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C-Si hybrid photonic structures by full
infiltration of conjugated polymers into
porous silicon rugate filters
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Abstract
Loading of one-dimensional (1-D) porous silicon photonic crystals (PS-PhCs), known as rugate filters, with luminescent
materials is generally limited by the potential for (undesired) “pore clogging,” in relation to the size of the nanoparticles
(e.g. quantum dots) or molecular species, and so far mainly restricted to small molecular weight materials or small
nanocrystals, or in situ polymerized dyes. Here we report the infiltration 1-D PS-PhCs with a green-emitting commercial
luminescent polymer (F8BT, poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)]), with a molecular
weight of approximately 46 kDa across their whole depth (approximately 7.5 mm), thereby showing that pore clogging is
not a concern for these structures. We also characterize the modification of the photoluminescence (PL) and decay rates,
and investigate the detailed inner morphology of the filters with the help of (scanning) transmission electron microscopy.
We observe both suppression (in the stop-band) and enhancement (at the high-energy band-edge) of the PL. We also find
that the photonic stop-band is red-shifted after polymer infiltration, due to the increased effective refractive index of the
polymer-infiltrated nanostructured system. The presence of just one unbroadened peak in the reflectance spectra after
infiltration confirms that infiltration extends for the whole depth of the rugate filters.
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Introduction

Photonic crystals (PhCs)1 provide perhaps the most

powerful tool for manipulation of light generation and

propagation, thereby potentially enabling the implemen-

tation of photonics as the most performing information

and communication technology platform. As such, PhCs

have been intensely studied over the last three decades,

especially with a view to combining them with photo-

active materials such as luminescent (macro)molecules

and inorganic semiconductors,2,3 or with plasmonic

nanostructures, so as to achieve directional modification

of the fluorescence,4–7 optically pumped lasing,8,9 and

optical switching,10,11 among other aims. In this context,

microcavities have been widely used to control and
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enhance the emissive properties of conjugated poly-

mers.12–14

Notably, porous silicon-based PhCs,15 such as rugate

filters,16–18 have attracted significant interest since they

provide a straightforward and technologically robust route

to fabrication of optical nanostructures with significant lev-

els of complexity, while at the same time building on an

unrivaled silicon-based micro- and nanotechnology.

Indeed, this class of photonic systems has been used widely

for optoelectronic,19 photonic,20 sensing,21,22 and biologi-

cal applications.23 In particular, rugate filters are good can-

didates as vapor and liquid sensors,24–27 and as detectors

for biological activities such as proteases.28,29 Several ways

to fabricate hybrid polymeric-inorganic structures have

been reported in the literature so far, but in most cases the

preparation involved a “chemical approach,” namely, the

growth of the target macromolecules “in situ” by chemi-

cally reacting smaller monomers that can be easily infil-

trated inside the pores.30 This has been exemplified by

either electrochemical deposition31,32 or in situ chemical

polymerization33 of suitable monomers. Although the effi-

ciency of such processes is relatively high (in terms of pore

filling and/or monomer conversion), the applicability of

this method is limited to a relatively narrow set of mono-

mers, and therefore not generally applicable.

For this reason, the preparation of hybrid Si-organic

structures via a solution processable method, that is, by

directly infiltrating the polymer inside the pores starting

from a solution, is more attractive.22,34 This procedure

requires a good optimization of the infiltration methodol-

ogy to successfully infiltrate the polymer inside the pores,

especially if pore sizes are comparable to the polymers

gyration radii (typically a few nanometers), or to the size

of aggregated/phase-separated macromolecular mesostruc-

tures (up to tens of nanometers).

Interestingly, we found that pore clogging was not a

particularly significant problem in our hybrid PhCs

obtained via infiltration of commercial poly[(9,9-di-n-

octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-

diyl)] (F8BT; with a molecular weight Mw of approximately

46 kDa) into porous silicon. Upon infiltration we observe

shifts of the filters reflectance peaks that are consistent with

coating of the inner walls of the pores to the whole depth that

can be probed in such optical experiments. We consider that

our ability to infiltrate the porous structures results from the

particular relation between the limited polymers gyration

radius (Rg, of the order of few nanometers)35 and the mini-

mum pore sizes (approximately 10 times as large as Rg) for

which we obtain direct insight by means of electron

microscopy.

Importantly, we find that the luminescence of the infil-

trated macromolecular luminophore is controlled by the

photonic structure of the inorganic host, and shows an

enhancement at the high-energy end, and suppression at

the low-energy end, of the photonic band.

In general, we consider that these polymer-infiltrated

Si-based crystals powerfully exemplify an element of a

potential tool library of a “C-Si hybrid photonic

platform.” Such a platform could be developed for a

multitude of applications, spanning from biosensors to

high-capacity/high-speed data-handling devices (e.g. for

“Big-Data”), in a complementary or even alternative

fashion to Si/III-V hybrids.

Experimental methods

Rugate filters preparation

Porous silicon rugate filters featuring a stop-band in

reflectance either in the visible or near-infrared range

were prepared by electrochemical etching of (100)-

oriented, highly doped p-type silicon wafers (boron-

doped, resistivity 0.0008–0.0012 O cm, from Siltronix

Corp, France.) in a 3:1 (by vol.) solution of 48% (by

vol.) aqueous hydrofluoric acid and ethanol (both from

Sigma Aldrich, USA). The electrochemical etching was

performed in a homemade Teflon cell using a two-

electrode configuration, with the silicon substrate acting

as anode (working electrode) and a platinum ring

immersed in the solution acting as cathode (and used as

pseudo-reference electrode). A source-measure unit (Keith-

ley 2410 Source Meter, Keithley Instruments, USA) was

used to impose the desired etching current density and to

monitor the voltage drop between the silicon sample and

the pseudo-reference electrode. The hydrofluoric acid

solution was stirred during the electrochemical etching

so as to minimize hydrogen bubble formation on the

sample surface and enhance etching uniformity.

A cosine-shaped current density waveform with peak-

to-peak dynamics from 13.3 to 39.9 mA cm�2, 50 repeats,

and time period of 11 and 17.5 s was used to produce rugate

filters with a stop-band in reflectance centered at 551 nm

and 827 nm, respectively, before oxidation, and shifting to

515 nm and 771 nm, respectively, after oxidation (photo of

the rugate filter whose peak is centered at 515 nm is

reported in the inset of Figure 1(a), clearly showing that

reflectance peak is in the green). Such an etching current

density waveform produces mesostructured porous silicon

samples with periodic porosity (values between 62.5% and

69.5%, with an average Pavg ¼ 66%) and, in turn, with

periodic refractive index (oscillating between nmin ¼ 1.69

and nmax ¼ 1.93, neff ¼ 1.81 at 551 nm, yielding a maxi-

mum contrast of 0.26, and between nmin ¼ 1.61 and nmax ¼
1.83, neff ¼ 1.72 at 827 nm). We estimated the values of

porosity and, in turn, the effective refractive index from the

experimental reflectivity spectra of porous silicon layers

etched with constant current density of either 13.3 or

39.9 mA cm�2. These correspond to minimum and maxi-

mum values of the cosine-shaped current density waveform

used for rugate filter etching, respectively, according to the

procedure described in the work by Ruminski et al.24
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The effective refractive index has been determined using the

so-called Bruggeman’s model/equation. For the as-fabricated

samples, the effective refractive index has been calculated sim-

ply by considering the porosity of the samples, instead, for the

oxidized samples, we had to take into account a three-

component model, since we had to estimate the silicon oxide

fraction to obtain the best fitting with the reflectance spectra.21

To improve the infiltration process and prevent emission

quenching by the heavily doped silicon layer, the rugate filters

were partially oxidized into a tube furnace (ThermoLyne

21100, Thermo Fisher Scientific, USA) under pure oxygen

(O2, 99.999%) at 600�C for 30 min prior to infiltration.

Conjugated polymer infiltration

F8BT infiltration into the cavities of the filters was

obtained using a dip-coating procedure36 by first submer-

ging the rugate filter into a toluene solution of the polymer

(1% by weight), and then by slowly extracting it. The pro-

cedure was carried out at a controlled lifting rate (0.01 mm

min�1) and temperature (29�C). The excess polymer left

onto the surface after dip-coating was removed using a

cotton swab soaked with toluene.

Spectroscopic and morphological characterization

Normal incidence and angle-resolved reflectance spectra

were collected with an Ocean Optics S2000 spectrometer

(Ocean Optics Inc., USA) in combination with a fiber-

coupled Ocean Optics HL-2000 tungsten halogen source

(Ocean Optics Inc., USA). Steady-state angle-resolved

photoluminescence (PL) measurements were carried out

using a 405 nm Continuous wave (CW) laser diode (Thor-

labs Inc., USA) and an Andor Shamrock 163i spectrometer

coupled to an Andor Newton CCD camera cooled at�50�C
(Andor Technology Ltd., UK). In the angle-resolved mea-

surements, the samples were placed onto a rotation stage (M-

060.DG, resolution <0.1� Physik Instrumente (PI) GmbH &

Co. KG, Germany) to allow the rotation of both the filter and

the laser holder, and thus ensure that the incident light hits

the sample at a constant angle, while varying the collection

one. The spectra were collected every 5�, from 0� up to 35�.
Time-resolved PL measurements were carried out with a

time-correlated single-photon counting (TCSPC) spectro-

meter (F900, Edinburgh Instruments Ltd., UK) with excita-

tion provided by a pulsed laser diode (lex ¼ 371 nm, pulse

width approximately 60 ps).

Transmission electron microscopy (TEM) and scanning

transmission electron microscopy (STEM) images have

been taken using a Titan 80/300 TEM/STEM (Thermo

Fisher Scientific, USA). This instrument is fitted with a

monochromator to deliver spatial/energy resolution cap-

abilities of 0.14 nm/0.5 eV (monochromator off) and 0.3

nm/0.12 eV (monochromator on).

Results and discussion

Morphological characterization

Figure 1 shows TEM (Figure 1(a)), STEM (Figure 1(b) and

(c)), and cross-sectional images of the rugate filters with

“initial” (i.e. before oxidation) stop-band at 551 nm, at

different magnifications. Notably, the periodic modulation

of the porosity of silicon along the direction perpendicular

to the surface can be clearly observed as darker/brighter

alternating regions in all TEM/STEM images (Figure 1(a)

to (c)). The quality of the “overview” Figure 1(a) is good

enough to enable counting the total number of layers (50)

and measuring the total thickness of the rugate filter

(approximately 7.6 mm). The sample has been covered with

a Pt layer (darker layer on the top of the structure) to protect

the structure during the ion etching carried out to obtain the

slice for TEM analysis. In Figure 1(c), we report a zoomed-

in STEM image of the photonic structure, which shows a

clear asymmetry in the bright and dark regions in each

period, thereby suggesting that the refracting index modu-

lation is different from sinusoidal, despite the sinusoidal

etching current. We consider that this is likely due to

Figure 1. TEM/STEM images of rugate filter with reflectance peak (after infiltration) at 515 nm: (a) bright-field TEM image of the rugate
filter (inset: photo of the same rugate filter), (b) bright-field STEM overview image of the PhC, and (c) high angle annular dark-field zoom
of the internal structure. TEM: transmission electron microscopy; STEM: scanning transmission electron microscopy.
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current density-dependent etching rates.37 Details of the

electrochemically generated nanocavities and nanocol-

umns obtained with the atomic force microscopy are

reported in the Online Supplementary Figure S3.

The interplanar spacing D by inspection of Figure 1(b) is

approximately 150 nm, consistent with the total thickness

and the number of current periods. Such a value is further

confirmed by two-dimensional fast Fourier transform (2-D

FFT) analysis of Figure 1(b) reported in Figure 2. In Online

Supplementary Figure S1, we also report a depth profile of

the STEM image of Figure 1(b) to offer further quantitative

confirmation of the period spacing. The FFT peak spacing

is 6.67 mm�1 (corresponding to 150 nm). The presence of

bright lines denotes a high uniformity of the (vertical) peri-

ods over the entire surface of the slice, but a much lower

uniformity of the pillars and pores dimension.

We also analyzed the structure of Figure 1(a) along its

depth at higher magnification. In Figure 3, we present two

TEM cross sections taken at the same magnification (12,000

magnifications) in the top (Figure 3(a)) and in bottom (Fig-

ure 3(b)) section of the rugate filter. Despite some small

oscillations in the layers in the top part of sample, the inter-

planar distances appear nearly perfectly matched in both

parts, as highlighted by the two parallel dashed lines. The

only exception is the very last etched layer (in the bottom

part of the sample) that is smaller than the other ones.

Optical characterization

In Figure 4, we report the reflectance spectra of both rugate

filters (i.e. tuned or “green” (Figure 4(a)) and detuned or

“red” (Figure 4(b))) before (red line) and after (blue line)

the dry oxidation process. For the “green” sample (Figure

4(a)), the reflectance peak is blue-shifted by approximately

33 + 1 nm due to the formation of the oxide layer and, in

turn, to a different effective refractive index. This is also

confirmed by the lowering of the total reflectance induced

by the decrease of the dielectric contrast. Considering this

blue-shift and the determination of the interplanar spacing

via STEM imaging analysis, according to Bruggeman’s

equation, the silicon oxide fraction formed during the oxida-

tion process should be approximately 10 nm. For the rugate

filters with initial (i.e. before oxidation) stop-band at 827 nm

(Figure 4(b)), the blue-shift of the reflectance peak is about

56 nm. The interplanar spacing D is found to be approxi-

mately 240 nm. This has been evaluated by the reflectance

measurements and taking into account the thickness of the

oxide determined for the “green” rugate filter.

To determine the effect of the photonic structure on the

F8BT spectrum, we compared the optical properties of the

“green” filter with the stop-band centered at 515 nm (after

oxidation, red-shifting by about 12 nm upon infiltration,

thus providing significant spectral overlap with the F8BT

PL, and hence referred to as “tuned” filter) with those of the

“detuned” filter (the “red” one, with the stop-band centered

at 771 nm, after oxidation, further red-shifting upon infil-

tration) that is used as a reference.

Figure 5 shows the typical PL spectrum of an F8BT film

(Figure 5(a)) and the reflectance spectra for tuned (Figure

5(b)) and detuned samples (Figure 5(c)) before and after the

infiltration of the F8BT, at normal incidence.38 Please see

the Online Supplementary Figures S4 and S5 for the contour

plot and Online Supplementary Figure S6 for the spectra of

the reflectance versus excitation angle before and after infil-

tration. We could not detect any PL from the bare porous

silicon for both tuned and detuned samples.

Upon polymer infiltration, the reflectance peaks red-

shifted by approximately 12 + 1 nm in both samples due

to the increased effective refractive index. In particular, the

reflectance peak for the tuned sample red-shifted from 515

nm to 526 nm after infiltration, and for the detuned one it

red-shifted from 771 nm to 784 nm. This is in qualitative

agreement with the prediction of the Bragg–Snell law

(equation (1)), which can then be used to quantify the

effective refractive index neff
39

ml ¼ 2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

eff � sin2y
q

ð1Þ

Here m is the diffraction order, l the spectral position of

the stop-band peak, y the incidence angle, and D the inter-

planar spacing that is determined by the preparation condi-

tion. From equation (1), we determine neff ¼ 1.81 and 1.72

for the as-fabricated rugate filters, for interplanar spacing D

of 150 nm and 240 nm as obtained from TEM images for

the rugate with stop-band peaks (before oxidation) at 551

nm and 827 nm, respectively.

As a further check, the total thickness (t) of the nanos-

tructured samples can also be calculated using the interfer-

ence fringes in the reflectance spectra once the effective

refractive index of the photonic crystal is known

t ¼ N fringes

2n effDv
ð2Þ

Figure 2. 2-D FFT (inset: frequency profile extracted from the
2-D FFT, the distance between the lines is found to be 6.67 mm�1).
2-D: two-dimensional; FFT: fast Fourier transform.
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where Nfringes is the number of fringes within the spectral

range Dn (in cm�1). Using the effective refractive indices

obtained with the Bragg–Snell’s law, and a spectral range

of approximately 4800 cm�1 for the tuned sample and

approximately 3000 cm�1 for the detuned one, we found

t ¼ 7.6 mm for the tuned filter (which is in excellent agree-

ment with the STEM observations) and t ¼ 12 mm for the

detuned one.

Considering that the refractive indices of F8BT are 1.6

(extraordinary one) and 1.8 (ordinary one)40 and the refrac-

tive index of air is 1, we would have expected a spectral

shift of the reflectance peaks bigger than the observed one

if the cavities had been completely filled by the polymer. In

fact, in the case of a complete filling of the cavities with the

F8BT (i.e. totally removing the contribution of the air to the

effective refractive index and replacing that with one of the

polymers in the Bruggeman’s model) the reflectance peaks

of the two rugate filters would have moved from 515 nm to

634 nm (119 nm shift) and from 771 nm to 960 nm (189 nm

shift) for the tuned and detuned filter, respectively.

Having established that infiltration leads to a “coating”

of the pores walls, rather than to “solid filling” of the pores

with the polymer, an interesting question arises as to

whether such a “coating” is complete or partial in the ver-

tical direction. We can infer that our structures are infil-

trated for more than 99% of their depth from the analysis of

the reflectance spectra of the filters which do not show any

sign of a double peak. Infiltration leads to an obvious red-

shift of approximately 12 nm of the main reflectance peak,

so that if the pores were only partially infiltrated we should

be seeing an overlap of both infiltrated and non-infiltrated

portions of the latter, whereas in the reflectance spectra of

our infiltrated samples we cannot detect any feature that

can be attributed to such a contribution, and conservatively

considering a resolution of 0.2% on the reflectance mea-

surement we actually can exclude partial infiltration to

better than 1 part in 100, or so. Please note that both in the

infiltrated and non-infiltrated case, our optical measure-

ments can probe the whole rugate filter thickness as demon-

strated by the consistency of the filter thickness measured

Figure 3. Bright-field TEM images taken at 12,000 magnifications with 0.5 s exposure in the top (a) and bottom (b) part of the rugate
filter. TEM: transmission electron microscope.

Figure 4. Reflectance spectra of the “green” (a) and “red” (b) rugate filters before (red line) and after (blue line) the oxidation process.
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via STEM of a cross section and as estimated from the

number of fringes according to equation (2) above.

To observe the modification of the PL spectra induced

by the photonic crystal, we compared the PL of the F8BT

infiltrated into the tuned and detuned (reference) filters, to

avoid small differences in the surface chemistry of the

porous silicon samples affecting the determination of the

photonic effects. The PL spectra were then normalized

with respect to the intensity at l ¼ 550 nm, that is, several

tens of nanometers away from the center of the photonic

stop-band.41

In Figure 6(a), we report the PL spectra as a function of

the collection angle, while keeping the laser incidence

angle constant, for both tuned and detuned infiltrated filters

(only at normal incidence for the detuned sample, as there

is no angular dependence. Please see the Online Supple-

mentary Figure S7 for a full PL contour versus excitation

angle). Clearly, F8BT’s PL is strongly modified by the

presence of both the stop-band and the interference fringes,

which contribute to “structuring” the emission.

Remarkably, the photonic band-gap (PBG) suppresses

(albeit partially) propagation at 528 nm (at 0� incidence)

and increases the intensity at the high-energy edge (from

518 nm at 0� incidence to 503 nm at 30� incidence). This is

in agreement with the expected suppression of the photonic

density of states (DOS) in (the middle of) the stop-band,

and with its increase at the stop-band high-energy edge.42

As expected, both the enhancement and the suppression

display strong dependence on angle, because of the disper-

sion (i.e. the dependence of the photons on the wave vector

of the light) of the stop-band. Considering that the wave

vector of the light is related to the collection angle, the

blue-shift of the emission/suppression of the emitted light

in correspondence of the photonic stop-band in Figure 6 as

a function of the collection angle is in perfect agreement

with the Bragg–Snell law (equation 1).

The dispersion of the photonic stop-band can be also

better appreciated in the contour plots in Online Supple-

mentary Figures S4 and S5, which shows the reflectance

spectra of the tuned and detuned rugate filters as a function

of the angle. In these measurements, we can clearly observe

the dispersion predicted by the Bragg–Snell’s law.

The enhancement/suppression above is appreciated

clearly in Figure 6(b) in which we have plotted the ratio

(Rn) between the PL spectra of infiltrated tuned filter and

detuned filters.38 Thus Figure 6(b) emphasizes both

enhancement (Rn > 1) in the region between 518 nm and

506 nm and a minor suppression (Rn < 1) at the stop-band

(between 528 nm and 512 nm) for angle increasing from

0� (normal incidence) to 35�. The difference in the inten-

sity of the suppression and enhancement could be

explained as the difference in the experimental setup for

the two samples (film thickness and laser spot size) and to

refractive index effects.43

Finally, to obtain conclusive evidence about the mod-

ification of the radiative rate of F8BT induced by the

“photonic host” (i.e. the rugate filters), we measured the

PL temporal decay (Figure 7) both within the stop-band

(528 nm, Figure 7(a)) and at the high-energy edge of the

latter (518 nm, Figure 7(b)).38 We focused on these two

spectral lines because at such wavelengths there is a clear

modification of the DOS,44 as already demonstrated by

the reflectivity spectra, and also include the decay

dynamics of a film of neat F8BT on a nonporous silicon

substrate as a reference.

Interestingly, we find that all temporal decays are pre-

dominantly mono-exponential (including for neat F8BT

films on Si), and that they can be fitted well with a bi-

exponential function45 (reduced w2 < 1.3), although with

a faster decay for the infiltrated samples. Both observations

are entirely within expectations for a conjugated polymer

emitter within a context of a physical model of the

luminescence originating from both strongly-bound intra-

molecular excitons (primary exponential) and more

weakly-bound interchain states (excimers or aggregates:

secondary exponential, with a longer decay time). This

Figure 5. (a) PL spectrum of a neat film of F8BT on a compact
silicon substrate and (b and c) reflectance spectra for the PhCs
before (blue line) and after polymer infiltration (red line). The
infiltration leads to a red-shift of the photonic stop-band (and thus
of the reflectance peak) of about 12 + 1 nm. Note that the
vertical scales for (b) and (c) are different, that is, 40% and 100%
reflectance, respectively. Inset: cartoon illustrating the inferred
cross section of the rugate filter (D is the interplanar spacing
determined by the period of the anodic etching current); the
polymer layer is not filling the pores of the rugate filters, but there
is just a layer on the walls of the cavities (see main text for
discussion). The structure of the sample used to measure the
F8BT PL is also shown. PL: photoluminescence; PhCs: photonic
crystals; F8BT: poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(ben-
zo[2,1,3]thiadiazol-4,8-diyl)].

6 Nanomaterials and Nanotechnology



model is amply supported in previous literature,46–52 with a

particularly powerful example being provided by the tem-

poral decays of solutions of analogous materials with dif-

ferent and controlled degrees of aggregation, that can be

fitted with the same double exponential lifetimes, by vary-

ing only the pre-exponential factors.53

Incidentally, we note that although the temporal decay

dynamics of F8BT neat films are sometimes also modeled

as mono-exponential (with lifetimes from 0.89 to 1.84 ns

depending on wavelength, film thickness and substrate

materials) given the strong preponderance of one life-

time,54–57 fitting with a bi-exponential also for such neat

films is more appropriate (e.g. a single exponential leads to

a reduced w2 of approximately 1.8 at 528 nm with t approx-

imately 1180 ps, data reported in Online Supplementary

Table S1, whereas a double exponential fit yields a w2 of

approximately 1.2 with t1 approximately 1142 and t2

approximately 3231 ps for the same wavelength), thereby

supporting the presence of a second decay process readily

attributable to a weakly coupled interchain state (aggre-

gate). This is within expectations, because although the

formation of aggregates is reduced in very diluted solutions

(in good solvents), it is nearly ubiquitous in solid-state

films (driven by p–p, or other packing interactions) and

decay lifetimes can indeed be measurably altered by

changes in the environment.58

Infiltration of the chromophores also provides a very

significant change of the environment, and therefore it

should not be surprising that we observe a very distinct

decrease of both main and secondary lifetimes upon infil-

tration. The large area/volume ratio of the regions in which

the polymer is accommodated once infiltrated, and for

which a relatively strong interaction with the SiO2/porous

silicon can be expected (both of a chemical and physical

nature), is likely to lead to different strand packing patterns

and likely formation of weakly bound interchain states in

addition to the monomolecular singlet excitons that char-

acterize the emission of the neat thin films.

In general, the PL of conjugated semiconductors is a

sensitive probe of their chemico-physical environment, and

of the geometry adopted by the polymeric strands. Similar

effects have been noted both when adsorbing similar chro-

mophores on nanospheres in 3-D self-assembled opals7 and

in the presence of strong interchain interactions for a vari-

ety of conjugated polymers, including F8BT.59,60 While

such interactions might differ significantly for the infil-

trated F8BT with respect to the one on neat Si, they should

be very similar for the tuned and detuned filters, thereby

enabling a meaningful comparison.

Figure 7. Radiative decay of the F8BT PL measured by TCSPC
(371 nm excitation) and recorded either (a) within the stop-band
(528 nm) or (b) at the high-energy edge (518 nm) for F8BT infil-
trated into the tuned and detuned filters, as well as for a neat
F8BT film on non-porous Si, as a reference. TCSPC: time-
correlated single-photon counting; PL: photoluminescence; F8BT:
poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-
4,8-diyl)]; Si: silicon.

Figure 6. (a) PL spectra (solid lines) collected at different collection angles (from 0� to 35� with a step of 5�) for F8BT infiltrated into
the tuned PhC and at 0� for the F8BT infiltrated into the detuned PhC (dashed line). We used a CW laser, emitting at 405 nm, as
excitation source. We can observe the PL peak dispersion moving from 518 nm at 0� to 506 nm at 25�. (b) Ratio between the PL spectra
from the tuned and detuned PhC at different angles, as in (a). PL: photoluminescence; PhC: photonic crystal; F8BT: poly[(9,9-di-n-
octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] CW: continuous wave.
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Before passing to discuss the differences between life-

times in the middle and the edge of the stop-band and

between tuned and detuned samples, we would also like

to note explicitly that the internal pore dimension of the

rugate filters is dictated by the intensity of the etching

current (which we have not changed in the two experi-

ments),61 and not by the period of the etching current

(which we have instead varied, in order to achieve tunabil-

ity), and there is no reason to expect the thickness distribu-

tion of the polymer coated on the pore walls to depend on a

spatial period (>100 nm) that is more than an order of

magnitude larger than the polymer gyration radius (few

nanometers). We note specifically that in our tuned sample

(for which we observe the all-important lifetime difference

at the different wavelengths) the pores structure is exactly

the same, thereby indicating that any effect must be due to

the photonic structure, and not by pore wall coating

differences.

Table 1, in which we report the numerical parameters

for a bi-exponential fit of the decays in Figure 7, provides

clear evidence for a modification (albeit small) of the decay

rates brought about by the photonic structures.

We note in particular that we observe a very clear

reduction of both lifetimes (Table 1) at the high-energy

edge of the stop-band (518 nm) for the tuned with respect

to the (detuned) reference filter (approximately 17% of

t1). As expected, we also find slightly longer time con-

stants within the stop-band (528 nm) (by approximately

5% for t1). Also note that the less significant variation

within the stop-band (effectively comparable with the

error) is fully consistent with a much less important sup-

pression of the emission in this region, as compared to the

enhancement at the band edge (as also evidenced by Fig-

ure 6).

Importantly, the reduced w2 provides an excellent para-

meter to assess the quality of our model (excitonicþ aggre-

gate emission) in the interpretation of our data. We note in

particular that all values obtained from the bi-exponential

fitting are close to 1 and below 1.3.

Finally, we note that the relatively limited differences

between the radiative decay rates of F8BT within tuned/

detuned filters are entirely within expectations for 1-D

photonic structures such as rugate filters that only provide

intrinsically limited “photonic confinement” (i.e. only

along the z-direction) and whose spectral width (516–

533 nm) is small compared to the PL of the F8BT guest

(490–700 nm).1 We also note that in cases where the PL is

excited by one-photon processes, most of the luminescence

comes from layers close to the surface, where optical con-

finement is necessarily less effective than for layers deeper

in the structure.

Conclusion

In conclusion we have investigated a hybrid silicon-organic

photonic system. We achieved excellent infiltration of the

green-emitting highly luminescent F8BT into rugate filter

cavities whose detailed nano/mesostructures were carefully

analyzed via STEM. F8BT infiltration into the rugate filters

leads to a red-shift of the stop-band and brings about a

wavelength- and angle-dependent PL suppression/enhance-

ment due to the presence of the photonic stop-band. A

modification of the emission lifetime at the stop-band

high-energy edge is clearly observed and assigned to the

modulation of the photonic DOS imposed by the conju-

gated polymer.
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