
The Evolution of Training Parameters for Spiking Neural Networks with Hebbian
Learning

Katarzyna Kozdon1, Peter Bentley1,2

1University College London, Gower Street, London WC1E 6BT United Kingdom
2Braintree Ltd, 7 Gower Street, London WC1E 6DP, United Kingdom

k.kozdon@cs.ucl.ac.uk

Abstract
Spiking neural networks, thanks to their sensitivity to the
timing of the inputs, are a promising tool for unsupervised
processing of spatio-temporal data. However, they do not
perform as well as the traditional machine learning
approaches and their real-world applications are still limited.
Various supervised and reinforcement learning methods for
optimising spiking neural networks have been proposed, but
more recently the evolutionary approach regained attention
as a tool for training neural networks.
Here, we describe a simple evolutionary approach for
optimising spiking neural networks. This is the first
published use of evolutionary algorithm to develop
hyperparameters for fully unsupervised spike-timing-
dependent learning for pattern clustering using spiking neural
networks. Our results show that combining evolution and
unsupervised learning leads to faster convergence on the
optimal solutions, better stability of fit solutions and higher
fitness of the whole population than using each approach
separately.

Introduction
Spiking neural networks (SNNs) and evolutionary
algorithms (EAs) are two classical methods which are
undergoing a revival. Due to their intrinsic properties
discussed below, SNNs are a promising tool for processing
time-series data. However, the same properties also make
them harder to train to successfully perform complex tasks
which non-spiking neural networks (NNs) can be trained to
perform (Mnih et al., 2015). Most attempts to improve the
performance of SNNs (Bohte, Kook and PoutrHan, 2000;
Ponulak and Kasiński, 2010) at least partly abandon the
unsupervised learning paradigm which was inspired by the
brain (Hebb, 1950).

In this study, we use an EA to optimise learning
hyperparameters of unsupervised SNNs. While using EAs
to develop NNs is not a new idea (Belew, McInerney and
Schraudolph, 1992), they are classically used either as a
training method for developing networks’ weights or to
develop architecture of the network. Our aim is to provide a
proof of concept that EAs can be used to develop learning
hyperparameters of SNNs, and to develop a tool which will
aid further exploration of the full potential of SNNs with
brain-inspired learning. Furthermore, we aim to create a
system in which both evolution and learning contribute to

achieving the full potential of the model, thus mimicking
development of visual pattern recognition reported in,
amongst others, cats (Hubel and Wiesel, 1970), primates
(Wilson and Riesen, 1966) and humans (Kalia et al., 2014),
where the evolved nervous system is optimised in response
to post-natal visual experience.

After a brief overview of SNNs and EAs for NNs, we
provide an overview of our model and details of the
experiments, followed by results and conclusions.

Background

Biological Neurons and Spiking Neural Networks
SNNs are the third and most recent generation of NNs and
were inspired by the firing paradigm of the biological
neurons. In SSNs, each neuron accumulates inputs and fires
only upon reaching its firing threshold; the change in the
internal state of the firing neuron is rapid and approximately
identical every time, and has the appearance of a spike
(Hodgkin and Huxley, 1952). Thus, the state of each neuron
is analogue but passing information between neurons is
binary. This accumulation of the signals within the neurons
offers a novel way of incorporating the temporal relations
within the dataset into the network’s activity. It has been
proposed that this transient collective synchronisation
makes SNNs particularly suitable for unsupervised
processing of spatio-temporal patterns (Hopfield and Brody,
2001).

In the brain, there are two main types of neurons:
excitatory and inhibitory. Excitatory neurons increase the
internal state of their targets, whereas inhibitory neurons
decrease it; the former makes their target neurons more
likely to reach their firing threshold, whereas the latter
decreases the chance of spiking.

Unsupervised Learning
SNNs frequently use biologically-inspired unsupervised
learning algorithms. One of the standard approaches is
Hebbian learning, especially the spike-timing-dependent
plasticity (STDP) rule. A change of weight between pairs of
neurons is a function of the difference of their firing times.
If the presynaptic neuron fires before its target neuron thus
contributing towards its activation, the weight increases –

this is known as long term potentiation (LTP)(Bi and Poo,
1988; Markram et al., 1997). Conversely, if the firing order
is reversed and the presynaptic neuron is silent prior to its
target activation, the weight decreases leading to long term
depression (LTD). In addition to those two standard rules,
in this study we use a third, more recently observed in the
brain rule: if the presynaptic neuron is inhibitory, the weight
always increases if the pair of neurons fire within a certain
time-window, irrespectively of the order of firing (inhibitory
LTP, inhLTP) (Bi and Poo, 1988; D’amour and Froemke,
2015).

Evolutionary Algorithms for Neural Networks
Biological evolution relies on the assumptions that there
exists variability in some hereditary features, and some
variants of these features promote organism’s reproduction
or survival (“survival of the fittest”) thus becoming more
dominant in the population. Inspired by nature, standard
EAs work by creating a population of possible solutions, and
then alternately assessing their fitness and further exploring
the most promising solution spaces by replacing a
proportion of the population with near-identical clones of
the fittest solutions. Unlike supervised learning methods,
EAs do not require sets of correct input-output pairs. EAs
more closely resemble reinforcement learning (RL)
methods, and are rapidly gaining popularity as a scalable
alternative to RL in deep neural network (DNN) training
(Salimans et al., 2017). The solutions developed with EAs
were more robust to parameter perturbations due to the fact
that EAs find a parameter space containing populations of
close to optimal solutions rather than a single set of optimal
parameters (Lehman et al., 2017). EAs with exploratory
behaviour were shown to reduce the number of solutions
stuck in the local minima (Conti et al., 2017). When it comes
to SNNs, an EA directly developing synaptic weights was
demonstrated to reduce complexity of the solutions in
memory-dependent tasks in a simulated 2D world (Saggie,
Keinan and Ruppin, 2004).

In addition to using EAs as learning algorithms which
train the synaptic weights, it is also possible to use EAs to
develop the whole architecture of a network.
NeuroEvolution of Augmenting Topologies (NEAT)
(Stanley, Bryant and Miikkulainen, 2003) is one of the most
popular genetic algorithms (GA) for architecture
development and relies on directly encoding every
parameter of the network. It starts with a basic network and
gradually adds complexity to it, thus avoiding creating
overly complex networks when increase in the complexity
does not improve fitness. It has been successfully used in
SNNs, adaptive NNs (Stanley, Bryant and Miikkulainen,
2003), DNN and neural Turing Machines (Greve, Jacobsen
and Risi, 2016).

 In addition to using EAs to train or develop networks’
architecture, EAs have also been used to develop networks’
learning methods. In this approach, EA samples the global
parameter space and the neural network’s learning
algorithm optimises the proposed solutions through the local
search (Belew, McInerney and Schraudolph, 1992). EAs
have been used to develop the hyperparameters of
backpropagation (Rumelhart, Hinton and Williams, 1986)
and conjugate gradient learning algorithms in traditional

NNs (Belew, McInerney and Schraudolph, 1992). They
also have been used to develop learning rules in supervised
NNs (Chalmers, 1990). In SNNs, EAs were used to adjust a
STDP parameter for each synapse (Floreano and Mondada,
1996) as well as develop parameters of a pre-determined
Hebbian learning rule (Baxter, 1992). However, in the latter
case, training had a fully supervised element in the form of
setting the input and output values to the desired values in
order to direct Hebbian-like learning in the hidden layer. In
both cases, weights were initialised with new, random
values for each population and were not inherited.

Overview of the Model
Kozdon and Bentley (Kozdon and Bentley, 2017) described
an ensemble of unsupervised SNNs for parallel processing
of spatio-temporal data. During that study, the networks’
learning parameters had to be manually adjusted whenever
the type of data changed. The need for adjusting the
parameters was the consequence of using STDP: during
training, data which strongly activates the network leads to
strengthening of the weights until all neurons fire at all
times, whereas data which weakly activates the network
decreases the weights until the network becomes silent. To
overcome this bottleneck and to explore whether evolution
might provide a useful alternative, in this work we test
automatically developing the STDP hyperparameters using
an evolutionary approach.

Table 1: Predetermined range of the STDP parameters

Parameter Min value Max value
discharge 0.006 1.0
LTP 1.0 2.0
inhLTP 1.0 2.0
LTD 0.0 1.0

Figure 1 A) We used a three-layer feed-forward network.
Vectorised binary bitmap was mapped onto the input layer,
one pixel per one neuron. Spiking activity of the output
layer was processed to have a form of a vector of the sum of
spikes at a given time point. B) Activity vectors were
clustered using Self Organizing Maps. Here vectors of
spiking activity in response to bitmaps depicting moving
cross, ellipse, grid and square were clustered. Precision was
calculated as the proportion of cases which belonged to the
dominant population in the node, weighted by the number
of cases in the whole map. The total score was the sum of
scores of all nodes.

Spiking Neural Network
We use a previously described setup (Kozdon and Bentley,
2017) utilising fully-connected three-layer feed-forward
SNNs consisting of integrate-and-fire neurons (Abbott,
1999) (Fig. 1a), 15% of which were inhibitory. Weights are
initialised with random values between 0 and 2, and
clamped between 0 and 4. An STDP unsupervised algorithm
is used to adjust the weights, and the rules are defined
separately for excitatory and inhibitory neurons, in
accordance with the published biological observations (Bi
and Poo, 1988; D’amour and Froemke, 2015). If a neuron
and its target fire during the same iteration, the weight is
multiplied by the parameter LTP. Conversely, if the target
neuron fires in the absence of the presynaptic neuron firing,
the synaptic weight between them is multiplied by the
parameter LTD, which is lower than 1.

However, for pairs of neurons consisting of an inhibitory
presynaptic neuron and excitatory postsynaptic neuron, if
the target neuron fires during the same iteration, an iteration
before or after the inhibitory neuron, the weight between
them is multiplied by the parameter inhLTP.

The spiking activity of the output layer is represented as
a vector of a total number of spikes at a given time point.
Vectors encoding spiking in response to different pattern
classes are clustered using Kohonen maps (Self Organising
Maps, SOM) (Wehrens and Buydens, 2007) and clustering
precision is calculated (Fig. 1b).

Evolution of Learning Parameters
Throughout this study, we focus on the four main
parameters which affect STDP, namely LTP, LTD, inhLTP
and discharge size. As described previously (Kozdon and
Bentley, 2017) LTP, LTD and inhLTP parameters of our
model define the rate of change of the weights in the STDP
paradigm. Discharge is the size of a single output from a
single neuron, and its size multiplied by the weight
correlates with the likelihood of the target neurons to fire
and, consequently, with the likelihood of the connections
being strengthened. As these “genes” are epistatic – the
phenotype they give depends on the activity of the other
genes – in order to avoid separating sets of values which
perform well together, we decided not to perform cross-over
and instead we alter the genotype using only mutation.
However, we are not excluding the possibility that this
model could be adjusted to further benefit from the addition
of cross-over.

At the beginning of the evolutionary process, we generate
a population of SNNs with randomly initialised weights.
Each network has one chromosome with four genes
representing the LTD, LTP, inhLTP and discharge
parameters; their initial values are random floats contained
in the pre-defined for each parameter range. Table 1 lists the
ranges of values the parameters are restricted to. For the
discharge parameter, the values were restricted to the
previously tested range of values which permitted spiking
but did not lead to instant oversaturation of the signal. For
LTP and inhLTP, we selected range of values which allows
doubling of the synaptic strength, and for LTD values which
allow the synaptic strength to decrease up to the point of the
synapse becoming silent.

During training phase, weights are plastic. Sets of spatio-
temporal patterns are mapped onto the network’s input layer
and weights are adjusted according to the STDP rules
determined by the hyperparameters. The spatio-temporal
patterns used are inspired by the in vivo experiments on
pattern recognition in rats (Thomas et al., 2004), cats (Hubel
and Wiesel, 1970) and primates (Wilson and Riesen, 1966),
during which the animals are placed in front of a screen and
made to watch simple geometric patterns such as stripes,
circles and squares move on the screen while the animals’
brain activity is being recorded.

During testing, fitness is established using a set of sixteen
patterns containing all possible combinations of shape and
direction, then by creating a Kohonen map with spiking
activities of the SNN in response to each pattern, and
calculating clustering precision of each network.

From the second generation onwards, next generation is
created based on the fitness of the SNNs from the previous
generation. Top third of the networks is used to populate
next generation in one of three ways:

1.! The parent is retained. Both the learning
hyperparameters and weights remain the same (the
latter requires the child not to undergo training
between its creation and fitness assessment).

2.! The hyperparameters remain the same but the child
undergoes a round of training thus potentially
changing its weights.

3.! One of the four hyperparameters is mutated and the
child undergoes training in order for the change of the
learning parameters to influence the weights.

The size of the mutation is determined as

!!!!!!!!!!!!!!!!!!!!!!" = ! $ %&'&()*+,' (1)

where in x = 0.05 in order to balance the size of the change
in all generations with the range of the values each
parameter can take (range for all is ! 1, based on earlier
experiments, the smallest meaningful change is ! 0.001).
The direction of the change is selected randomly. New
values are not bound by the initial parameter value
constraints listed in Table 1.

If any of the organisms in the best third of the population
has fitness lower than 50 (lower than an average randomly-
generated organism), it is removed from the genetic pool
and the slots which would belong to its three children are
initialised with different random values instead.

The division into the three above categories was chosen
in order to 1) preserve good solutions and test them on a new
data set to see if the organisms could generalise 2) retain fit
hyperparameters while taking advantage of the possibility
of training improving the fitness even further 3) explore the
hyperparameter space in the neighbourhood of fit solutions.
As the hyperparameters affect the SNNs only during
training, training has to take place here, and it is not possible
to test different hyperparameters but the same weights.

Experimental Details

Experiment 1: Evolving Learning Parameters for
Classification of Spatio-Temporal Patterns
The objective of the first experiment was to determine
whether the collaboration of an EA and STDP leads to the
development of an algorithm capable of clustering shapes
by the direction they move. The cycle consisted of creating
a generation, training organisms and establishing their
fitness, and was repeated twenty times.

A population of thirty fully connected forward SNNs was
initialised with random weights and random values of the
learning hyperparameters. Each network had 500 input
neurons, 500 hidden neurons and 10 output neurons. In the
first generation, all networks were trained using 20 x 25
pixel binary bitmaps (Fig. 2) which were mapped onto the
500 input neurons (pixel one onto neuron one etc.) in such a
way that “black” pixels always made the neurons fire, and
“white” pixels did not cause any excitation. The bitmaps
contained one of four geometric patterns – cross, ellipse,
grid and rectangle. Each shape consisted of 40 black pixels
and was placed at a random location within the bitmap. Then
the shape would continuously move left, right, top or bottom
with the speed of 1 pixel per iteration. One training cycle
consisted of 20 patterns, each being shown for five frames.
Fitness was defined as the ability to cluster the inputs by the
movement direction.

Experiment 2: Evolving Small Populations
Based on the results of experiment 1, we decided to decrease
the population size in order to reduce the probability of
optimal parameters appearing by chance in the first
generation. This was done in order to test if optimal
parameters can be developed if they were not present in the
population, and not just propagate in the population after
being randomly generated in the first generation.

The experiment was carried as previously, with the
exception of population size being decreased from 30
organisms to 12 per generation.

Experiment 3: Evolving Fitness in the Absence of
Training
To test if consistent selection of fit child solutions alone was
sufficient to develop increasingly fit solutions, we used the
setup of experiment 1 and turned training off. In this set up,
weights of the networks did not change. As the
hyperparameters affect the networks’ performance through
affecting STDP during training, the hyperparameters were
not affecting fitness either, and any increase in fitness was
solely due to the EA filling the population with organisms
which were good at generalising and consistently performed
well in tests, and random initialisation of very fit organisms
when organisms with fitness below 50% were removed from
the parent pool.

Experiment 4: Evolution in the Absence of
Architecture Inheritance
The objective of this experiment was to determine the role
of the inherited weights developed by STDP vs the learning

Table 2 Fitness during the evolutionary and learning
process (experiment 1)

Generation Best [%] Top 3 [%] Worst [%]
1 97.5,

SD = 5.6
92.9,
SD = 3.5

27.5,
SD = 25.6

10 100,
SD = 0

97.9,
SD = 3.6

48.8,
SD = 9.3

20 100,
SD = 0

99.2,
SD = 1.8

47.5,
SD = 7.1

hyperparameters evolved by the EA in a population shaped
by both evolution and training. In all previous experiments,
children inherited weights of their parents (even though
sometimes those weights were then modified by training).
In this experiment, weights were not inherited by children.
Thus, children would only inherit the capacity to learn but
not the experience of their parents.

Figure 2 Examples of bitmaps used as input data. A) First
data set consisted of square, grid, ellipse and cross. Each
shape was composed of 40 black pixels, it was placed at a
random location within the visual field (20 x 25 pixels, one
for each input neuron) and moved up, down, left or right
with the speed of 1 pixel per frame. Experiments 1-5 defined
fitness as the ability to cluster the inputs by movement
direction, experiment 6 used clustering by shape.

Figure 3 Experiment 1 Performance of SNNs during
optimisation including evolution and unsupervised learning
A) Precision of best, three best and worst network. B)
number of SNNs in the population which were 100%
precise C-F) Convergence of parameter values during the
evolutionary process. Each colour indicates one of the five
repeats; size indicates fitness.

Experiment 5: Random Parent Selection
In this experiment organisms were not sorted according to
fitness and parents were selected at random to analyse the
role of survival of the fittest in achieving optimal solutions.

Experiment 6: Clustering Input by Shape
In order to test if the EA can successfully optimise the
learning hyperparameters for other tasks, we changed our
definition of fitness from the ability to cluster the inputs by
the movement direction to the ability to cluster by the shape
used. In this experiment, the mutation parameter x was
increased from 0.05 to 0.1 and the number of mutated genes
increased from 1 to 2 in order to compensate for the fact that
the initial solutions were further from the optimal values.

 Results and Discussion

Fitness During Evolution and Learning
Results of experiment 1 showed that with a population of 30
organisms, networks with 100% clustering precision
appeared in the first generation, amongst the organisms with
randomly generated initial hyperparameters, and after one
round of training were present in 4 out of 5 experiments
(Fig. 3a, Table 2; due to overlap between the best and top 3
average categories, SD is not shown in Fig. 3). Best
organism achieved stable 100% precision (SD = 0 %) after
3 generations. The overall fitness of the whole population
steadily increased during the evolution and training process,
and the total number of 100% fit solutions in the population
increased from 0.8 (SD = 0.45) to 3.0 (SD = 2.7) (Fig. 3b).
Evolution initially explored the whole permitted range of
parameter space, and the convergence towards a narrower
range of parameters was seen during evolution (Fig. 3c –f).
Weight differences between the parents and children with a
mutated gene (Fig. 4 A-D) and average change per synapse
increased with time, but the absolute value of the changes
and number of changed synapses decreased. This indicates
that later mutations caused larger, bi-directional changes
focused on a smaller number of synapses – the latter partly
due to an increasing number of synapses being silenced.

Weight differences between the parents and children with an
additional round of training and the number of synapses
changed decreased with time indicatingthat the effect of
additional training was decreasing with time.

Emergent Fitness in Smaller Populations
As in the experiment 1 the population was big enough to
lead to a random creation of optimal and near optimal
solutions in the first generation. We then wanted to more

Table 3 Fitness in the absence of training (experiment 3)

Generation Best [%] Top 3 [%] Worst [%]
1 82.5,

SD = 2.8
80.8,
SD = 4.3

7.5,
SD = 16.7

10 97.5,
SD = 3.4

92.9,
SD = 1.9

46.2,
SD = 25.9

20 90.0,
SD = 5.6

87.9,
SD = 4.6

33.7,
SD = 31.1

Figure 4 Experiment 1 Weight differences between the parents vs children with a mutated parameter and an additional round
of training (A-D) and the parents vs children with unmodified parameters but with an additional round of training (E-H).
N = 5, ten parent-child pairs per category per time point, 255000 synapses per network.

Figure 5 Experiment 2 Fitness in a small population with
suboptimal initial parameters. A) Fitness of the population.
B) Number of solutions with 100% precision.

Figure 6 Experiment 3 Fitness in the absence of training. A)
Fitness of the population. B) Number of solutions with
100% precision.

closely look at the emergence of optimal solutions when no
near optimal solutions were present in the initial population.
In order to test this, we decreased the size of the population
and included only the instances where the precision of the
fittest organism in the first generation was below 95%. In
generation 1, the fittest networks had precision of 88.8 %
(SD = 5.3) (Fig. 5A). In all experiments, a solution with
precision of 100% was found in generation 2 (SD = 0). The
number of optimal solutions in the population had a positive
trend (Fig. 5B), but it was lower than in experiment 1.

Fitness Without Training
To further examine the source of the increase in fitness of
the population, we kept selecting the fittest organisms in
each generation but did not train them. Fitness in the first
generation was lower in comparison to results achieved with
training (82.46%, SD = 2.8% vs 92.5%, SD = 5.6%, which
indicates that training alone improved fitness of networks
with randomly generated learning hyperparameters.
Selecting the fittest organisms led to an increase in fitness
in all categories but this increase was not stable and SD did
not decrease (Table 3). Overall, the best results were
introduced to the population in the first generation and
having children alone did increase the overall fitness of the
population. Training and mutation are needed to create
optimal solutions and systematically reduce SD.

Inheritance of Learning Skills
In all previous experiments, both weights (experience) and
the STDP parameters (learning skills) were inherited by the
children. In this experiment, children inherited only the
hyperparameters. Performance of best and top three
networks was not significantly different from the baseline
(experiment 1) (Fig.7B). These results indicate that the

evolved hyperparameters led to successful learning
irrespectively of the network’s weights.

Fitness Without the Survival of the Fittest.
In this experiment parents were chosen at random,
irrespectively of their fitness. Precision of the best, three
best and worst networks was significantly lower than in the
baseline experiment 1 (Fig. 8A). The slight observed
increase in fitness with time may be due to the higher overall
number of training cycles in the later generations. The
number of optimal solutions in the population remained
constant and was lower than the baseline (Fig. 8B).

Shape Detection
In contrast to experiments 1-5, here we defined precision as
the ability to cluster the spatio-temporal patterns based on
the shape and not movement direction. Precision in
generation 1 was lower than when clustering by movement
direction and did not reach 100% average during 20
generations (Fig. 9A). However, a positive trend was
observed for the precision of the whole population (Table 4)
and precision reached in generation 20 was 20% higher than
reached by the same SNN model with manually adjusted
parameters (Kozdon and Bentley, 2017).

When comparing values of the hyperparameters between
networks optimised for direction detection (experiment 1)
vs shape detection, we can see that their initial average
values were about 0.5 for discharge and LTD and 1.5 for
LTP and inhLTP (i.e. the average of random values was in
the middle of the permitted range). During evolution, the
average hyperparameter values moved away from these
values and towards the preferred parameter space. Networks

Table 4 Fitness of networks optimised for shape detection

Generation Best [%] Top 3 [%] Worst [%]
1 75.0,

SD = 6.2
72.1,
SD = 4.8

18.7,
SD = 17.0

10 82.5,
SD = 2.8

80.0,
SD = 2.8

46.3,
SD = 3.4

20 85.0,
SD = 5.6

81.6,
SD = 3.7

45.0,
SD = 5.2

Figure 7 Experiment 4 Fitness in networks which inherit
hyperparameters but not weights. A) Fitness of the
population. B) Average population fitness in evolution with
and without training.

Figure 8 Experiment 5 Fitness without the survival of the
fittest. A) Fitness of the population. B) Number of solutions
with 100% precision.

Figure 9 Clustering spatio-temporal inputs by shape. A)
Fitness of the population B) Values of the hyperparameters,
optimizing for recognizing direction (grey) vs recognizing
shape (black). Empty markers indicate random average
values in generation 1, filled markers evolved values in
generation 20.

optimised for shape detection preferred lower discharge
values (0.1, SD = 0.3 vs 0.61, SD = 0.3) and LTD values
closer to the limits of the permitted range. Preferred
parameter spaces for LTP and inhLTP were not significantly
different.

Conclusions
In this study, we tested a setup combining an EA for
developing learning hyperparameters and SNNs with STDP.
Previous attempts to adjust the hyperparameters using
manual selection and random search were not successful.
However, evolution enabled the SNN to achieve high
precision with minimal computational effort for the
direction and shape detection tasks.

Importantly, the evolutionary process led to filling the
population with networks which were performing well in
multiple generations and thus were better at generalising.
Through the mutation process, it further explored the
parameter space in the neighbourhood of the promising
solutions. Both evolution and unsupervised training played
a role in developing optimal solutions thus working at both
the level of identifying the fittest networks in the population
and learning in individual networks.

Despite the fact that we were not developing architecture
directly, changing the hyperparameters changed the firing
patterns during training and in consequence the weights.
Some weights decreased to 0 and could not recover, which
is equivalent to pruning connections in the original fully-
connected SNN and changing its topology.

When detecting movement direction, the EA arrives at
near-optimal solutions very early during the evolution and
training process, which is consistent with the proposed
suitability of the SNNs for performing this type of task, and
with the previous observations that SNNs perform better
than chance even without training (Kozdon and Bentley,
2017).

The link between the genotype – the learning
hyperparameters - and phenotype is emergent and depends
on the activity of the network, which in turn is determined
by both the genotype and experience. This makes our
evolutionary approach unusual in comparison to standard
EAs, and more closely resemble the process through which
the brain developed.

It has been proposed that non-inherited learning and
heritable capacity to learn can guide evolution by improving
fitness and altering the search space in which evolution
operates (Baldwin, 1896; Hinton and Nowlan, 1987).
Moreover, human babies are believed to undergo two main
stages of brain optimisation (Wexler, 2010): the first one is
developing what we recognise as the human brain with the
stereotyped patterns of neuronal pathways (developed by
evolution); the second is adapting neuronal weights in
response to experience, including learning from parents.
Thus, our model of inheritance can be said to contain also
this second stage of development.

Over all, we believe that by automating development of
learning hyperparameters for SNNs, our model can replace
informed and random search and overcome short-term
research bottlenecks, but more importantly it is a tool which
allows to further test the unexplored potential of the brain-

inspired unsupervised learning in SNNs in what is the most
obvious way: through evolution.

References
Abbott, L. F. (1999) ‘Lapicque’s introduction of the

integrate-and-fire model neuron (1907)’, Brain
Research Bulletin. Elsevier Science Inc., 50(5–6),
pp. 303–304. doi: 10.1016/S0361-9230(99)00161-6.

Baldwin, J. M. (1896) ‘A New Factor in Evolution’, The
American Naturalist. The University of Chicago
PressThe American Society of Naturalists, 30(354),
pp. 441–451. doi: 10.1086/276408.

Baxter, J. (1992) ‘The Evolution of Learning Algorithms
for Artificial Neural Networks’, Complex systems:
From biology to computation, pp. 313–326.

Belew, R. K., McInerney, J. and Schraudolph, N. N.
(1992) ‘Evolving Networks: Using the Genetic
Algorithm with Connectionist Learning’, Artificial
Life II, 10, pp. 511–547.

Bi, G.-Q. and Poo, M.-M. (1988) ‘Synaptic
Modifications in Cultured Hippocampal Neurons:
Dependence on Spike Timing, Synaptic Strength,
and Postsynaptic Cell Type’, The Journal of
neuroscience!: the official journal of the Society for
Neuroscience, 18(24), pp. 10464–10472.

Bohte, S., Kook, J. and PoutrHan, L. (2000) ‘SpikeProp:
Backpropagation for Networks of Spiking Neurons’,
in. Bruges: European Symposium on Artificial
Neural Networks, pp. 419–424.

Chalmers, D. J. (1990) ‘The evolution of learning: An
experiment in genetic connectionism’, Proceedings
of the 1990 Connectionist Models Summer School.
Morgan Kaufmann, pp. 1–20.

Conti, E., Madhavan, V., Such, F. P., Lehman, J.,
Stanley, K. O. and Clune, J. (2017) Improving
Exploration in Evolution Strategies for Deep
Reinforcement Learning via a Population of Novelty-
Seeking Agents. Available at:
http://arxiv.org/abs/1712.06560 (Accessed: 16
January 2018).

D’amour, J. and Froemke, R. (2015) ‘Inhibitory and
Excitatory Spike-Timing-Dependent Plasticity in the
Auditory Cortex’, Neuron, 86(2), pp. 514–528. doi:
10.1016/j.neuron.2015.03.014.Inhibitory.

Floreano, D. and Mondada, F. (1996) ‘Evolution of
plastic neurocontrollers for situated agents’, From
Animals to Animats 4: Proceedings of the Fourth
International Conference on Simulation of Adaptive
Behavior, 4, pp. 402–410. doi: 10.1021/cm101132g.

Greve, R. B., Jacobsen, E. J. and Risi, S. (2016)
‘Evolving Neural Turing Machines for Reward-
based Learning’, in Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference
- GECCO ’16, pp. 117–124. doi:
10.1145/2908812.2908930.

Hebb, D. O. (1950) ‘Organization of behavior. New
York: Wiley’, Journal of Clinical Psychology. Wiley
Subscription Services, Inc., A Wiley Company, 6(3),
pp. 307–307. doi: 10.1002/1097-
4679(195007)6:3<307::AID-
JCLP2270060338>3.0.CO;2-K.

Hinton, G. E. and Nowlan, S. J. (1987) ‘How Learning
Can Guide Evolution’, Complex Systems, 1, pp. 495–
502.

Hodgkin, A. L. and Huxley, A. F. (1952) ‘A quantitative
description of membrane current and its application
to conduction and excitation in nerve.’, The Journal
of physiology. Wiley-Blackwell, 117(4), pp. 500–44.

Hopfield, J. J. and Brody, C. D. (2001) ‘What is a

moment? Transient synchrony as a collective
mechanism for spatiotemporal integration.’,
Proceedings of the National Academy of Sciences of
the United States of America, 98(3), pp. 1282–1287.
doi: 10.1073/pnas.98.3.1282.

Hubel, D. H. and Wiesel, T. N. (1970) ‘The period of
susceptibility to the physiological effects of
unilateral eye closure in kittens.’, The Journal of
physiology. Wiley-Blackwell, 206(2), pp. 419–36.

Kalia, A., Lesmes, L. A., Dorr, M., Gandhi, T.,
Chatterjee, G., Ganesh, S., Bex, P. J. and Sinha, P.
(2014) ‘Development of pattern vision following
early and extended blindness.’, Proceedings of the
National Academy of Sciences of the United States of
America. National Academy of Sciences, 111(5), pp.
2035–9. doi: 10.1073/pnas.1311041111.

Kozdon, K. and Bentley, P. (2017) ‘Wide Learning’, in
IEEE Symposium Series on Computational
Intelligence. Honolulu: IEEE, pp. 3183–3190.

Lehman, J., Chen, J., Clune, J. and Stanley, K. O. (2017)
ES Is More Than Just a Traditional Finite-Difference
Approximator. Available at:
https://arxiv.org/pdf/1712.06568.pdf (Accessed: 16
January 2018).

Markram, Lubke, H., Frotscher, J.";, Sakmann, M."; and
Bert (1997) ‘Regulation of synaptic efficacy by
coincidence of postsynaptic APs and EPSPs’,
Science, 275(5297), p. 213.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H.,
Kumaran, D., Wierstra, D., Legg, S. and Hassabis,
D. (2015) ‘Human-level control through deep
reinforcement learning’, Nature, 518(7540), pp.
529–533. doi: 10.1038/nature14236.

Ponulak, F. and Kasiński, A. (2010) ‘Supervised learning
in spiking neural networks with ReSuMe: sequence
learning, classification, and spike shifting.’, Neural
computation, 22(2), pp. 467–510. doi:
10.1162/neco.2009.11-08-901.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J.
(1986) ‘Learning representations by back-
propagating errors’, Nature. Nature Publishing
Group, 323(6088), pp. 533–536. doi:
10.1038/323533a0.

Saggie, K., Keinan, A. and Ruppin, E. (2004) ‘Spikes
that count: rethinking spikiness in neurally
embedded systems’, Neurocomputing, 5860, pp.
303–311. doi: 10.1016/j.neucom.2004.01.060.

Salimans, T., Ho, J., Chen, X., Sidor, S. and Sutskever, I.
(2017) ‘Evolution Strategies as a Scalable
Alternative to Reinforcement Learning’. doi:
10.1.1.51.6328.

Stanley, K. O., Bryant, B. D. and Miikkulainen, R.
(2003) ‘Evolving adaptive neural networks with and
without adaptive synapses’, The 2003 Congress on
Evolutionary Computation, 2003. CEC ’03., 4(2),
pp. 2557–2564. doi: 10.1109/CEC.2003.1299410.

Thomas, B. B., Seiler, M. J., Sadda, S. R., Coffey, P. J.
and Aramant, R. B. (2004) ‘Optokinetic test to
evaluate visual acuity of each eye independently’,
Journal of Neuroscience Methods, 138, pp. 7–13.
doi: 10.1016/j.jneumeth.2004.03.007.

Wehrens, R. and Buydens, L. M. C. (2007) ‘Self- and
super-organizing maps in R: The kohonen package’,
Journal of Statistical Software. Foundation for Open
Access Statistics, 21(5), pp. 1–19. doi:
10.18637/jss.v021.i05.

Wexler, B. E. (2010) ‘Review Article Neuroplasticity ,
cultural evolution and cultural difference’, World
Cultural Psychiatry Research Review, (Summer),

pp. 11–22.
Wilson, P. D. and Riesen, A. H. (1966) ‘Visual

development in rhesus monkeys neonatally deprived
of patterned light’, Journal of Comparative and
Physiological Psychology, 61(1), pp. 87–95. doi:
10.1037/h0022873.

