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Real-Time Collision Detection for Deformable
Characters with Radial Fields
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Abstract—Many techniques facilitate real-time collision detection against complex models. These typically work by pre-computing
information about the spatial distribution of geometry into a form that can be quickly queried. When models deform though, expensive
pre-computations are impractical. We present radial fields: a variant of distance fields parameterised in cylindrical space, rather than
Cartesian space. This 2D parameterisation significantly reduces the memory and computation requirements of the field, while
introducing minimal overhead in collision detection tests. The interior of the mesh is defined implicitly for the entire domain. Importantly,
it maps well to the hardware rasteriser of the GPU. Radial fields are much more application-specific than traditional distance fields. For
these applications - such as collision detection with articulated characters—however, the benefits are substantial.

Index Terms—Distance fields, collision detection, deformable meshes, articulated characters

1 INTRODUCTION

COLLISION detection is fundamental to virtual worlds—
to their physical plausibility and the logical rules by
which they operate [1]. Collision detection is used in both
online and offline applications. However, online applica-
tions have the additional constraint that collision detection
and response must be computed in a limited time.

Real-time collision detection techniques compute infor-
mation about the spatial distribution of geometry and store
it in a form that can be quickly queried. For example, a tree
structure that partitions traditional primitives, or an alterna-
tive representation of the geometry itself. These structures
facilitate excellent performance, but the pre-computation
stage can make them impractical when models begin to
deform. Some techniques have been modified to support
deformable models. This is typically done by finding ways
to reduce the computation time required to update the
structures, but real-time performance is still a challenge.

One popular structure is the distance field. A distance
field represents a surface by storing the shortest distances to
it in a regular grid. Distance fields are memory intensive,
and very expensive to compute naively, even offline. Once
computed however, the distance to a surface can be imme-
diately queried for a point almost instantly, making them
valuable for real-time collision detection. Techniques have
been derived to accelerate the computation and update of
distance fields, and a number of these achieve interactive
rates [2], [3], [4]. However, interactive may still not be fast
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enough for applications such as games, that can dedicate
only a fraction of the frame budget to collision detection.

In this paper, we propose a variation of distance fields
with an alternative parameterisation. Radial fields store dis-
tances to a surface, but in 2D cylindrical space, rather than 3D
Cartesian space. The parameterisation makes assumptions
about the geometry, making radial fields more application
specific than distance fields. However it significantly reduces
their memory and computation requirements. Delineation of
the mesh interior is automatic, and the parameterisation
maps well to the hardware rasteriser of a GPU.

Radial fields are only suitable for models that can be
decomposed into relatively well-tessellated star-convex ele-
ments. For suitable models however, such as articulated
characters, the performance gains are substantial. We dem-
onstrate the practicality of our system by implementing it in
a real game engine—Unity 5.4 - and integrating it with a
position-based dynamics cloth simulation. We compare the
performance of radial fields to techniques representing the
state-of-the-art in deformable object collision detection
across a set of simulations of varying complexity. We show
that radial fields outperform traditional distance fields by
more than an order of magnitude, and outperform Spatial
Hashing and Bounding Volume Hierarchy accelerated tri-
angle-based tests by a factor of two.

2 PREvIOUS WORKS

Collision techniques can be separated into two categories:
some operate by clustering primitives to reduce the number
of intersection tests, while others replace the primitives
with data structures on which collision detection can be per-
formed directly.

2.1 Collision Detection for Deformable Models
Many high-performance collision detection techniques have
been developed, but most are designed for rigid bodies and
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include pre-computations that preclude deformable objects.
In this section we review the subset of techniques formulated
for deformable models. Teschner et al. [5] provide a survey
of such techniques. We use their classification and review
the latest developments in each area. They identify five
approaches that fall generally into the two categories above.
Bounding Volumes, Spatial Subdivision & Stochastic cluster-
ing based approaches reduce the number of intersection tests,
while Distance Fields and Image Space approaches provide
alternative representations.

2.1.1  Bounding Volumes

A good overview of Bounding Volume and Spatial Parti-
tioning techniques is provided by Ericson [1] and Zach-
mann & Langetepe [6]. Bounding Volume techniques
partition primitives into a set of volumes such as boxes or
spheres that support quick intersection tests. This acceler-
ates the collision detection process by enabling quick culling
of large groups of non-colliding pairs, minimising the num-
ber of expensive per-primitive tests. Bounding Volume
Hierarchys (BVHs) place these volumes into tree structures
to accelerate the process further. The volumes used (e.g.,
Bounding Boxes or Spheres) vary as there is a trade-off
between fit and the time taken to compute the volume.

As objects deform BVHs must be updated. Algorithms
can be optimised if the temporal behaviour of the deform-
able object is predictable. Larsson & Akenine-Moller’s [7]
Dynamic Bounding Volume Hierarchy took advantage of
temporal coherence by dynamically resizing existing Axis
Aligned Bounding Boxs (AABBs). In some cases BVHs can
be constructed for animations ahead of time [5], [8]. Other
techniques rebuild the entire tree in real-time. Wald [8] pre-
sented a Surface Area Heuristic (SAH) BVH algorithm for
use in ray-tracing animated scenes.

For articulated characters, further assumptions can be
made. Mujika et al. [9] used trees of dynamically sized
spheres, assigned using skinning weights. Redon et al. [10]
used swept spheres with trees of Oriented Bounding Boxes.
Easier support for continuous collision detection and self-
intersection are two advantages of BVH approaches over
many alternative representations.

Some authors have mapped construction and refinement
to GPUs. Karras & Aila [11] restructured existing BVHs on
GPUs by refactoring isolated tree-lets in parallel. Lauterbach
etal. [12] used space filling (Morton) codes to quickly sort and
cluster primitives on the GPU. He et al. [13] constructed
BVHs on the GPU for models undergoing topological changes
(e.g., during crash simulations). Meister & Bittner [14] applied
k-means clustering on the GPU to build BVHs. This involves
iteratively clustering and merging primitives.

While these offer significant improvement over equiva-
lent CPU based approaches, most of them are designed for
ray-tracing applications, and none claim to support real-
time interaction. Lauterbach et al. [15] extended their hybrid
space filling technique, supporting tighter Oriented Bound-
ing Boxes for collision and distance queries in surgery simu-
lations. Tang et al. [16] reformulate the problem as one of
stream compaction (removing non-colliding elements from
a set), which maps well to GPUs and achieves interactive
rates for inter and intra-object collision detection for
deformable models.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.25, NO.8, AUGUST 2019

2.1.2 Spatial Subdivision

Spatial partitioning is similar to bounding volumes, but par-
titions space itself, rather than primitives. Space is divided
using schemes such as Octree or Binary Space Partitioning
trees, hashing, or simple grids. Again there is a trade-off, this
time between traversal complexity, memory and cell size.

Teschner et al. [17] used spatial hashing functions for
real-time collision detection. They achieved performance
approaching that of uniform grids but with a reduced mem-
ory footprint. An advantage of uniform subdivisions for
deformable objects is that they are independent of the under-
lying geometric complexity [5]. If the distribution of geome-
try is uneven enough however, non-uniform subdivisions
can be more efficient. Wong et al. [18] presented a GPU
implementation for constructing an adaptive octree grid that
achieved interactive rates. Taking advantage of the limited
deformation of articulated models, Rumman et al. [19] pre-
sented a technique to perform differential updates of a uni-
form subdivision using spatial hashing.

2.1.3 Stochastic Methods

Stochastic methods augment existing techniques by eliminat-
ing tests that have a low probability of success. They are based
on the observation that to the human eye, plausible collision
responses are qualitatively indistinguishable from exact.
These approaches can never support exact or physically cor-
rect collision detection without effectively disabling them [5].
While many techniques are not exact, non-deterministic accu-
racy is a problem for applications such as cloth simulation, as
penetration artefacts are highly salient and frame-to-frame
differences in collision response can result in oscillations.

2.1.4 Image Space

Image space techniques project geometry to accelerate either
the broad-phase or narrow-phase collision detection stages.
Teschner et al. [5] list many examples that project geometry
into image space to form depth maps. These maps can be
used for interference testing. Use cases for both stages have
undergone continued development. Faure et al. [20] pro-
jected layers of complex models in three orthogonal axes to
determine overlaps. Jang et al. [21] used the GPU to quickly
cull potentially intersecting pairs of triangles in the overlap-
ping regions of AABBs computed by the CPU.

Rodriguez-Navarro et al. [22] used the depth maps to
directly resolve collisions between cloth particles and an artic-
ulated character. Multiple viewpoints were placed around the
body to produce depth maps against which particles were
directly tested. This is similar to Vassilev et al. [23], who used
whole body depth maps. The avatars were animated, but the
pose was such that body parts did not occlude each other.

Image space techniques provide some independence
from underlying object complexity. There is also the poten-
tial for improved performance utilising the rasterisation
hardware of a GPU. What is most interesting for deformable
objects however is that these techniques do not require a
pre-processing stage. Our technique is similar to Rodri-
guez-Navarro et al.’s. However we use field space rather
than local-image space to gain the advantages of distance
fields and avoid the depth-complexity artefacts present in
image space techniques.
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2.1.5 Distance Fields

A popular volumetric data structure is the Distance Field.
Distance fields store the shortest distances to a surface in a
Cartesian grid [6]. Originally used for rendering [24], [25],
Jones et al. [26] describe many applications of distance fields
from morphology of erosion, to visualisation, and boolean
modelling operations. The advantages of distance fields
over traditional boundary representations is that they define
both the interior and exterior of the space in which the
object sits. This allows the distance of a point to an object to
be rapidly queried, independent of the complexity of the
original geometry [27].

As a variant of voxelisation, distance fields are memory
intensive, especially compared to other volumetric app-
roaches such as sphere packing (e.g., [28], [29]). As a corollary,
computing the field is both bandwidth and compute inten-
sive. The naive way - determining the minimum distance
between every cell and primitive in turn—is prohibitively
expensive even as a pre-processing stage, therefore a number
of techniques have been developed to accelerate it. Examples
include hierarchical techniques on the original geometry, var-
ious transforms that calculate the distance of voxels/cells
from their neighbours, or propagate distances like wave-
fronts. Jones et al.’s survey [26] provides a comprehensive his-
tory of distance fields and a discussion of field computation
techniques for rigid bodjies.

Distance fields also have significant advantages however.
They are independent of the original geometry and allow
the collision response to be easily computed along with
detection. Importantly queries are not only fast, but deter-
ministic. Fuhrmann et al. [30] noted how this could be
advantageous to collision detection, and applied distance
fields for this purpose in particle-based physics simulations.

These advantages have seen authors persist in finding
ways to support deformable models. Fisher & Lin [4] pre-
sented a technique for partial-updates of distance fields
using bounding boxes around local deformations. Updating
distance fields is essentially a 3D rasterisation. Accordingly
a number of techniques have taken advantage of the GPU.
Pantaleoni [31] introduced VoxelPipe—a GPU accelerated
triangle voxelisation pipeline. Gascon et al. [32] used tetra-
hedral mesh rasterisation to update voxel grids during
deformations of volumetric objects. ElBadrawy et al. [33]
introduce a novel alternative called inclusion fields that store
whether a cell is inside or outside the mesh, rather than the
absolute distance. This allows the field to be updated
quickly with a 3D rasterisation, but requires more work to
compute a collision response. McAdams et al. [34] use the
field as an acceleration structure: the nearest surface point is
found in undeformed space, then projected into deformed
space. This avoids re-computation, but introduces potential
error proportional to deformation.

2.2 Radial Parameterisations

Volumetric structures are traditionally memory intensive.
Detailed geometry requires high resolution grids for accu-
rate discretization. Adaptive resolutions [2] can improve
memory efficiency, but make dynamic updates even harder.
Like BVH techniques that take advantage of an object’s
topological or skeletal structure, alternative parameterisa-
tions can reduce memory usage [35]. Matching the shape of
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an embedded coordinate system to that of the object being
represented uses the parameterisation itself to store geomet-
ric information. Like us, a number of authors have done this
using radial or spherical parameterisations.

Fiinfzig et al. [36] used a hierarchy of bounding boxes in
spherical space to partition general models. Wong et al. [37]
performed radial view tests of primitive clusters from
observer points on a skeleton. These were designed to filter
potentially colliding primitives in a CPU broadphase test
however, whereas our technique is an entirely alternative
geometric representation.

Carr et al. [38] represented geometry by fitting signed-
distance functions to imperfect 3D scanner data for interpola-
tion and extrapolation, while Koschier et al. [35] fit
polynomials piecewise to spatially subdivided Signed Dis-
tance Fields. These representations are highly efficient and
have the nice property of being differentiable anywhere.
Fitting the functions however is non-trivial making the
approaches unsuitable for deformable models.

Moustakas et al. [39] used analytical surfaces (in this case
superquadrics) combined with sampled distances to reduce
the effects of fitting error. The technique was extended by
Vogiannou et al. [40] with multi-layered depth maps, and
spheres in place of superquadrics. Theirs is most similar of
all to ours. Sampled distances make these approaches more
amenable to quick updates than purely analytical represen-
tations. These works however did not explore dynamic
updates, GPU implementations, or compare their perfor-
mance with existing collision detection techniques.

Our exact parameterisation itself may not be new. Kuri-
hara et al. [41] alluded to a cylindrical distance field repre-
senting the head and shoulders of a human for quick
collision queries in hair simulation. Kurihara et al. however
did not provide any implementation details or performance
comparisons. In this work we explore how a representation
based on this parameterisation can be GPU accelerated in
order to support deformable models, and how its perfor-
mance compares with existing collision detection techniques.

3 OVERVIEW

We propose that radial fields (distance fields in cylindrical
space) can provide the benefits of radial parameterisations,
while also being amenable to fast updates on the GPU, making
them suitable for collision detection with deformable models.

A radial field is defined by an axis in 3D space, divided
into a set of uniform cells across its circumference and
length. The field is computed by transforming faces of a
polygon-soup mesh into 2D cylindrical space around the
axis and rasterising them as if rendering to a traditional
frame buffer. Each cell in the space is ‘rendered” with the
distance between the face’s plane and the axis. An intersec-
tion is detected by identifying the cell containing a point,
and comparing the distance of this point to the axis with the
stored distance. If smaller than the distance, the point is
inside the mesh, otherwise it is outside.

Objects must be generally cylindrically shaped, or there
will be discontinuities in field resolution across the mesh.
There is also limited support for non star-convex geometry.
For many assets these limitations will be prohibitive. For
particular assets though, such as humans, animals and
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(a) World-space. Topjec: the
transform of the object the
field is defined relative to.

(b) Object-space. A & B are
points defining the start and
end of the field axis. u, v, w are
basis vectors.
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(c) Field-space. z has been nor- (d) Cylindrical space
malised during change of ba-

s1S.

Fig. 1. lllustration of how the radial field exists and is parameterised within pertinent coordinate systems.

some machines, they are inconsequential while the benefits
could justify an application-specific data structure.

In our expected use-case, a set of radial fields are applied
coincident with the bones of an articulated avatar. The fields
overlap, creating a closed approximation of the surface. The
fields are updated every frame, or when the surface is
expected to have deformed. Together the fields support fast
particle collision detection as shown in Sections 6 & 10.

4 RADIAL FIELDS

We first describe how radial fields are defined and how to
transform between the pertinent coordinate systems in
Section 4. We then describe how the rasterisation pipeline is
re-purposed in Section 5. Finally we describe how collision
detection is performed and how a collision response may be
computed in Section 6.

4.1 Field Definition
A field is defined by an axis (w) in 3D space between two
points A and B (Fig. 1b). This axis should follow the principal
3D component of the mesh to ensure an even distribution of
samples across the surface. Where a mesh is closed around the
end (e.g., the tips of digits or the head) the axis should pass just
beyond this. As will be seen, polygons perpendicular to the
axis are not supported but are handled gracefully so they do
not result in artefacts. In addition to w, orthogonal normal ()
and tangent (v) vectors are defined. These vectors synchronise
the phase of the polar coordinate with the Cartesian system.
We define two coordinate systems for radial fields, field
space and cylindrical space. Field space refers to the Cartesian
coordinate system defined by (u, v, w) above. Imagine the coor-
dinate system such that the z-axis lies along the field vector
(w), the y-axis along the normal vector (u) and the z-axis along
the tangent (v) (Fig. 1c). World-space coordinates can be con-
verted to this space with a typical transform matrix. From this
space they can be converted into cylindrical space (Equation
(1b)). Cylindrical space is defined by two normalised parame-
ters: 2, the offset along the axis, and 6 the angle around the axis,
from the normal vector (Fig. 1d) (Equation (2)).

4.2 Coordinate Transformation

To convert from world-space to cylindrical-space, coordinates
are transformed so they align with the basis vectors defining
the cylindrical space (Figs. 1a, 1b, and 1c¢). (u,v,w) form the
basis vectors for this space, and so a change of basis matrix

(B') can be defined the typical way. To convert to field space
from object space, first the offset A is subtracted and the
resulting points transformed by the change of basis matrix.

Fields may be attached to a moving object (Fig. 1a). This
must be taken into account when rasterising world-space
geometry (Section 4.3) or detecting collisions with world-
space particles by first removing its transform (Equation (1a)).
The final transforms then, to and from world-space, are given
by Equations (1b) and 1a, respectively.

/ -1
ﬂoF&'eldSpace =05 TTmnslate(_A) . Tobject (13)

TtoWorldSpace = Lobject * TTr’(mslate(A) -B (]-b)

Once the points are in field space, they can be converted
to and from cylindrical space (Equations (2) and (3)).

d:1/$2+y2

1 {arctanz(y, x) + 2w, if arctans(y,x) <0 @
27 | arctany(y, z), otherwise
z=1z
x = dcos (0)
y = dsin (0) 3)

zZ==z.

4.3 Articulated Meshes

For articulated meshes, fields are defined coincident with an
avatar’s bones. That is, T, in Fig. 1 is the bone’s world
transform. On each frame the mesh is baked into world-
space. When the field space transform (Equation (1a)) is cal-
culated during rasterisation it includes the inverse of the
bone transform, removing any deformations due to the bone
itself and leaving only those due to adjacent bones. This
approach is independent of the actual skinning method, so
long as the application maintains an animated skeleton. Fur-
ther, it implicitly supports deformations from any other
sources, so long as they can be baked into the mesh.

5 IMPLEMENTATION

5.1 Rasterisation

Updating a field is a 2D rasteriastion problem, only with a
non-traditional projection from 3D to 2D. The GPU’s hard-
ware rasteriser can be re-purposed for this. A dedicated



FRISTON AND STEED: REAL-TIME COLLISION DETECTION FOR DEFORMABLE CHARACTERS WITH RADIAL FIELDS

shader updates the fields by rasterising the geometry into
cells and computing a new distance value for each fragment.
A set of indices are prepared with each one containing the
vertex id and the field id to which it belongs. Vertices may
appear in multiple fields, with a different relative position in
each, through being referenced by multiple indices. We
assign vertices to fields based on skinning weights.

For each field, Equation (1a) is computed. This along with
the indices and vertices are passed to the distance shader to
begin updating the fields. The vertex shader transforms the
vertices into field space (Section 4.2). A geometry shader trans-
forms these into cylindrical coordinates (Section 4.2), perform-
ing wrapping and filtering as appropriate (Sections 5.1.1 and
5.2.2), before passing them to the rasteriser, which renders the
distances (Section 5.2).

5.1.1  Wrapping

A complication of spherical coordinate systems is that
unlike Cartesian systems, one or more axes will wrap
around. While in most cases this does not present a prob-
lem, it may for the triangle filling algorithm. The rasteriser
on a typical GPU is not designed to wrap around, and if a
triangle crosses the ‘seam’ (an edge of the rasteriser’s coor-
dinate system) will rasterise in the wrong direction. To facil-
itate a wrap we use the technique described by Tarini [42],
to whom we refer the reader for a more detailed explanation
of this problem.

We say the device coordinates used by the rasteriser are
(61,21). These are 6 and z, respectively as described in
Section 4.2. We also add two additional parameters (s, z2),
to store the coordinates on the cylinder. Typically, (61, z1)
and (6., z2) will be identical. If a primitive crosses a seam
however, we apply the following operations (Equation (4))
to 0; and z; of all the primitive’s coordinates.

01 = frac(6y +0.5) 0
0y = frac(6, +0.5) — 0.5.

This has the effect of shifting all 6; by 180° so that the
hardware rasteriser will fill the triangles in the correct
direction. 85 however has been transformed such that the
coordinate system is now defined between —0.5 and 0.5,
with the seam at 0. The hardware rasteriser correctly inter-
polates (02, zo) between negative and positive, so the final
step is to check if #2 < 0 in the fragment shader, and if so
convert it back into [0,1] with the operation 6, =
frac(6s + 1).

5.2 Distance Computation

The rasteriser will linearly interpolate the vertex parameters
for each fragment. The distance cannot be interpolated this
way however because in the embedded polar coordinate
system it is equivalent to interpolating across the arc con-
necting the two sample points, not the straight line between
them. Instead, for each fragment we compute the distance
value using a ray-plane intersection. The test is performed
in field space, with o = (0,0, 2) and dir = (x,y,0). (z,y, 2)
being recovered as per Section 4.2. The origin and normal of
the triangle plane are computed in the geometry shader and
passed to each fragment.
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5.2.1 Non-Convex Geometry

If multiple primitives overlap when viewed from the field
axis, they will be projected into the same cell. We do not sup-
port this. To do so would make the method more compli-
cated, while character meshes rarely have non star-convex
geometry that must be represented in a single field. Instead
we use depth-masking to store only the closest geometry.
This is based on the assumption that all geometry represents
the surface of the mesh, and so all but the nearest overlap-
ping primitives must represent the surface of another ele-
ment that will have its own field.

5.2.2 Quantisation Artefacts

One of the problems resulting from not interpolating dis-
tance values are artefacts resulting from quantisation in the
ray-plane distance test. The quantisation in this case is not
in the computation itself, but rather in the rasterisation. If a
face is almost perpendicular to the axis normal, small
changes as a result of quantisation to the resolution of the
field can result in large distances. To avoid this we filter dis-
tances per-fragment based on the exact distances computed
at the three face vertices.

If a triangle crosses the axis of the field, there is no way to
rasterise it correctly and it is culled. This is done by the
geometry shader by projecting the vertices into the XY plane
in field space, then checking the face against the origin
using edge functions. Since the origin is (0,0), we only have
to compute the constant terms of the edge functions. Trian-
gles that are back-facing or almost perpendicular are culled
as well, based on a dot product with the axis.

5.3 Erasing the Fields

The fields must be erased each frame. While they are over-
ridden, there is no guarantee that a particular cell will be
occupied from one frame to the next as the mesh deforms. If
the field is not erased, old samples may be left behind.

6 CoOLLISION DETECTION AND RESPONSE

The collision detection and response algorithm will depend
on the physics simulation. We expect the main application
to be cloth and particle simulations, so demonstrate particle
collision detection and response. We designed our collision
detection system to work with the cloth simulation
described in Section 8. This is a position based dynamics
system. That is, the collision detection system receives a set
of current (¢) and predicted (¢;) particle positions. The pre-
dicted positions being where the particles would be at the
end of the time-step if there were no collisions. The collision
detection system updates the predicted positions to account
for any collisions, and returns them to the simulation. The
response involves moving the positions in order to resolve
any intersections. Other systems, such as force-based sys-
tems, may compute a force or impulse instead.

6.1 Broadphase

We implemented a broadphase stage where each radial
field was approximated by a cylinder, with the radius set at
design time. The broad-phase stage had no radial-field spe-
cific functionality and could be swapped out for any other
implementation.
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Fig. 2. pCCD is performed in field space. The relative particle positions
include both rigid radial field transforms and particle motion.

6.2 Pseudo-Continuous Collision Detection
Continuous Collision Detection (CCD) refers to techniques
designed to detect collisions with sub-timestep accuracy in
order to prevent artefacts such as tunnelling. CCD on dis-
tance fields is difficult because they contain no inherent
information about the nature of the geometry. A naive
implementation would compute the motion of a particle rel-
ative to the field during a timestep, and check each inter-
secting cell. For non-trivial resolutions this is bandwidth
intensive. Xu and Barbic [43] presented an algorithm accel-
erating CCD for distance fields using hierarchical data
structures. The equivalent for our field would be a mip-
map. These need to be computed ahead of time and so are
not applicable here.

We perform Pseudo-Continuous Collision Detection
(pCCD) by approximating the relative motion between a
particle and a field. The vector (V}) is defined in field space,
from the current particle position (¢) relative to the previous
field transform, to the predicted particle position (¢;) rela-
tive to the current field transform (see Fig. 2). This includes
the motion of both the particle and the field. We walk the
vector from start to end in n substeps, performing an inter-
section test at each point. The point of the first intersection
is considered to be where the particle penetrates the field
and is used for subsequent collision response computations.
Another possibility would be to use a line-drawing algo-
rithm in cylindrical space. The discretization artefacts that
prevent our pCCD implementation from being true CCD
come from the linearisation of rigid body rotations, and
from marching the trajectory in discrete steps.

6.3 Collision Response

To detect collisions, we approximate the surface at a sample
point in field space, and compute the signed point-plane
distance. If the point is under the plane, it is intersecting.
The normal of the surface approximation is used to compute
the response.

6.3.1 Surface Approximation

Fuhrmann et al. [30] used a trilinear interpolation of 8 corner
cells to approximate the surface at any location in their field.
We approximate the surface by implicitly bisecting each cell
into two triangles. The triangle containing the sample point
is identified by comparing on which side of the line = y the
point sits. The vertices for that triangle are retrieved and
the plane computed from its edges, as shown in Fig. 3. While
character meshes are typically closed, on a per-field basis
the surfaces may be open. To avoid introducing artefacts at
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Fig. 3. Diagram of a radial field cell, showing how the normal is computed
for each region, and how those regions are defined with respect to
sample point q. vy, v1, v9, vy are the positions of the sample points at the
corners of the cell in whatever space the surface is being approximated.
q is defined in cylindrical space relative to the cell origin.

the edges, if any of the vertices have a depth of zero the entire
cell is considered empty.

The surface could be approximated in any space by
transforming v1, v2, v3, v4 into that space (Section 4.2) before
taking the cross-product. If the transformation is done in
field space, the normal will be deformed when it is trans-
formed back into world space however, due to the scale in
the field space transform. We compute and pass a dedicated
matrix to transform the normals to world space for the pur-
poses of surface reconstruction: 7, mairoworidSpace Which is
given by I}Dx/yorldgpace’m. In theory, this is a requirement
whenever normals are transformed in any system, but it is
more likely to be of consequence in radial field implementa-
tions because they typically include non-uniform scales.

6.3.2 Response

Our collision response is based on that of Fuhrmann
et al. [30], modified slightly to support pCCD. The motion
below surface (V) is determined by the pCCD stage (Equa-
tion (5), where p is the intersection point computed from the
distance field). This is decomposed into components normal
and tangential to the surface (Equations (5) & (7)). The normal
component V,, moves the particle to the surface, while the tan-
gential component V; emulates friction with coefficient 1.

V; cannot be simply subtracted from the particle motion.
This is because the penetration point p is approximate, with
quantisation error introduced both in the pCCD stage and by
the sampling of the field. V; therefore may have a greater
magnitude than V;, where V, = ¢; — ¢, moving a particle far-
ther than its predicted motion even when the collider is sta-
tionary. To avoid this, we calculate a new value p;;,. along V},
that is either (a) at the intersection of V;, with the surface, or
(b) the original length of V; if V,, does not intersect the surface
(e.g., g starts below the surface) (Equation (9)). With this new
point we can calculate a V; that is limited to the particle’s true
motion below the surface (Equation (10)). The response is
applied to ¢; to update the predicted position (Equation (11))
and this is passed back to the cloth simulation.

Vi=aq —p (5)
Vi = =n(Vp[n) (©)
Vi=u-(V, = Va) (7)

(o2
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Ptrue = q + ‘//\q . mam(ovmin(dpa H‘/(IH)) (9)
V;f =Uu- ‘//\; : ||(q1 _pt’rue) - <¢I1 - ptruc|n> . TLH (10)
a=q+V,+W 1)

As V, includes the predicted particle motion, this
approach both prevents penetrations and corrects existing
ones. Where a particle crosses the surface during a timestep,
the functionality is the same as the repulsion-based tech-
nique described by Bridson et al. [44] and Bender and
Schmitt [45]. While we have adapted Fuhrmann et al’s
response for pCCD, there is nothing specific to radial fields
and the response could be modified or replaced as necessary.

7 IMPLEMENTATION DETAILS

We demonstrate the practicality of our technique by imple-
menting it in Unity 5.4 and integrating it with a GPU accel-
erated cloth simulation. Our implementation uses compute
shaders to bake skinning deformations into world space.
The fields are cleared by compute shaders. We use the
image-rasterisation pipeline, rather than our own algorithm
in a compute shader, although that would also be feasible.
Our implementation targets SM 5.0. The shaders are writ-
ten in HLSL within Unity’s ShaderLab syntax. The field is
stored in a 32-bit Compute Buffer and initialised to 2% each
frame. To perform the depth-masking described in Section
5.2.1, the buffer is written in the pixel shader using atomic
InterlockedMin() operations. The buffer is bound as a UINT
Unordered Access View. Since d is always positive, the
floating point representation will interoperate with the
atomic’s integer comparators, so InterlockedMin() can oper-
ate on the field directly after calling asuint() on the depth
values. The buffer is bound as a floating point resource to
the Compute Shaders for collision detection and response.

8 CLOTH SIMULATION

To demonstrate the utility of our technique, we integrated it
into a cloth simulation system. Unity has cloth simulation
abilities but they are limited and not accessible for modifica-
tion. We therefore built a new cloth simulation system
based on Position Based Dynamics (PBD) [46]. PBD systems
operate on the positions of particles directly, rather than
their forces or velocities. During a simulation step, particle
positions are predicted independently based on external
forces and inertia. The system then finds the nearest config-
uration that solves the constraints on the particles. In our
system, collision constraints are then solved next. Finally
new velocities are computed for each particle based on the
change in position during the time-step. The approach is
fast and unconditionally stable. Good surveys of PBD are
available, for example Bender et al. [47], [48].

There are different approaches to find the configuration
that best solves the constraints. We project each particle into
a rest state for each constraint individually, based on con-
straint weights and strain [49]. We then perform “smart
averaging” between them. This is based on the approach of
Bouaziz et al. [50] and Weiler et al. [51]. Our cloth system
operates entirely on the GPU using compute shaders.
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Our cloth simulation is not as optimised as mature sys-
tems (e.g., NVidia’s FleX). As can be seen in Section 6 how-
ever, the interface between the radial field system and the
simulation is narrow and we would expect the technique to
integrate easily with other particle-based simulations.

9 PERFORMANCE COMPARISON

We compared our implementation with popular techniques
for deformable object collision detection (Section 2.1). Three
GPU-accelerated techniques were implemented based on
the state-of-the-art and profiled against the radial fields
implementation.

Real-time collision detection operates in two stages, a fil-
tering stage in which potentially colliding primitives are
enumerated (broadphase) and a second stage in which exact
intersection tests are performed and the responses com-
puted (narrowphase) [52]. The distribution of computa-
tional load between the them can vary dramatically
depending on the data structure. For example, triangle
based collision detection requires a point-triangle narrow-
phase test with a highly efficient broadphase, due to the typ-
ically high number of triangles. Distance fields support the
narrowphase directly, and due to their low number can
have very simple or no broadphase (Section 6.1).

Since the stages cannot be decoupled when comparing
heterogeneous narrowphases, we show the total collision
detection and response times in Table 1. When considering
point-triangle intersections, there are many trade-offs in
robustness and performance. For the partitioning schemes
(spatial hashing and BVH), we opted for a simple discrete
point-triangle test, with a response similar to that described
in Section 6.3.2. It is not robust enough to be used in prac-
tice, but it presents the best case scenario for these techni-
ques in terms of performance.

9.1 Bounding Volume Hierarchies

Many works use GPUs to accelerate BVH construction
[12], [14] and traversal [53]. We base our implementation
on Lauterbach et al. [15] and Tang et al. [16], as these are
concerned with deformable objects. We use agglomera-
tive clustering [54], [55] to compute a binary-tree of
AABBs. We then flatten this into an 8-ary tree [15] of
uniform depth. On each frame, the AABBs are re-fitted.
A single Compute Shader updates the whole tree bot-
tom-up using for-loops, thread-masking and global mem-
ory synchronisation calls. Traversal is facilitated by
work-queues based on Append/Consume buffers. For
collision detection, jobs are created for every particle and
the first node in the tree. A job consists of checking one
particle against one volume. If penetrating, jobs are
added for that particle and all child nodes, to be proc-
essed in a subsequent invocation. A single call processes
all jobs for each level. The depth of the tree is known, so
the CPU can make a fixed number of dispatch calls
resulting in a queue that contains only leaf nodes. For
these, a different shader performs vertex-triangle inter-
section tests and the collision response. Dispatch parame-
ters are computed in Compute Shaders and used for
indirect dispatch calls, allowing the implementation to
run entirely on the GPU.
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TABLE 1
Memory Requirements (Mem.) and Execution Times of the Structure Update (Upd.)
and Collision Detection & Response (CD), for the 10 Test Conditions (C.)
GPU Computation Times (ms) and Memory (Mb)
Models Radial Fields Distance Fields Spatial Hashing BVHs
. . Structure Structure Structure Structure
C. Avatar Cloth Triangles Particles CD
Mem. Upd. Mem. Upd. Mem. Upd. Mem. Upd.

1 Male Low  Trouser & Top Low 10827 1297 021 0.06 004 237 518 0.03 20542 093 008 095 0.03 0.19
2 Male Low  Trouser & Top Med = 10827 4825 021 0.07 0.09 237 518 0.05 20542 086 0.12 095 0.03 0.34
3 Male Med  Trouser & Top Low 37744 1297 021 0.06 0.04 131 260 002 20542 026 011 3.96 0.11 0.24
4  MaleMed Trouser & TopMed 37744 4825 021 0.06 008 131 254 0.04 20542 026 0.16 396 0.10 042
5  Female Med Overcoat Med 37744 5118 021 0.05 007 1.01 295 0.06 20542 023 0.11 396 0.10 0.32
6  Female Med Overcoat High 37744 13090 021 005 0.16 1.01 294 0.11 20542 023 014 3.96 0.09 0.61
7 Female High Overcoat Med 64176 5118 020 0.08 007 131 383 0.05 20542 023 0.14 6.55 0.15 0.36
8 Female High  Overcoat High 64176 13090 020 008 0.17 131 384 0.12 20542 023 014 655 015 0.75
9 Ogre Cape Med 17211 8562 316 010 011 3.01 935 007 20542 1.74 0.10 1.38 0.04 0.27
10 Ogre Cape High 17211 29737 316 011 031 3.01 920 021 20542 177 022 138 0.03 049

9.2 Spatial Hashing

Our spatial hashing implementation is based on that of
Rumman et al. [19]. We use a triangle-parallel 26-separating
computational voxelisation algorithm [56], [57] to write the
spatial hash for each primitive on each frame. Rumman
et al. perform only self-intersection and so can rely on tem-
poral masking. We cannot make the same assumptions and
so instead clear the cell-counts on each frame.

9.3 Distance Fields

Our Distance Field implementation is based on that of Fisher
& Lin [4], updating a narrow band around an objects surface.
We do this by computing an AABB around each primitive
and performing a brute-force closest-point computation,
such as for Yin et al’s. [58] type-1 points. A depth-mask is
used to select the closest distances for each cell, and it is
cleared each frame. An ostensible optimisation would be to
use voronoi regions such as prisms to update only changed
cells. We attempted this but found that the volumes leaked,
and are unaware of any works that have successfully taken
this approach with deformable triangular meshes.

9.4 Models and Configuration

The test models are shown in Fig. 4. The models were opti-
mised and subdivided to create configurations of varying
complexity. Radial Fields, Distance Fields and Spatial Hashing
had a spatial resolution of 1cm, with the exception of Distance

Fig. 4. Avatar and cloth models (not to scale) used during profiling. For
each avatar low, medium and high detail versions were used.

Fields in conditions 9 & 10, which had a resolution of 3.5 cm.
The Male and Female Human avatars were derived from the
same base model and so have identical topologies, differing
only in shape. Radial Fields and Distance Fields were applied
per-bone, while Spatial Hashing and BVHs operate directly in
avatar object or world space. Avatars were equipped with typ-
ical game bone rigs consisting of 50-60 bones. The Human
models were ~ 1.6 m tall, while the Ogre was ~ 4 m tall.

Radial Fields and Distance fields were fitted to the bones
automatically, such that they encompassed all vertices
skinned to their bone. The spatial hash had a table size of
2564327 and a cell size of 20 based on manual tuning to
avoid overflowing cells.

9.5 Profiling

Measurements were taken with the Unity Editor profiler
and include only the time spent in functionality exclusive
to the techniques. For example, skinning time was not
included. Profiling was performed on a Windows 7 PC with
a 3.4 GHzi7 and an NVidia GTX1080.

All tests used the same animation sequence, lasting
\raise.17ex~10 seconds and consisting of some extreme
locomotion and gymnastic motions that may be encoun-
tered in a typical 3D video game. For consistency and stabil-
ity, extensive use of attachment points were made. These
were implemented as soft constraints however, so all such
particles still participated fully in collision detection and
response. Our results are shown in Table 1.

10 RESULTS

10.1 Computation Time
We consider total computation time to be the sum of the
structure update and collision detection & response times.
By this metric, we can see from Table 1 that radial fields
match or exceed all other techniques. Radial fields offer an
average speed-up of 27x compared to traditional distance
fields with narrow-band updates, and 2.9x & 4.5x compared
to per-primitive tests accelerated with BVHs and spatial
hashing, respectively.

Each technique however has different dependencies, and
therefore will scale differently. For example, Distance Fields
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and Radial Fields are highly dependent on the volume of the
avatar and spatial resolution. This is because they are bound
by the time to ‘render’ the cells, and the cell count is depen-
dent on these parameters. This can be seen most clearly in
Conditions 1 & 2 for Distance Fields, where a reduced num-
ber of triangles results in a longer computation time, as their
larger size means a less efficient approximation of the nar-
row band. Distance Field’s memory and computation times
increase severely with resolution or volume. In Conditions 9
& 10 we had to reduce the spatial resolution of the distance
field to 3.5 cm in order to keep the simulation stable. As can
be seen, radial fields are also sensitive to these parameters,
but their demands increase at a lower rate. BVHs on the other
hand depend only on the triangle count. This can be seen in
Conditions 9 & 10 versus 7 & 8, where the metric trajectories
with respect to triangle count are inverted. We expect that
BVHs would quickly begin to outperform the other techni-
ques as spatial resolution increased. The proportion of the
time spent clearing the Distance Field mask was < 0.5% of
the total computation time in every condition.

Spatial Hashing should in theory have similar perfor-
mance to Radial Fields with a constant offset for the point-tri-
angle tests, since it voxelises only the surface with a
subdivision resulting in a similar number of cells. In practice
the performance is poorer. This is likely due to the 3D raster-
isation being less efficient than the 2D rasterisation. Radial
Fields take advantage of the GPU’s hardware rasteriser
which will have many optimisations, such as hierarchical
region testing, that improve performance [59]. For interests
sake, it took 4-5x longer to rasterise the faces of the model to
the radial fields, than it took to render them to the screen.

All techniques run entirely on the GPU. Though with the
exception of BVHSs, all techniques require transforms to be
extracted from the scene graph and sent to the GPU each
frame. Radial Fields and Distance Fields, which are
assigned per bone, are therefore more CPU intensive than
Spatial Hashing (with only one pair of transforms) or BVHs
(with none). We do not report these times because there is
no technique specific functionality involved and the over-
head is trivial.

10.2 Collision Detection
Our Distance Field implementation (Section 9.3) used a uni-
formly-sampled linear signed distance field, updated based
on the AABBs of deforming primitives. That is, the entire
grid was initialised even though only a narrow-band was
updated each frame. This implementation, like Radial
Fields, completely decouples the intersection tests from the
underlying model—as can be seen from the collision detec-
tion times which are directly proportional to the particle
counts. Spatial Hashing Collision Detection (CD) times
depend on the probability of a hash collision, and therefore
on model complexity, spatial resolution and table proper-
ties. BVHs CD depends on the tree itself and the number of
particles, and so is loosely coupled to model complexity.
Distance Field intersection tests are the least computa-
tionally intensive and this is reflected in the CD times. They
are the most bandwidth intensive however needing 8 sam-
ples per tri-linear interpolation for surface reconstruction.
Radial Fields require fewer—3—memory reads per recon-
struction, but converting the samples into Cartesian space is
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more expensive than Distance Field’s direct interpolation.
Both techniques spend less time in the CD stage than Spatial
Hashing or BVHs. Radial Fields and Distance Fields, due to
their regular access patterns, scale more predictably with
particle count than do Spatial Hashing or BVHs. However,
BVHs can cull large numbers of potential tests early on,
resulting in improved performance in larger simulations.
Compare BVH Condition 10 to 9, which is only fractionally
longer despite processing 3x the number of particles.

10.3 Memory

Spatial Hashing is the most memory intensive technique.
The table size and cell size must be sufficiently large to avoid
cell overflows, or collisions may be missed. Expanding cells
on demand is straightforward on the CPU, but not the GPU.
The other techniques have comparable requirements. BVHs
have an advantage with larger, but lower resolution models.
For smaller models however the distance field based
approaches outperform BVHs. The fields have many more
elements than BVHs do nodes, but the nodes are larger. Dis-
tance fields scale poorly with volume. Readers should recall
that we had to decrease the resolution for Distance Fields in
Conditions 9 & 10. If they remained at 1 cm like the other
techniques, the fields would be over 124 Mb, compared to
Radjial Field’s 3.16 Mb. While there are more efficient adap-
tive representations, these would prevent dynamic updates.

11 DISCUSSION

11.1 Traditional Distance Fields

We expected distance fields to be outperformed, but were
surprised by the extent. Since Fisher & Lin [4], authors have
worked to improve initialisation times and memory require-
ments [2], [60], but with the exception of Gascon et al.’s [32]
technique for tetrahedral meshes, there are no fundamen-
tally new, real-time techniques for deforming them. We sug-
gest this is due to the lack of a reliable voronoi technique for
deforming triangular mesh models. While there are techni-
ques for conservative-voxelisation [61], these typically
involve over-scanning in some sense, meaning implementa-
tions must fall back on a depth mask. Techniques such as
fast-marching [62] improve performance of the closest-point
computation itself, but at a cost of accuracy.

11.2 Continuous Collision Detection

Collision detection techniques vary not only in performance,
but also in feature-set. Spatial Hashing is one of the fastest
techniques, but is one of the most difficult with which to sup-
port CCD. The band of voxels that are occupied is narrow
compared to distance fields. A reliable implementation
would need to rasterise the prism of a deforming triangle,
and then march along the particle motion through the grid.
BVHs can perform continuous intersection tests against their
volumes, and the underlying primitives in one step. Of the
techniques that require marching, radial fields have the best
approximation because they implicitly delineate the object
interior, reducing the likelihood of tunneling.

11.3 Ease of Implementation

Ease of implementation is subjective, but broadly, the num-
ber of heterogeneous functionalities required to implement
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radial fields is lower than BVHs but higher than distance
fields and equivalent to spatial hashing. The unambiguous
delineation of the mesh interior is a significant benefit when
writing collision detection algorithms. Narrow-band dis-
tance fields are the only other technique to offer this, and
they do so with caveats—for example, samples may become
outdated. With regards to tunable parameters, Radial Fields
and Distance Fields have only resolution to select, which is
physically based. BVHs have no tunable parameters. Spatial
Hashing does not need to be configured per-bone like
Radial Fields and Distance Fields, but requires deeper
knowledge in order to choose optimal table parameters.

11.4 Limitations

Radial fields trade off generality of techniques such as hp-
adaptive distance fields [35], in favour of GPU acceleration,
but this imposes limitations. Radial fields can only support
star-convex geometry. For some elements, such as non-
articulated hands, or a character’s ears, a single field could
approximate a convex hull. In most cases though overlap-
ping geometry must be covered with multiple fields. Radial
fields introduce quantisation noise. This is dependent on
the resolution of the field. Previous analyses of distance
field fidelity are directly applicable here. Radial fields, like
other grid based structures, have difficulty with continuous
collision detection. We present pCCD, which does not guar-
antee robustness. A robust CCD implementation is possible
with a marching algorithm that visits every cell, but at a
cost of performance.

12 FUTURE WORKS

Radial field implementations are complicated by work-
arounds for the vulnerability in the ray-plane distance test
to rasterisation quantisation error. An alternative to the ray-
plane distance test would be to compute the distance using
the polar straight line equation, which can be derived from
the Cartesian line equation (y = max + ¢) and Equation (3).
The coefficients for this could be computed in the geometry
shader and passed to the fragment shader. However,
because the triangles are defined by three edges, the system
would need to interpolate between three sets of coefficients,
and how this would be done is not clear.

13 CONCLUSION

We have presented Radial Fields, distance fields parameter-
ised in 2D cylindrical space rather than 3D Cartesian space.
Radial fields are more application-specific than traditional
distance fields, but for these applications they offer substan-
tial benefits. We profiled our radial field implementation
across a number of models, demonstrating sub-millisecond
computation, collision detection and response times for sim-
ulations with a range of complexities.

Radial fields outperform traditional distance fields by over
an order of magnitude. They also outperform triangle-based
tests with broadphase stages based on the state-of-the-art in
GPU-based spatial hashing and bounding volume hierarchies.
Radial fields scale differently to these techniques however,
and which is most suitable will depend much on the applica-
tion. Radial fields use the hardware rasteriser of the GPU,
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making them easy to implement by taking advantage of the
existing, highly optimised, rasterisation pipeline. Radial fields
implicitly define the mesh interior, making them a cost-effec-
tive way of describing volumes. This simplifies collision detec-
tion and response algorithms, and makes them more robust to
large time-steps. While the implicit volumetric representation
reduces the likelihood of tunneling compared to discrete trian-
gle-based tests, achieving robustness comparable to continu-
ous triangle-based tests could become very bandwidth
intensive depending on field resolution.

To demonstrate the practicality of radial fields in real
applications, we created our test implementation in Unity
5.4 and integrated it with a position-based dynamics cloth
simulation. In the future, radial fields could be improved by
replacing the ray-plane distance test in the rasterisation
stage with the polar straight line equation, making imple-
mentations more robust to rasterisation quantisation and
even simpler to implement.
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