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Thermodynamic Nonequilibrium Features in Binary Diffusion∗
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Abstract Diffusion is a ubiquitous physical phenomenon where thermodynamic nonequilibrium effects (TNEs) are
outstanding issues. In this work, we employ the discrete Boltzmann method to investigate the TNEs in the dynamic
process of binary diffusion. The main features of the distribution function in velocity space are recovered and discussed.
It is found that, with the decreasing gradients of macroscopic quantities (such as density, concentration, velocity, etc.),
both the local and global TNEs decrease with the time but increase with the relaxation time in a power law, respectively.
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Diffusion is the net movement of particles down their

concentration gradient. It takes place when miscible ma-

terials are brought together.[1] It is a fundamental and

ubiquitous phenomenon in nature and widely exists in en-

gineering, sciences, technologies and beyond.[1] For exam-

ple, diffusion plays a key role in the storage and mining

of shale gas, partially premixed or nonpremixed combus-

tion, etc. Physically, diffusion is a typical scenario that

incorporates various essential thermodynamic nonequilib-

rium effects (TNEs). Early in 1855, Fick’s laws of diffu-

sion were presented in the background of thermodynamics

and nonequilibrium thermodynamics.[1] Later, the theory

of diffusion in gases was developed based on Boltzmann’s

equation.[2] However, the nonlinear complexity and pro-

nounced TNEs often provide challenges to previous theo-

retical studies.

In recent decades, researches into nonlinear complex

systems have been significantly promoted by numeri-

cal approaches, such as the lattice Boltzmann method

(LBM).[3−13] In 2004, Briant and Yeomans utilized the

LBM to simulate the relative diffusion of two fluid

components in the vicinity of the contact line.[4] In

2016, an LBM was developed for solving the fractional

advection-diffusion equation.[10] However, previous LBMs

were mainly used to solve hydrodynamic equations, but

ignored some detained TNEs. As a variant of traditional

LBMs, the discrete Boltzmann method (DBM)[14−18] has

achieved great success in simulating nonequilibrium sys-

tems, such as multiphase flows, fluid instabilities, combus-

tion, etc. Very recently, the TNEs in binary diffusion were

demonstrated by a double-distribution-function DBM.[17]

In this work, we adopt the DBM to have a deeper probe

into the nonequilibrium features of binary diffusion. The

DBM is based on the following equation,[17]

∂fσ
i

∂t
+ vσ

i · ∇fσ
i = −1

τ
(fσ

i − fσeq
i ) , (1)

where the superscript σ denotes species, t is the time, τ is

the relaxation time, vσ
i indicates the discrete velocity, fσ

i

is the discrete distribution function, fσeq
i = fσeq

i (nσ,u, T )

is the discrete equilibrium distribution function that de-

pends upon the molar density nσ, the mixture hydrody-

namic velocity u, and the mixture temperature T . The

expression of fσeq
i refers to Ref. [19]. It has been demon-

strated that the DBM could not only recover the modified

Navier-Stokes equations for binary fluid system but also

conveniently capture the following nonequilibrium quan-

tities,

∆σ∗
2 =

∑
i

(fσ
i − fσeq∗

i )vσ∗
i vσ∗

i , (2)

∆σ∗
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∑
i

(fσ
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i + ησ2i )vσ∗
i , (3)
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∆σ∗
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i − fσeq∗

i )(vσ∗
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i vσ∗

i , (5)

with fσeq∗
i = fσeq

i (nσ,uσ, T σ) and the central velocity

vσ∗
i = vσ

i − uσ. Physically, the second-order tensor ∆σ∗
2

is related to the viscous stress tensor and nonorganised

momentum fluxes. The vector ∆σ∗
3,1 and the third-order

tensor ∆σ∗
3 refer to the nonorganised heat fluxes. The

second-order tensor ∆σ∗
4,2 is relevant to the flux of nonor-

ganised heat flux.[18]

To conduct numerical simulations, the temporal

derivative in Eq. (1) is calculated in its analytical form,[16]

and the spatial derivative is solved by the second order

non-oscillatory and non-free-parameter dissipation differ-

ence scheme.[20] Next, let us investigate the nonequilib-

rium effects in the binary diffusion. The initial configura-

tion is

(Y A, Y B)L = (1− Y0, Y0) ,

(Y A, Y B)R = (Y0, 1− Y0) ,

where L (R) indicates the left (right) part of the com-

putational domain, and (ρ,u, T ) = (1, 0, T0) in the two

parts. Y A and Y B represent the mole fraction of species

A and B, respectively. Furthermore, the inflow and pe-

riodic boundary conditions are adopted in the x and y

directions, respectively. First of all, two cases of simula-

tions are performed. In Case I, the initial temperature is

T0 = 1, the mole fraction Y0 = 5%, the relaxation time

τ = 2 × 10−5, the time step ∆t = 10−7, the space step

∆x = ∆y = 2 × 10−6, the mesh Nx = Ny = 5000 × 1.

In Case II, the parameters are T0 = 2, Y0 = 25%,

τ = 4 × 10−5, ∆t = 2 × 10−7, ∆x = ∆y = 4 × 10−6,

Nx = Ny = 2500× 1.

Fig. 1 Physical quantities and TNE characterizations around the material interface at representative instants,
t1 = 2 × 10−4, t2 = 4 × 10−4, and t3 = 8 × 10−4, respectively. (a) Mole fraction Y σ, (b) horizontal velocity
uσ
x , (c) nonorganised energy ∆A∗

2,αα, (d) nonorganised energy ∆B∗
2,αα, (e) nonorganised energy flux ∆A∗

3,1,α, and (f)

nonorganised energy flux ∆B∗
3,1,α. In each plot, a vertical line is plotted at the material interface.

Figure 1 delineates the physical quantities around the

material interface in Case I at time instants, t1 = 2×10−4,

t2 = 4×10−4, and t3 = 8×10−4, respectively. The behav-

iors in Case II are similar to those in Case I (not shown

here). Figures 1(a)–1(b) show that the gradients of phys-

ical quantities Y σ and uσ
x become smooth with time, the

trough of uA
x and the peak of uB

x move away from the

interface. Meanwhile, as shown in Figs. 1(c)–1(f), the

nonequilibrium physical quantities ∆σ∗
2,αα and ∆σ∗

3,1,α re-

duce because the TNEs depend on physical gradients.[17]
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Moreover, the TNEs of the two species are contrary due

to the opposite physical gradients of them, and they have

different tendencies. Specifically, ∆σ∗
2,αα has a trough and

a peak, while ∆σ∗
3,1,x has two troughs or two peaks. The

troughs or peaks of them do not coincide and depart from

the interface due to the moving trough and peak of Y σ

and uσ
x . In addition, ∆σ∗

2,xx + ∆σ∗
2,yy = 0 due to the con-

servation of energy, and ∆σ∗
3,1,y = 0 because there is no

energy flux in the y direction.

In fact, we can recover the main characteristics of the

distribution function fσ from the above nonequilibrium

physical quantities. Now, let us analyze these nonequilib-

rium manifestations at the material interface labeled by

the guideline in Fig. 1. Clearly, ∆A∗
2,xx < 0 indicates that

fA(vx) is thinner and higher than its equilibrium counter-

part fAeq(vx), and ∆A∗
2,yy > 0 means that fA(vy) is fat-

ter and lower than its equilibrium counterpart fAeq(vy).

Meanwhile, ∆A∗
3,1,x > 0 indicates that the portion of fA(vx)

for vx > 0 is larger than its portion for vx < 0, and

∆A∗
3,1,y = 0 because fA(vy) is symmetric about the axis

vy = uA
y = 0. The sketch of fA versus vx or vy is plotted

in Fig. 2(a), and the main feature of fA in the velocity

space (vx, vy) is shown in Fig. 2(c). Similarly, the sketch

of fB is plotted in Figs. 2(b) and 2(d).

Fig. 2 Sketches of the velocity distribution functions at the material interface: (a) fA versus vx or vy, (b) fB

versus vx or vy, (c) f
A in the velocity space (vx, vy), and (d) fB in the velocity space (vx, vy).

In order to obtain a better understanding of the TNEs,

let us monitor the evolution of those nonequilibrium quan-

tities in the process of the binary diffusion. Figure 3(a)

illustrates the amplitude and integral of ∆σ
2,xx versus

time in Case I. Here the amplitude, |∆σ
2,xx|max, is de-

fined as the half distance between the peak and trough

of ∆σ
2,xx near the material interface, and the integral,∫∫

|∆σ
2,xx|dxdy, is extended over the region, 0 ≤ x ≤ 0.01

and 0 ≤ y ≤ 1. Figure 3(b) is for ∆σ
3,1,x versus time in

Case I. Figures 3(c)–3(d) are for Case II. Squares and tri-

angles stand for the species A and B, respectively. Lines

denote the fitting functions, F (ϕ) = −13.2 − 0.997ϕ and

F (ϕ) = −17.0−0.499ϕ in Fig. 3(a), F (ϕ) = −17.5−1.49ϕ

and F (ϕ) = −21.4−0.984ϕ in Fig. 3(b), F (ϕ) = −12.3−ϕ

and F (ϕ) = −15.4−ϕ in Fig. 3(c), F (ϕ) = −15.8− 1.45ϕ

and F (ϕ) = −21.4−0.984ϕ in Fig. 3(d), respectively, with

ϕ = ln(t). In fact, the amplitudes of ∆σ
2,xx and ∆σ

3,1,x

represent the local strongest TNEs, while
∫∫

|∆σ
2,xx|dxdy

and
∫∫

|∆σ
3,1,xdxdy indicate the global TNEs in the physi-

cal region. It can be found that, both the local and global

TNEs become weaker with time due to the decrease of

gradient forces, and the relationships between these TNEs

and the time satisfy a power law.

To investigate the dependence of the TNEs on the re-

laxation time, we carry out two groups of simulations.

Group I has T0 = 1 and Y0 = 5%. Group II has T0 = 2

and Y0 = 25%. Considering both the accuracy and effi-

ciency, we choose the time and space steps as (∆t, ∆x) =

(5× 10−8, 10−6), (10−7, 2× 10−6), (2× 10−7, 4× 10−6),

(4 × 10−7, 8 × 10−6), (8 × 10−7, 1.6 × 10−5) for simula-
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tions with relaxation time τ = 10−5, 2× 10−5, 4× 10−5,

8 × 10−5, 1.6 × 10−4, respectively. Figure 4 plots the re-

lationship between the TNEs and the relaxation time at

t = 0.002. The fitting functions are F (ϕ) = 3.71 + 0.989ϕ

and F (ϕ) = 2.29+1.50ϕ in Fig. 4(a), F (ϕ) = 7.69+1.47ϕ

and F (ϕ) = 6.12+1.97ϕ in Fig. 4(b), F (ϕ) = 4.02+0.995ϕ

and F (ϕ) = 2.83+1.50ϕ in Fig. 4(c), F (ϕ) = 7.81+1.44ϕ

and F (ϕ) = 6.66 + 1.95ϕ in Fig. 4(d), respectively, with

ϕ = ln(τ). It is clear that both the local and global

TNEs increase with the relaxation time in a power-law

form. Theoretically, the physical gradients reduce fast

for large relaxation time. The reducing physical gradi-

ents and increasing relaxation time exert opposite effects

on the TNEs,[17] but the latter dominates for parameter

space considered in our simulations.

Fig. 3 Evolution of nonequilibrium effects: (a) the amplitude and integral of ∆σ
2,xx in Case I, (b) the amplitude

and integral of ∆σ
3,1,x in Case I, (c) the amplitude and integral of ∆σ

2,xx in Case II, (d) the amplitude and integral
of ∆σ

3,1,x in Case II.

Fig. 4 Nonequilibrium effects versus the relaxation time: (a) the amplitude and integral of ∆σ
2,xx in Group I,

(b) the amplitude and integral of ∆σ
3,1,x in Group I, (c) the amplitude and integral of ∆σ

2,xx in Group II, (d) the
amplitude and integral of ∆σ

3,1,x in Group II.
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In summary, the recently developed discrete Boltz-

mann method is employed to investigate the TNEs in the

dynamic process of binary diffusion. The departure of the

velocity distribution function from its equilibrium coun-

terpart is investigated in detail. It is found that, both

the local and global TNEs around the material interface

decrease with evolution due to the smoothness of physi-

cal quantities; while they are enhanced by the relaxation

time. Specifically, the relations between the TNEs and

the time (the relaxation time) obey a negative (positive)

power law.
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