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Abstract—The next generation of organ specific Positron Emis-
sion Tomography (PET) scanners, e.g. for breast imaging, will
use partial ring geometries. We propose a component-based
Maximum-Likelihood (ML) estimation of normalisation factors
for 3D PET data reconstruction applicable to partial ring ge-
ometries. This method is based on the Software for Tomographic
Image Reconstruction (STIR) for full ring PET and is validated
for a stationary partial ring scanner. The model includes the
estimation for crystal efficiencies and geometric factors. The
algorithm is validated using Maximum Likelihood Estimation
Method (MLEM) based 3D reconstruction in STIR using Geant4
Application for Tomographic Emission (GATE) simulation data
for full and partial ring scanners and experimental data from
a demonstrator with partial ring geometry. The uniformity of
the reconstructed images of simulated cylindrical and NEMA-
IQ phantoms in both scanner geometries and the image of a
line source in the partial ring demonstrator is assessed. The
results have shown that uniform images in both axial and
transaxial directions are obtained after applying the estimated
normalisation factors. The accuracy of the algorithm is validated
by comparing the normalisation factors between the full and
partial ring systems in simulation. We have shown that the
estimated normalisation factors are almost identical, even though
the separate components are not. This proves that the ML
estimation of the 3D normalisation factors is valid and can be
applied to the partial ring scanner.

I. INTRODUCTION

PET data reconstruction requires an accurate estimation of
the normalisation factors to take the detection sensitivity

of different lines of responses (LOR) into account. Normalisa-
tion factors are multiplicative parameters to the measured data.
The motivation for this project was to develop a 3D image
reconstruction software for our recent developed PET demon-
strator with partial ring geometry which is a test machine for
the next generation of organ specific PET scanners, e.g. for
breast imaging with partial ring design [1]. This machine is
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stationary, so the angular coverage is not complete. Previously,
a component based method to estimate normalisation factors
based on maximising the Poisson log-likelihood for 2D PET
data reconstruction has been developed [2]. Based on that
algorithm, a 3D normalisation factor estimation is derived
in this work for full ring PET and validated for stationary
partial ring scanner. The reconstruction is done in open source
Software for Tomographic Image Reconstruction STIR [4].
The normalisation factors are split into two components in-
cluding the crystal efficiencies and geometric effects to reduce
the number of components and the noise on their estimation.
The components are geometric Gij (representing the change
in sensitivity due to the radial position of the detector pair
and relative position of each detector pair within a block)
and crystal efficiency εi εj factors. To reduce the number
of independent geometric factors, we imposed symmetries
according to the scanner geometry of a full ring system.

II. THEORY

The measured PET data have Poisson distribution. The
data are modelled as

Mij = εiεjGijAij (1)

where Mij are the mean measured number of coincidences
measured between crystal i and j in a scanner ring. These
are equal to the product of two normalisation components
(crystal efficiency factors εi εj and geometric factor Gij)
and the ideal measurements model Aij (source distribution).
A likelihood function L is defined, which is the probability
that count mij (measured data) are observed, given a known
object and the normalisation factors.

Log(L) =
∑
ij

(mij log(Mij)−Mij − log(mij)!) (2)

In this method the measured object (Aij) is known and we
want to estimate the normalisation factors. This is done by
maximising L with respect to the normalisation factors. For
efficiency factor, the maximum likelihood (ML) is reached
when



εk =

∑
j mkj∑

j εjGkjAkj
(3)

which means the sum of coincidence counts seen by one
detector is proportional to its efficiency. For geometric factors,
ML is reached when

Gkl =

∑
ij mij∑

ij εiεjAij
(4)

where the sum is over all ij detector pairs that have the same
geometric factor as Gkl. To find the equivalent LORs, we
implemented mirror, rotational and translational symmetries
in 3D for a full ring scanner in the algorithm (figure 1). For
the partial ring system, we still keep the same symmetries
and have virtual crystals (with zero detection efficiency) in
the missing part of the detector ring. For the definition of the
virtual crystal please refer to section 3. Gkl is only estimated
in one reference module for half the crystals in the module in
transaxial direction and all the crystals in axial directions to
cover all the oblique LORs. The calculated geometric factors
for the selected LORs are then applied to the equivalent
LORs according to the symmetries. An iterative Coordinate
Ascent ML algorithm is used to solve these equations where
one of the εi or Gij is updated given estimates to all the
normalisation factors. For more details on the algorithm see
the references [2][3]. The estimated normalisation factors are
then included in the sensitivity image. For each voxel, the
sensitivity image represents the total probability of detection of
an event originating in that voxel. Without having the normali-
sation factors, it is computed by backprojecting projection data
with all elements set to 1. Having the normalisation factors,
the sensitivity image is the geometric backprojection of the
normalisation factors.

Fig. 1. Schematic view of the mirror and rotational symmetries in transaxial
plane in (a) and (b) respectively and mirror and translational symmetries in
axial planes in (c) and (d) respectively.

III. SIMULATION AND EXPERIMENTAL STUDIES

Using the method described above, we estimated the nor-
malisation factors for full and partial ring scanners. Data were
acquired with the demonstrator with partial ring geometry
and in simulation with Geant4 Application for Tomographic
Emission (GATE) [5]. Two scanners, full ring and partial ring
geometry, were simulated. The simulated partial ring scanner
matches the real scanner.

A. Scanner design
The PET demonstrator (figure 2a) ring has an inner diameter

of 235 mm (crystal to crystal distance) and can accommodate
24 detector modules (figure 2b). However, the demonstrator is
only equipped with 16 detector modules forming two arcs of
8 modules facing each other. Each detector module has 4 by 2
matrices of 4× 4 LYSO scintillating crystals (figure 2c), each
measuring 3.1× 3.1× 15 mm3. The LYSO crystal array has
a pitch of 3.2mm. The gaps between two adjacent matrices is
about the same size of the crystal pixel. The demonstrator is
also simulated in GATE with the current partial ring geometry
(figure 3a) and with the full ring geometry having all the
24 modules (figure 3b). The efficiencies of all the crystals is
almost identical in the simulation. In particular, there is only a
small variation within each module as optical photon transport
is not included in the simulation.

Fig. 2. Pictures of (a) the demonstrator, (b) a detector module and (c) a
crystal matrix. The axes orientation is shown in (d).

Fig. 3. Schematic transaxial picture of the simulated (a) full ring and (b)
partial ring scanners.

In STIR, the scanner geometry is defined in the library
to create a virtual scanner around the object. The acquired
data will be then assigned to these virtual crystals to be
reconstructed. To add the gaps between the matrices, in the
scanner definition we assumed we have 5 by 5 crystals per
module, which implies 4 by 4 physical crystals and a gap at
the 5th crystal in both axial and transaxial directions where
the counts are zero. These gaps are removed in applying
the symmetries for geometric factors estimation. The scanner
definition for the partial ring is the same as the full ring with
zero detection efficiency for the virtual crystals in the missing
parts of the detector ring.



B. Sources and phantoms

A rotating line source in the demonstrator and a thin ring
source in the simulation with the same length as the scanner
and 110 mm radius were used for estimating the normalisation
factors. A cylindrical phantom with 50 mm radius and 60 mm
length with uniform activity and a NEMA Image Quality (IQ)
phantoms [6] were used for simulation studies to evaluate
the effect of the normalisation on the image uniformity.
Radioactive sources were simulated as back-to-back gamma
rays. A 68Ge line source with nearly the same length as the
scanner was used to study the uniformity of the image with
the demonstrator.

IV. RESULTS

A. Simulation

1) Validation of algorithm: To validate the algorithm in 3D,
the product of the normalisation components (efficiency and
geometric factors) for the full ring and the partial ring were
compared, by plotting a profile through one of the normali-
sation sinograms for both scanners. Data were obtained with
simulation. The product of the estimated normalisation factors
are almost identical even though the separate components are
not. figure 4 and figure 5 show the efficiency and geometric
profiles respectively while figure 6 is the product of these two
factors for selected bins. This proves that the ML estimation
of the 3D normalisation factors is valid and can be applied to
the partial ring scanner.

Fig. 4. Efficiency factor for selected bins for partial ring and full ring
scanners.

Fig. 5. Geometric factor for selected bins for partial ring and full ring
scanners.

B. Sensitivity image

The sensitivity image before and after applying the normali-
sation factors are seen in figure 7. Since the scanner definition
is STIR for full and partial ring scanners is the same and

Fig. 6. Multiplication of the normalisation factors for selected bins for partial
ring and full ring scanners.

is a full ring, without applying the estimated normalisation
factors the sensitivity image for both scanners is computed
by backprojecting projection data with all elements set to 1
(also for the gaps). Therefore, without normalisation factors
estimation, one sensitivity image as shown in figure 7a is
considered for full and partial ring scanners. After applying the
estimated normalisation factors, the sensitivity images for full
ring and partial ring scanners are the geometric backprojection
of the normalisation factors as seen in figure 7b and figure 7c
respectively. The effect of the gaps can also be seen clearly
in the sensitivity images.

Fig. 7. Sensitivity images for (1) full and partial ring scanners before applying
normalisation factors and (2) and (3) after applying normalisation factors for
full ring and partial ring scanners respectively. (a), (b) and (c) are for xy, yz
and xz planes respectively.

C. Image uniformity

The reconstructed images of a uniform cylinder and NEMA
IQ phantom with a full ring scanner and partial ring scanner
are presented. Images are reconstructed with ML-EM algo-
rithm with 120 iterations. Figure 8 and figure 9 show the
reconstructed images of the uniform cylinder with and without
normalisation factors and their respective profiles along the red
lines for the full ring scanner in transaxial and axial planes
respectively. Similarly, the reconstructed images of a uniform
cylinder is shown for a partial ring scanner in figure 10 and
figure 11 for transaxial and axial planes respectively.

Moreover, uniform images of NEMA IQ phantom were
achieved with full and partial ring scanners after applying
the normalisation factors as shown in figure 12 and figure 13
respectively.



Fig. 8. Reconstructed images of a uniform cylinder in the full ring scanner
and the corresponding profiles along the red arrows in xy plane (a) without
normalisation factors, (b) with efficiency factors and (c) with both efficiency
and geometric factors.

Fig. 9. Reconstructed images of a uniform cylinder in the full ring scanner
and the corresponding profiles along the red arrows in xz plane (a) without
normalisation factors and (b) with normalisation factors.

Fig. 10. Reconstructed images of a uniform cylinder in the partial ring
scanner and the corresponding profiles along the red arrows in xy plane (a)
without normalisation factors, (b) with efficiency factors and (c) and with both
efficiency and geometric factors.

Fig. 11. Reconstructed image of a uniform cylinder in the partial ring scanner
and the corresponding profile along the red arrows in xz plane (a) without
normalisation factors and (b) with normalisation factors (b).

Fig. 12. Reconstructed image of the NEMA QI phantom in the full ring
scanner (a) and (b) in xy and (c) xz planes with normalisation factors. Data
is corrected for attenuation, randoms and scatters.

Fig. 13. Reconstructed image of the NEMA QI phantom in the partial ring
scanner (a) and (b) in xy and (c) xz planes with normalisation factors. Data
is corrected for attenuation, randoms and scatters.

D. Experimental

A 1.5 mm diameter and 60 mm long 68Ge line source
placed in the centre of the demonstrator along the axis of
the scanner and its image is reconstructed after aplying the
estimated normalisation factors as shown in figure 14. The
longitudinal profile shows the uniformity of the image.

Fig. 14. Image of a line source aligned with the axis in the centre of the
demonstrator (left) and the longitudinal profile (right).

V. DISCUSSION

We have generalised the previously developed iterative
component-based ML algorithm for normalisation factor es-
timation by imposing the 3D symmetries for the full ring
scanner. The algorithm is validated with 3D reconstruction of a
simulated data with both full ring and partial ring scanner and
with the experimental data with a partial ring demonstrator. It
has the advantage that the efficiencies of the virtual crystals
are automatically set to zero in the missing part of the detector
ring in partial ring, no special treatment is required. The effect
of the normalisation factors is evaluated by looking at the line
profile of a selected slice of the obtained image before and
after applying the normalisation factors. The uniformity of the
image in both full ring and partial ring scanners is achieved in
both transaxial and axial directions. There are some distortions
in the reconstructed image in the partial ring scanner due to the
incomplete angular coverage as expected which needs some



other improvements in the reconstruction process, for instance
using time-of-flight information, but this was out-of-scope for
this paper. To validate the algorithm in 3D, the product of the
normalisation components for the full ring and partial ring are
compared. This has been done by plotting the profile through
a row of normalisation sinogram in a selected segment for
both the scanners with the data obtained in simulation. Both
the profiles give the same estimation for the product of the
normalisation factors which proves that the 3D algorithm is
valid and can be applied to the partial ring scanner. Note that
we observed some differences in the estimated efficiencies and
geometric factors, indicating there is some non-uniqueness in
the components for the partial ring system, but not in the final
product.
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