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Abstract
Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain 
adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thick-
ness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted 
in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When 
compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field 
loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal 
area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomark-
ers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.

Keywords Visual plasticity · Cortical thickness · Resting-state cortical entropy · Central visual field loss · Peripheral visual 
field loss · Retinitis pigmentosa · Stargardt macular degeneration · Cytoarchitectonic areas

Introduction

Vision represents the most elaborated sensory input in the 
human brain. Central vision is captured at retinal level by 
the macula, which samples about 20° of the central visual 
field and provides a high spatial resolution. The peripheral 
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visual field is collected by the remaining of the retina and 
has a low spatial resolution. The distinction between cen-
tral and peripheral vision is also maintained within the 
brain. Particularly, dorsal visual areas receive relatively 
more projections from areas processing peripheral visual 
field representations, whereas ventral visual areas are more 
densely connected to those processing central representa-
tions (Ungerleider and Desimone 1986; Gattass et al. 2005). 
Hence, the loss of central or peripheral visual field should 
impair in different ways the visual brain and its neuroanat-
omy. Yet, little is known about the anatomical consequences 
and compensation mechanisms occurring after central or 
peripheral visual deprivation.

Central visual field loss prevents the central fixation, 
compelling patients to employ strategies of fixation in the 
peripheral retina, near the limit of the field defect (Duret 
et al. 1999). While the rest of visual field allows for an 
appropriate spatial orientation and navigation, its low spatial 
resolution impairs drastically object, face recognition and 
reading (Safran et al. 1999; Boucart et al. 2010). Reversely, 
peripheral visual field loss excludes the use of covert visual 
attention, constraining the affected individuals to increase 
their saccade rate to laboriously explore their environment 
(Authié et al. 2017). Affected individuals preserve functions 
related to the high spatial resolution of the residual central 
vision such as face and small objects recognition but exhibit 
impaired spatial orientation (Wittich et al. 2011) and scene 
perception (Fortenbaugh et al. 2007), altered postural control 
(Berencsi et al. 2005) and increased risk of object collision 
during locomotion (Turano et al. 1999, 2002) due to the lim-
ited coverage of the residual visual field. However, shreds of 
evidences support a brain reorganisation consequent to the 
adjustment of these behaviours.

Preliminary findings suggest that following a visual 
defect, the deafferented primary visual cortex alters its con-
nections and the residual afferented primary visual cortex 
reinforces preexistent functional connections (Sabbah et al. 
2017). The latter is presumably an attempt to compensate 
for the loss of the former to sustain higher order visual 
mechanisms. As central or peripheral visual loss generates 
sensory deprivation in a part of the visual cortex, structural 
alterations are also expected. Indeed, previous reports noted 
grey matter thinning in the posterior part of the primary 
visual cortex induced by central visual field loss (Boucard 
et al. 2009; Plank et al. 2011; Hernowo et al. 2014; Prins 
et al. 2016), whereas peripheral visual field loss induced 
thinning of the anterior part of the primary visual cortex 
(Boucard et al. 2009; Yu et al. 2013). However, above-men-
tioned studies evaluated disorders such as glaucoma and 
age-related macular degeneration that are not limited to the 
eye but imply widespread neurodegenerative cerebral altera-
tions (McKinnon 2003; Pham et al. 2006; Woo et al. 2012; 
Chen et al. 2013; Cheung and Wong 2014). Such approaches 

may have hampered the identification of differences strictly 
related to early visual deafferentation and further research 
on disorders restricted to the retina may clarify the brain 
modification occurring after a pure early visual deprivation.

In the current study, we investigated long-term brain 
changes associated with two well-described pure and pro-
gressive retinal disorders that induce bilateral, converse 
visual field defects—Stargardt macular degeneration for 
central visual loss and non-syndromic retinitis pigmentosa 
for peripheral visual field loss. Stargardt macular degenera-
tion is a hereditary cone-rod dystrophy that, in advanced 
stages, destroys the macular region, constraining affected 
individuals to rely only on the peripheral vision (Stargardt 
1909). Reversely, retinitis pigmentosa—a rod-cone dystro-
phy—primarily affects peripheral retina and results in a pro-
gressive constriction of the visual field. It leads to a “tunnel 
vision” stage, with retained central vision, and later, in the 
most advanced stage, to blindness (Donders 1857; Sahel 
et al. 2015).

To evaluate the effects of the remote loss of central or 
peripheral vision, we estimated the cortical morphology 
derived from measures of cortical thickness (Das et  al. 
2009). However, the specific cellular mechanisms under-
lying the variations in cortical thickness remain obscure. 
They may be related to neuronal apoptosis, variations in 
cortical myelination, alterations of the synaptic complex-
ity or a summation of these events (Wagstyl et al. 2015; 
Zilles and Amunts 2015; Burge et al. 2016). To explain 
the eventual differences in cortical thickness, we measured 
the functional MRI entropy during resting state session 
(rs-CoEn). rs-CoEn is a method derived from informa-
tion theory and linked to neural and synaptic complex-
ity (Tononi 1998). According to this approach, increased 
entropy corresponds to higher connective properties 
(Sokunbi et al. 2011; Yao et al. 2013; Thiebaut de Schot-
ten et al. 2016), while the reduction in entropy may imply 
synaptic and dendritic degeneration (Sokunbi et al. 2013). 
To intimately respect its anatomy, the occipital lobe was 
partitioned in its corresponding cytoarchitectonic regions 
using cytoarchitectonic probability maps (Amunts et al. 
2000; Malikovic et al. 2007; Rottschy et al. 2007; Mohlberg 
et al. 2012; Caspers et al. 2013; Kujovic et al. 2013; Lor-
enz et al. 2015; Rosenke et al. 2017). CoTks and rs-CoEn 
extracted from each of these regions were used to perform 
group comparisons.

Methods and materials

Participants

The Ethics Committee (Comité de protection des person-
nes, Ile de France V, and Agence Nationale de Sécurité du 
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Médicament et des Produits de Santé) approved the study 
protocol (number 12,873). Thirty-eight subjects gave their 
written informed consent prior to inclusion. Twelve sub-
jects suffered from Stargardt macular dystrophy (SMD) (six 
women, six men; all right-handed, age range from 18 to 
58 year-old, mean 38.4 ± 12, median 39). This group pre-
sented a central scotoma, 10°–20° in diameter (as evaluated 
by Goldmann III/4 kinetic perimetry), without foveal spar-
ing, with a best-corrected visual acuity equal or superior to 
20/400 (measured by EDTRS charts). Twelve subjects suf-
fered from retinitis pigmentosa, tunnel vision stage (RPTV) 
(six women, six men; nine right-handed, age range from 
18 to 62 year-old, mean 41.7 ± 16.7, median 40), and pre-
sented a central residual visual field limited to a 10°–20° 
diameter (as evaluated by Goldmann III/4 kinetic perim-
etry) with a best-corrected visual acuity equal or superior to 
20/40 (measured by EDTRS charts). Additionally, fourteen 
normally sighted controls (seven women, seven men; all 
right-handed, age range from 18 to 59 year-old, 41.6 ± 14.6, 
median 41), with normal routine ophthalmological examina-
tions were also recruited for this study. Groups were matched 
for age and no significant difference between groups was 
observed (Kruskal–Wallis, c2(2) = 0.445, p = 0.801, mean 
rank age 19.83 in SMD group, 20.79 in RPTV group and 
19.82 in normally sighted group) (see for details Supple-
mentary Table 1).

Neuroimaging

MRI was performed with a whole-body 3T clinical imager 
(Sigma Horizon) using an 8-channel head coil.

T1-weighted gradient-echo images were acquired with 
the following parameters TE/TR/flip angle, 3.9/9.5 ms/20°; 
FOV, 25.6 × 25.6 mm; matrix, 512 × 512; source voxel size, 
1.2 × 0.5 × 0.5 mm; thickness, 1.2 mm, no gap.

Additionally, 32 contiguous axial T2*-weighted gra-
dient-echo echo-planar images (TE/TR, 93/3000  ms; 
FOV, 240 × 240  mm; matrix, 64 × 64; voxel size, 
4 × 3.75 × 3.75 mm converted to 3 × 3 × 3 mm; thickness, 
4 mm; no gap; NEX, 1) were recorded to encompass the 
entire brain. 184 volumes were acquired including 4 
“dummy” volumes obtained at the start of the session. Scan 
duration was 9.25 min for the whole sequence. No explicit 
task was required, and subjects were instructed to keep their 
eyes closed.

Cortical thickness analysis (CoTks)

A registration-based method (Diffeomorphic Registra-
tion based Cortical Thickness, DiReCT) was employed to 
estimate the cortical thickness (Das et al. 2009) from the 
T1-weighted imaging dataset. The first step of this method 
consists in creating two-voxel thick sheets, one that lies just 

between the grey matter and the subcortical white matter and 
a second lying between the grey matter and the pia matter. 
Then, the former is expanded to the latter using diffeomor-
phic deformation estimated with ANTs (Avants et al. 2007; 
Klein et al. 2009; Tustison and Avants 2013). The registra-
tion produces a correspondence field that allows an estimate 
of the distance between the outer and inner boundaries of 
the grey matter ribbon, and thus cortical thickness. This 
approach has good scan-rescan repeatability and good neu-
robiological validity as it can predict, with high statistical 
power the age and gender of the participants (Tustison et al. 
2014). All these steps were carried on automatically using 
BCBtoolkit (http://toolk it.bcbla b.com) (Foulon et al. 2018). 
Average cortical thickness of the occipital lobes of each sub-
ject was also measured to account for the inter-individual 
variability (Ferreira et al. 2017).

Entropy analysis (rs‑CoEn)

First, T1-weighted gradient-echo images were skull stripped 
using Brain Extraction Tool (BET) as part of the FMRIB 
software package (FSL, http://fsl.fmrib .ox.ac.uk). T2*-
weighted images were subsequently registered to the ana-
tomical (T1-weighted) image using affine deformations. 
Skull-stripped T1-weighted gradient-echo images were 
registered to the MNI152 template (http://nist.mni.mcgil 
l.ca/?p=904) using affine and diffeomorphic deformations 
(http://stnav a.githu b.io/ANTs) (Klein et al. 2009; Avants 
et al. 2011). The latter deformations were applied to the 
T1 registered T2*-weighted images. Since the resting-state 
fMRI signal can be heavily affected by motion, even fol-
lowing motion correction between temporally adjacent vol-
umes (Van Dijk et al. 2012), we estimated the signal fluctua-
tion associated with motion and regressed it out from the 
fMRI data prior to the calculation of entropy. To this aim, 
we employed a recently developed and validated procedure 
based on data-driven Independent Component Analysis 
(ICA), termed ICA-Aroma (Pruim et al. 2015). This method 
performs an ICA decomposition of the data and estimates 
which components reflect motion-related noise in the fMRI 
signal on the basis of a robust set of spatial and temporal 
features. This is made possible due the distinctiveness of 
the motion-related components isolated by ICA on the fMRI 
signal (Salimi-Khorshidi et al. 2014). This approach outper-
forms other methods such as the regression of the motion 
parameter estimates, while limiting in the same time the 
loss in degrees of freedom (Pruim et al. 2015). Compared 
to spike removal methods such as scrubbing (Power et al. 
2012), ICA-Aroma has the advantage of preserving the 
temporal structure of the fMRI signal. Finally, the resting-
state cortical entropy (rs-CoEn) was estimated using FSL 
fslstats by first binning—using a fixed amount of 1000 
bins—the pre-processed fMRI signal within each region of 

http://toolkit.bcblab.com
http://fsl.fmrib.ox.ac.uk
http://nist.mni.mcgill.ca/?p=904
http://nist.mni.mcgill.ca/?p=904
http://stnava.github.io/ANTs
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interest (ROI), and subsequently estimating the mean Shan-
non entropy over the entire ROI. Like in the case of CoTks, 
to account for inter-individual variability, we extracted the 
average cortical entropy for each subject. These values were 
estimated on a grey matter mask from the MNI single sub-
ject template, in turn obtained from FAST segmentation, and 
subsequent thresholding at 0.4 the partial volume estimate 
map of the grey matter.

Regions of interest

To intimately respect the anatomy and cytoarchitecture of 
the cerebral cortex, we used probabilistic cytoarchitectonic 
maps of the occipital lobe (Amunts et al. 2007; Zilles and 
Amunts 2010; Mohlberg et  al. 2012) to extract region-
specific measures of cortical thickness and entropy. These 
regions included hOc1 (V1), hOc2 (V2), hOc3d (V3d), 
hOc4d (V3A), hOc3v (VP/V3v), hOc4v (V4/V4v), hOc5 
(V5/ hMT+), hOc4la (LO-2), hOc4lp (LO-1), FG1, FG2 
and FG4 (http://www.fz-jueli ch.de/inm/inm- 1/EN/Forsc 
hung/_docs/SPMAn atomy Toolb ox/SPMAn atomy Toolb 
ox_node.html).

Statistical analysis

We confirmed the Gaussian distribution of the data for the 
three groups using the Shapiro–Wilk test (Shapiro and Wilk 
1965), as well as the homogeneity of variance with the Lev-
ene test (Levene 1960).

Statistical analysis was performed with SPSS 20 (SPSS, 
Chicago, IL, USA). Two consecutive repeated measures 
ANOVAs were employed to assess differences in CoTks and 
rs-CoEn between the three groups. Cytoarchitectonic areas 
were considered as between subject factors and hemisphere 
as within subject factor. Post-hoc independent-sample t tests 
(Bonferroni corrected for multiple comparisons) were per-
formed when statistically appropriate.

The relation between age, visual deficit duration and 
the cortical thickness and cortical entropy for the entire 
brain and for each cytoarchitectonic ROI was analysed 
through linear regression in SPSS 20 (SPSS, Chicago, 
IL, USA).

Results

Cortical thickness analysis

Whole brain average CoTks was measured for each patient 
and employed in group analysis, ANOVA showing no sig-
nificant group effect [F(2, 35) = 0.557, p = 0.578]. Further, 
the measured CoTks of occipital lobe cytoarchitectonic areas 
were normalized with the average CoTks of the entire brain. 

The ratio between each cytoarchitectonic area CoTks and 
brain’s average CoTks was further employed in the sub-
sequent analysis (Ferreira et al. 2017). ANOVA revealed 
a significant group effect for the cytoarchitectonic areas 
hOc1 [F(2, 35) = 3.882, p = 0.03], hOc2 [F(2, 35) = 4.05, 
p = 0.026], hOc3d [F(2, 35) = 7.09; p = 0.003], hOc4d [F(2, 
35) = 3.633; p = 0.037], hOc4v [F(2, 35) = 5.013; p = 0.012]. 
Left hemispheric regions did not differ significantly from 
right hemisphere regions [occipital LH, F(2, 35) = 2.873, 
p = 0.07; occipital RH, F(2, 35) = 2.716; p = 0.08]. Post-hoc 
independent-sample t tests (Bonferroni corrected for mul-
tiple comparisons) are summarized in Table 1 and in the 
following paragraphs.

Visual brain CoTks in visual field loss compared 
to normally sighted

All the following post-hoc comparisons were Bonferroni 
corrected for multiple comparisons. Compared to normally 
sighted we found a significant reduction of CoTks in the 
dorsal region hOc3d for both central (p = 0.005) and periph-
eral (p = 0.015) visual field defects (see Table 1). In central 
visual field loss/ SMD, we also noted significant reduction in 
dorsal area hOc4d (p = 0.048) (see Fig. 1a1, and Table 1) and 
in peripheral visual field loss/ RPTV in early visual cortex 
[hOc1 (p = 0.036), hOc2 (p = 0.022)] and the ventral region 
hOc4v (p = 0.017) (see Fig. 1a2, Table 1 and also Supple-
mentary Fig. 1).

Visual brain CoTks differences in central 
and peripheral visual field loss

There was no CoTks difference between central and periph-
eral visual loss (see Table 1).

Resting‑state cortical entropy analysis

Whole brain average CoEn was measured for each patient 
and employed in group analysis, ANOVA showing no sig-
nificant group effect [F(2, 35) = 1.378, p = 0.273]. Further, 
the measured rs-CoEn of occipital lobe cytoarchitectonic 
areas was normalized with the average rs-CoEn of the 
entire brain. The ratio between each cytoarchitectonic area 
rs-CoEn and brain’s average rs-CoEn was further employed 
in the subsequent analysis. ANOVA revealed a signifi-
cant group effect for the cytoarchitectonic areas hOc4la 
(F(2, 35) = 3.856 ; p = 0.031) and FG1 (F(2, 35) = 6.566; 
p = 0.004). There was no significant effect for the fac-
tor hemisphere [occipital LH, F(2, 35) = 0.43, p = 0.654; 
occipital RH, F(2, 35) = 0.082; p = 0.922]. Note that none 
of the areas with altered CoTks compared to normally 
sighted exhibited significant rs-CoEn alterations. Post-hoc 

http://www.fz-juelich.de/inm/inm-%201/EN/Forschung/_docs/SPMAnatomyToolbox/SPMAnatomyToolbox_node.html
http://www.fz-juelich.de/inm/inm-%201/EN/Forschung/_docs/SPMAnatomyToolbox/SPMAnatomyToolbox_node.html
http://www.fz-juelich.de/inm/inm-%201/EN/Forschung/_docs/SPMAnatomyToolbox/SPMAnatomyToolbox_node.html
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Fig. 1  a Between-group analysis of cortical thickness. b Between-
group analysis of cortical entropy. The cytoarchitectonic areas are 
shown on neutral brains (left hemisphere) extracted from JuBrain 

CytoViewer Atlas (https ://www.jubra in.fz-jueli ch.de); each cytoarchi-
tectonic group is depicted in a different colour

https://www.jubrain.fz-juelich.de
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independent-sample t tests (Bonferroni corrected for mul-
tiple comparisons) are summarized in Table 2 and in the 
following paragraphs.

Visual brain rs‑CoEn in visual field loss compared 
to normally sighted

Compared to normally sighted we found in central visual 
field defect/ SMD group a significant increase of rs-CoEn in 
areas hOc4la (p = 0.031) and FG1 (p = 0.025) (see Fig. 1b.1, 
Table 2 and also Supplementary Fig. 2). There was no rs-
CoEn difference between peripheral visual loss/RPTV and 
the normally sighted.

Visual brain rs‑CoEn differences in central 
and peripheral visual field loss

Compared to the peripheral visual field loss/RPTV group, 
central visual field loss/SMD exhibited significantly higher 
rs-CoEn in the area FG1 (p = 0.005) (see Fig. 1b.2, Table 2 
and also Supplementary Fig. 2).

Impact of age and duration deficit on CoTks 
and rs‑CoEn

There was no impact of age and deficit duration on the 
CoTks and rs-CoEn in areas exhibiting differences between 
groups (for regression differences in other areas see Supple-
mentary Tables 1 and 2). Nevertheless, we found an impact 
of age (p < 0.0001) and disease duration (p < 0.0001) on 
global CoTks, but no impact on the rs-CoEn.

Discussion

We assessed the impact of central and peripheral vision 
loss on the cortical morphology (i.e. cortical thickness, 
CoTks) and neural and synaptic complexity (i.e. rs-fMRI 
entropy, rs-CoEn). Three findings emerge from our work. 
First, compared to normally sighted both groups with visual 
field defects exhibited reduced CoTks in the dorsal region 
hOc3d; peripheral visual field defect group also presented 
reduced CoTks in early visual cortex (hOc1 and hOc2) and 
the ventral region hOc4V, while central visual field defect 
group in the dorsal region hO4d. Second, compared both to 
normally sighted and peripheral visual field defect groups, 
central visual field defect group showed increased rs-CoEn 
in FG1 area; also, compared with normally sighted, cen-
tral visual field defect group exhibited increased rs-CoEn in 
hOc4la area. Finally, areas with altered CoTks had normal 
rs-CoEn and conversely.

Differences in cortical thickness

Compared to normally sighted only the subjects with periph-
eral visual loss showed decreased CoTks in hOc1 and hOc2, 
which correspond to the functional regions V1 and V2 of 
the early visual cortex (Amunts et al. 2000). Previous stud-
ies reported a decreased CoTks in the early visual cortex 
for both central and peripheral visual loss (Boucard et al. 
2009; Plank et al. 2011; Yu et al. 2013; Hernowo et al. 2014; 
Prins et al. 2016). In our study, only peripheral visual loss 
was associated with a thinning of the early visual cortex. 
This difference might be explained by the peculiarities of 
the retinal degeneration in retinitis pigmentosa. Retinitis 
pigmentosa is a pan-retinal, rod-cone degeneration and in 
the tunnel stage, patients exhibit not only the loss of all 
receptors in the peripheral retina, but also the loss of rods in 
central retina coupled to a more limited degeneration of cen-
tral cones (translated by a reduced visual acuity, Sahel et al. 
2015). Moreover, rod loss might directly impact certain pho-
topic vision processes such as cone-driven, horizontal cell 
mediated surround inhibition (Szikra et al. 2014) or mesopic 
(dim-light) vision processes such as rod-cone or rod–rod 
gap-junction coupling presumed to help identifying dark 
objects moving through the visual field (Tsukamoto et al. 
2001; Volgyi 2004; Ribelayga et al. 2008; Bloomfield and 
Völgyi 2009). SMD, on the other hand, associates a photore-
ceptor loss that is solely localized to central retina (Meunier 
and Puech 2012). Hence, the loss of cortical thickness in V1 
and V2 we report herein, suggests that retinal degeneration 
in retinitis pigmentosa has a greater trophic impact on early 
visual areas. The loss of the peripheral vision represents 
the loss of an extensive visual field area and affects the out-
put of numerous wide-field retinal informational channels 
(Ölveczky et al. 2003; Roska and Werblin 2003; Hosoya 
et al. 2005; Münch et al. 2009; Masland 2012). Yet poorly 
understood these channels might play an important role in 
the functioning of the early visual cortex.

The reduced hOc3d CoTks in both visual field defects 
when compared to normally sighted, suggest a comparable 
contribution of central and peripheral visual field to the 
dorsal portion of V3 (V3d), which is canonically included 
in the dorsal stream (Kujovic et al. 2013). Anatomical and 
functional data indicate that the primarily role of V3d area 
is the processing kinetic information (Felleman et al. 1997; 
Gegenfurtner et al. 1997; Rosa and Manger 2005), the 
extraction of kinetic contours (Zeki 2003), and 3D form 
(Vanduffel 2002). Moreover, V3d has the particularity 
that its retinotopical map represents only the lower quad-
rant of the visual field, while the upper quadrant is being 
represented in the ventral part of V3, area V3v (hOc3v, 
Rottschy et al. 2007; Kujovic et al. 2013). It is possible 
that the spatial nature of information processing in hOc3d/
V3d is responsible for the decreased CoTks observed with 
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both central and peripheral visual field loss. Indeed, the 
build-up of an accurate referential system, essential for 
functions such as stereopsis (i.e. 3D perception), requires 
both central vision, which provides high spatial resolution 
and fixation, and peripheral vision, which provides wide-
field sampling (Goldstein and Clahane 1966; Luria 1971; 
Dessing et al. 2012). In central visual loss, the physiologi-
cal foveal fixation lacks and compels to fixation in the 
vicinity of the visual field defect, in the residual functional 
periphery. These eccentric fixation loci (usually multiple) 
are used both for detection (Duret et al. 1999) and visuo-
motor coordination (Timberlake et al. 2012) and occur in 
different retinal positions for each eye. These peculiari-
ties lead to an inadequate extraction of fixation disparities 
(Wheatstone 1962) impairing the very mechanism of ste-
reopsis. In peripheral visual field loss, foveal vision, physi-
ologic fixation and visual acuity are preserved, but stere-
opsis is nevertheless impaired through mechanisms such 
as a non-uniform drifting of the two eyes in the absence 
of the peripheral visual field superposition, the loss of 
fusion due to brief occlusions (i.e. eye-blinks, Fender and 
Julesz 1967) or “empty-field myopia” (i.e. accommoda-
tion impairment due to increased amplitude oscillation of 
accommodation in the absence of peripheral clues result-
ing in increased difficulty for detection, Whiteside 1957; 
Campbell et al. 1959). Hence, cortical thickness reduction 
of hOc3d CoTks in both visual field defects may account 
for the important contribution of central and peripheral 
visual fields to the functioning of this brain area.

Interestingly, compared to normally sighted, central vis-
ual field loss also exhibited decreased CoTks in the dorsal 
area hOc4d, corresponding to the functional region V3A. 
This area seems to be involved in the processing of kinetic 
and static 3D shapes (Georgieva et al. 2009), especially 
contour curvature (Caplovitz and Tse 2006), stereoscopic 
and chromatic motion (McKeefry et al. 2010; Anzai et al. 
2011), perceptual stability during eye movements (Brad-
dick et al. 2001; Fischer et al. 2012), the prediction of 
the visual motion (Maus et al. 2010), its structural dam-
age commonly resulting in simultanagnosia, namely the 
inability to interpret complex visual displays despite the 
preserved capacity to recognize single objects (Coslett and 
Saffran 1991). Impaired fixation and stereoscopic vision in 
patients with central visual loss may account for the CoTks 
loss in this area.

Another intriguing result was the decreased CoTks in 
area hOc4v in peripheral field loss, when compared to nor-
mally sighted. Area hOc4, to the best of our knowledge, 
probably corresponds to human V4 (hV4) or at least to 
its ventral subdivision V4v (hV4v). The role of hV4 in 
colour perception is still debated (Bartolomeo et al. 2014), 
but its central participation in the figure-ground segmenta-
tion through the integration of multiple stimulus properties 

(i.e. contour, shape, texture, motion, colour, disparity) by 
bottom-up salience driven attentional mechanism or top-
down proactive spatial or feature selection makes consen-
sus (Reynolds and Desimone 2003; Qiu et al. 2007; Poort 
et al. 2012; Roe et al. 2012). The severely constricted vis-
ual field, resulting from the loss of the peripheral visual 
field, may limit covert visual attention and the sensory 
input in area hOc4 and consequently impact its CoTks.

Differences in cortical entropy

Compared to normally sighted, central visual field loss 
group exhibited increased rs-CoEn in area hOc4la that 
likely corresponds to functionally defined LO-2 region 
(Larsson and Heeger 2006) involved in shape process-
ing, object and face recognition, visual attention, action 
observation, visual tracking, spatial location discrimina-
tion, mental imagery and subjective emotional picture 
discrimination (Malikovic et al. 2016). The increased rs-
CoEn in area hOc4la/ LO-2 suggests an adaptive increase 
in synaptic complexity points in this area, which is crucial 
for shape perception, figure-ground segregation and visuo-
motor coordination (Malikovic et al. 2016). Moreover, in a 
previous study exploring the resting state functional con-
nectivity of central and peripheral V1 in the exact popula-
tions explored here, we found that in central visual field 
loss, afferented peripheral early visual cortex exhibited 
increased functional connectivity with LOC compared 
to the corresponding region in normally sighted (Sabbah 
et al. 2017). Therefore, in central visual loss, the increased 
rs-CoEn in LO-2 might be linked to the increased func-
tional connectivity of this area with the residually affer-
ented peripheral early visual cortex.

Subjects with central visual field loss presented increased 
rs-CoEn in area FG1 when compared to normally sighted 
and peripheral visual field loss participants. This area, 
located in the posterior part of the fusiform gyrus, medial 
to the middle fusiform sulcus (Caspers et al. 2013; Lorenz 
et al. 2015) exhibits a bias for the peripheral visual field 
representations. More precisely, FG1 and the anteriorly situ-
ated FG3 overlap with places, inanimate large objects and 
peripheral biased representations (Lorenz et al. 2015). This 
line of evidences suggests that the observed difference in 
rs-CoEn may relate to an enhanced peripheral visual field 
treatment in FG1 area to compensate for the central visual 
field loss. In accordance with this compensation hypothe-
sis, peripheral early visual cortex in central visual field loss 
showed increased resting-state functional connectivity with 
fusiform gyrus compared to peripheral early visual cortex 
in normally sighted.
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Combined cortical thickness and cortical entropy 
data

Interestingly, the regions with altered CoTks had normal 
rs-CoEn and conversely. Limitations aside, reduced CoTks 
with normal rs-CoEn may indicate a possible mixture of 
cell shrinkage with preserved synaptic complexity of the 
remaining networks. On the other hand, increased rs-CoEn 
might correspond to a brain plasticity effect induced by an 
increased visual afference of the spared visual field.

Limitations

Cytoarchitectonic areas are highly variable across sub-
jects (Amunts et al. 1999). Herein, we extracted occipital 
cytoarchitectonic areas from an atlas based on observer-
independent probabilistic mapping of ten post-mortem 
brains (Mohlberg et al. 2012; Zilles and Amunts 2015). 
To reduce the effect of inter-individual variability, CoTks 
and rs-CoEn were sampled only in voxels where the same 
cytoarchitectonic area overlaps in more than five out of ten 
of the post-mortem brains investigated.

Myelin density in the cortex and various technical 
parameters (field strength, tissue segmentation methods, 
smoothing, etc.) may influence the MRI measure of cortical 
thickness and lead to incorrect estimations (Glasser et al. 
2014). These effects can be particularly deceptive in disor-
ders that impact myelination (i.e. multiple sclerosis) or in 
physiological states exhibiting different degrees of corti-
cal myelination (i.e. development or ageing, Westlye et al. 
2010; Zilles and Amunts 2015). Unfortunately, we could 
not assess cortical myelination with T1-weighted images. 
Future research investigating T1 intensity may shed light 
on that matter (Turner et al. 2008; Stüber et al. 2014).

Resting-state fMRI signal is notoriously affected by 
motion (Van Dijk et al. 2012). Increased movements would 
virtually increase measures of entropy. To reduce this effect, 
we regressed out the motion-related signal from the fMRI 
data before the calculation of entropy. In this way, we maxim-
ised the likelihood that the entropy measures reflect the spon-
taneous hemodynamic fluctuations related to brain activity.

We noted an overall effect of age and in patient groups 
also of disease duration on brain CoTks, but not on the CoEn. 
However, we found no effect of age and disease duration on 
CoTks in areas exhibiting differences between groups. The 
lack of effect of age and disease duration on the CoTks of the 
studied cytoarcitectonic areas might be due to limited size of 
our studied groups. In addition, the absent impact of age and 
disease duration on CoEn might reflect the plastic changes 
resulting in a preserved synaptic complexity.

Conclusion

Overall, central and peripheral visual loss induced com-
plex structural changes unpredicted by the canonical seg-
regation central vision—ventral visual field, peripheral 
vision—dorsal visual field. We found that central visual 
field loss induces a thinning in dorsal stream areas hOc3d 
(V3d) and hOc4d (V3A) and peripheral visual field loss 
in early visual cortex (hOc1/V1 and hOc2/V2), dorsal 
stream area hOc3d (V3d) and ventral stream area hOc4v 
(V4). Central visual field loss also induces an increase in 
entropy in areas hOc4la (LO-2) and FG-1 reflecting pos-
sible alternative, compensatory processing. These results 
offer a new and interesting insight on the effect of central 
and peripheral visual field deafferentation and also invite 
to revisit the canonical concepts of “ventral” and “dorsal” 
stream. Moreover, these data suggest complex adaptive 
changes that should be considered in the development of 
new visually rehabilitation strategies, sensory substitution 
devices or visual restitution attempts.
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