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Abstract 

Mathematical modelling is commonly used to evaluate infectious disease control policy, and 

is influential in shaping policy and budgets. Mathematical models necessarily make 

assumptions about disease natural history, and if these assumptions are not valid the results 

of these studies may be biased. We conducted a systematic review of published TB 

transmission models, to assess the validity of assumptions about progression to active 

disease following initial infection (PROSPERO ID CRD42016030009). We searched 

PubMed, Web of Science, Embase, Biosis, and Cochrane Library, and included studies from 

the earliest available date (1962) to August 31st 2017. We identified 312 studies that met 

inclusion criteria. Predicted TB incidence varied widely across studies for each risk factor 

investigated. For population groups with no individual risk factors, annual incidence varied 

by several orders of magnitude, and 20-year cumulative incidence ranged from close to 0% 

to 100%. A substantial fraction of modelled results were inconsistent with empirical 

evidence—for 10-year cumulative incidence 40% of modelled results were more than double 

or less than half the empirical estimates. These results demonstrate substantial disagreement 

between modelling studies on a central feature of TB natural history. Greater attention to 

reproducing known features of TB epidemiology would strengthen future TB modelling 

studies, and readers of modelling studies are recommended to assess how well those studies 

demonstrate their validity. 

Abstract word count: 218 
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Introduction 

Latent infection is a defining feature of TB epidemiology. Upon infection with Mycobacterium 

tuberculosis (M. tb) approximately 5% of otherwise healthy adults will develop active disease 

within two years(1, 2) (so-called ‘fast progressors’). Those who do not rapidly progress are 

classified as having ‘slow progressing’ latent TB infection (LTBI). With latent infection, 

individuals experience no adverse health effects and will not transmit M. tb, yet face an 

ongoing risk of developing active TB through reactivation. For individuals with long-

established infection, the annual risk of active TB is low—empirical estimates are on the 

order of 10-20 per 100,000(3). However, due to high LTBI prevalence in many settings(4), 

reactivation TB can contribute a substantial fraction of incident TB cases, or even the 

majority in settings where transmission has been in sustained decline(5). The risk of active 

disease following infection also varies by individual characteristics, with infants(6), 

individuals with advanced HIV infection(7, 8), and other conditions affecting immune 

function(9-12) experiencing elevated progression risks. 

As TB interventions can prevent transmission, they will generate benefits beyond the 

individuals receiving the intervention. In addition, the potential delay between infection and 

disease means that the consequences of improved TB control can be spread over many 

years. For these reasons, it is difficult for empirical TB policy evaluations to capture all 

impacts, and studies that forecast future disease trends or compare competing disease 

control policies commonly estimate results using dynamic transmission models. These 

models represent the mechanisms of transmission, natural history, and health system 

interactions that generate TB outcomes(13, 14). Despite over a century of epidemiological 
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TB research, concrete evidence on these underlying processes is imperfect(15), and studies 

have taken a variety of approaches for constructing and parameterizing transmission models. 

This variation can be consequential – in a modelling collaboration evaluating the post-2015 

End TB Strategy(16), variation in epidemiological assumptions was identified as a cause of 

the wide range of estimates produced for the health impact(17) and cost-effectiveness(18) of 

expanded TB control. Several reviews have described standard TB modelling approaches(13, 

14, 19), and methodological studies have examined specific modelling approaches(20-25). 

However, there has been little systematic investigation of assumptions made by published 

TB models. If these assumptions are not valid the results of these studies may be biased. 

We undertook a systematic review of published studies employing dynamic TB transmission 

models, to assess the validity of assumptions about progression to active disease following 

initial infection (hereafter, “TB progression”). We describe how these studies modelled 

progression from initial infection to active disease, and the implications of these assumptions 

for predicted TB outcomes. We compare model predictions to empirical data(26-28) and 

discuss the implications for future modelling studies. 

Methods 

Inclusion/exclusion criteria 

We included published studies using transmission dynamic models of tuberculosis in human 

populations to describe TB epidemiology or evaluate competing policy options. We excluded 

analyses where the force of infection was not modelled (ie were not transmission dynamic 

models). We excluded studies that provided insufficient information to describe (i) the 

model structure representing progression to active disease following initial infection, (ii) the 
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associated parameter values, and (iii) the population group(s) represented by the model, such 

that we could not reconstruct this part of the model. We excluded non-English language 

studies and unpublished reports. As one intent of this review was to describe the quality of 

assumptions made by modelling studies, we did not exclude studies based on quality criteria. 

The quality of studies was judged by their ability to reproduce empirical data, reported in the 

results. No additional quality assessment was undertaken. We followed PRISMA 

guidelines(29), and registered our protocol with PROSPERO (CRD42016030009). 

Search strategy 

We identified eligible studies by searching PubMed, Web of Science, Embase, Biosis, and 

Cochrane Library. We also searched a publication database compiled by the TB Modelling 

and Analysis Consortium(30), reference lists of eligible publications, several non-indexed 

journals, and the personal databases of the investigators to identify publications not included 

in the electronic search. Detailed search strategies are given in Table S1. We collected studies 

from the earliest available date (1962) to August 31st 2017. 

Identification of studies  

Titles and abstracts of collected studies were screened by one of two reviewers (EW, MB) to 

remove studies not meeting inclusion criteria, where this could be judged based on title and 

abstract alone (non-English language studies, non-transmission dynamic models). We 

retrieved the full texts for the remaining articles. Articles were assessed independently by two 

of five reviewers (AS, EW, DC, KG, and MB) to confirm they met inclusion criteria. 

Disagreements were resolved by discussion.  

Extraction 
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For each study, we extracted bibliographic information as well as information on the study 

setting and how the model stratified the population by TB progression risk. For each of 

these model strata, we extracted data on model structure and parameter values describing TB 

progression. We also extracted the citations provided for parameter values. We did not 

extract information on TB progression risks following reinfection of previously exposed 

individuals, for whom risks of primary progressive TB are lower than for unexposed 

individuals(31).  

We developed a typology of model structures and categorized models according to this 

typology (Figure 2). Where several different parameterizations were provided for the same 

population group, we used the values provided for the main analysis. Where a study 

provided a point estimate as well as upper and lower bounds we extracted the point estimate. 

Where a study only provided upper and lower bounds we took the arithmetic mean of these 

values. For each paper, extraction was undertaken independently by two of five reviewers 

(AS, EW, DC, KG, and MB). When extracted values differed between reviewers, the article 

was reviewed by an additional reviewer (NAM) and disagreements resolved through 

discussion.  

[Figure 2] 

Descriptive statistics  

We calculated statistics to describe the distribution of studies according to publication year, 

setting, model structure, and population groups represented by model strata. We also 

identified the most commonly cited sources for model parameters. 
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Quantitative comparison of model predictions 

We recreated the formulae of each model determining the risk of active TB for an individual 

initially infected with M. tb, matching the model structures shown in Figure 2. Using these 

formulae, and the parameter values extracted for each study and population group, we 

estimated the annual incidence of TB following initial infection in the absence of reinfection. 

For some studies this involved modifications to the original approach: (1) while some studies 

implemented their analyses by sampling progression parameters from a distribution, we used 

the point estimate (commonly the distribution mean) reported in the original paper. Even if 

the point estimate is equal to the mean of the parameter distribution this can produce small 

differences in simulation results, due to the non-linear relationship between parameters and 

modelled outcomes. (2) Some studies reported adjusting parameter values as part model 

calibration, yet did not report these adjusted values, and in this circumstance we used the 

original (unadjusted) values reported in the paper. (3) In some models individuals progress 

through multiple epidemiological or demographic processes simultaneously. If these 

processes influence TB progression or survival risks (e.g. aging, HIV progression), then 

accurately reproducing long-term cumulative incidence estimates is impossible without 

reconstructing all these different model components. As we only reconstructed the TB-

specific parts of these models we do not report long-term cumulative incidence estimates in 

the presence of time-varying risk factors. (4) We did not allow for background mortality. 

While cumulative incidence estimates would be lower if background mortality were 

considered, this effect will be minor unless mortality rates are very high. 

We stratified incidence predictions according to model structure, publication year, individual 

risk factors, study setting, and source of parameter assumptions. ‘High-burden’ settings 
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included countries on the WHO list of 30 high-TB burden countries(32), or, if a country was 

not specified, settings with incidence of 100 per 100,000 or higher. ‘Low burden’ settings 

included countries not on the WHO list of 30 high-TB burden countries or otherwise with 

incidence below 100 per 100,000. Studies with multiple HIV strata used a variety of 

approaches for describing HIV progression. ‘Late HIV’ was used for strata described as 

‘AIDS’, ‘WHO Stage 4 disease’, ‘advanced HIV’, or with CD4 cell count <200µL-1. ‘Early 

HIV’ was used for HIV strata not classified as ‘Late HIV’, in models with multiple HIV 

strata. We also distinguished model strata for HIV positive individuals receiving 

antiretroviral therapy (‘HIV, on ART’). For age, we classified strata as ‘Infant’, if the 

midpoint of the age group fell in the range 0-2 years, and classified strata as ‘Children (excl. 

infants)’ if the midpoint of the age band fell in the range 2-10 years. We divided studies into 

those published before 2011 (the median publication year) and those published in 2011 and 

after, and according to whether the study cited any prior publications to justify parameter 

values for LTBI progression. 

We plotted annual and cumulative incidence predictions to understand the behavior of each 

model, and summarized results as cumulative incidence at 2 and 20 years. These time points 

were chosen to represent rapid progression to active disease (primary progressive TB), and 

aggregate long-term risk respectively. For studies representing multiple population groups 

with different TB risk factors, we calculated risk ratios for TB incidence over the first two 

years, and for the twentieth year, to provide ‘within study’ comparisons of how risk factors 

were treated. 

Comparison to empirical evidence 
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We reviewed the TB literature to identify studies reporting direct empirical evidence on TB 

progression risks following initial infection. To identify these studies we reviewed citations 

known to the investigators, studies cited in related reviews, and evidence cited in the studies 

included in the systematic review. As preventative treatment for LTBI reduces progression 

risks, the best evidence on TB natural history comes from historical studies conducted 

before preventive therapy became the standard of care for recently exposed individuals(33). 

Narrative reviews of these early studies have been compiled by Ferebee(1), Sutherland(2), 

and Styblo(34). From these reviews we extracted information on studies reporting 

quantitative estimates of annual risks of developing active TB following initial infection. 

Many of these studies had major limitations for estimating general population progression 

risks in the absence of reinfection, including small sample sizes, non-representative 

populations, settings that were likely to feature ongoing transmission, and non-specific TB 

diagnostics. For others the relevant features of study design, population and setting were not 

sufficiently described, and/or the original publication not available. Two studies provided 

precise estimates of TB progression risks in the years following initial infection, in both cases 

from the control arm of an intervention trial: (1) the British Medical Research Council’s 

BCG trials(26, 27), which included 12,867 individuals in the unvaccinated study arm, and (2) 

the US Public Health Service’s trials of isoniazid prophylaxis for TB household contacts(28), 

which included 12,594 individuals in the study control arm. Using summary data from these 

two studies we generated estimates of annual TB incidence for 10 years following TST 

conversion. We limited these comparisons to the first 10 years following infection to reduce 

the influence of attrition on the validity of empirical estimates. We compared these empirical 

estimates to model predictions for population groups with no individual risk factors 

affecting TB progression risk. All analyses were conducted in R version 3.3.2(35). 
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Replication data and analysis scripts available at 

https://dataverse.harvard.edu/dataverse/latent_tb_modelling_review. 

The capacity of a model to fit the empirical estimates is determined by the model structure 

and the parameter values used. To separate these two factors we assessed whether each 

model structure was capable of reproducing the empirical results by adjusting the parameter 

values. To do so, we created a simple loss function using the results from the British Medical 

Research Council’s BCG trials(26). This loss function represented the root mean squared 

error (RMSE) between model results and the empirical estimate for cumulative TB incidence 

over the first 10 years following infection. We used optimization algorithms (the “Nelder-

Mead” and “BFGS” algorithms operationalized by the ‘optim’ function in R) to identify 

parameter values minimizing the loss function. We compared the predictions from these 

fitted models to the empirical estimates to understand the extent to which each model 

structure was capable of reproducing this evidence. 

Results 

Descriptive statistics on eligible studies 

We identified 5,532 unique articles in the first stage of the review. We excluded 5,506 of 

these through title/abstract review, and a further 214 through full-text review. Three 

hundred and twelve studies met inclusion criteria and were included in the analysis (Figure 

1). Table S2 lists included studies. 

[Figure 1] 
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The earliest study included in the review was published in 1962, and 7% of studies were 

published before 2000. Of the 312 studies in the review, many included multiple strata to 

allow for differences in progression risk. A total of 680 observations were included in the 

analysis, where an observation represented an individual stratum within an included study. 

The majority of studies (62%) considered high burden settings, and 39% included model 

strata considering individual-level factors modifying TB progression. The most common risk 

factor considered by these studies was HIV (25%), followed by age (9%). Twelve different 

model structures were employed by these studies. Table 1 provides additional details about 

the features of included studies, and Figures S1 and S2 show the distribution of included 

studies by publication year, model structure, and subgroup. 

[Table 1] 

We identified the sources for TB progression parameters most commonly cited by the 

studies in the review. The three most commonly cited sources were Vynnycky and Fine 

1997(36) (cited by 21% of all studies), Blower et al 1995(37) (12%), and Dye et al 1998(38) 

(10%). Each of these is a modelling paper included in our review. The top 15 most cited 

sources included a mix of modelling studies, empirical studies, and review articles (Figure 

S3). However, for 76 studies (24%) no citation was given for TB progression parameters. 

Comparison of model predictions for population groups with no individual risk 

factors 

We stratified model results by the population groups represented, study setting, model 

structure, and other study characteristics. Figure 3 presents model predictions of annual and 

cumulative TB incidence for model strata with no individual risk factors affecting TB 
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progression. This includes model strata for healthy adults, or for the overall population 

where models did not stratify by age or other risk factor.  

[Figure 3] 

We calculated the median prediction for annual and cumulative incidence for each year. 

Median annual incidence dropped from 77 cases per 1000 in the first year following 

infection to 1.7 per 1000 by year 20. Median cumulative incidence was 7.7% after the first 

year and 14.2% by the end of the 20th year. There was substantial variation between the 

predictions of individual models, with incidence rate predictions varying by several orders of 

magnitude. For the first year after infection the 90th percentile of incidence rate estimates 

was 52 times the 10th percentile (270 versus 5.2 per 1000). For the 20th year the same ratio 

was 786 (102 versus 0.13 per 1000). This variation is also evident in the cumulative incidence 

projections, with a ratio of 26 after 20 years (90% versus 3.5%). 

Comparison of model predictions for different strata 

Figure 4 presents the distribution of cumulative incidence predictions for various subsets of 

the model predictions after two years (commonly used to distinguish rapid progression from 

late reactivation) and twenty years. Cumulative incidence predictions were higher for strata 

dealing with any individual risk factor, and HIV in particular. Cumulative incidence 

predictions were higher for infants and lower for non-infant children. Distributions were 

approximately similar for studies conducted for high and low burden settings. Results for 

studies reporting no citations for TB progression parameters exhibited greater variation than 

those with at least one citation, particularly for 20-year results. Studies published after 2010 

had greater variation in 20-year cumulative incidence than those published before that point. 
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Results for the different model structures were relatively similar except for Structure A, 

which exhibited greater variation in cumulative incidence at both 2 and 20 years, and 

substantially higher median incidence at 20 years, compared to other model structures. 

Figure S4 shows median annual and cumulative incidence projections stratified by model 

structure. While the trajectories of annual incidence differed by model structure, predictions 

produced using Structure A are markedly different to the majority of other structures, with 

no reduction in annual incidence over time, and steadily increasing cumulative incidence (this 

is also true for Structure J, though this approach was only used by one study) 

[Figure 4] 

We calculated incidence risk ratios associated with individual risk factors as compared to 

model strata from the same study without the risk factor (i.e. ‘within study’ comparisons). 

These results are shown in Figure S5, and corroborate the results shown in Figure 4, with 

greater TB progression risk modelled for all forms of HIV (particularly advanced HIV), and 

reduced risk associated with provision of antiretroviral therapy (ART) for HIV treatment 

and late childhood. There was no clear trend for the infant category, with some models 

suggesting increased risk and some suggesting reduced risk compared to adulthood, with the 

median risk ratio close to 1·0. Across all these comparisons there was wide variation 

between models, with the range of risk ratios for each comparison spanning several orders 

of magnitude. 

Comparison of model predictions to empirical data 

Figure 5 shows the distribution of incidence predictions for population groups with no 

individual risk factors (5th, 25th, 50th, 75th and 95th percentiles) to empirical estimates for these 
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same quantities. Although the model results reproduce the general trend of the empirical 

estimates, with annual incidence rates declining over time, there is much greater variation in 

the modelling results, and median cumulative incidence after 10 years is 50-100% greater 

than both empirical estimates. For 10-year cumulative incidence, only 60% of modelling 

results were within a factor of 2 of either empirical point estimate, and only 77% were within 

a factor of 5. Ten-year cumulative incidence was greater than 50% for 15% of all modelling 

results, and less than 1% for 4·6% of results. 

As a sensitivity analysis, we assessed the extent to which each model structure could 

reproduce the empirical results. When we fitted each model structure to the empirical 

estimates from the British Medical Research Council’s BCG trials,(26) most structures were 

able to closely approximate the cumulative incidence estimates, with the exceptions being 

Structures A, D, and J, and to a lesser extent Structure E (Figure S6 and Table S3). When we 

reproduced the empirical comparison shown in Figure 5 excluding Structures A, D, and J, 

the variation was reduced but only modestly, with 71% of modelling results for 10-year 

cumulative incidence within a factor of 2 of the empirical point estimates, and 88% within a 

factor of 5. For results derived from Structures A, D, and J, 21% of modelling results for 10-

year cumulative incidence were within a factor of 2 of the empirical point estimates, and 

40% within a factor of 5. 

Discussion 

We conducted a systematic review of studies using dynamic TB transmission models, to 

understand how studies modelled progression to active TB following initial infection, and 

assess that validity of modelling assumptions by comparing model results to empirical 
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incidence estimates. We identified 312 studies that met our inclusion criteria, the majority of 

which were published after 2000. 

We used the model structures and parameter values described by each study to reproduce 

the model predictions for TB incidence in the years following initial infection. These results 

demonstrated substantial disagreement between studies on a key feature of TB 

epidemiology—the rate at which infected individuals progress to active disease following 

initial infection. This variation was still apparent when we examined the subset of results that 

modelled the general population or population groups with no individual risk factors. When 

we compared the model results for groups with no individual risk factors to empirical 

evidence, it was evident that a substantial fraction of the modelled results were inconsistent 

with these data. For 10-year cumulative incidence 40% of all modelled results were either 

more than double or less than half the empirical point estimates. 

One potential explanation for these findings is that the model structures adopted by some 

studies were inadequate, and when we tried to fit each model structure to the empirical data 

we found that three structures (A, D, and J) provided poor fit to the empirical evidence. 

Structure A assumes that infection with M. tb confers a constant rate of progression to active 

TB. This feature prevents these models from reproducing the declining time trend in TB 

progression risk shown in empirical data. By construction, these models will either 

underestimate near-term progression risks or overestimate long-term progression risks, or 

both. Structure D assumes immediate progression to active disease for all newly infected 

individuals. While this assumption is inconsistent with the natural history of TB in 

immunocompetent individuals, this structure was only used for individuals with advanced 

HIV who experience rapid disease progression, so this use may not be problematic. 
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Structure J produces progression risks that increase as a function of time since infection, 

which is inconsistent with the available empirical evidence. 

While Structure E allowed for an immediate decline in progression risk following infection, 

the fit to empirical data was still crude. In a recent study examining different model 

structures, Ragonnet et al found that Structure E performed either worst or second worst of 

the six structures examined (depending on the fitting method)(39). In our analysis Structure 

E performed better than Structures A, D, and J, but the root mean squared error was still ten 

times worse than the other structures. This is notable, given that almost 50% of published 

models adopted this structure. Whether models with this structure will produce valid results 

will depend on the analysis, but it is unlikely to be appropriate for analyses that need to 

distinguish the elevated progression risks several years after infection from the much lower 

risks many years later. Apart from structures A, D, J, and potentially E, the other structures 

reported in the modelling literature appeared reasonable, based on their ability to reproduce 

empirical data when appropriate parameter values were used.  

However, inadequate model structure provides only a partial explanation for the observed 

discrepancies. Even when we excluded Structures A, D, and J, almost 30% of all modelled 

results were either more than double or less than half the empirical point estimates for 10-

year cumulative incidence. There are reasons to believe the epidemiology of TB progression 

will differ between populations – as some of the model strata we investigated pertained to 

the general population, each population will represent a different mix of factors such as 

nutrition, smoking, and diabetes that affect progression risks. As the distribution of these 

factors change between populations, so will TB progression rates. Recent evidence from 

other low-burden settings finds similar results to the empirical studies we used. In an 
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observational study of close contacts of TB cases in Australia, Trauer et al estimate a 

cumulative incidence of 5.4% over 4.5 years of follow-up for adults converting to TST or 

IGRA positivity(40). In a similar study in the Netherlands the 5-year cumulative incidence of 

active TB in adults was 6.7%(41). For high-burden settings, it is possible that part of this 

burden is explained through elevated progression rates. Estimating progression rates is 

difficult in settings with a high force of infection, given the need to distinguish reactivation 

from reinfection as a cause of incident disease, though some analyses have resolved this issue 

by studying individuals migrating from high- to low-burden settings(42-44). However, it is 

unlikely that differences in the distribution of factors determining progression risk would 

explain the magnitude of variation we observed in the modelling results. An alternative 

explanation is that a substantial fraction of these studies adopted assumptions that were 

incorrect, providing a poor representation of TB disease dynamics in their chosen 

population.  

For population groups with individual factors modifying TB progression risks, model results 

were generally consistent with empirical evidence, with HIV associated with higher TB 

incidence compared to HIV-negative individuals, advanced HIV associated with higher 

incidence compared to early HIV(7, 8), and ART protective against TB for HIV-infected 

individuals(45). Although early infancy is empirically associated with rapid TB progression(6) 

this was not evident in the modelling results, potentially due to variation in the age ranges 

adopted by the models, and the fact that TB progression changes rapidly during this period 

(high in early infancy, lower in later childhood)(6). For later childhood, model results were 

consistent with the literature suggesting lower incidence compared to adulthood(6), though 

some recent studies have suggested faster progression during these ages(40, 41). While the 
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trends in the risk group results were generally consistent with empirical evidence, there was 

still substantial variation between models. 

We found a range of evidence sources cited in support of the parameter values used in the 

studies we reviewed. These evidence sources included modelling studies, empirical studies, 

and review articles. Some of the evidence sources classified as modelling studies were 

rigorously calibrated to empirical evidence (most notably the Vynnycky and Fine(36) analysis 

cited by 21% of all reviewed studies), and so it should not be inferred that papers citing 

earlier modelling papers are necessarily less valid. However, it is possible that using earlier 

modelled studies as a source of parameter values plays a role in the heterogeneity of results 

we observed, as errors can be introduced in the process of extracting and repurposing these 

parameters. Even if the original model produced valid results, the same parameter values will 

have different implications when used in a model with different structure, or where the 

values of related parameters are different. Consequently, even when appropriate evidence is 

cited this does not necessarily imply the predictions produced by the model will be 

appropriate. For the 24% of studies that gave no citation for their parameter values, it is 

possible that these values were informed by empirical data collected as part of the study. 

However, it is unlikely that this explanation applies to more than a very small number of 

studies, if any. For the rest, the source of evidence is simply unknown. 

There are several limitations to our analysis. Firstly, as we reproduced model predictions 

based on the content of published articles, it is possible that some of the extreme results 

represented typographical errors in how studies reported their approach, or that parameter 

values used in the analysis were modified from those reported in the paper. Although we 

performed double extraction, we did not contact original authors to confirm study 
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assumptions. Secondly, the way we programmed the models may have differed from the 

approach used in the original analysis. These differences could produce discrepancies 

between our results and those of the original analysis, though these discrepancies are likely to 

be minor. Thirdly, it is possible that some analyses were not attempting to reproduce TB 

epidemiology exactly, and that the disease was only used as a motivating example for 

investigating the properties of transmission models. While this may be true for some studies, 

we were not able to distinguish these studies in any way. For example, there was no clear 

difference between the predictions derived from analyses published in applied journals and 

those published in mathematical biology journals. Moreover, even if a particular study did 

not intend to fully capture TB epidemiology, it is still part of the TB modelling literature, 

and, as we did, readers might assume that the findings of these analyses pertain to real TB 

epidemiology even if this was not the intention. Finally, the empirical studies that we used as 

a point of comparison are not perfect. Not only do they represent particular populations, but 

the tests used to diagnose TB infection and active disease have imperfect sensitivity and 

specificity. Consequently, modelled results may not be expected to reproduce these results 

exactly.  

Analyses that mischaracterize TB disease dynamics may produce biased estimates of 

descriptive epidemiology or the impact of policy change. For example, if model assumptions 

produce erroneously high incidence of active TB disease following initial infection, this 

could lead to overestimates of population-level incidence and prevalence, and overestimate 

the beneficial impact of interventions to reduce TB transmission. Similarly, if analyses do not 

allow for declines in incidence with time since infection then estimates of the impact of 

LTBI prophylaxis for individuals with distant infection will be biased upwards. Incorrect 
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assumptions about how risk factors modify TB incidence could harm the evaluation of 

interventions targeted at these risk factors. Moreover, as many modelling studies calibrate 

their transmission model to reproduce commonly reported TB outcomes, an incorrect 

assumption in one part of the analysis can lead to incorrect assumptions in other parts of the 

analysis. For example, for analyses calibrated to TB case notifications, if model assumptions 

produce erroneously high TB incidence following initial infection, this could lead to 

(amongst other things), a downward bias in estimated TB transmission, a downward bias in 

LTBI prevalence, and/or a downward bias in the fraction of TB cases detected. Each of 

these changes could introduce biases into the primary outcomes of an analysis. For example, 

underestimation of LTBI prevalence could lead to underestimation of the costs of a program 

to screen for and treat LTBI to avert active disease. 

We evaluated a single characteristic of TB transmission models—the assumptions made 

about progression following initial infection. As we did not reproduce all features of all 

modelled analyses, we cannot draw conclusions about whether the discrepancies we 

described led to biased results in any given study. However, it is likely that these 

discrepancies led to biased results in some cases. While it may be impractical to reevaluate 

published results, our findings have clear implications for future work. This work is 

accelerating – there were 33 TB modelling publications in the first eight months of 2017, 

greater than the total for 2016, and greater than the sum of all papers published before 2000. 

For future studies that employ mathematical models to investigate TB epidemiology or 

compare policies, our results provide strong motivation to ensure structural assumptions are 

appropriate, and to check that analyses reproduce known features of TB epidemiology. For 

consumers of modelling studies, our results suggest that the findings of these studies should 
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not be accepted uncritically. Though there are major gaps in the evidence base for 

constructing and evaluating the validity of these models(15) it is still important (perhaps 

more important) to make the best use of the evidence that is available. Greater confidence 

may be placed in analyses where modelling approaches are clearly explained and justified 

with reference to the available evidence, and that can reproduce data relevant to the setting 

and population being modelled. 
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Figure 1: Flow diagram of studies assessed for the review*. 

* Other sources included a database of modelling publications compiled by the TB Modelling and Analysis 

Consortium, the reference lists of eligible publications, a group of non-indexed journals, and the personal 

databases of the investigators to identify publications not included in the electronic search. 
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Figure 2: Classification of model types and transition probabilities*. 

*Descriptions of compartments and transitions are provided below. Note that some model structures are 
special cases of other structures. For example, Structures A and C are special cases of Structures E and G 
respectively, with parameter ‘a’ set to zero. 

S = Susceptible compartment (not infected with TB, not previously exposed) 

L = Latent M. tb infection compartment 

Ls = Slow Latent M. tb infection compartment 

Lf = Fast Latent M. tb infection compartment 

I = Active TB disease compartment 

λ = Force of infection for M. tb 
a = Probability of immediate progression to active TB compartment (I), for individuals in susceptible 
compartment (S) who are infected with M.tb 

b = Probability of progression to fast latent compartment (Lf), for individuals in susceptible compartment (S) 
who are infected with M.tb 

c = Rate of progression to active TB (I) for individuals in the Latent compartment (L) or slow Latent 
compartment (Ls) 

d = Rate of progression to active TB (I) for individuals in the fast Latent (Lf) compartment 

e = Rate of transition to the slow Latent compartment (Ls) for individuals in the fast Latent (Lf) compartment 

f = Rate of transition to the fast Latent compartment (Lf) for individuals in the slow Latent (Ls) compartment 
1 Structure B involves a set of tunnel states for recent latent infection (Lf1..Lfn), whereby individuals not 
progressing to active TB transition deterministically to next tunnel state (n+1) each time step. Each of these 
compartments has a different progression risk (d1..dn).  
2 Structure J involves a sequence of latent compartments (L1..Ln), with individuals only transitioning to the 
active TB compartment from the final compartment. 
3 Structures K and L involve a single latent compartment, with the rate of transition to active TB calculated as a 
function of time since infection. Both of these structures were implemented using individual based models, 
allowing time since infection to be tracked at the individual level. 
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Figure 3: Model predictions for annual and cumulative incidence of active TB by years since 

M. tb infection, for population groups with no individual risk factors. 
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Figure 4: Distribution of model predictions for cumulative incidence of active TB at two and 

twenty years since M. tb infection, stratified by model structure, individual risk factors, and 

other study characteristics***. 

* Only includes results for population groups with no individual factors modifying TB progression risks. 

** Twenty-year cumulative incidence projections not shown for these groups due to potential for unmodelled 

changes in risk factors. 

*** Individual results not shown for Structures D, G, H, I, J, and K, as <5 studies used these structures to 

model individuals with no other risk factors. 
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Figure 5: Comparison between model predictions and empirical evidence for annual and 

cumulative incidence of active TB by years since M. tb infection, for groups with no 

individual risk factors*. 

* Empirical estimates based on the British Medical Research Council BCG trials (26), and the USPHS isoniazid 
trials (28).  
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Table 1: Descriptive statistics of included studies. 

Category No. publications (% of total) 

Publication year  
1960-1969 4 (1.3%) 
1970-1979 1 (0.3%) 
1980-1989 1 (0.3%) 
1990-1999 15 (4.8%) 
2000-2009 95 (30.4%) 
2010-2017 196 (62.8%) 

Model Structure*  
A 60 (19.2%) 
B 27 (8.7%) 
C 33 (10.6%) 
D 3 (1.0%) 
E 153 (49.0%) 
F 35 (11.2%) 
G 1 (0.3%) 
H 2 (0.6%) 
I 2 (0.6%) 
J 1 (0.3%) 
K 1 (0.3%) 
L 1 (0.3%) 

Setting*  
High Burden 193 (61.9%) 
Low Burden 72 (23.1%) 
Not specified 72 (23.1%) 

Risk strata*  
Age 29 (10.0%) 
Drug resistance 10 (3.2%) 
Foreign born 5 (1.6%) 
Genetic susceptibility 4 (1.4%) 
Poverty 1 (0.3%) 
Rural/urban 1 (0.3%) 
Sex 2 (0.7%) 
Smoking 4 (1.4%) 
Incarceration 2 (0.7%) 
Diabetes 2 (0.7%) 
Famine/nutrition 2 (0.7%) 
HBV 1 (0.3%) 
HIV 79 (27.1%) 
Malaria 1 (0.3%) 
Silicosis 2 (0.7%) 
Any risk stratification 122 (39.1%) 

Total 312 (100%) 

* Categories sum to >100% as some papers are included in multiple categories (i.e. utilize multiple different 

structures, present results for multiple settings, or stratify progression risk along multiple dimensions).  

 


