can be expressed as

Um = U(s,Xm(s)) , where UX = 0 at X = Xm(s) , (2.23)

where |Um| is a local maximum, and the y-dependence is suppressed. Analogously

in physical space, the maximum amplitude at the location x is written as

Am = A(tm(x), x) , where At = 0 at t = tm(x) , (2.24)

where |Am| is a local maximum. Then since U = A
√
Q (2.17), and using the trans-

forms (2.14),

λUs = (A
√

Q)t + c(A
√

Q)x , UX = −(A
√
Q)t . (2.25)

Since here it transpires that the variation of Q is quite small usually, we see that the

maximum in the transformed and physical spaces approximately coincide. Impor-

tantly, note that the maximum in the transformed space is a maximum over X at a

fixed “time” s, and this coincides, modulo any small variation in Q, with a maximum

over time t in the physical space at a fixed location x, such as would be observed at
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a fixed mooring site.

2.3 Numerical method

In this thesis, our analyses are largely based on equation (2.18), which is numeri-

cally solved in the transformed space and depending on the specific situations, some

of the results will be recast to the physical space through the transformation (2.14).

A pseudo-spectral method based on a Fourier interpolant is used in the primary

wave propagation (that is X here) direction, and the dispersion along the y direc-

tion is simulated by a fourth order central finite difference scheme, while a classical

Runge-Kutta fourth-order method, together with a very small time step, provides

an accurate outcome in the time domain.

Instead of being written in the obvious manner, the code is constructed in a

modified form, based on the method of integrating factors, which allows relatively

large time steps to be taken, see Trefethen [101] for more details. To circumvent the

problem of stiffness, one way to proceed is to write (2.18) as

{
Us +

1

2
ν(U2)X + UXXX

}
X

+ τUyy = ζU . (2.26)

Applying Fourier transforms in the X direction gives

ik

(
Ûs +

1

2
ikνÛ2 − ik3Û

)
+ τÛyy = ζÛ . (2.27)

Note that here the coefficients ν, τ, ζ depend on s, y, but not X. Now multiply (2.27)

by e−ik3s, this is the integrating factor, to get

ik

(
e−ik3sÛs +

1

2
ike−ik3sνÛ2 − ik3e−ik3sÛ

)
+ τe−ik3sÛyy = ζe−ik3sÛ , (2.28)
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then define M̂ = e−ik3sÛ , with M̂s = −ik3e−ik3sÛ + e−ik3sÛs , this becomes,

ik

(
M̂s +

1

2
ike−ik3sνÛ2

)
+ τe−ik3sÛyy = ζM̂ . (2.29)

Working in Fourier space, the problem can be discretized as

ik

{
M̂s +

1

2
ike−ik3sνF

[(
F−1(eik

3sM̂)
)2
]}

+ τe−ik3s

{
F

[(
F−1(eik

3sM̂)
)
yy

]}
= ζM̂ ,

(2.30)

where F is the Fourier transform operator. Here the term ∂2
y is approximated by a

fourth-order central finite difference method. Note that the mass conservation law

(2.21) has to be satisfied, thus a pedestal (expressions will be given below) is imposed

on the initial condition to ensure the initial mass is zero, which also means that in

Fourier space, initially when k = 0, the corresponding component of M̂ (or Û) equals

zero.

2.4 Massachusetts Institute of Technology

general circulation model

The Massachusetts Institute of Technology general circulation model (MITgcm)

is a numerical model designed for the study of both atmospheric and oceanic phe-

nomena with various scales, see Marshall et al. [77, 78] for more details. This model

uses a finite-volume method and it is based on the spatially three-dimensional in-

compressible Navier Stokes equations, which has been successfully used to study

internal waves in the ocean, see Vlasenko et al. [105], Guo and Chen [47]. Note

that although the MITgcm is a comprehensive model that can be implemented
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to investigate problems in different coordinates (such as spherical and Cartesian

coordinates) using different parameterisations, only contents related to the spe-

cific use in this thesis are described in this section, see the manual online (http:

//mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf) for a

full description.

In a traditional Cartesian coordinate in which z axis points upwards, given that

the rotational effect is neglected, the governing equations are

∂u

∂t
+

∂p

∂x
= Gu , (2.31)

∂v

∂t
+

∂p

∂y
= Gv , (2.32)

∂w

∂t
+

∂p

∂z
= Gw , (2.33)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 , (2.34)

∂T

∂t
= GT , (2.35)

∂S

∂t
= GS , (2.36)

ρ = ρ(T, S, p) , (2.37)

where u, v and w are horizontal and vertical velocities; t is time. Potential tempera-

ture T , salinity S, pressure p and density ρ characterize the basic state of the ocean.

Equations (2.31)-(2.33) are the momentum equations; Equation (2.34) represents

mass conservation; Equations (2.35) and (2.36) are the thermodynamic equations,

while equation (2.37) is the Equation of State which is a nonlinear equation and in

practice it is usually calculated using some empirical expressions. Terms Gu, Gv, Gw

are compact forms representing advection and forcing/dissipation terms in horizontal

http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf
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and vertical directions, defined by

Gu = −v · ∇u+ Fu , (2.38)

Gv = −v · ∇v + Fv , (2.39)

Gw = −v · ∇w + Fw − g
δρ

ρref
, (2.40)

where v = (u, v, w) is the velocity vector, ∇ is the gradient operator, while the last

term in equation (2.40) represents the buoyancy term in which g is the gravitational

acceleration, δρ is the deviation of pressure from the rest state, and ρref is the

constant reference density. Note that Marshall et al. [78] gave full expressions of

these terms in spherical coordinate. Then in the thermodynamic equations,

GT = −∇ · (vT ) + FT , (2.41)

GS = −∇ · (vS) + FS . (2.42)

The above equations (2.31)-(2.42) are hence discretised and solved with a supplement

of appropriate boundary conditions and initial conditions, and numerical schemes.

For the initial conditions we use in this thesis will be given in the following chapters

when the model is invoked, while the algorithms and boundary conditions will be

briefed below.

Depending on the scales and features of fluid motion and the trade-off between

the numerical resources consumed and accuracy achieved, most of numerical models

are based on the ‘hydrostatic primitive equations’, in which the vertical momentum

equation (2.33) is reduced to the state of hydrostatic balance, that is,

∂ pHY

∂z
+ g̃ = 0 , (2.43)
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where g̃ = g δρ/ρref is the reduced gravity. pHY , denoting the hydrostatic pressure, is

one of the three components of the pressure p, while the other two are surface pressure

pS and nonhydrostatic pressure pNH , i.e. p = pS+pHY +pNH , see Marshall et al. [78]

for more details. In some cases, the hydrostatic model is not a good approximation,

thus the strict hydrostatic balance is relaxed to involve the metric and Coriolis terms

(not applicable in this thesis) and omit the advection and forcing/dissipation terms

as in the hydrostatic model. This is called quasi-hydrostatic model, see Marshall

et al. [77, 78]. When the incompressible Navier Stokes equations are employed,

then it is called nonhydrostatic model, which undoubtedly needs much more massive

computational power than the former two reduced equation sets. A parameter that

indicates the validity of the hydrostatic model is defined as, see Marshall et al. [78],

ℑ =
ð 2

Ri

, (2.44)

where ð = h/L is an aspect ratio of the motion and Ri = N2h2/u2
0 is the Richardson

number. Here h and L are the vertical and horizontal scales of the system, respec-

tively. u0 is the horizontal velocity scale and N is the buoyancy frequency. When

ℑ ≪ 1, the motion usually can be delineated by hydrostatic model with satisfactory

accuracy. Nevertheless, in terms of internal solitary waves which we investigate in

this thesis, the hydrostatic approximation is insufficient, thus the nonhydrostatic

terms must be involved.

The discretized form of the nonhydrostatic equations (2.31)-(2.36) in time domain

with a time step ∆t is given by

un+1 − un

∆t
= Gn+1/2

u − ∂

∂x
{pS + pHY + pNH}n+1/2 , (2.45)

vn+1 − vn

∆t
= Gn+1/2

v − ∂

∂y
{pS + pHY + pNH}n+1/2 , (2.46)
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wn+1 − wn

∆t
= G̃n+1/2

w − ∂

∂z
p
n+1/2
NH , (2.47)

∂un+1

∂x
+

∂vn+1

∂y
+

∂wn+1

∂z
= 0 , (2.48)

T n+1 − T n

∆t
= G

n+1/2
T , (2.49)

Sn+1 − Sn

∆t
= G

n+1/2
S , (2.50)

where n indicates the nth time step and G̃w = Gw+g̃. The intermediate terms Gn+1/2

are evaluated explicitly using the quasi-second order Adams-Bashforth method, see

Marshall et al. [77] for more details.

The core of the algorithms used by the MITgcm is the so-called ‘pressure cor-

rection’ method where the pressure field is obtained by solving a Poisson equation

with Neumann boundary conditions in a complicated geometry as that of the ocean

basins. Details were given in Marshall et al. [77, 78], and will only be summarised

here. As shown in figure 2.1, at first, a 2D elliptic equation is inverted in order to ob-

tain the surface pressure pS through a repeated iteration until the prescribed residual

limit reaches, and the hydrostatic pressure pHY at a certain depth can be acquired

by an integration of the fluid from the surface to this depth, in which the value of

the potential temperature T and salinity S must be solved. Then if the model were

hydrostatic or quasi-hydrostatic, the horizontal velocities u and v could step forward

readily, while the vertical velocity w could be solved through the continuity equa-

tion. Nonetheless, for nonhydrostatic equations, before forwarding the velocities, a

further 3D elliptic equation must be inverted to achieve the nonhydrostatic pressure

pNH . After pNH is solved, the vertical velocity w is then stepped forward using the

vertical momentum equation (2.47).

In spatial domain, the MITgcm is conducted using the finite volume method,

which divides the simulated ocean into a number of ‘volumes’ and the variable fluxes

are defined normal to the surfaces of the volumes. In addition, to represent the
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Figure 2.1: Algorithms used by the MITgcm model. HPE and QH indicate the hy-
drostatic and quasi-hydrostatic equations, respectively, while NH denotes the non-

hydrostatic equations (Figure adopted from Marshall et al. [77]).

bottom topography accurately, an ‘intersecting boundary method’ is invoked, see

the manual online.

Since in this thesis, the MITgcm is only used to carry out process model study,

there are not parametersiation schemes being involved except that second-order vis-

cosities are added to stabilize the model. The horizontal viscosity (Ah as in the

model) is calculated using the scheme due to Leith, see Leith [71], in which viscosity

is proportional to the magnitude of the relative vorticity (|∇w̄3|) and grid step ∆L,

where the overbar indicates a filter over the subgrid scale ∆L, that is

AhLeith =

(
viscC2Leith

π

)3

(∆L)3|∇w̄3| , (2.51)

where viscC2Leith is a tunable coefficient in the model, and it equals 2.0 here.

To prevent wave reflections at computational boundaries, a grid telescoping tech-

nique is employed in the model, that is, in the boundary layer the spatial grid step
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Figure 2.2: Schema of the computational domain in the MITgcm.

increases exponentially. The expression is given by

∆Lb = ∆Li(1 + fa)(ni−1)/fb , (2.52)

where ni is the index of the grid numbers in the boundary layer and it starts from 1

at the first point outside the inner domain, then increases outwards, see figure 2.2;

∆Li and ∆Lb are grid steps in the inner domain and boundary layer, respectively;

fa and fb are two tunable coefficients. A similar scheme was also employed in Guo

and Chen [47], Vlasenko et al. [105].



Chapter 3

The combined effect of topography

and Earth’s rotation on the

evolution of internal undular bore

The large-amplitude internal waves commonly observed in the coastal ocean often

take the form of unsteady undular bores. Hence, in this chapter we examine the

long-time combined effect of variable topography and background rotation on the

propagation of internal undular bores, using the framework of the variable-coefficient

Ostrovsky equation which, following equation (2.18) in Chapter 2, is written in the

transformed space as

{Us + νUUX + UXXX}X = ζU . (3.1)

3.1 Solitary wave extinction

The linear dispersion relation of the constant-coefficient Ostrovsky equation (3.1)

for sinusoidal waves sin (kX − ωs) is,

ω =
ζ

k
− k3 , (3.2)

51
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Figure 3.1: The phase speed c and group velocity cg in (3.3, 3.4) are shown by solid
and dashed lines respectively. The Ostrovksy equation (ζ = 1 in equation (3.1)) is

in dark, whereas the KdV equation (ζ = 0 in (3.1)) is in grey.

and hence the phase speed and the group velocity are given by

phase speed : c =
ω

k
=

ζ

k2
− k2 ; (3.3)

group velocity : cg =
dω

dk
= − ζ

k2
− 3k2 . (3.4)

This dispersion relation plotted in figure 3.1 shows that the Ostrovsky equation is

not able to support a steady solitary wave solution, as there is no gap in the linear

spectrum for the phase speed c. This is in stark contrast to the KdV equation (that

is, ζ = 0) when there is a spectral gap in c > 0 and steady solitary waves can

bifurcate from k = 0. This heuristic argument was confirmed with rigorous proofs,

see Galkin and Stepanyants [28], Grimshaw and Helfrich [31].

A KdV solitary wave with initial amplitude a is extinguished in a finite time due

to the radiation of inertia-gravity waves, Grimshaw et al. [33], and the extinction
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time is given by

se =
1

ζ
(
aν

12
)1/2 , (3.5)

Later Grimshaw and Helfrich [39] showed that this initial KdV solitary wave is

replaced by an envelope wave packet steadily propagating with a speed close to the

maximum group velocity, and with the associated carrier wave number. This was

confirmed experimentally, see Grimshaw and Helfrich [31], and in further numerical

simulations, see for instance Grimshaw et al. [45]. These results are all for the

constant-coefficient Ostrovsky equation, but recently Grimshaw et al. [44] examined

the combined effect of topography and rotation using a variable-coefficient Ostrovsky

equation. They showed that again there is an extinction time similar to (3.5), but

their simulations of a South China Sea transect, using both a variable-coefficient

Ostrovsky equation and an ocean circulation model, were not long enough to see total

extinction. Helfrich [51] examined the effects of rotation in numerical simulations

of a two-layer fluid using a fully nonlinear, weakly nonhydrostatic model, and found

that due to the rotation, an initial KdV-type solitary wave decays into inertia-gravity

waves, which then steepens due to nonlinearity, leading to a secondary solitary wave

at the expense of the parent wave, and this new solitary wave then experiences a

similar decay. The decay and re-emergence process repeats and eventually a nearly

localised wave packet emerges. A similar cycle of decay and recurrence was seen in

the numerical simulations of the Ostrovsky equation (Grimshaw et al. [33]), but these

early simulations were not carried out for a long enough time to see the emerging

wave packet.

3.2 Undular bore asymptotic theory

In this section, the well-known theory for a KdV undular bore is re-examined. In

the absence of rotation (that is ζ = 0), the Ostrovsky equation (3.1) reduces to the
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KdV equation, and for a constant nonlinear coefficient ν, this has the well-known

periodic travelling wave solution, the cnoidal wave,

U = a {b(m) + cn2(κθ;m)}+ d , θ = k(X − vs) , (3.6)

where νa = 12mκ2k2 , b(m) =
1−m

m
− E(m)

mF (m)
, (3.7)

v − νd =
νa

3

{
2−m

m
− 3E(m)

mF (m)

}
= 4κ2k2

{
2−m− 3E(m)

F (m)

}
. (3.8)

Here cn is the Jacobi cosine elliptic function of modulus m (0 < m < 1), v is the

wave speed in the transformed space and F (m), E(m) are the elliptic integrals of the

first and second kind respectively, defined by

cn(ϑ;m) = cos (χ) , ϑ =

ˆ χ

0

dχ′

(1−m sin2 χ′)1/2
, 0 ≤ χ ≤ π

2
, (3.9)

F (m) =

ˆ π/2

0

dχ

(1−m sin2 χ)1/2
, E(m) =

ˆ π/2

0

(1−m sin2 χ)1/2 dχ . (3.10)

The cnoidal wave U(θ) (3.6) is periodic both spatially and temporally, manifested

by requiring that it be periodic in θ with a period of 2π. Then the wavenumber

κ = F (m)/π, while the spatial period is 2π/k. The (trough-to-crest) amplitude is

a and the mean value of U over one period is d. This solution family has three

independent parameters, say k,m, d. There are two important limiting cases. One

is when the modulus m → 1, and then this becomes a solitary wave train, since then

b → 0 and cn(ϑ) → sech(ϑ), while κ → ∞, k → 0 with κk = ϖ fixed. The other

case is when m → 0, b → −1/2, κ → 1/2, cn(ϑ) → cos (ϑ), and it reduces to a

sinusoidal wave (a/2) cos (θ) of small amplitude a ∼ m and wavenumber k.

Whitham modulation theory can now be used to construct an undular bore by

allowing this cnoidal wave to vary slowly with s,X, that is the wavenumber k,

modulus m and mean level d vary slowly with s,X. The Whitham modulation
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equations describing this variation can be obtained by averaging conservation laws,

see Whitham [109, 110], or by exploiting the integrability of the constant-coefficient

KdV equation, see Kamchatnov [60] for example. When the nonlinear coefficient

ν in (3.1) is a constant, we note especially a similarity solution of the Whitham

modulation equations which describes an undular bore evolving from an initial step

of height U0 where νU0 > 0, see Whitham [109], Gurevich and Pitayevsky [50],

X

s
=

νU0

3

{
1 +m− 2m(1−m)F (m)

E(m)− (1−m)F (m)

}
, −νU0 <

X

s
<

2νU0

3
, (3.11)

a = 2U0m, d = U0

{
m− 1 +

2E(m)

F (m)

}
, νU0 = 6κ2k2 , v =

νU0

3
{1 +m} .

(3.12)

Note that

X − vs =
νU0s

3

{
− 2m(1−m)F (m)

E(m)− (1−m)F (m)

}
(3.13)

is negative for all X, s. This describes a wave train connecting a zero level at the

front where m → 1 to a mean level U0 at the rear where m → 0. At the front the

leading wave is a solitary wave of amplitude 2U0, while at the rear the waves are linear

sinusoidal waves with a very small amplitude, and some intermediate waves whose

nonlinearity (indicated by m) is decreasing from the front to rear exist between these

two edges. Note that with the evolution, the whole undular bore is expanding with

“time” s, but nevertheless it is always confined in a range −νU0s < X < 2νU0s/3.

Following El et al. [25], Grimshaw and Yuan [32] it is now useful to examine the

solitary wave train at the leading edge of the undular bore, formally obtained by

taking the limit m → 1. In this limit, the three Whitham modulation equations

uncouple and can be explicitly solved. Then it is found that the deformation of a

solitary wave train in a non-rotating variable medium ν = ν(s), ζ = 0 can be classified

into two scenarios, depending on whether there is a polarity change, that is ν changes

sign, or not. Each of these are now well understood, see the reviews in Grimshaw
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[37], Grimshaw et al. [43]. The outcome for a solitary wave train is that the amplitude

a of the leading wave in the solitary wave train varies according to the law a3 ∝ ν,

while the amplitudes in the solitary wave train, relative to this adiabatic deformation,

have a similarity structure proportional to X/s. This scenario holds provided ν ̸= 0.

Nevertheless in the case with a change of polarity, that is there is a critical point

where ν passes through zero and changes sign, after passing through the critical

point a rarefaction wave with a similar structure and of opposite polarity to the

solitary waves emerges, terminated by an undular bore. For an undular bore, these

descriptions can be applied to the leading solitary wave train in an undular bore, but

a full description using Whitham modulation theory in a variable medium cannot be

obtained, due to the development of non-adiabatic behaviour in the region between

the quasi-periodic undular bore wave train, and the solitary wave train emitted ahead

of this structure, see El et al. [25]. Taking rotation into account as well would seem

to be beyond current theoretical capacity, but we note that Whitfield and Johnson

[108] derived the Whitham modulation equations for the Ostrovsky equation, albeit

for constant coefficients and in the weak rotation limit (two orders smaller).

3.3 Initial conditions

As the goal of this chapter is to detect the underlying dynamics of internal undular

bores propagating over a variable bottom topography under the influence of rotation,

it is sufficient to use an idealised process model. Hence, we choose the nonlinear

coefficient ν = ν(s) as a function of s only varying monotonically from ν = 1 at

s = 0 to some constant value ν = νa for s ≥ sa. Specifically,

ν = 1 + (νa − 1) tanh (Ks) , (3.14)
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where K, sa, Ksa ≫ 1 are chosen so that ν varies smoothly and slowly from 1 at

s = 0 to νa at s = sa. There are two main scenarios, either νa > 0 for propagation

up a slope, or νa < 0 for propagation up a slope and through a point of polarity

change. Likewise, the rotation coefficient ζ = ζ(s) should be chosen to be initially

quite small, ζ = 0.5 here, corresponding to strong dispersion in deep water, and then

increase to a constant value ζa > 0.5, corresponding to propagation up a slope. A

suitable choice is

ζ = 0.5 + (ζa − 0.5) tanh (Ks) , (3.15)

so that ζ increases from 0.5 to a constant value ζa for s ≥ sa.

The initial condition is U(X, s = 0) = Uic(X) +D(X) where D(X) (expression

below) is a pedestal needed to ensure that the mass constraint, see equation (2.21)

in Chapter 2, is satisfied at the initial value s = 0 and Uic(X) is either (1) a KdV

solitary wave, or (2) a box of height U0 > 0 which in the absence of rotation and

variable topography would generate an undular bore followed by a rarefaction wave,

or (3) a modulated cnoidal wave representation of an undular bore in the constant

coefficient KdV equation evolving from a step of height U0 > 0 at time s = −s1,

given by (3.11 - 3.13) with s replaced by (s+ s1) and then evaluated at s = 0 when

ν = 1,

(1) : Uic(X) = a sech2(κX) , a = 12κ2 , (3.16)

(2) : Uic(X) = U0 ENV(X) ,

ENV(X) =
1

2
{tanhΓ(X + L)− tanhΓ(X − L)} , (3.17)

(3) : Uic(X) = U0 ENV(X){2mcn2(κ(X − vs1);m) + 1−m} ,

−U0s1 < X <
2U0s1
3

, U0 = 6κ2k2 , v =
U0

3
{1 +m} ,

X =
U0s1
3

{
1 +m− 2m(1−m)K(m)

E(m)− (1−m)K(m)

}
. (3.18)
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In case (1) the evolving solitary wave has a time scale of (κV )−1 where the speed

V = 4κ2, and so to be slowly varying we choose K ≪ κV = 4κ3 in expression

(3.14) and (3.15). In case (2) the envelope ENV(X) is chosen to be very close to a

box of height 1, and of very long length 2L, that is to say K−1 ≪ 1 ≪ 2L. With

a constant ν = 1 and U0 > 0 in the KdV regime, the front end of the box is then

expected to generate an undular bore in the subsequent evolution. Since the leading

wave in the undular bore is a solitary wave of amplitude 2U0, so again K should be

small enough to warrant K ≪ 4κ3, where here U0 = 6κ2. At the same time, the

rear end of the box will generate a rarefaction wave, and some model time later, the

calculation will be cut off and the matured undular bore is now ready to be put into

the Ostrovsky equation. In case (3) the asymptotic solution is similar to the undular

bore generated in case (2), but we can now control the parameters more effectively.

The initial undular bore at s = 0 occupies the domain −U0s1 < X < 2U0s1/3. We

choose s1 to make sure this domain has length Lub = 5U0s1/3 ≫ 1. The envelope

ENV(X) has a similar structure as that in case (2), but a constraint is put on, that

is the front end of the box is placed precisely at the front end of the undular bore

X = 2U0s1/3, while the rear end is chosen far away from the rear end of the bore,

which means the initial undular bore is contained in the box with L > Lub. Analogous

to case (2), the leading wave is a solitary wave of amplitude 2U0 and thus again K

should be small, K ≪ 4κ3 where here U0 = 6κ2k2. Note that the wavelength 2π/k

is a free parameter. The pedestal D(X) is represented in these three respective cases

as

(1) :

ˆ ∞

−∞
D(X) dX = −

ˆ ∞

−∞
a sech2(κX) dX = −2a

κ
= −24κ , (3.19)

(2) :

ˆ ∞

−∞
D(X) dX = −a

ˆ ∞

−∞
ENV(X) dX = −2aL , (3.20)

(3) :

ˆ ∞

−∞
D(X) dX ≈ −aL , (3.21)
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such that the initial mass is zero. In case (3) we have estimated the integral as

approximately half that of case (2) since the initial step is located at the halfway

point of the envelope ENV(X). For a numerical domain of total length 2Ln, a simple

choice is (1) D = −12κ/Ln, (2) D = −L/Ln and (3) D = −0.5L/Ln. However a

better choice to avoid end effects is

D(X) =
D0

2

{
tanh

(
X + Le

Lw

)
− tanh

(
X − Le

Lw

)}
,

ˆ ∞

−∞
D(X) dX = 2D0Le ,

(3.22)

where Le = Ln/2, Lw = Ln/4. To keep the pedestal small, we need |D0|≪ a, or

D0 ≪ U0, that is, κLe ≫ 1 or Le ≫ L.

3.4 Numerical results

First we examine the evolution of an initial KdV solitary wave, case (1), the same

as that considered in Grimshaw and Helfrich [39] for a constant environment, but

now for a variable medium with ν = ν(s) and ζ = ζ(s). The outcome is shown in

figure 3.2 and we see that the outcome is quite similar to the constant-coefficient case

of Grimshaw and Helfrich [39]. Eventually the initial solitary wave is replaced by a

wave packet followed by trailing waves. The rotational effect appears to be dominant

in this circumstance, with the nonlinear effect partly suppressed, as the variation of

the nonlinear coefficient ν, specifically the occurrence of a polarity change or not,

does not seem to make much impact on the subsequent evolution. Moreover in both

cases (see the middle and right panels) the amplitude of the resultant wave packet

is almost the same, although when νa = −1 (polarity change), the envelope tends

to lie below the zero level more than when νa = 0.2 (no polarity change), which

indicates some small influence of nonlinearity. We recall that in the KdV regime,

see Grimshaw [37], Grimshaw and Yuan [32], Grimshaw et al. [43], when there is no

polarity change (ν changes from 1 to 0.2), then to conserve the wave action flux, the
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Figure 3.2: A simulation of the Ostrovsky equation (3.1) for the internal solitary
wave initial condition (3.16). The left panel is at s = 0 with a = 8 when ν = 1 and
ζ = 0.5; the middle panel is the case without a polarity change at sa = 100 when
νa = 0.2 and ζa = 1.5; the right panel is for the case of polarity change, at sa = 100
when νa = −1 and ζa = 1.5. In both cases, K = 0.05 in (3.14) and (3.15), so that

Ksa = 5.

adiabatic law shows that the amplitude of the leading solitary wave a behaves as

a ∝ ν1/3, but at the same time, conservation of mass results in a trailing shelf which

has an amplitude at the solitary wave location proportional to ν−8/3νs (normally it is

approximately one order smaller than ν1/3). In contrast, the situation is different in

the case with a polarity change, where the leading solitary wave and the trailing shelf

have comparable amplitudes near the critical point where ν = 0, and normally they

both are smaller than their counterparts without a polarity change. Hence, in the

Ostrovsky equation, the combined effect of rotation and nonlinearity is exerted over

the solitary wave, and one of the expected evolution scenarios is that when νa = 0.2,

the outcome is characterised by a larger amplitude of the envelope and a smaller

number of waves contained in the trailing shelf, in contrast to the case with νa = −1.

Note that here the extinction time se (3.5) is of order unity. Since the the model

run-time is sa = 100, then se ∼ 1 is relatively too short to take the variation of the

nonlinear term into account, and hence leads to the dominant rotational effect.

The initial internal undular bore is generated for convenience from the evolution
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of a long box (3.17) in the framework of KdV equation, see figure 3.3. Moreover,

in the full Euler equations, this initial box can also be used to generate an undular

bore (not shown here). This resultant undular bore can be theoretically described

by the modulated cnoidal wave (3.18). The behaviour of undular bores propagating

over a variable topography was studied in El et al. [25] in a water wave context

and Grimshaw and Yuan [32] in a variable-coefficient KdV model. The effect of the

slowly varying topography is the generation of a solitary wave train ahead of the

main undular bore, and these two parts are connected where the rear of the solitary

wave train interacts with the main undular bore, forming a two-phase modulated

wave train. When there is a polarity change, on passage through the critical point

(nonlinear coeffcient ν = 0), the leading solitary wave train in the undular bore is not

able to retain its shape and is gradually replaced by developing rarefaction waves

supporting emerging solitary waves of the opposite polarity, while the rear near-

linear periodic waves hold their shapes, but when a rotational effect is jointly taken

into account, the outcome becomes more complicated, see figures 3.3-3.5. In general

the internal undular bore decays into several wave packets, accompanied by a few

residual waves. More specifically and heuristically, the leading nonlinear waves be-

have like solitary waves, as shown in figure 3.2, but note that then this is followed by

inevitable complicated interactions between the radiated inertial-gravity waves and

also with the original rear periodic waves, some of which form wave packets propa-

gating coherently. Eventually, some nearly localized wave packets emerge, each one

consisting of a long-wave envelope through which shorter, faster waves propagate.

Furthermore, depending on the parameter s1 in the initial condition, which deter-

mines the number of waves contained in the initial bore, a different number of wave

packets finally appear after long-time evolution. It seems that the more waves there

are in the initial bore, then more wave packets are formed, see figure 3.4 and 3.5 (cf.

figure 3.3). Unlike the aforementioned cases of a solitary wave, for an undular bore,
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Figure 3.3: A simulation of the Ostrovsky equation (3.1) for the box initial condition
(3.17). The left panel is the matured undular bore developed in the KdV equation
with a constant coefficient ν = 1 starting from the initial box with U0 = 8 for a run-
time duration s = 20. Then afterwards, this undular bore is used as the input to the
Ostrovsky equation in which a combined effect of varying rotation and nonlinearity
is considered, as given in (3.14) and (3.15). The middle panel is at sa = 120 (the
origin s = 0 of time domain is reset in the Ostrovsky equation) when νa = 0.2 and
ζa = 1.5; the right panel is for the case of polarity change, at sa = 120 when νa = −1

and ζa = 1.5. In both cases, K = 0.03 in (3.14) and (3.15), so that Ksa = 3.6.

the variation of the nonlinear effect plays a crucial role in the evolution. Comparing

the cases of νa = 0.2 with that of νa = −1 in figures 3.3-3.5, it is clear that the

value of νa can influence the formation of the eventual wave packets to some finite

degree. First, when νa = −1, the amplitude of the wave envelope, is larger than

that when νa = 0.2, and also it tends to lie further below the zero level, which can

be partially attributed to the nonlinear steepening. The number of wave packets

eventually formed and the length scale of each wave packet are related to nonlinear

effects, that is, there are more wave packets but each with a shorter length scale

when νa = −1 than when νa = 0.2.

3.5 Discussion and Conclusion

Our focus in this chapter is how an internal undular bore behaves in a long-time

limit when the combined effect of topography and background rotation are both taken
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Figure 3.4: A simulation of the Ostrovsky equation (3.1) for the initial condition
(3.18). The left panel is at s = 0 with U0 = 6, s1 = 20 and wavenumber k = 1
when ν = 1 and ζ = 0.5; the middle panel is the case without a polarity change
at sa = 120 when νa = 0.2 and ζa = 1.5; the right panel is for the case of polarity
change, at sa = 120 when νa = −1 and ζa = 1.5. In both cases, K = 0.03 in (3.14)

and (3.15), so that Ksa = 3.6.
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Figure 3.5: The same as in figure 3.4, apart from that s1 = 5.
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into account. Since the leading part of an undular bore is composed of a solitary

wave train, an initial condition consisting of a single solitary wave is first examined.

As found in previous studies, such as Grimshaw and Helfrich [39, 31], due to the rota-

tion, the initial solitary wave decays through the generation of inertia-gravity waves

and is completely extinguished on a time scale of se =
√
aν/12/ζ. In our long-time

model simulation, eventually a coherent envelope wave packet emerges to replace the

initial wave. Compared with the set-up of a constant environment in Grimshaw and

Helfrich [39, 31], here we consider a variable background environment to simulate in-

ternal waves propagating shorewards. We find that the rotational effect is dominant,

while nonlinear effects slightly modulate the waveform and amplitude. We note that

Grimshaw et al. [44] investigated a similar problem, where they applied the variable-

coefficient Ostrovsky equation to a transect in the South China Sea. They showed

that the combined effect of shoaling and rotation is to induce a secondary trailing

wave packet. Because their model-run time was not very long, the difference with

our presented results can be attributed to our much longer model run-time, as here

the extinction time se ∼ 1, while we run the model for sa = 100 ≫ se.

If only the topographic effect is considered, that is the rotational coefficient ζ = 0

in equation (3.1), then depending on whether the waves pass through a critical point

(the nonlinear coefficient ν = 0) or not, the evolution scenarios of an undular bore can

be quite different. This is examined in our joint paper Grimshaw and Yuan [32]. The

main outcome of that paper is in the numerical simulation shown in figure 3.6 (c.f.

figure 3.7) where the parameters have been chosen to be typical of those which might

occur in the coastal ocean. The front of the undular bore is a depression solitary wave

whose amplitude decreases as the critical point is approached and emerges after the

critical point as a depression rarefaction wave with several elevation solitary waves

emerging from this pedestal. The rear of the undular bore retains its shape, but the

wave amplitude decreases and the bore moves more slowly. The deformation of the
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undular bore is a non-adiabatic process due mainly to the inconsistency between the

preservation of the jump and hence the leading solitary wave amplitude if it were

adiabatic, and the adiabatic change in the amplitude of a solitary wave as ν varies, see

El et al. [25]. In the case studied by El et al. [25], |ν| increased, and consequently the

solitary waves at the front of the undular bore grow in amplitude and are emitted

ahead of the undular bore as a solitary wave train; the rear of this solitary wave

train interacts with the undular bore forming a two-phase wave interaction region.

In contrast, here |ν| initially decreases, as shown in figure 3.6, and so the solitary

waves at the front of the undular bore are immediately absorbed into the undular

bore in a two-phase interaction region. But after passage through the critical point,

|ν| increases, and the leading solitary waves move ahead but are now riding on a

negative pedestal which has the form of depression rarefaction wave.

When the rotational effect is also included, the evolution of inertia-gravity waves,

resulting in complicated interactions between these radiated waves, and with the

rear part of the undular bore, while at the front of the undular bore a few envelope

wave packets form and propagate coherently. The nonlinear effects can influence the

eventual emergence of these wave packets, manifested by a larger envelope amplitude,

more wave packets and a shorter envelope length scale when there is a passage

through the critical point (νa = −1) than when there is no polarity change (νa = 0.2).
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Figure 3.6: A simulation of the variable-coefficient KdV equation, that is ζ = 0 in
equation (3.1), when ν varies from −1 to 1 as specified by (3.14) for the undular
bore initial condition (3.17) with U0 = −12; the top panel is at ν = −1 , the middle
panel is at ν = 0 and the bottom panel is at ν = 1. Note the slight variation in the

horizontal and vertical axes.
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Figure 3.7: A simulation of the KdV equation, that is ζ = 0 in equation (3.1), when
ν = −1 is constant, for the undular bore initial condition (3.17) with U0 = −12;
the top panel, middle panel and the bottom panel are at the same times as the
corresponding panels in figure 3.6. Note the slight variation in the horizontal and

vertical axes.



Chapter 4

The evolution of second mode

internal solitary waves over

variable topography

In this chapter, a study of the propagation of a mode-2 internal solitary wave

over a slope-shelf topography is presented. The methodology is based on a variable-

coefficient KdV (vKdV) equation, using both analysis and numerical simulations, and

simulations using the MIT general circulation model (MITgcm). Following equation

(2.18) in Chapter 2, the vKdV equation in physical space is

At + cAx + αAAx + βAxxx = 0 , (4.1)

then after a series of transformation (2.14)-(2.19), it is written in the transformed

space as

Us + νUUX + UXXX = 0 . (4.2)

68
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4.1 Mode decomposition technique

Taking the Boussinesq and rigid lid approximations, commonly used in oceanog-

raphy, and as we then assume here, in the absence of a background current u0 = 0,

the modal equation (2.3) and boundary conditions (2.4) in Chapter 2 reduce to

c2ϕzz +N2ϕ = 0 for − h < z < 0 , (4.3)

ϕ = 0 at z = −h, 0 . (4.4)

As a result, the expressions for α, β (equations (2.5) and (2.6)) reduce to

I α = 3

ˆ 0

−h

c2ϕ3
z dz , (4.5)

I β =

ˆ 0

−h

c2ϕ2 dz , (4.6)

I = 2

ˆ 0

−h

c ϕ2
z dz . (4.7)

Since we will be projecting the output from the MITgcm onto the complete set of

vertical modes, it is now necessary to outline how this will be achieved. In general the

modal system (4.3, 4.4) defines an infinite set of internal modes ϕn, n = 1, 2, 3 , . . .

and speeds cn, where c1 > c2 > · · ·. Mode-1 has n = 1 with no internal zeros

and mode-2 has n = 2 with just one internal zero. These modes are complete and

orthogonal with respect to the weight function N2, that is

ˆ 0

−h

N2ϕn ϕm dz = Snδnm , Sn =

ˆ 0

−h

N2ϕ2
n dz , (4.8)
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where the subscript n and m represent mode number, and δnm is the Kronecker delta.

Using (4.3, 4.4), we can further obtain

Sn = c2n

ˆ 0

−h

(
∂ϕn

∂z

)2

dz , (4.9)

and an equivalent orthogonality condition,

c2n

ˆ 0

−h

∂ϕn

∂z

∂ϕm

∂z
dz = Snδnm . (4.10)

The vertical particle displacement ς(x, z, t) can be projected onto these modes,

ς(x, z, t) =
∞∑
1

φn(x, t)ϕn(z;x) , (4.11)

where φn(x, t) is the amplitude of mode n. Note that once a mode has been selected,

φn is just its amplitude in the vKdV equation. Then we have

ˆ 0

−h

N2ςϕn dz = φnSn . (4.12)

This can also usefully be written in an alternative form

c2n

ˆ 0

−h

∂ϕn

∂z

∂ς

∂z
dz = φnSn . (4.13)

When using the MITgcm, one of the outputs readily available is the velocity field

(u,w). To find an expression for ς, and noting that taking a z-derivative is not

convenient, possibly introducing new errors, we proceed as follows. In the linear

long wave approximation

ςt ≈ w , (4.14)
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which can be combined with the conservation of mass equation

ux + wz = 0 , (4.15)

to yield

ux ≈ −ςtz . (4.16)

Then, also noting that to the leading linear long wave order, for each mode n, the

vertical displacement ςn has
∂ςn
∂t

+ cn
∂ςn
∂x

≈ 0 , (4.17)

the final approximate expression for φn is

φnSn ≈ cn

ˆ 0

−h

u
∂ϕn

∂z
dz . (4.18)

With the aid of this mode decomposition technique (4.18), the amplitude φn of

each mode can be easily obtained from the output of the MITgcm. Futher the energy

budget of each can also be obtained. Confining attention to linear long wave theory,

the domain-integrated available potential energy (APE) in each mode is

Pn =

ˆ ˆ
1

2
ρ0N

2ς2n dxdz . (4.19)

Again invoking the Boussinesq approximation, and also considering (4.8, 4.9, 4.11),

this can be rewritten in an alternative and more convenient form,

Pn = Jn

ˆ
φ2
n dx , Jn =

c2n
2

ˆ 0

−h

ρ0

(
∂ϕn

∂z

)2

dz . (4.20)

Note that the modal functions ϕn and speed cn also contain a slow x-dependence, but

that is suppressed here at the leading order. In the same slowly-varying environment,
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the velocities in each internal wave mode can be obtained as follows,

un(x, z, t) = cn
∂ϕn(z)

∂z
φn(x, t) , (4.21)

wn(x, z, t) = −cnϕn(z)
∂φn(x, t)

∂x
. (4.22)

Then the domain-integrated kinetic energy (KE) in each mode is

Kn =

ˆ ˆ
1

2
ρ0(u

2
n + w2

n) dxdz ≈
ˆ ˆ

1

2
ρ0u

2
n dxdz = Jn

ˆ
φ2
n dx , (4.23)

as in the long wave limit used here wn ≪ un. As expected, “equipartition of energy”

holds here and the total energy can be found as En = 2Kn = 2Pn. Hence it is suffi-

cient to calculate either Kn or Pn. Further, it is clear that due to the orthogonality

of the modes the total kinetic energy and total potential energy are

K =
∑
n

Kn , P =
∑
n

Pn . (4.24)

4.2 Three-layer fluid system

It is well known that a three-layer fluid system is the simplest model that can

support mode-2 waves. Indeed, three-layer density structures have been observed in

the ocean, see Yang et al. [112] for instance. Hence a three-layer ocean model is used

here to investigate the dynamics of mode-2 internal solitary waves. We assume that

ρ0(z) = (ρ2+∆ρ)Θ(−z−h1−h2)+ρ2Θ(−z−h1)Θ(z+h1+h2)+(ρ2−∆ρ)Θ(z+h1) ,

(4.25)

where ρ2 is the density of the middle layer, and the density difference ∆ρ > 0; h1,

h2 and h3 are the thicknesses of the three layers from top to bottom respectively,

and Θ(·) is the Heaviside function. Note that with this piece-wise constant density
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field only two of the infinite set of modes can be found, namely mode-1 and mode-

2; the remaining modes are confined to the two interfaces, and cannot be found

explicitly with this density profile, this amounts to considering the case of smooth

density profile with interfaces of finite thickness, in the limit where the thickness

tends to zero. In principle the densities of these three layers can take any reasonable

values depending on the specific circumstances, but here to illustrate the dynamics,

we choose one special case in which the density of the middle layer is exactly the

mean value of that in the upper layer and bottom layer. From (4.3, 4.4) the modal

function is given by

ϕ = −A1
z

h1

, −h1 ≤ z ≤ 0 ,

ϕ = A1
z + h1 + h2

h2

− A2
z + h1

h2

, −h1 − h2 < z < −h1 ,

ϕ = A2
z + h

h3

, −h ≤ z ≤ −h1 − h2 .

(4.26)

Note that ϕ = A1 at the upper interface z = −h1, and ϕ = A2 at the lower interface

z = −h1−h2. The solution is normalized by max[|ϕ|] = 1, so that max[|A1|, |A2|] = 1,

and without loss of generality, we require that 0 < A1 ≤ 1. The speed c is now found

by noting that at z = −h1,−h1 − h2, ϕz is discontinuous and ρ0z consists of two

δ-functions. Integrating the modal equation (4.3) across each interface leads to

c2[ϕz]
+
− + g′ ϕ = 0 , g′ = g

∆ρ

ρ2
, (4.27)

where [·]+− is the difference between above and below each interface. Note that these

jump conditions represent continuity of total pressure across each interface. Hence

the speed c is found from the 2× 2 eigenvalue problem,

c2{A1(
1

h1

+
1

h2

)− A2

h2

} − g′A1 = 0 ,

c2{A2(
1

h2

+
1

h3

)− A1

h2

} − g′A2 = 0 ,

(4.28)
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2g′

c2
= (

1

h1

+
2

h2

+
1

h3

)∓ {( 1
h1

− 1

h3

)2 +
4

h2
2

}1/2 . (4.29)

The signs ∓ correspond to mode-1 and mode-2 respectively, so that, as expected

c1 > c2. It then follows that

A1

A2

= R = H ± (H2 + 1)1/2 ,
A2

A1

=
1

R
= −H ± (H2 + 1)1/2 , H =

h2

2
(
1

h3

− 1

h1

) .

(4.30)

Hence R > 0(< 0) for mode-1 and mode-2 respectively, so that, as expected, mode-

1 has no internal zeros, and mode-2 has just one internal zero. Thus both the

phase speed and internal zero criteria for distinguishing between mode-1 and mode-2

are valid here. Also, for mode-1, R > 1(< 1) according as H > 0(< 0), that is

h1/h3 > 1(< 1), while for mode-2 |R|< 1(> 1) according as H > 0(< 0). Note that

g′h2

c2
=

h2

h1

+ 1 +H ∓ (H2 + 1)1/2 =
h2

h3

+ 1−H ∓ (H2 + 1)1/2 . (4.31)

Then the coefficient α (4.5) is given by

Iα = 3c2{−A3
1

h2
1

+
A3

2

h2
3

+
(A1 − A2)

3

h2
2

} , I = 2c{A
2
1

h1

+
A2

2

h3

+
(A1 − A2)

2

h2

} . (4.32)

Substituting the expressions (4.30) into (4.32) we get that

α =
3cA2

2h2

Ω

Π
, Ω = −h2

2

h2
1

R3 +
h2
2

h2
3

+ (R− 1)3 , Π =
h2

h1

R2 +
h2

h3

+ (R− 1)2 . (4.33)

Our main concern is how these expressions vary as the lower layer depth h3 decreases.

Since for all the cases we consider, in the deep water h1 = h3, we can assume that

h1 > h3 as the waves propagate up the slope. In this case H > 0, R > 1 for

mode-1 and −1 < R < 0 for mode-2, so that recalling the convention that A1 > 0,

A1 = 1, 0 < A2 < 1 for mode-1, and 0 < A1 < 1, A2 = −1 for mode-2. A useful
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approximation is h2 ≪ h1,3 when H → 0 and so

mode-1 : c2 = 2g′h1h3/(h1 + h3) , A1 = A2 = 1 , α =
3c(h1 − h3)

2h1h3

,

mode-2 : c2 = g′h2/2 , A1 = −A2 = 1 , α =
3c

2h2

.

(4.34)

Another useful limit is h3 → 0 when H → +∞, and so

mode-1 : c2 = g′h1h2/(h1 + h2) , A1 = 1 , A2 = 0 , α =
3c(h1 − h2)

2h1h2

,

mode-2 : c2 ≈ g′h3 , A1 = 0 , A2 = −1 , α = − 3c

2h3

.

(4.35)

Note that in the deep water, h1 = h3 as we assume, H = 0, R = ±1, A1 = A2 = 1

for mode-1, A1 = −A2 = 1 for mode-2, and

mode-1 : c2 = g′h1 , α = 0 ,

mode-2 : c2 =
g′h1h2

(2h1 + h2)
, α =

3c(2h1 − h2)

2h1h2

.
(4.36)

These expressions show that for mode-1 α ≥ 0 when h1 ≥ h3 in the limit h2 ≪ h1,3,

α ≥ 0 when h1 ≥ h2 in the limit h3 → 0, and α = 0 when h1 = h3. For mode-2,

α > 0 in the limit h2 ≪ h1,3, while α < 0 in the limit h3 → 0, but α ≥ 0 when

2h1 ≥ h2 for the case h1 = h3. In general the sign of α is determined by the sign of

A2Ω, which is defined in equation (4.33), and in particular α = 0 when

h2

h1

(1−R3) = −2H ± {4H2R3 + (1−R3)(1−R)3}1/2 , (4.37)

which defines the curves in the h2/h1, h2/h3 plane where α = 0. Recalling that

h1 > h3, H > 0, for mode-1 R > 1, the discriminant is positive and only the lower

sign can be taken. In the limit h1 → h3, this yields h2/h1 → 4/3, so that there

is a change of sign at this point just above the line h2/h1 = h2/h3. For mode-2,

−1 < R < 0, the discriminant is positive only when H is large enough, and then
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Figure 4.1: Plot of the nonlinear coefficient α (4.33) for mode-1 (left) and mode-2
(right). Shaded areas show negative value, µ < 0. Labels are H1 = h2/h1, H3 =

h2/h3.

the upper sign must be chosen. In the limit h1 → h3, this yields h2/h1 → 2. The

outcome for the sign of α is shown in figure 4.1. In practice, h1 and h2 are constants,

and so H1 = h2/h1 is constant when the internal solitary wave propagates shoreward,

while H3 = h2/h3 is the only variable to change as h3 changes. Hence we consider

two cases: a polarity change and no polarity change, which will be shown in the next

section.

4.3 From one three-layer system to an-

other

We consider a three-layer system, in which the background current is zero and the

density variations across each interface are the same, that is, the density is ρ2 −∆ρ,

ρ2 and ρ2 +∆ρ respectively from top to bottom, where ∆ρ > 0, exactly as listed in

Section 4.2. Two configurations are investigated, both of which keep the thicknesses

of the upper and middle layer as constants, that is, h1 = 200m and h2 = 100m, and

only the bottom layer h3 varies as the waves move into shallow water. To model a

realistic ocean situation, the idealised bathymetry used here has a typical slope-shelf

structure, see figure 4.2. Initially in the deep water, the bottom layer h3 = 200m,
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Figure 4.2: Coefficients of the vKdV equation (4.2) for mode-2, together with the
corresponding bathymetry and density layers. Left panel is the EXP1, in which
there is a polarity change (h3 = 50m in the shallow water); right panel is the EXP2,
in which there is no polarity change (h3 = 60m in the shallow water). The dark
dash-dotted line indicates where ν = 0, while the grey dashed lines denote the two
interfaces. Note that in the EXP1, the critical point (ν = 0) locates at approximately
x = 1.8× 105 m, just in the vicinity of the end of the slope at x = 1.82× 105 m.

then decreases along the linear-varying slope to h3 = 50m (labelled as EXP1) or

h3 = 60m (labelled as EXP2) respectively onto the shelf. As a consequence, the

thickness ratio H1 = h2/h1 = 0.5 is a constant, while H3 = h2/h3 adjusts from

H3 = 0.5 in the deep water to H3 = 2 and H3 = 1.67 respectively on the shelf.

Although in these two cases EXP1 and EXP2, this 10m thickness difference on the

shelf may seem small, especially when compared with the total water depth (500m),

the corresponding dynamics can be completely distinguished from each other. When

h3 = 50m (H3 = 2) on the shelf, referring to figure 4.1, the nonlinear coefficient

α in equation (4.2) is negative, opposite from the positive value in the deep water,

which indicates there must be a critical point on the slope, where α = 0, and passing

through that point, the initial convex wave (α > 0) inverses its polarity and turns

into a concave wave (α < 0), that is, there is a polarity change. In contrast, the

other case EXP2 is in a different regime, since α preserves its sign, α > 0, so there

is no polarity change.

The deformation scenarios of the EXP1 and EXP2 are depicted in figure 4.3.

In the EXP1, a single convex wave with an initial amplitude of 18m propagates
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shoreward, and as expected, the evolution is adiabatic without significant change

until it reaches the critical point. Prior to the critical point, the vKdV theory predicts

that the amplitude decreases as α1/3 reduces, where α is the nonlinear coefficient in

equation (4.2). Then, approaching the critical point, this slowly-varying solitary

wave generates a trailing shelf of the opposite polarity, and this combination passes

through the critical point. Thereafter as α becomes negative, this disturbance forms

into a leading positive rarefaction wave at whose trailing edge an incipient jump is

resolved by an undular bore whose leading component is a solitary wave train of

negative polarity, see Grimshaw and Yuan [32]. The case with no polarity change

EXP2 is distinct, as α decreases, the mass of the solitary wave increases as α−1/3,

and this generates a negative trailing pedestal to conserve the total mass. But then

instead of passing through a critical point, α approaches a constant value on the shelf,

and hence the leading convex wave continues steadily, while new internal solitary

waves of small amplitude and negative polarity form from the trailing pedestal.

Next, we compare these results to simulations using the MITgcm model. Our

model domain and bathymetry are the same as those in the vKdV equation. The

spatial steps are 1m and 50m in the vertical and horizontal direction respectively,

and using a similar method to that introduced in Guo and Chen [47], two boundary

layers, where the resolution exponentially decreases from 50m to 2.5 × 105 m, are

added at the ends of domain to suppress any reflections. In addition, considering

the time scale of the waves, we set the time step to be 4 seconds. The background

temperature is uniform in this model, 25◦C, while the salinity is 5, 20 and 35 PSU

respectively for the three layers. Neglecting the pressure deviation in the fluid, the

corresponding densities can be achieved by the equation of state at atmospheric

pressure with values of 1000.8, 1012.0 and 1023.3 kg/m3. In addition, to ensure that

the model runs smoothly, we invoke a Leith Scheme, see Leith [71], to introduce

some viscosity. The KdV-type mode-2 solitary wave is not an exact solution of the
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Figure 4.3: The amplitudes of the mode-2 internal solitary waves in simulations of
the vKdV equation (4.2). Note that the results are transformed back to the physical
space from the calculation space. Left panel is the EXP1, and the critical point is at
approximately x = 1.8×105 m; right panel is the EXP2. One point worth mentioning
is that in order to emphasise the waveform, the horizontal scale changes, especially

from the top to the middle panel.
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Boussinesq equations solved by the MITgcm model, but nevertheless, essentially only

some slight modulations are needed. Thus to obtain the initial wave, a preliminary

MITgcm model run with the KdV wave as the initial condition is performed. As

expected, the final usable stable incident mode-2 waves are followed by some small

trailing waves.

Using the modal system (4.3, 4.4), it is found the fluctuation of the interface

between the upper and middle layer in the MITgcm model is just the amplitude

in the vKdV equation. Figure 4.4 shows a comparison between the vKdV and the

MITgcm simulations. Here for brevity, only the result of the EXP1 is exhibited.

Despite the fact that the amplitude of the MITgcm result is smaller than that from

the vKdV equation, these two have good agreement. The MITgcm model solves

the primitive equations, which can support solutions for all modes, including the

mode-1 and mode-2 waves, while the vKdV equation by construction is not able

to support mode-1 and mode-2 simultaneously. Hence, in the MITgcm simulations

there is the possibility for the generation of mode-1 and higher modes, and energy

exchange between modes, which is possibly the reason why a smaller amplitude

occurs. In addition, viscosity and numerical wave breaking and turbulent mixing

can be another sink for the energy. Indeed, as analysed in the following results for

the energy budget, these may represent a large portion of the lost energy.

A mode decomposition technique, see equation (4.18) in section 4.1, is imple-

mented on the MITgcm result, see figure 4.5. To be clear, snapshots of the MITgcm

simulations are also shown in figure 4.6. As expected, the mode-2 wave decomposi-

tion behaves similarly to the evolution based on the vKdV equation (4.2), see figure

4.3. In deep water there is a very small mode-1 feature slaved to the main mode-2

wave, as the latter is not quite an exact mode-2 internal solitary wave as given by

KdV theory. However after this mode-2 wave propagates onto the slope, this slaved

feature grows into a mode-1 wave train, as energy flows from mode-2 into mode-1.
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Figure 4.4: Three representative snapshots of the EXP1 at times t = 0, 22 and 30
hours (from top to bottom) in a three-layer to three-layer system are illustrated. The
grey line is the result from the vKdV equation (4.2), but is transformed back to the
physical space, while the dark line is the isopycnal line ρ = ρ2−∆ρ = 1000.8 kg/m3,
which is also the interface between the upper and middle layer, captured from the
MITgcm model. As the origins of coordinates are not the same, the MITgcm result

is shifted in order to make the comparison.
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In addition a very small free mode-1 wave is generated which propagates ahead of

the main mode-1 wave. The slaved mode-1 wave train accumulates energy gradually

during the evolution of the mode-2 wave propagating up the slope, and a leading

depression rarefaction forms followed by trailing oscillatory wave trains. Ahead of

this slaved component, there is a small freely propagating mode-1 rarefaction. Note

that the vKdV theory predicts that nonlinear effects become more significant as

the mode-1 wave moves up the slope, see figure 4.7. Finally, on the flat shelf, the

slaved mode-1 wave continues to develop but the freely-propagating mode-1 wave can

hardly be seen. Importantly, the amplitudes of these mode-1 waves remain much

smaller than those of the main mode-2 wave, so the energy transfer is quite small.

This can be confirmed from an analysis of the energy budget, see figure 4.8. Here

we use the expressions (4.20, 4.23) for the energy in each mode, consistent with the

vKdV theory. But we note that in the fully nonlinear MITgcm simulations, for large

amplitude waves this could lead to some significant errors, see Lamb [69]. Neverthe-

less, mode-2 waves lose 0.68 TJ (×1012 joules) of energy over the continental slope,

of which 23.1 GJ (3.4%) is converted into mode-1 waves, and the rest of the energy

is presumably lost due to viscosity and the effects of numerical wave breaking and

turbulence.

4.4 From three-layer to two-layer system

The configurations in section 4.3 were set up so that the three-layer fluid system

persisted from deep to shallow water, onto the shelf. Thus a mode-2 wave can exist

over the whole fluid domain. Here we examine the case when the three-layer fluid

system does not extend onto the shelf, where there is instead only a two-layer fluid

system. That is, the lower layer depth h3 decreases to zero at a certain point on the

slope. In this scenario a mode-2 wave cannot exist past this point and on the shelf.
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Figure 4.5: The MITgcm simulation of the EXP1 in a three-layer to three-layer
system. The upper panel is the mode decomposition result for mode-2 internal
solitary waves at times t = 0, 10, 21 and 30 hours, which are shown by blue, orange,
green and read solid lines respectively. The lower four panels are results for mode-1
at the same times, and are represented by the same coloured lines as that for mode-2.
Dark dots indicate the start and the end of the linearly varying slope, respectively.
The lowest two panels are snapshots which are bounded by the corresponding dark

dashed rectangle.
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Figure 4.6: The salinity fields, indicating the density field as the temperature is uni-
form, from the MITgcm simulations of EXP1 in a three-layer to three-layer system.

From top to bottom, these are at times t = 0, 10, 21 and 30 hours.
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Figure 4.7: Coefficients of the vKdV equation (4.2) for mode-1 in the EXP1. The
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Figure 4.8: The total energy En = Kn+Pn in the EXP1, calculated from the MITgcm
result, of which mode-1 (n = 1) is denoted by the blue dashed line, and mode-
2 (n = 2) is represented by the orange solid line, together with the corresponding
bathymetry and density layers inset. The dark rectangle represents the start and end
of the slope respectively. Note that the time cut-off point is selected at t = 32 hour,
and beyond that point, the freely propagating mode-1 waves radiate away from the

calculation domain into the boundary layer, and finally vanish there.
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Hence the question examined here is what happens to a mode-2 internal solitary

wave as it propagates up the slope. The vKdV theory cannot describe this situation

beyond the point where h3 = 0 and consequently we can only use the MITgcm results

to investigate this issue.

In the deep water, following the set-up examined in section 4.3, we again build a

three-layer system, namely h1 = 200, h2 = 100 and h3 = 200m, but here the bottom

layer terminates on the slope, that is, there is a transition point where h3 = 0 and

thereafter it becomes a two-layer system on the remainder of the slope and further

on the flat shelf, which is labelled as EXP3. With this set-up, comparing with

EXP1 in section 4.3, the evolution scenario is similar on the slope before the bottom

layer reaches 50m, see figure 4.9 and 4.10 for the details. After that, the nonlinear

coefficient ν, see figure 4.2, which is initially positive, passes through zero, and then

keeps decreasing as the bottom layer depth h3 → 0, and finally α → −∞, see (4.35),

where the KdV theory fails. The MITgcm results show that at first the behaviours

on the slope are similar to that in EXP1 (figure 4.5) with a decay of the main mode-2

wave and generation of a small amplitude slaved mode-1 wave and an even smaller

freely propagating mode-1 wave. But now, as the transition point is approached, the

mode-2 wave is extinguished, and replaced by a mode-1 wave with two components;

a slowly moving oscillatory wave train, and a small elevation bore propagating ahead

up the slope and onto the shelf. After the waves completely transmit to the two-

layer system, the mode-2 wave cannot technically exist and only mode-1 waves can

survive. But note that in the MITgcm simulations, the interfaces have a small but

finite thickness, which technically does allow mode-2 and higher modes to exist, and

form an identifiable signal in the perturbed density field of the pycnocline.

Figure 4.12 and 4.13 show another simulation (labelled as EXP4) in which the

thicknesses of the layers are h1 = 100, h2 = 300 and h3 = 100m in the deep water,

and again the bottom layer terminates on the slope. In this case, the nonlinear
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coefficient ν in the vKdV equation (4.2), see figure 4.2, is initially negative, opposite

from EXP3, and keeps decreasing as the bottom layer depth h3 → 0, and finally

α → −∞, where again the KdV theory fails. Note that here the initial mode-2

wave is a concave wave, and is not a perfect mode-2 wave in the MITgcm simulation,

but has a trailing wave train, as KdV theory predicts. Here no mode-1 waves are

visible in the deep water, but as the wave propagates up the slope, again mode-1

waves are generated, similar to those shown in figures 4.5 and 4.9. In this case, after

the termination of the three-layer system, a mode-1 coherent wave packet forms,

identifiable in the density signal of the thin, but of finite thickness, pycnocline in the

MITgcm simulation (not shown here). This wave packet retains its structure on the

shelf, but disperses, spreading out and decreasing in amplitude. At the same time a

small depression bore forms ahead of this packet, but also disperses and decreases in

amplitude as it propagates on the shelf.

These two cases, although different, show that when there is a transition from a

three-layer to a two-layer fluid system, the dynamics of the conversion of a mode-2

wave to mode-1 waves is similar overall. In both EXP3 and EXP4 as the mode-2

wave propagates up the slope it deforms and generates some small-amplitude mode-1

waves. After the transition from a three-layer to a two-layer system, small-amplitude

mode-1 waves continue and move up the slope and onto the shelf. In EXP3 (figure

4.9), when there is a polarity change on the shelf prior to the transition to a two-

layer system, the initial mode-2 wave undergoes a polarity reversal before reaching

the transition point, and forms a system of a convex rarefaction wave on which rides

a wave train of concave waves. As the transition point is approached, this system

disperses and decreases in amplitude. Note that as h3 → 0, for the mode-2 wave

R = A1/A2 → 0, see (4.30), and the corresponding horizontal velocity field becomes

concentrated in the middle and lower layers, and is positive in the middle layer for the

leading rarefaction wave, refer to equation (4.21). Also as h3 → 0, for a mode-1 wave
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R → ∞, and so ϕ1z > 0 in the middle layer. This implies, from the expression (4.18)

with n = 1 for the generation of a mode-1 wave from a velocity field u > 0 of a mode-

2 wave that this will generate a mode-1 wave of elevation. Thus, after the transition,

the combination of a rarefaction wave and following wave train forms into a mode-1

elevation bore, from the convex rarefaction wave, followed by a dispersive wave train,

both riding on the thin pycnocline. As this system moves onto the shelf, the bore

moves ahead of the dispersive wave train, and evolves into a solitary wave, where we

note that for this mode-1 wave α > 0, see (4.35). In EXP4 (figure 4.12), there is no

polarity reversal and the initial concave wave decreases adiabatically in amplitude,

with a trailing convex pedestal which grows in amplitude. After the transition,

this combination again forms into a mode-1 nonlinear wave packet, but now with a

leading depression bore. This is because in this case the leading wave is concave, and

the corresponding horizontal velocity field is negative in the middle layer. Hence the

mode-1 wave that is generated from this horizontal velocity is now one of depression

at its leading edge. As the system evolves onto the shelf, the depression bore begins

to break up into a nonlinear wave train, while the following wave packet disperses

and decreases in amplitude. Importantly we note that although the leading small

amplitude bore has a similar amplitude to EXP3, compare figures 4.9 and 4.12,

the following wave packet is noticeably larger in this latter case. We interpret this

difference as being due to the relatively larger amplitude and less dispersed structure

of the mode-2 wave as it approaches the transition point. The results of the energy

budget for these simulations are shown in figure 4.11. In EXP3, only 2.0% of the

lost energy 0.92 TJ by the mode-2 waves flows into mode-1 waves, while in EXP4,

the conversion rate can reach 15.9% (the mode-2 waves lose 4.14 TJ and 0.66 TJ is

obtained by the mode-1 waves). Again, as in EXP1, EXP2 there would seem to be

a loss of energy to the effects of wave breaking and turbulence.
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Figure 4.9: The MITgcm simulation of the EXP3 in a three-layer to two-layer fluid
system. The upper panel is the mode decomposition result for mode-2 internal
solitary waves at times t = 0, 10 and 21 hours. The lower four panels are results
for mode-1 at times t = 0, 10, 21 and 30 hours, and are represented by the same
coloured coding as in figure 4.5. Dark dots indicate the start and the end of the
linearly varying slope, respectively. The last two panels are the same as the two
panels above them, that is, the results for mode-1 at times t = 21 and 30 hours, but

with an enhanced scale to accentuate the leading mode-1 waves.
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Figure 4.10: The salinity fields, indicating the density field as the temperature is
uniform, from the MITgcm simulations of EXP3 in a three-layer to two-layer system.
From top to bottom, these are at times t = 0, 10, 21 and 30 hours. The areas in

white colour indicate the topography.
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Figure 4.11: The total energy En = Kn + Pn of EXP3 (left panel) and EXP4 (right
panel). The layout is the same as in figure 4.8, except in EXP3, one extra inset of
the mode-2 internal solitary wave propagating to a critical depth h = 353m (where
the nonlinear coefficient α = 0) is drawn at time t = 20.5 hour, and thereafter the
mode-1 wave is subject to an adjustment with an increase following a decrease in

energy.
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Figure 4.12: The MITgcm simulation of the EXP4 in a three-layer to two-layer fluid
system. The layout and coloured coding are the same as in figure 4.9 except that
two insets are added onto the last two panels which are snapshots bounded by the

corresponding dark dashed rectangle.
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Figure 4.13: The salinity fields, indicating the density field as the temperature is
uniform, from the MITgcm simulations of EXP4 in a three-layer to two-layer system.
From top to bottom, these are at times t = 0, 10, 21 and 30 hours. The areas in

white colour indicate the topography.
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4.5 Conclusion

We used the simplest configuration which can support a mode-2 wave, namely

a three-layer fluid system, as then the number of fluid parameters is quite small.

Given the density field, the topography determines two scenarios. In each an initial

mode-2 internal solitary wave propagates onto a slope. In the first case, a three-layer

to a three-layer fluid system is considered on a shelf-slope configuration. Depending

on the variation of the quadratic nonlinear coefficient ν, this was further classified

into two cases. When ν changes sign from positive to negative at a certain critical

point on the slope, the amplitude of the mode-2 wave decreases as it propagates up

the slope. Then in the vicinity of the critical point, the wave generates a trailing

shelf of the opposite polarity. After passing through this critical point and further

onto the shelf, the incident mode-2 wave is replaced by a concave solitary wave

train, riding on a convex rarefaction wave. This case is contrasted with that when

ν does not pass through zero, and there is no such critical point, instead the wave

system can move onto the shelf with a reduced, but always positive ν, and thereafter

the leading convex solitary wave continues steadily, followed by a small amplitude

solitary wave train riding on a concave pedestal. Both these cases are analogous to

the case of a mode-1 internal solitary wave propagating up a slope, see Grimshaw

[37], Grimshaw et al. [42, 43] for instance. The MITgcm simulations have good

agreement with the vKdV theory, both qualitatively and quantitatively. Importantly

the MITgcm simulation can also capture the generation of mode-1 waves, which is,

by construction, beyond the capability of the vKdV theory. The implementation of a

mode decomposition technique facilitates the identification of a small energy transfer

from the mode-2 wave to mode-1 waves, mostly slaved to the mode-2 wave, but with

a small component propagating ahead of the mode-2 wave.

The other set-up we considered is when the bottom layer vanishes at a transition

point on the slope, where h3 = 0, thereby forming a three-layer to two-layer fluid
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system. Since the vKdV theory eliminates the possibility of the coupling of mode-2

waves and mode-1 waves, this problem can only be examined using the MITgcm

simulations. As expected, the behaviour of the mode-2 wave in the three-layer sys-

tem is quite similar to that described above, that is, characterised by a decreasing

amplitude of the mode-2 wave, a train of the slaved mode-1 waves and some smaller

freely propagating mode-1 waves ahead. Then after the transition from a three-layer

to a two-layer system, only small-amplitude mode-1 waves continue up the slope and

onto the shelf. Nevertheless, the configurations in a three-layer system have a key

role in the evolution of the waves even after they propagate into a two-layer system.

If a polarity reversal occurs for the mode-2 wave before the transition, then after

passing through that critical point (where ν = 0), a system of a convex rarefaction

wave carrying a solitary wave train is formed, see figure 4.3. Afterwards this combi-

nation transmits to the two-layer system, where mode-2 waves cannot technically be

supported and only a mode-1 wave can exist. In the two-layer system, the original

leading convex wave fully breaks, and part of the energy goes to a mode-1 bore,

which further develops into a elevation mode-1 internal solitary wave, followed by a

dispersive wave train. For the case without a polarity change before the transition,

qualitatively there is similar dynamics. But, it is noticeable that, after the transi-

tion from a three-layer system to a two-layer system, the consequent following wave

train is more organised, and has a relatively large amplitude, which indicates a much

higher energy transfer rate, 15.9% v.s 2.0% as revealed from the energy budget.

In conclusion, our present study suggest that mode-2 internal solitary waves

propagate up a slope in much the same manner as mode-1 internal solitary waves,

as one would expect since each can be described by a vKdV equation, and the main

difference is that in the process, some small but significant mode-1 waves can be

generated, presenting a rather complex wave field on the shelf. Importantly, this

topographic generation of long wavelength mode-1 waves is essentially different from
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the generation of short wavelength mode-1 waves, which can occur on a constant

depth and is due to a long-short wave resonance, see Akylas and Grimshaw [4].

However, such co-propagating mode-1 waves are typically exponentially small in the

wave amplitude, and we suggest that, unlike the present topographically generated

mode-1 waves, are unlikely to be readily observable.



Chapter 5

The propagation of internal

solitary waves over 2D variable

topography

This chapter presents a horizontally two-dimensional theory based on a variable-

coefficient KP (vKP) equation, which is developed to investigate oceanic internal

solitary waves propagating over variable bathymetry, for general background density

stratification and current shear, if applicable. Following equation (2.18) in Chapter

2, the vKP equation is written in the transformed space as

{Us + νUUX + UXXX}X + τUyy = 0 . (5.1)

5.1 Slowly varying solitary waves

One of the basic assumptions of this vKP model is that the y-variations should

be sufficiently slow relative to a typical solitary wave scale in the x-direction. This

suggests an asymptotic analysis for a slowly varying solitary wave solution of (5.1)

96
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represented by,

U ∼ a sech2{κ[X − P (y, s)]} , W = Ps =
νa

3
= 4κ2 , (5.2)

V = −
ˆ +∞

X

U dX =
a

κ
{tanh [κ(X − P )]− 1} . (5.3)

In this scenario, the amplitude a and hence the wavenumber κ and the nonlinear

phase speed W vary slowly with y and s. Note that (5.2) is defined in a reference

frame with linear phase speed c, so that from the mappings (2.14, 2.19), the total

phase speed in the physical space is csol = c(1−Wλ)−1 ≈ c(1+Wλ) since the solitary

wave amplitude is required to be small. Using the transformations in (2.14, 2.19)

csol = c + αasol/3 where asol = a/Q1/2 as expected. To determine the variation on

the amplitude it is sufficient to substitute (5.2) into the conservation law (2.22) in

Chapter 2, with the outcome

(
2a2

3κ

)
s

= τ

[
4a2

3κ
Py + (

a2

κ2
)y

]
y

. (5.4)

Using the relations that νa = 12κ2, Ps = 4κ2 this reduces to

(
κ3

ν2

)
s

= τ

[
2κ3

ν2
Py + (

3κ2

2ν2
)y

]
y

, Ps = 4κ2 , (5.5)

which can be written in the convenient form,

θs = τ

[
2θPy + (

3θ2/3

2ν2/3
)y

]
y

, Ps = 4ν4/3θ2/3 , θ =
κ3

ν2
. (5.6)

This is a nonlinear mixed hyperbolic-parabolic type system for θ, P , where the first

term on the right-hand side of the first equation generates the hyperbolic part and

the second term generates the parabolic part. It seems quite difficult to obtain an

analytical solution, and hence in the following sections we will numerically solve this
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equation system with the constant initial condition that θ = θ0, P = P0. Given

an initial wave amplitude a0, since the coefficients ν(y, s) and τ(y, s) are deter-

mined by the stratification and topography here, which are known, then the initial

condition θ0 =
[
a0/(12ν

1/3
0 )

]3/2
from equation (5.2), in which θ0 = θ(y, s = 0)

and ν0 = ν(y, s = 0). At the same time, note that the waves initially propagate

over the flat deep bottom, i.e. no transverse variation, hence the initial condition

P0 = P (y, s = 0) can be arbitrary constant, here we choose P0 = 1. To solve equa-

tion (5.6), spatially the terms of first derivative ∂y are approximated by a central

finite difference method with second-order accuracy, while the classic fourth-order

Runge-Kutta method is chosen to step forward temporally for both θ and P . The

spatial and temporal steps are 0.11 km and 1.1× 10−3 s3, respectively.

When there are no y-variations, equation (5.6) reduces to the well-known adia-

batic law θ is a constant, that is κ ∝ |ν|2/3 and so a ∝ |ν|1/3. However when there

are y-variations, then we note that the y-dependence of the coefficients ν, τ can be

taken as parametric, consistent with the assumptions made in the derivation of the

vKP equation. Assuming here without loss of generality that ν > 0, and since the

variation in the transverse direction is very slow, the system (5.6) can be simplified

to an asymptotically equivalent form

θs =
τ

ν2/3

[
2θν2/3Py + (

3θ2/3

2
)y

]
y

, θ =
κ3

ν2
, Ps = 4ν4/3θ2/3 . (5.7)

But further analytical progress still seems quite difficult without further approxima-

tion. Hence, to provide some insight into the structure of the solutions, we linearise

this system with respect to the “constant” state θ = θ0, noting that this is the

adiabatic solution κ ∝ ν2/3, and so put θ = θ0 + θ̃. Linearisation then yields

θ̃s = 2τθ0P̃yy +
τ

ν2/3θ
1/3
0

θ̃yy , P̃s =
8ν2/3

3θ
1/3
0

θ̃ . (5.8)
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The first term on the right-hand side generates a linear hyperbolic equation and small

disturbances propagate outward in the y-direction with a speed y/ς ∼ ν1/3θ
1/3
0 (16τ/3)1/2,

whereas the second term on the right-hand side generates a linear diffusion equation

with a diffusion scale yd where y2d/ς ∼ τ/(ν2/3θ
1/3
0 ), and it is apparent these two terms

together constitute the spreading effect in the y-direction. This analysis is similar

to that of Kadomtsev and Petviashvili [59] for the stability of a KdV solitary wave

to transverse modulations, but more generally, here it demonstrates the extension of

that result to the vKP equation (5.1).

As in the well-known KdV theory for a slowly-varying solitary wave, this asymp-

totic solution does not conserve the mass invariant (2.21), and the resolution is that

as the solitary wave deforms a trailing shelf is generated to conserve the total mass.

This trailing shelf is essentially a linear long wave of small amplitude but long wave-

length and so can carry mass of the same order as that of the solitary wave. The

solitary wave mass is 2a/κ and this varies as 24θ1/3ν−1/3. Relative to the constant

state θ = θ0, it follows that when ν increases (decreases), the solitary wave amplitude

a = 12ν1/3θ2/3 increases (decreases), then the trailing shelf has the same (opposite)

polarity as the solitary wave. However, note that this conclusion could change if θ

also has significant variations in the y-direction.

5.2 Model set-up

Two-dimensional effects will be especially significant in an area with an abrupt

change in the oceanic background state, such as in the bathymetry, or in the back-

ground density and current fields. A typical instance is the New York Bight, which

is characterised by a large area of continental shelf containing the Hudson Canyon,

see figure 5.1. This area is also affected by the strong Gulf Stream current, as well

as by coastal river inflow, and all these factors together make the local wave dy-
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namics quite complicated. As ISWs propagate up the shelf from deep water, and

pass through the Hudson Canyon, we expect that wave diffraction and refraction

will occur. Motivated by this and similar examples we set up an idealised undersea

canyon-type topography h(x, y) with typical oceanic length scales, see figure 5.2,

h =
tanhΩ + 1

2
· (h1 − h2) + h2 , (5.9)

where Ω =
K2 −K1My

x1 − x0

· (x− x0) +K1My , (5.10)

and My =

[
tanh (

y + yts
ytw

)− tanh (
y − yts
ytw

)

]
· Ly + 1.0 . (5.11)

Here we set yts = 6000m, ytw = 2000m, Ly = 0.7, K1 = −2.7, K2 = 2.7, and the

topography is confined in a domain with size x × y = [0 : 80] × [−40 : 40] km2, so

that two edges in the x direction are x0 = 0 and x1 = 80 km, while the water depth

parameter h1 = 350m and h2 = 500m respectively. We also consider an idealized

plateau-type topography, see figure 5.2, whose expression is the same as that of the

canyon case, except that

My =

[
tanh (

y − yts
ytw

)− tanh (
y + yts
ytw

) + 2

]
· Ly + 1.0 . (5.12)

Using these idealized topographies makes it feasible to conduct analytical work in

the sequel. Although realistic topography is not considered here, we contend the

framework used here can be easily and effectively migrated to the implementation

of real topography, whose transverse variation is relatively slower than that in the

wave propagation direction. Further, as customary, since the surface disturbances

induced by ISW are usually very small (typically O(102) smaller), we make the rigid

lid approximation, and also set the background current, u0(z) ≡ 0. The background

temperature and salinity profiles are the monthly averaged data from the World

Ocean Atlas 2013. We choose data in July at 37.5◦N, 72.5◦W, in the vicinity of the
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Figure 5.1: ERS-1 synthetic aperture radar (SAR) images of the New York Bight
acquired on 18 July 1992 at 15:35 UTC superimposed on the water depth contour

lines. (Figure adapted from Jackson [56].)

Hudson Canyon, which is shown in figure 5.3.

When examining 2D effects, another important issue is the preparation of the

initial condition. To simulate the waves from a generation site, here we select the

well-known KdV solitary wave but with a y-envelope imposed,

U(X, y, ς = 0) = E(y)
{
a0 sech2 [κ0(X −X0) +D(X)]

}
, ν0a0 = 12κ2

0 . (5.13)

Here X0 is chosen to place the solitary wave in the deep water where ν = ν0. E(y)

is an envelope function in the transverse y direction, equal to unity in a specified
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Figure 5.2: Canyon-type (left panel) and plateau-type (right panel) topography. For
both cases, the depth range is from 350 to 500m, while the width of the canyon (or

plateau) is approximately 20 km.
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Figure 5.3: The panels from left to right are vertical profiles of the salinity, tem-
perature, buoyancy frequency N and corresponding mode-1 modal function ϕ from
equation (4.3, 4.4) respectively. Note that the extrema of N and ϕ are achieved at
depths h = 16 and h = 165m respectively, which indicates that the most significant
internal wave disturbance occurs at a depth where the density gradient is not the

largest.
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region |y|< L and tapering to zero outside that range,

E(y) =
1

2
{tanh (y + ye

yw
)− tanh (

y − ye
yw

)} . (5.14)

Note that the attenuation in the y-direction should be greater than that in the X-

direction, so we choose yw ≫ 1/κ0, and also we require ye ≫ yw to ensure a large

value of L. To isolate the dynamics of the 2D topography, we also did simulations

with a y-independent initial condition, that is E(y) ≡ 1. The mass constraint (2.21)

must be satisfied, which implies that in the Fourier space, solutions have no energy at

the zero wavenumber. As a consequence, a pedestal D(X) needs to be superimposed

on the KdV solitary wave. For a numerical domain of total length 2LX in the X

direction, the simplest choice is D(X) = −12κ0/(ν0LX), so that the initial mass is

zero,

ˆ ∞

−∞

{
a0 sech2[κ0(X −X0)] +D(X)

}
dX =

2a0
κ0

− 24κ0

ν0
= 0 . (5.15)

The expression (5.15) is a good choice for a periodic domain. However because here

two sponge layers are deployed at the two edges of the X-domain (details below), a

form with an envelope which avoids possible end effects is used,

D(X) =
D0

2
{tanh (X + Le

Lw

)−tanh (
X − Le

Lw

)} ,
ˆ ∞

−∞
D(X) dX = 2D0Le = −24κ0

ν0
.

(5.16)

In principle, the lengths Le and Lw can be chosen freely, but to facilitate the numerical

calculations, it is better to keep the pedestal small, that is to say |D0|≪ a0, and hence

|κ0|Le ≫ 1, so one combination of the typical values is Le = LX/2, Lw = LX/4.

The asymptotic theory developed in section 5.1 can be applied to estimate the de-

formation of the solitary wave amplitude a, ignoring any effect of the small pedestal.

First, we use the asymptotic solution for θ ∼ θ0 in equation (5.7) where θ2 ∝ a3/ν to



104 Chapter 5. 2D topographic effect

estimate that overall the amplitude a will deform adiabatically as |ν|1/3, with a con-

sequent effect on the phase speed. In the physical variables x, t this is c/(1−Wλ) ≈

c(1+Wλ) since W = νa/3 ∼ |ν|4/3 is a small perturbation. Then, in addition, the ef-

fect of the envelope function E(y) can be estimated using the linearised system (5.8).

It is clear that the main variation will then come from the end-points y = ±ye of

the envelope. These will generate small disturbances propagating in the y-direction

with speeds proportional to ν1/3θ
1/3
0 (16τ/3)1/2, and at the same time diffusing on a

length scale yd where y2d/s ∼ τ/(ν2/3θ
1/3
0 ). Both processes are enhanced as the initial

wave amplitude increases through the dependence on θ
2/3
0 ∝ a0, and also enhanced

as yw decreases, that is sharper fronts at the ends of E(y).

5.2.1 Numerical method and results

Although the formulation of the vKP equation (5.1) is for any mode, in this

paper we focus on only mode-1 waves, which are the most commonly observed in

the ocean. Using the background profiles shown in figures 5.2 and 5.3, the nonlinear

coefficient ν < 0, indicating that mode-1 ISWs are waves of depression. To ensure

the simulations are in the weakly nonlinear regime, here we choose −15m as the

initial amplitude in all cases.

In both cases of the undersea canyon-type and plateau-type topography, the

initial solitary wave with the envelope E(y) defined in (5.14) immediately disperses

along the transverse y direction when the simulations start, and importantly the

wave fronts are not straight, but instead are curved backwards relative to the x

direction, see figure 5.4. This is because the local phase speed is a function of the

local wave amplitude, which decays on both sides away in the y-direction from the

initial main wave centred at y = 0. This permanent cross-domain dispersion results

in a dramatic decrease of the amplitude of the main wave with distance in the x-

direction of propagation. On the other hand, after propagating away from the flat
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bottom and up the slope, the waves also begin to deform in the x-direction due to

the effect of the nonlinear coefficient ν in (5.1) which combines the physical nonlinear

coefficient α with the physical linear dispersive coefficient β, and also absorbs the

magnification factor Q, see figure 5.6. The asymptotic theory developed in section

5.1 predicts the deformation of the main wave is determined by two components in

the mapping space, that is, the terms related with ν and τ respectively, see equation

(5.7). More specifically, let us focus on the central line in the y direction, that is

y = 0. Figure 5.5 shows that along the propagation direction |ν| increases, and hence

the amplitude of the evolving main wave will increase, since it deforms as |ν|1/3/Q1/2

in the physical space, but at the same time the afore-mentioned spreading in the y-

direction will lead to some amplitude decay. It turns out the latter is overwhelmingly

significant and causes the wave amplitude to decay, see figure 5.4. To conserve the

total mass, this decay generates a trailing shelf with positive polarity, and there is

evidence that this shelf begins to fission into several small ISWs.

The features described above occur for both the canyon and plateau cases, and

the main difference between these two cases is that the central part of the wave

field around y = 0 is propagating faster over the canyon than over the plateau, see

figure 5.4. This can be partly attributed to the topographic variations in the linear

phase speed c, see figure 5.6, which shows that c is greater over the canyon than

over the plateau. However the difference is quite small, of O(5%), and comparable

with the change in c from deep to shallow water, due to scaling dependence on
√
h.

Furthermore, this effect is purely kinematic and linear, whereas the simulations of

the nonlinear vKP equation (5.1) are in a reference frame moving with the speed c,

and will contain dynamic effects due to the amplitude-dependent phase speed W for

the evolving ISW. This can be estimated from our simulations as follows. Suppose

that the y-variations (the canyon or plateau) are removed from the topography,

then the evolving ISW will deform according to the adiabatic law κ ∝ |ν|1/3 and
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Figure 5.4: Three snapshots of the wave amplitude A for the canyon-type (top left
panel) and plateau-type (bottom left panel) topography at times t = 5.0, 10.3 and
15.7 hours are illustrated. The initial solitary wave with an amplitude of −15m is
indicated by a black rectangle, and the results at different times are separated by
solid grey columns. The amplitude of the leading wave |a| in the x-direction at the
central point y = 0, together with the |ν|1/3Q−1/2 times a normalising factor are
plotted on the right two panels, where the discrepancy in the evolution of |a| and
|ν|1/3Q−1/2 can be attributed to the significant spreading effect in the y direction due

to the envelope E(y) imposed on the initial solitary wave.
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Figure 5.5: The nonlinear coefficient ν and the y-dispersive coefficient τ in the trans-
formed space for both the canyon-type and plateau-type topography are shown in
the left two and right two panels respectively, whereas the values at the centre point

y = 0 are displayed on the lowest two panels.
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Figure 5.6: The linear phase speed c calculated from the modal function for cases
of the canyon-type (left top panel) and plateau-type (right top panel) topography.
Formally c is positively associated with the water depth h, that is, c =

√
Nh for

internal waves. The bottom two panels are the normalised linear magnification factor
Q also for canyon (left) and plateau (right) cases, which are of the same order as c.
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then W = 4κ2, see (5.2). This forms a base level to determine the effect of a

canyon, or plateau, on the nonlinear phase speed W . Then with the canyon or

plateau topography restored we use the asymptotic expression that θ = θ0, see (5.7)

and the accompanying discussions. Of course, this adiabatic estimate is within the

confines of a slowly-varying assumption, so that at fixed “time” s, the state θ is

asymptotically equivalent no matter whether or not there are y-variations in the

background topography. Then from equation (5.7) we get that

Wc

Wr

=

(
νc
νr

)4/3

and Wp

Wr

=

(
νp
νr

)4/3

, (5.17)

where the subscript r indicates the reference level without y-variations, while c and

p indicate the canyon and plateau case respectively. The results of (5.17) are shown

in figure 5.7. Initially, the waves are over the flat bottom where there are no y-

variations, but with the propagation up the slope, which will then become more

and more significant. We note immediately an important consequence, in view of

the nonlinear effects of y-variations on W , the canyon-type topography actually

slows down the propagation (Wc/Wr < 1), contrasting with the speed-up of the

plateau-type topography (Wc/Wr > 1). Nevertheless, the magnitude of Wλ = νaλ/3

(O(10−1)) is much smaller than the corresponding linear phase speed c (O(1)), which

is to say, although the effects of the y-variations can slightly modulate the phase speed

csol ≈ c(1+Wλ), the linear phase speed c is still dominant, and this is precisely what

is seen in figure 5.4 and 5.8.

Although the simulations shown in figure 5.4 are intended to describe the prop-

agation of ISW over 2D topography in the ocean, the underlying dynamics induced

by the topography alone is not very well exhibited, since it is mostly hidden by the

significant y spreading induced by the truncated initial condition. In practice oceanic

ISWs are limited in the transverse direction, however this scale could be quite long,

and hence in figure 5.8 we show the simulations when the initial condition on the flat
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Figure 5.7: The dimensionless nonlinear phase speed W with respect to the base
level (without y-variations) for the canyon-type and plateau-type topography.

bottom before the waves reach the slope has no y-dependence, that is E(y) ≡ 1. The

evolution of the wave again obeys the adiabatic law in the physical space, the ampli-

tude of the leading wave |a|∼ |ν|1/3/Q1/2, and due to mass conservation, a trailing

shelf (indicated by light green colour) of the same polarity is generated. Initially, the

wave evolution at the central part around y = 0 behave qualitatively similar to the

previous cases, that is, it is largely determined by the linear phase speed c, but at

the same time, is slightly modulated by the small nonlinear phase speed W , which

has an opposite effect to that of c. Then after moving up the slope, the effects of the

y-variations in the bathymetry become important and so the adiabatic law fails, and

the y-dependence has to be taken into account in equation (5.5) or (5.6). With the

gradual propagation up the slope, the waves in the canyon (plateau) propagate ahead

(behind) the waves outside, and the non-adiabatic effects due to the y-variations of

the topography become further enhanced, leading to a significant distinction between

the wave amplitudes at different y-locations. Nevertheless, the total mass along the

x direction on each y-section has to be conserved, which, together with the spreading

effect in the y direction, leads to a complicated transverse modulation (shown by the
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Figure 5.8: The left two panels are the wave amplitudes for both the canyon-type
(top panel) and plateau-type (bottom panel) topography, where three time layers
are shown (marked over the pictures), and each of them are separated by grey solid
columns. The initial wave with an amplitude of −15m is represented by a dark
rectangle, which fills all the y domain and enters the region from x = 0. In each
case, typical wave amplitudes A at three points are listed. The right two panels
show the corresponding amplitudes of the leading waves |a| along the central line
y = 0 in the y direction, and additionally |ν|1/3Q−1/2 times a normalising factor is

also plotted.
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dark blue colour).

To examine this explanation in more detail, a set of calculations based on the

equation system (5.6) is shown in figure 5.9 where we plot the amplitude of the

leading wave using the expressions for θ = κ3/ν2 in (5.6) and the solitary wave

expression νa = 12κ2 (5.2) so that a = 12(θ2ν)1/3. Note that the asymptotic theory

(5.6) is based on (2.22) and so conservation of wave action flux is automatically

satisfied. It is apparent that in the canyon case, over the slope, the amplitude of the

leading wave |a|= 12(θ2|ν|)1/3 in the canyon increases, contrasting with the decline

in the periphery of the canyon. Moreover, this feature expands with “time” s and

exerts more influence on the wave field, as the asymptotic theory based on (5.6)

predicts. Simultaneously, at the central part, the increase of the mass represented

by the leading wave 24(|θ/ν|)1/3 leads to an opposite polarity trailing shelf (see

the dark blue colour in figure 5.8) in order to conserve the total mass in the X

direction. In contrast, the mass undergoes a decrease outside the submarine canyon,

and so using the mass conservation law again, a trailing shelf of the same polarity

forms, which further develops into several small ISWs (see the light green colour in

figure 5.8). A similar interpretation can be applied to the plateau case, but with an

opposite structure. As we have noted, small y-variations of the topography can lead

a significant distinction through the coefficients ν and τ . In order to examine which

coefficient is the more effective, we show in figure 5.10 calculations from the system

(5.6) when the y-dependence of ν and then τ are separately removed. We see that

when only the y-dependence of the coefficient ν is removed, the wave field is quite

different from that using the full expression for ν, see figure 5.9. However if instead

only the y-variations in τ are removed, then the wave structure is almost the same

as when the full expression for τ is used. We infer that it is the y-variations in the

nonlinear coefficient ν which essentially determine the evolving wave field, at least

for the system parameters used here.
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Figure 5.9: The leading amplitude a = 12(θ2ν)1/3 calculated from equation system
(5.6) in the transformed space for the canyon-type (a) and plateau-type (b) topog-
raphy, whereas the mass represented by the leading wave 24(θ/ν)1/3 is shown in (c)

for the canyon-type topography, (d) for the plateau case.

Figure 5.10: The leading wave amplitude a = 12(θ2ν)1/3 calculated from equation
system (5.6) in the transformed space for the canyon-type ((a) and (c)) and plateau-
type ((b) and (d)) topography, where (a) and (b) are the results based on the prim-
itive τ(y, s), but a new ν(s) whose y-variations are removed. Similarly, (c) and (d)

use ν(y, s), τ(s), in which the y-dependence of τ is erased.
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5.3 MITgcm model simulations

Access to 2D observational data which incorporates a complete shoaling process

is impractical. Thus here we use instead a fully nonlinear and non-hydrostatic three-

dimensional (3D) primitive equation model, MITgcm, to do both qualitative and

quantitative comparisons.

Since our presented KP theory is non-dissipative, the dissipation (eddy viscosity)

in the MITgcm model is also set to be zero, so that formally it solves the incom-

pressible Boussinesq equations. The simulation domain, topography and background

profiles are exactly the same as in the KP theory, see figure 5.2 and 5.3. In the x

direction, 60 of a total 800 grid points at the end of the domain are designed to be

a boundary layer with a decrease of resolution, telescoped exponentially from 100

to 104m, whereas the same strategy is used to avoid reflections from boundaries in

the y direction, and both sides hold 30 grid points as boundary layers (totally there

are 360 grid points), with resolution from 250 to 104m. In the vertical direction,

there are 190 z-levels with 2m resolution in the upper 175 layers followed by 15

bottom layers with 10m resolution. Note that as indicated by the modal function,

see figure 5.3, the maximum vertical excursion should occur at approximately depth

h = 165m, which is covered by the fine resolution. Time step is 2 s, short enough

compared with the typical temporal scale of a mode-1 ISW.

To be succinct, here we only show the results with the truncated initial condition,

which can be observed more often in the real ocean. As the KdV-type solitary wave,

given by equation (5.13), is not fully compatible with the Boussinesq equations solved

by the MITgcm model (although for small-amplitude waves which are in a weakly

nonlinear regime, the difference is very small), thus a 2D simulation is first conducted

on a flat bottom (depth h = 500m) environment with a KdV solitary wave as the

initial incident wave, using the background profiles in figure 5.3. Then we let the

wave evolve until it reaches a stable state, which is cut off and ready to be used.
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Essentially in the y direction, it is not easy to impose a smooth envelope on the

initial solitary wave in the MITgcm 3D simulations, as described in equation (5.13).

A compromise method is to copy this preliminary 2D solution to fill a central region

whose y-direction width is almost the same as the central part of the envelope given in

equation (5.14), whereas the other areas are assumed to be at rest. But these sudden

jumps between the initial wave and its periphery will undoubtedly modulate the

dynamics to some extent. Indeed, the discrepancy induced by the initial conditions

is significant within several hours after the model launches, but nevertheless then

a good agreement between the MITgcm and the vKP theory is achieved, see figure

5.11.

To further examine the robustness of the vKP simulations, the locations of the

wavefronts in the x-y space at four different time layers are depicted in figure 5.11, and

these demonstrate that overall a good agreement holds between the vKP simulations

and the MITgcm model, except that the curvatures of the wave fronts in the vicinity

of canyon (or plateau) topographic features are more abrupt in the KP simulation,

which can be partly ascribed to the interpolation used when that is transformed back

from the mapping space to the physical space. To make this claim more robust, a

quantitative comparison of the amplitude A is also shown in figure 5.11, in which

the wave amplitude of the MITgcm model is calculated using a mode decomposition

technique developed by Yuan et al. [116], see Section 4.1 in Chapter 4, which was

originally derived in a 2D (x-z) domain. However, since here the y-variations are

assumed to be much slower than the x-variations, this technique can be applied in

any (x-z) section without too much loss of accuracy. We see that the agreement is

good, implying that here the variable coefficient KP model and the accompanying

analytical interpretations are quite robust.
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Figure 5.11: The top two panels are the locations of the wavefronts from the MITgcm
(solid red lines) and the vKP simulations (dashed blue lines) respectively in the cases
of canyon-type and plateau-type topography, shown for times at t = 0.0, 5.0, 10.3
and 15.7 hours. Selected at the same times, the comparisons of the wave amplitude
A on the central line y = 0 and the off-centre section y = 20 km along the x-direction

are shown in the middle and bottom two panels respectively.
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5.4 Conclusion

The vKP model can be widely applied to the real ocean, under the assumption

that the y-variations are much slower than those in the propagation x-direction.

In the simulations reported here we have considered 2D bathymetry which is ei-

ther a submarine canyon or a submarine plateau, these being prototypes of more

complicated topographic scenarios. For slowly-varying solitary waves, if there are

no y-variations, then from the well-known KdV theory the evolution scenarios of

ISWs can be expressed by the adiabatic law a ∝ |ν|1/3 relating the amplitude a

with the nonlinear coefficient ν, assuming that, as here, ν does not change sign.

However, when y-variations are taking into consideration, then an additional spread-

ing effect in the y direction, characterised by a propagation speed proportional to

ν1/3θ
1/3
0 (16τ/3)1/2 and a diffusion scale y2d/s ∼ τ/(ν2/3θ

1/3
0 ), will also play a crucial

role. Our simulations show that this can even be overwhelmingly dominant, depend-

ing on the initial conditions, such as in our two cases shown in figure 5.4. But when

the initial KdV solitary wave is y-independent in the flat bottom region before the

topographic slope, then a very complicated scenario of evolution occurs, which can

be explained by the asymptotic theory of the slowly varying solitary wave, combined

with the creation of a trailing shelf induced by mass conservation in the X direction.

For the submarine canyon-type and plateau-type bathymetries, the essential dy-

namics are controlled by the transformed coefficients ν and τ , representing the effects

of nonlinearity and transverse diffraction, respectively. For the simulations reported

here, we have found that the former is the more effective. We have developed an

asymptotic theory of a slowly varying solitary wave which can be used to examine

the effect of y-variations in these coefficients. In particular we have found that the

nonlinear phase speed W (5.2) has a tendency to oppose the change of the corre-

sponding linear phase speed c due to the y-variations in the topography, although

the nonlinear correction term Wλ is too small to fully compensate the change in c,
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as the ratio is typically O(10−1). That is the phase speed (in the physical space)

csol ≈ c(1 +Wλ) is essentially determined by c. Further, we have found very good

agreement between the vKP simulations and simulations using the MITgcm model,

both qualitatively and quantitatively.



Chapter 6

Topographic effect on oblique

internal wave-wave interactions

As introduced at Chapter 1, in the coastal ocean, internal waves sourcing from

different generation sites can have an oblique interaction. In addition, due to the

variable topographic features, refraction and diffraction can also occur, which also

facilitates the emergence of oblique internal wave-wave interactions. For example, at

the periphery of Dongsha Atoll in the South China Sea, very complicated internal

wave-wave interactions were recorded by satellite images, see figure 1.4 and figure

6.1. It is conceivable that in the ocean, oblique interactions between several internal

waves can occur, however we contend that the basic interactions between two internal

solitary waves need to be first deeply understood, as the investigations on oblique

internal wave-wave interactions are not common, although we note that Xue et al.

[111], Wang and Pawlowicz [107], Chen et al. [19], Shimizu and Nakayama [96]. In

this chapter, the attention is given to the topographic effect on oblique interactions

between two internal solitary waves, in which the theories developed in Chakravarty

and Kodama [16, 17, 18] were applied to study three cases, each with a different pair

of wave amplitude and oblique angle, given the observations in Xue et al. [111], Wang

and Pawlowicz [107], Chen et al. [19].

119
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Figure 6.1: The complicated wave field recorded by an Envisat Advanced SAR image
on 14:15 UTC, 03-NOV-2005. [Figure adopted from Guo and Chen [48].]
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The analyses are based on a variable-coefficient Kadomtsev-Petviashvili (vKP)

equation. Following equation (2.18) in Chapter 2, the vKP equation is written in

the transformed space as

{Us + νUUX + UXXX}X + τUyy = 0 . (6.1)

6.1 Initial condition

First we consider the case of constant topography and a horizontally uniform

background so that ν = ν0 , τ = τ0 are constants in the vKP equation (6.1), namely,

[Us + ν0UUX + UXXX ]X + τ0Uyy = 0 . (6.2)

It can be further transformed to the canonical form,

[4Λϑ + 6ΛΛξ + Λξξξ]ξ + 3ΛY Y = 0 , (6.3)

ϑ = Rs , X = Lξ , y = MY , U = PΛ , (6.4)

where R =
L3

4
, L2 = M2 =

3

κ0

, P =
2κ0

µ0

. (6.5)

From the work of Chakravarty and Kodama [16, 17, 18], the KP equation (6.3) admits

multi-soliton solutions which feature an arbitrary number of asymptotic line solitons

in the far-field and a complex wave structure formed by the interactions between

intermediate solitons in the near-field. One of the advantages of these solutions is

they can be constructed through measuring certain characteristics of the given wave

pattern, including but not limited to the number of line solitons in the far-field

(Y ≫ 0 and Y ≪ 0), the amplitude and slope of each line soliton. Chakravarty and

Kodama [18] applied this method to the construction of an observed surface wave
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interaction pattern and Yeh and Li [114] made a realisation of a variety of these KP

soliton formations in the laboratory. Now we will briefly introduce this theory, in

which the solution of equation (6.3) can be represented by

Λ(ξ, Y, ϑ) = 2(lnφ)ξξ , (6.6)

where the φ-function φ(ξ, Y, ϑ) is defined as the Wronskian of N functions f1, · · · , fN ,

each of which satisfy the linear equations, fY = fξξ , fϑ = −fξξξ, and can further be

expressed as a sum of exponential functions

fn =
M∑

m=1

anm exp (θm) , θm = σmξ + σ2
mY − σ3

mϑ , n = 1, 2, . . . , N . (6.7)

This depends on M > N real parameters, ordered as σ1 < · · · < σM , and the

constant coefficients anm form an N ×M matrix A, all of whose N ×N minors must

be non-negative to ensure the non-singularity of the solution (6.6). In general, this

solution consists of N line-solitons as Y ≫ 0 and M −N line-solitons as Y ≪ 0. For

example, the pattern labelled by (c) in figure 6.2 can be interpreted as the case with

M = 3, N = 1.

The solution containing only one soliton is defined by M = 2, N = 1, so that

φ = exp (θ1) + a exp (θ2) , (6.8)

where a > 0 is a free parameter which determines the location of the soliton. Without

changing the value of Λ in equation (6.6), this can be recast to the following form,

φ = 1 + a exp (θ2 − θ1) . (6.9)
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Then substituting (6.9) into (6.6) we have

Λ = Λ0 sech2

(
Φ + Φ0

2

)
,

Λ0 =
k2

2
=

1

2
(σ2 − σ1)

2 , Φ = θ2 − θ1 = kξ + lY − ωϑ , expΦ0 = a ,

k = σ2 − σ1 , l = σ2
2 − σ2

1 , 4ωk = k4 + 3l2 ,

(6.10)

where Λ0 is the wave amplitude, while Φ is the phase consisting of the wavenumbers

k , l in the ξ and Y directions and the frequency ω. There is a phase shift Φ0

determined by the free parameter a > 0 and the choice a = 1 places the wave

passing through the origin ξ = Y = 0 at ϑ = 0. Equation (6.10) can be further

written in physical variables,

Λ = Λ0 sech2

√
Λ0

2
(ξ + Y tanΨ− Cϑ+ ξ0) ,

C =
1

2
Λ0 +

3

4
tan2Ψ , ξ0 =

ln a√
2Λ0

,

(6.11)

which yields the well-known KdV solitary wave. It is clear that this solution describes

an oblique solitary wave whose crest line has a slope tanΨ, where the angle Ψ

is measured counterclockwise from the Y -axis. This oblique solitary wave is not

stationary and it propagates in the positive ξ direction with the phase speed C; its

speed in the direction normal to the crest line is C cosΨ. Note that the soliton

(6.11) is defined in the mapping space (6.4) and this translates in equation (6.2)

with an amplitude U = PΛ0 and an unchanged slope tanΨ. In practice, usually

P = 2τ0/ν0 ∼ O(102), thus the magnitude of Λ0 is usually small.

Our interest here is in the 2-soliton interactions which can be constructed from

(6.6, 6.7). It was shown by Chakravarty and Kodama [16, 17, 18] that one distinct

type arises when M = 3, N = 1 or 2; one when M = 4, N = 1 or 3 and when M =

4, N = 2 there are seven distinct cases that can occur. Here “distinct” means they

cannot be obtained from another such solution through an inversion of symmetry,
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such as (ξ, Y, ϑ) → (−ξ,−Y,−ϑ). Taking account of this theory and the observed

two-ISWs interactions in the ocean, we select a V -shape wave consisting of two

oblique ISWs as the initial condition for the KP equation (6.1) and (6.2), that is

U(X, y, s = 0) = U0
1 (X, y) + U0

2 (X, y) ,

U0
1 = U1H(y) sech2

√
U1

2
(X − y tanΨ0) ,

U0
2 = U2H(−y) sech2

√
U2

2
(X + y tanΨ0) ,

(6.12)

where U1 and U2 are the amplitudes for the upper (y > 0) and lower (y < 0) branch

respectively, and their counterparts in the mapping space (6.4) are Λ1 = U1/P and

Λ2 = U2/P . Here we have assumed that each branch has the same inclination with

angle ∓Ψ0 relative to the y-axis, which is measured counterclockwise. H(y) is the

Heaviside step function, defined by

H(y) =

 1, y ≥ 0 ,

0, y < 0 .
(6.13)

A similar initial condition was used by Chakravarty and Kodama [17] to study the

oblique interaction of surface solitary water waves. More comprehensively, Kao and

Kodama [63] gave a detailed numerical description of this initial V-shape condition

associated with equation (6.3), and it was found that depending on the wave am-

plitude and angle the V -shape wave eventually converges (asymptotically) to some

of the exact soliton solutions (6.6). Their main possible outcomes of interest to our

present application are schematically indicated in figure 6.2. Patterns (a) and (b)

can be described by M = 4, N = 2 and the solutions are constructed from (6.6, 6.7),

which correspond to (2143) and (3142)-type solutions respectively, as in Chakravarty

and Kodama [16, 17, 18]. Patterns (c) and (d) correspond to M = 3, N = 1 and 2

whose respective solutions are (312) and (231)-type. Patterns (e) and (f) are (2341)-
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type (M = 4, N = 3) and (4123)-type solutions (M = 4, N = 1). Note that the

pair of patterns (c, d) can be transformed between each other using the inversion

from y → −y, and also for patterns (e, f). Pattern (a) in figure 6.2 was initially

investigated by Miles [79], who found the phase shift, while patterns (c) and (d) are

resonant interactions as Miles [80] noted. For pattern (b), a Mach stem arises in

the interaction zone. There are no corresponding exact analytical soliton solutions

at the critical angle Ψc depicted by the green dashed line in figure 6.2 (see Kao

and Kodama [63]), although Kodama et al. [65] numerically explored this case and

found that the stem length has a logarithmic increase when approaching the critical

angle. In practice, the critical angle Ψc is related to the magnitude of Λ1,2, see figure

6.2, which are usually not large, since P = 2τ0/ν0 ∼ O(102). There are six such

wave patterns shown in figure 6.2, where the boundaries are given by the relations
√
2Λ2 +

√
2Λ1 = 2 tanΨ0 (a transition from pattern (a) to (b), green dashed line),

√
2Λ1 −

√
2Λ2 = 2 tanΨ0 (a transition from pattern (b) to the limiting case (c),

thick line) and
√
2Λ2−

√
2Λ1 = 2 tanΨ0 (a transition from pattern (b) to he limiting

case (d), thin line). Patterns (a-c) are more often recorded for internal waves in the

ocean, see Chen et al. [19], Wang and Pawlowicz [107], Xue et al. [111], and the SAR

image in our figure 1.4. In the subsequent sections we will consider only these three

cases.

In the coastal ocean, the along-crest width of the ISWs is mostly in the range

from several kilometers to several hundred kilometers, for instance see Chen et al.

[19], Wang and Pawlowicz [107], Xue et al. [111]. Then depending on the scale of

interest, two scenarios arise; one is when the initial waves fill the whole transverse

calculation domain, while the other one is when they are truncated. In our context,

for the latter case, the initial V -shape wave (6.12) is confined in a y-direction envelope

which equals unity in a specified region |y|< yb and tapers to zero outside that range,



126 Chapter 6. Oblique internal wave-wave interactions

Figure 6.2: The initial V-shape wave (6.12) is depicted in the right upper corner. In
the constant-coefficient KP equation (6.3), with the amplitude of the lower branch
Λ2 fixed, the developed wave patterns which evolve corresponding to the amplitude
of the upper branch Λ1 and slope tanΨ0 are shown. The evolution regime can be
divided into six regions, and specially the region 3 and 4 are just along the thick line
(in the colour of orange) and thin line (in blue) respectively. The green dashed line is
given by

√
2Λ1+

√
2Λ2 = 2 tanΨ0, the thick line is given by

√
2Λ1−

√
2Λ2 = 2 tanΨ0,

and the thin line is given by
√
2Λ2 −

√
2Λ1 = 2 tanΨ0.

using an envelope

ENV(y) =
1

2

[
tanh

(
y + ye
yw

)
− tanh

(
y − ye
yw

)]
. (6.14)

We need ye ≫ yw to ensure a large value of yb.

6.2 Boundary conditions

An important numerical issue is the boundary condition in the y direction. For

the case that the initial along-crest width is short relative to the calculation domain,

that is with the envelope ENV(y) (6.14) imposed on the initial wave U(X, y, s = 0)
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(6.12), two boundary layers are added to the two y boundaries to avoid radiated

waves re-entering the calculation domain. Note that in the calculated space (see

equation (6.1)), in the X direction, the waves propagate with the nonlinear phase

speed αU/3 which is usually very small, therefore no boundaries are needed in the X

direction considering our relatively short computation time. In contrast, for the case

that the initial waves fill the whole transverse domain, we use the window-scheme

method, see Schlatter et al. [95], to transform U into a function η which equals to

U in the interior but rapidly decays to zero near the boundaries y = ±Ly, that is

essentially a decomposition of U ,

U = η + (1−W )U with η = WU , (6.15)

where W (y) is the window function defined as

W (y) = exp

(
−a

∣∣∣∣ yLy

∣∣∣∣n) . (6.16)

Here we choose two parameters, n = 95 and a = (1.02)n ln 10, analogous to those in

Kao and Kodama [63]. This decomposition replaces the aperiodic U with η which

can, with exponential accuracy, be taken as periodic in the y-direction. We assume

that outside the boundaries y = ±Ly, the solution can be described by a form

U0, that is the initial condition (6.12) but moving with its corresponding phase

speed C (6.10). When the background is horizontally uniform, i.e. equation (6.2)

governs the system, then this treatment is very accurate. However when variable

topography is considered, this treatment will undoubtedly induce numerical errors.

In the computations here the transverse length in the y direction is sufficiently large

that the central interaction zone is not affected by the boundary values over the

times of computation as demonstrated by test computations on larger domains (not

shown). The transverse length being large also guarantees that the post-interaction
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waves, have no chance to re-enter the domain to contaminate the calculations. Then

through the transformation,

U = η + (1−W )U0 , (6.17)

we recast the variable-coefficient equation (6.1) to the form,

[ηs + νηηX + ηXXX ]X + τηyy = G1(X, y, s) +G2(X, y, s) ,

G1(X, y, s) = −(1−W )
[
∂X

(
U0 + νU0∂XU0 + ∂3

XU0

)
+ τ∂2

yU0

]
,

G2(X, y, s) = ν(1−W )∂X [WU0∂XU0 − ∂X(ηU0)] + τ [2(∂yW )(∂yU0) + U0∂
2
yW ] .

(6.18)

Recall that we have assumed U0 satisfies the vKP equation (6.1) in the boundary

layers, thus G1 = 0 and only the term G2 takes effect. For the horizontally uniform

background, the derivation is the same except replacing ν(s, y) , τ(s, y) with constants

ν0 , τ0.

6.3 Model set-up

The South China Sea (SCS) is very active for ISWs, and there have been many

studies there, see for instance Alford et al. [7]. The bathymetry of the SCS is shown

in figure 1.4, and it is clear that in the large expanse of the coastal area, the depth

is mostly shallower than 500m. In addition, a lot of complicated internal wave

interactions have been recorded there, see for instance the inset of a SAR image. If

we choose the northwest direction (prominent wave propagation direction, see Guo

and Chen [48]) to be the x axis, then in the coastal area there is no abrupt change

of the bathymetry along the y axis. In order to understand the dynamics, in our

model an idealised y-independent shoaling topography with depth varying from 500
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to 200m is deployed in a large domain with x× y = [0 : 300]× [−200 : 200] km, see

figure 6.3. We note that although Yuan et al. [118] in the study of a single internal

solitary wave propagating over a slope showed that a small transverse variation of

the topography can induce a perceptible transverse modulation of the wave, here we

focus on the effect of just one-dimensional variation of the topography on the oblique

interaction of two solitary waves.

The background temperature and salinity profiles are the monthly averaged data

in the SCS selected in summer from the World Ocean Atlas 2013, see figure 6.4.

As mentioned before, observations have confirmed the existence of mode-2 ISWs in

the ocean, but nevertheless, here we confine our attention on only mode-1 waves,

and consequently ignore any possible energy transfer between modes when wave

interactions occur. The corresponding modal function of the vKP equation shown in

figure 6.4 indicates that initially the maximum particle displacement occurs at depth

h ≈ 190m. The negative sign of the nonlinear coefficient ν depicted in figure 6.3

implies that our leading ISWs are always depression waves, and no polarity changes

emerge.

As mentioned in the Introduction, although there are a few studies of oblique

internal wave interactions in the ocean, in general these investigations were not

sufficiently detailed to provide a deep insight into this common but complicated

phenomenon, even for the case of a flat topography. Here we use the comprehensive

theory of KP solitons developed by Chakravarty and Kodama [16, 17, 18] (briefly

described above in section 6.1) to interpret our simulations of ISW interactions both

for a constant depth and with a shoaling topography.
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6.4 Experiment 1

We first examine the case, labelled as EXP1, with the initial condition of equal

wave amplitudes A1 = A2 = −15m for the two branches and the angle Ψ0 = 16◦

(larger than the critical angle 15.1◦). In a constant depth of h = 500m, this set-up

is located in region 1 of figure 6.2 and the initial V-shape wave will asympotically

evolve to the so-called X-shape wave or O-soliton, see panels (a4-a6) in figure 6.5.

Subsequent to the release of the initial depression waves, two small post-interaction

depression waves immediately emerge. At the same time, since the mass conserva-

tion law (2.21) has to be satisfied, waves with the opposite polarity (here elevation)

are generated at the rear of the leading waves, see panel (a5). Then as the so-

lution evolves, the post-interaction waves mature and eventually an X-shape wave

emerges followed by a parabolic-shaped trailing wave train of opposite polarity, see

panel (a6). A prominent feature of the developed X-shape wave is the phase shift

in the interaction zone, also see figure 6.6, which can be interpreted through the

analyses based on equation (6.3) in the transformed space (6.4). Adapting from

Chakravarty and Kodama [16, 17, 18], the φ-function of the matured X-shape wave

for the constant-coefficient equation (6.3) is represented by

φ = 1 + exp (−Φ1) + exp (−Φ2) +B12 exp (−Φ1 − Φ2) , (6.19)

Φ1,2 = k1,2ξ+l1,2Y−ω1,2ϑ , k1,2 = σ2,4−σ1,3 , l1,2 = σ2
2,4−σ2

1,3 , 4ω1,2k1,2 = k4
1,2+3l21,2 ,

(6.20)

B12 =
Υ2 − (k1 − k2)

2

Υ2 − (k1 + k2)2
, Υ =

l1
k1

− l2
k2

, (6.21)

where the parameters have been chosen to make the phase shift of the initial incident

wave to be zero. To examine this wave pattern, we take the asymptotic limits

ξ → ±∞, similar to the procedure used by Miles [79]. Note that the incident 1-
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soliton solutions can be obtained by letting ξ → +∞ with either Φ1 or Φ2 fixed.

The former limit yields one 1-soliton (6.10) with phase Φ1 and Φ0 = 0, and the

latter limit gives the other 1-soliton (6.10) with phase Φ2 and Φ0 = 0. After the

interaction, we let ξ → −∞ with either Φ1 or Φ2 fixed again. The former choice

yields the 1-soliton solution (6.10) with phase Φ1 and Φ0 = logB12, while the latter

choice yields (6.10) with phase Φ2 and Φ0 = logB12. This implies that the incident

solitons emerge unchanged but with a phase shift in the ξ-direction of ∆1,2 where

exp (k1,2∆1,2) = B12. Since B12 > 0 to ensure the existence of the solution, the phase

shifts can be positive or negative according to B12 > 1 or 0 < B12 < 1. Since in our

case the amplitudes A1, A2 are equal, the phase shifts are the same for the upper

and lower branches. In physical variables, the theoretical estimated phase shift is

∆x = 1245m, slightly smaller than our numerical result ∆x = 1300m, see figure 6.6.

Moreover, using the modified Miles theory due to Yeh et al. [115], Kodama [64], the

maximum amplitude occurring at the mid-point of the interaction is given by

Amax =

 (1 + Γ)2A0, for Γ < 1 ,

4A0

1+
√
1−Γ−2 , for Γ > 1 ,

(6.22)

where Γ =
√
P tanΨ/

√
2A0 and A0 = A1 = A2. It is clear that at the critical angle

Ψc where Γ = 1 depicted by the green dashed line in figure 6.2, the maximum am-

plitude Amax can reach four times the soliton amplitudes A0, as noted by Miles [79].

The estimated Amax is −45m in our case, while the numerical result shows the value

of −43m, see figure 6.6. The slight discrepancy between them is attributed to the

evolution time, which is not quite long enough to let the initial V-shape wave evolve

to this 2-soliton solution. Another important point is that during the interaction,

the amplitudes of the initial two wave branches are unchanged, and furthermore, for

the matured X-shape wave the amplitudes of the two post-interaction waves are the

same as those of the initial V-shape wave, see panel (a6) in figure 6.5.
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When the effect of the shoaling topography is taken into account, there is a

different scenario. In the deep water, the initial wave behaves like its counterpart in

the constant case, but with the propagation up the slope, the front parts of the waves

first experience the topographic effect, manifested as an increasing amplitude and a

decreasing linear phase speed, see panel (a2) in figure 6.5. The total phase speed

is composed of the linear phase speed c and the nonlinear phase speed αAQ1/2/3,

and the latter has an opposite effect to that of the former, albeit the linear phase

speed c is dominant, see Yuan et al. [118]. The incident waves begin to bend and

tend to be parallel to the shore, with a decrease in the angle Ψ. Note that for this

set-up, the critical angle Ψc = 15.1◦, delineated by the green dashed line in figure

6.2, is only a little smaller than the initial angle Ψ0 = 16◦. Thus due to the shoaling

effect, it is possible that the evolution regime transfers from region 1 to region 2

in figure 6.2. Then the X-vertex wave is replaced by a merged front, called the

Mach stem following Miles [80], which emerges as a result of the resonant interaction

between the upper right branch and the upper left branch, as well as between the

lower right and the lower left branch. The length and strength of this merged front

are also varying with time. We will give more details in the next section. This whole

pattern continues to propagate into the shallow water and the amplitude continues

to increase as |ν|1/3 (see figure 6.3 for ν) according the well-known adiabatic law

determined by conservation of wave action flux (see for instance Yuan et al. [118]),

and meanwhile the mass of the leading depression wave, proportional to |ν|−1/3,

decreases, which results in the emergence of the trailing wave trains with the same

polarity due to the mass conservation law (2.21). In the simulation, at least one

trailing wave pattern with the same polarity as the leading waves is generated. But

afterwards the y-dependence has to be taken into account and the adiabatic law fails.

Figure 6.6 shows the wave amplitude of the leading wave at the center y = 0, and

eventually it is more than four times larger than the initial wave. Note that as Tsuji
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and Oikawa [102] pointed out, the resonance and hence the amplification of the wave

amplitude at the mid-point of the interaction can be suppressed to some extent when

it approaches a critical depth where the quadratic coefficient ν approaches zero. From

panel (a3) in figure 6.5, we see that the interaction zone does not have much influence

on the evolution of the initial two branches, which still behave approximately like the

adiabatic shoaling process predicted by the KdV theory. In contrast, the evolution

of the post-interaction waves are highly affected by the interaction, see panel (a3).

The post-interaction waves adjacent to the interacted merged front have a relatively

smaller amplitude compared with the neighbouring waves along the wave crest. This

could be due to the conservation of the wave action flux, since around the junction

of the merged front and the post-interaction waves, a large y-gradient is needed to

compensate the increase of the energy induced by the increasing amplitude. This

indicates the failure of the KdV adiabatic law. After the waves propagate onto the

flat shelf, the linear phase speed is the same for all waves, however the nonlinear

phase speed αAQ1/2/3 is dependent on the wave amplitude, so the post-interaction

wave branches will be curved with the larger waves moving faster.

6.5 Experiment 2

Next we set the initial wave amplitudes A1 = A2 = −20m and the angle Ψ0 = 8◦

(smaller than the critical angle 17.3◦), which is pattern (b) in figure 6.2 in the

constant depth h = 500m water; this set-up is labelled as EXP2. At the initial stage,

the evolution is almost the same as in EXP1, which is partly characterised by the

radiation of two post-interaction waves and a parabolic-shaped wave train of opposite

polarity. The essential difference is the generation of a Mach stem in the middle of

the initial two wave branches and its length is increasing with time. Eventually the

pattern asymptotically converges to the (3142)-type solutions in Chakravarty and
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Figure 6.5: For EXP1, panels (a1-a3) are selected to exhibit the evolution of wave
patterns in the case of shoaling topography at times t = 0, 12, 42 hours respectively.
In contrast, panels (a4-a6) are for the case of constant topography at times t =
0, 12, 30 hours respectively. Note that as the waves propagate faster in the constant-
depth case, so the snapshot is not an exact one-to-one match. The aspect ratio of
every panel is the same, that is x × y = 80 × 150 km, and the corresponding depth

of every panel is indicated by insets.
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Figure 6.6: (a) In EXP1, the time series of the leading wave amplitude along y = 0 for
the cases of both varying and constant topography. The inset is a zoom-in of panel
(a6) in figure 6.5. (b) In EXP2, the time series of the leading wave amplitude along
y = 0 for the cases of both varying and constant topography. The inset is a zoom-in of
panel (b6) in figure 6.7. The other scale shows the length of the intermediate Mach
stem Ls predicted by the theory (green solid line) and the numerical simulations
(green plus sign). (c) The downward distance Ld varying with time in EXP3 is
shown and the solid line is the theoretical result, while the plus sign is from numerical

simulations.

Kodama [16, 17, 18]. The φ-function in the transformed space (6.4) is given by

φ = E(1, 3) + bE(1, 4) + aE(2, 3) + abE(2, 4) + cE(3, 4) , (6.23)

where E(i, j) = (σj − σi) exp (θi + θj), the phase θn, n = 1, 2, 3, 4 is defined in

equation (6.7), and a, b, c > 0 are parameters which determine the location of

the solitons. Using the same method of asymptotic limits introduced before, when

ξ → +∞, Y → +∞, the soliton, see analogously the right upper branch in figure 6.7,

can be obtained from the balance between the terms bE(1, 4) and cE(3, 4), which

yields the 1-soliton solution (6.10) with the amplitude Λ13 = (σ3 − σ1)
2/2, the phase

Φ13 = θ3 − θ1 and the phase shift

Φ013 = ln

{
(σ4 − σ1)

(σ4 − σ3)

b

c

}
. (6.24)
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Similarly, when ξ → +∞, Y → −∞ (the right lower branch), the soliton is given by

expression (6.10) with the amplitude Λ24 = (σ4 − σ2)
2/2, the phase Φ24 = θ4 − θ2

and the phase shift

Φ024 = ln

{
(σ3 − σ2)

(σ4 − σ3)

a

c

}
. (6.25)

On the other hand as ξ → −∞ the dominant terms in (6.23) are either the pair

E(1, 3), E(1, 4) yielding a 1-soliton with the amplitude Λ34 = (σ4 − σ3)
2/2 and the

phase Φ34 = θ4 − θ3 (the left upper branch) or the pair E(1, 3), E(2, 3) yielding a

second 1-soliton with the amplitude Λ12 = (σ2 − σ1)
2/2 and the phase Φ12 = θ2 − θ1

(the left lower branch). They have the respective phase shifts

Φ034 = ln

{
(σ3 − σ1)

(σ4 − σ1)

1

b

}
, Φ012 = ln

{
(σ3 − σ1)

(σ3 − σ2)

1

a

}
. (6.26)

Importantly, the total phase shift is locked for all values of a, b, c > 0, as Miles [79]

pointed out,

Φ013 + Φ034 = Φ024 + Φ012 . (6.27)

The generation of the Mach stem is a consequence of the resonance between the upper

right branch and the upper left branch, as well as between the lower right and the

lower left branch. Note that the Mach stem can be represented by the soliton solution

(6.10) with the amplitude Λ14 = (
√
2Λ0 + tanΨ0)

2/2 and the phase Φ14 = θ4 − θ1.

Then the length of the stem Ls can be expressed as Ls = (
√
2Λ0− tanΨ0)ϑ, which is

obtained by examining the location of the intersection point between the stem and

the initial upper left branch.

Since in the present case, the amplitudes of the initial two branches are the same,

that is Λ13 = Λ24 = A0/P where A0 = A1,2, and the initial wave passes through the

origin ξ = Y = 0 at time s = 0, the phase shift Φ013 = Φ024 = 0, which fixes two

values from a, b, c and only one free parameter is left. In the physical space, through

the transformation (2.14), the estimated amplitude of the post-interaction wave is
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−4m, matches well with the numerical result, see panel (b6) in figure 6.7. The length

of the stem Ls is shown in panel (b) of figure 6.6, and there is a remarkable agreement

between the theory and numerical simulations. In addition, from equation (6.22),

the amplification factor (relative to the initial wave amplitude) is (1 + Γ)2 = 2.1

since Γ = 0.45 < 1, and again a very good consistency with the numerical results,

see figure 6.6.

The evolution scenario over the shoaling topography is similar to that in EXP1,

except for the evolution of the intermediate Mach stem. As the solution evolves, the

amplitude of the stem is not constant either along y-sections or along the stem itself,

in contrast to the eventual constant amplitude in the flat bottom case. Figure 6.6

shows the increasing amplitude of the leading wave along y = 0. The magnification

of the wave amplitude in the interaction zone is not as efficient as that in EXP1,

since here it increases approximately once, smaller than the twice in EXP1. Note

that here the varying topography is y-independent, thus any transverse effect must

enter the equation through the spreading term τUyy in the vKP equation (6.1). Since

the two initial wave branches are oblique, the front parts experience the topographic

effect and consequently deform earlier than the rear parts. Then this discrepancy

along the branches induces a complicated modulation in both the X direction due to

the mass conservation law and further in the y direction to respond to the variations

in the X direction, as the wave action flux must be conserved. From panel (b3)

in figure 6.7, we find that the stem has a very special structure. As we mentioned

before, in general, the waves with larger amplitude propagate faster, however panel

(b3) shows that along the stem, the wave at y = 0 section with smaller amplitude

surprisingly propagates faster than its larger neighbouring waves. This indicates a

profound topographic effect on wave-wave interactions. Also note that after time

t = 42 h (see panel (b3)), the whole wave pattern will propagate onto the flat shelf,

and if the flat shelf is long enough, then the stem is likely to become parallel to the
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Figure 6.7: The layout is the same as in figure 6.5, but for EXP2.

shore. However, we are not able to verify this here , as our computational domain is

not sufficiently long.

6.6 Experiment 3

In EXP2, in the case of constant depth, we showed that the resonant interaction

between the initial wave and the post-interaction wave generated a third wave (Mach

stem). In this section, we will examine this further. In figures 6.2, patterns (c)

and (d) have the same dynamical features, both of which need two initial branches

with different amplitudes. Here we select pattern (c) with the initial condition A1 =

−25m, A2 = −10m, and the angle Ψ0 = 3.67◦ satisfying the critical relation
√
2Λ1−

√
2Λ2 = 2 tanΨ0 (the thick line in figure 6.2). This case is labelled as EXP3. Note

that as shown in our figure 1.4 and also in Chen et al. [19], this pattern has been

observed in the SCS. Here the φ-function of the developed wave pattern, see panel
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(c6) in figure 6.8, is

φ = 1 + exp (−Φ1) + exp (−Φ2) . (6.28)

As ξ → +∞, this describes two incident solitons with respective phases as defined

in (6.20). But as ξ → −∞, this describes the generation of a third resonant soliton

with phase Φ3 = k3x+ l3y − ω3t, where k3, l3, ω3 satisfy the resonance conditions,

ω3 = ω1 − ω2 , k3 = k1 − k2 , l3 = l1 − l2 ,

4ωiki = k4
i + 3l2i , i = 1, 2, 3 .

(6.29)

Upon noting that Φ3 = Φ1 − Φ2, fixing Φ3 and taking the limit ξ → −∞ yields

τ ∼ 1 + exp (−Φ3) , u ∼ k2
3

2
sech2

(
Φ3

2

)
. (6.30)

Thus the amplitude of the third wave is k2
3/2, which is −3.4m using our physical

variables, very close to the numerical result −3.3m, see panel (c6) in figure 6.8. From

equation (6.11), the propagation speed is related to the amplitude and angle. In this

set-up two branches are of the same inclination but different initial amplitudes, and

it follows that the intersection point will move downward with respect to y = 0

based on a simple geometric relation. In the transformed space (6.4), the downward

distance is

Ld =
(Λ2 − Λ1)s

4 tanΨ0

, (6.31)

which is confirmed by our numerical simulations shown in the physical space, see

figure 6.6.

It is clear that in this case, there are no mechanisms that can boost the amplitude

at the intersection point, which is different from the previous two cases. When

the topographic effect is considered, as before, a wave train of opposite polarity,

together with a second wave pattern with the same polarity, follows the leading wave
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Figure 6.8: The layout is the same as in figure 6.5, but for EXP3.

pattern, see panel (c3) in figure 6.8. In addition, in panel (c3), the curvature of

the leading two wave branches is perceptible. Note that the absence of a resultant

large-amplitude intermediate wave in the interaction zone seems to suppress the

transverse modulation, which suggests that the evolution can be partly predicted by

KdV theory, see for instance Grimshaw et al. [42, 43].

6.7 Short along-crest width

The aforementioned cases are such that the initial waves fill the whole transverse

domain and indeed this set-up can be of some practical interest. In a realistic ocean,

although the along-crest width can be as long as several hundred kilometres, in

some circumstances, it is permissible to focus only on central parts, where the effect

induced by the wave edges is considered unimportant. Nevertheless, since the real

ocean can be regarded as open for ISWs, the case in which waves can propagate

freely in the transverse direction should also be examined, which amounts here to



142 Chapter 6. Oblique internal wave-wave interactions

considering a wave with a short along-crest width propagating in a large domain. In

this sub-section we will examine this issue. The set-ups are the same as those in the

previous three cases, except that a y-envelope ENV(y) (6.14) is imposed on the initial

wave. Figures 6.9-6.11 show the evolution scenarios. For each figure, the horizontal

view is quite similar qualitatively, which is presumably indicative of the significance

of the spreading effect in the transverse direction. However closer scrutiny shows

that topographic effect does still modulate the amplitude of the waves.

We consider the case of constant water depth first. After the initial launch, similar

post-interaction waves and their consequent trailing opposite wave trains emerge just

as in EXP1-EXP3. However, here due to the spread in the y direction, then another

pair of wave trains of opposite polarity arises behind the two leading branches as

a consequence of mass conservation. Note that the dispersion relation of the KP

equation (6.3) for a linear wave Φ = exp (ikξ + ilY − iωϑ) with frequency ω and

wavenumbers k, l is given by

ω = −k3

4
+

3l2

4k
, (6.32)

from which the group velocity of the wave is

Cgξ = −3

4

(
k2 +

l2

k2

)
, CgY =

3l

2k
. (6.33)

The (always) negative sign of the group speed Cgξ in the ξ direction implies that

any small perturbation must propagate in the negative ξ direction. Thus in the

physical space, any generated small-amplitude wave trains will appear behind the

leading waves and gradually detach from them. Then the spreading effect keeps

expanding the waves in the y-direction at the cost of decreasing wave amplitude

from the periphery gradually up to the centre. As mentioned, the nonlinear phase

speed is related to the amplitude, so as a result, overall the initial two oblique waves

become parallel to the shore, and eventually they merge into one large leading wave,
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Figure 6.9: The layout is the same as in figure 6.5 but the aspect ratio of every panel
is x × y = 80 × 200 km here. The set-up is the same as that in EXP1, except that

an envelope is imposed on the initial V-shape wave.

followed by the post-interaction waves and wave trains of opposite polarity. This

wave pattern continues to propagate, but the spreading effect radiates the energy

away from the calculation domain.

When the topographic effect is taken into consideration, the spreading effect

is still dominant, but at the same time, the amplitude is enlarged by the shoaling

process, compared with that in the constant water depth. Especially, the difference in

the eventual merged leading wave in figure 6.9 is appreciable, which can be ascribed

to the topographic effect, see also figure 6.5.

6.8 Conclusion

Motivated by the observations reported in Chen et al. [19], Wang and Pawlowicz

[107], Xue et al. [111] and many SAR images, we have examined three cases of oblique

internal wave-wave interactions using a V-shape wave consisting of two branches of
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Figure 6.10: The layout is the same as in figure 6.5 but the aspect ratio of every
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0 20 40 60 80
−100
−75
−50
−25
0
25
50
75
100

y 
(k
m
)

(c1)

40 60 80 100

(c2)

A=  24.6

160 180 200 220

(c3)

A=  35.6

0 20 40 60 80
x (km)

 100
 75
 50
 25
0
25
50
75
100

y 
(k
m
)

(c4)

40 60 80 100
x (km)

(c5)

A=  24.0

180 200 220 240 260
x (km)

(c6)

A=  20.8

 25

 20

 15

 10

 5

0

5

A 
(m
)

0 100 200 300
x (km)

0
100
200
300
400
500 Variable depth (m)(c1)

(c2)

(c3)

0 100 200 300
x (km)

0
100
200
300
400
500 Constant depth (m)(c4)

(c5)

(c6)

Figure 6.11: The layout is the same as in figure 6.5 but the aspect ratio of every
panel is x× y = 80× 200 km here. The set-up is the same as that in EXP3, except

that an envelope is imposed on the initial V-shape wave.
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ISWs as the initial condition.

In constant depth water, when the along-crest width is relatively short compared

with the domain of interest, the spreading effect in the transverse direction is domi-

nant, which eventually destroys the initial structure of two oblique waves and leads

to the emergence of one merged leading wave followed by wave trains of opposite

polarity. However, if we consider the case when the initial waves fill the whole trans-

verse domain, then the evolution scenario can be categorised into six types depending

on the amplitude and slope of each wave branch. From these six types, patterns (c)

and (d) have the same dynamical feature and so do patterns (e) and (f), see figure

6.2.

Both patterns (a) and (b) contain an intermediate zone characterised by relatively

large-amplitude waves and in our specific cases these are three times as large as the

initial waves in pattern (a) and twice the initial waves in pattern (b). For pattern

(a), there is a phase shift in the interaction zone and this zone is neither expanding

nor shrinking with time, while for pattern (b), the intermediate area is an uniform

stem whose transverse length is linearly increasing with time. The occurrence of this

stem is a superposition of the interaction emerging between upper two wave branches

and that arising between lower two waves and this was further examined in pattern

(c), in which a third post-interaction wave is apparent.

The effect of shoaling topography modulates the wave field, primarily manifested

as augmented leading depression waves followed by parabolic-shaped wave trains of

opposite polarity and secondary wave trains of the same polarity, which is induced

by mass conservation in the X direction. As waves propagate up the shoaling to-

pography, their phase speeds decrease. Then the front parts of the leading waves

undergo the topographic effect earlier than the rear parts, which overall results in

decreasing angles of the oblique leading wave branches. This feature can make the

evolution pattern move from one region to another as described in figure 6.2. Also,
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the post-interaction wave branches have a special structure because the amplitudes

and discrepancies along the branches induce curvatures with larger waves propagat-

ing faster. When the along-crest width is short, the wave amplitude is amplified by

the shoaling process, although the spreading effect in the transverse direction is still

dominant, as for constant depth. Since here the generated wave trains are of small

amplitude, they can be treated approximately as small linear perturbation. Then the

dispersion relation for the KP equation shows that these small perturbations have a

negative group velocity in the X direction and detach from the leading waves, which

is affirmed by our numerical simulations.

It is clear that for these internal wave-wave interactions, the relationships between

amplitude and angle are very significant. We note that the existing observations on

this phenomena are mainly from SAR imagery and aerial photography and sometimes

it is just one snapshot rather than sequential images. Here we caution that it may not

be very reliable to interpret just one observed wave pattern from an instantaneous

image, and it is desirable to obtain also information of the whole water column.



Chapter 7

Future possible work

The equations that have been used are of the KdV equation type. However, in a

variable medium, when there is a polarity change (the quadratic nonlinear coefficient

passes through zero) or the wave amplitude is relatively large, a cubic nonlinear

term becomes significant, and this is described by the Gardner equation, also called

the extended KdV equation, see for instance Grimshaw et al. [40]. Although the

solitary wave solution of this is now well-known, there is still much to study here for

undular bores. Note that Esler and Pearce [26] and Kamchatnov et al. [61, 62] have

shown that the additional cubic term adds considerable complexity when examining

undular bores. Thus the investigation of internal undular bores in the framework of

the Gardner equation is quite worthy and challenging.

In Chapter 6, oblique internal wave-wave interactions are investigated. Theoret-

ical and numerical results are provided, but there is a lack of quantitative observa-

tional evidence. Since in-situ observations are impractical to collect the horizontal

2D information simultaneously and available radar images are snapshots rather than

sequential images capturing a relatively complete evolution process, an economic

and feasible way is to conduct laboratory experiments and then compare these re-

sults with our developed theories. One possible scenario is that there is some energy

transfer between different modes, and if that is indeed the case, since the KdV-type

147
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theory is not able to incorporate more than one distinguished mode simultaneously,

then either coupled KdV systems or the full Euler equations will need to be invoked.

The KP theory formally requires the variation in the transverse direction is one

order weaker than that in the primary direction, which limits its applicability to

some practical scenarios. Benney and Luke [11] derived an isotropic equation for

water waves of finite amplitude, also see Milewski and Keller [81], which is written

as

ξtt − c2∆ξ = α∆2ξ + β
[
(|∇ξ|2)t + ξt∆ξ

]
, (7.1)

where ξ is surface velocity potential, c, α, β are coefficients, ∆ = ∂xx + ∂yy is the

two-dimensional Laplacian operator acting on horizontal variables, while ∇ is the

gradient operator. This Benney-Luke equation can be reduced to the KdV equation

when only uni-directional waves are taken into account, and has the KP equation as a

limiting case in nearly uni-directional situations. One advantage is that this equation

is isotropic, which makes it suitable for the study of more general two-dimensional

wave evolution. However the classic Benney-Luke equation is only for water waves,

and hence it is worth deriving a modified Benney-Luke equation for internal waves in

which two-dimensional variable topography is also considered. Note that the classic

Benney-Luke equation is a Boussinseq-type system, for which there is literature where

depth dependence is included, see for example Esler and Pearce [26] and Kamchatnov

et al. [61, 62], but these are for one-dimensional topography. In addition, the MCC

equation (mentioned in Chapter 1) is an extension of the Benney-Luke equation to

interfacial waves, and again only for one-dimensional topography.
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