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Abstract 

Infrared absorption spectra of NH3 have been obtained at high resolution (0.02 cm-1) at seven 

temperatures between 296 and 973 K. The spectra were recorded using a Bruker IFS 125 infrared Fourier 

transform spectrometer in the 2400-5500 cm-1 region and empirical lower state energies have been 

obtained by comparison of line strengths at different temperatures. Using two reference line lists, 

quantum number assignments have been made for each temperature for between 1660 and 3020 

transitions, with J up to 22. The line lists obtained provide accurate line positions as well as intensities and 

experimental lower state energies at temperatures relevant for modeling the atmospheres of brown 

dwarfs and exoplanets. 

Highlights 

 Fourier transform infrared absorption spectra of hot ammonia 

 Line positions, empirical lower state energies and intensities measured 

 Line lists for brown dwarf and exoplanet atmospheres 
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Introduction 

Ammonia (NH3) is a widely studied molecule in atmospheric chemistry. In the Earth’s atmosphere, where 

sources include animal waste and fertilizers [1], it acts as a precursor in the production of aerosols [2] and 

particulate matter [3]. Deposition of atmospheric NH3 can lead to fertilization, a side effect of which may 

be decreased biodiversity [4]. 

NH3 has also been observed in a number of astrophysical environments. In the solar system, it has been 

detected in the atmospheres of Jupiter [5, 6], Saturn [7] and Titan [8] as well as on comets [9, 10]. The 

pure rotational transitions and inversion transitions of NH3 have been detected in molecular clouds [11, 

12] making it one of the first extraterrestrial polyatomic molecules discovered. The atmospheres of cool 

astronomical objects, such as brown dwarfs and exoplanets, are of low enough temperatures to allow 

small molecules such as NH3 to form and maintain large enough concentrations to be detected. 

Sub-stellar objects with sufficiently low mass (<0.08 solar masses) are known as brown dwarfs and cannot 

fuse hydrogen within their cores [13]. The first such object discovered was Gliese 229B [14] and since then 

a large number of brown dwarfs have been detected with atmospheres cool enough (500 – 2400 K) for a 

number of molecular species to exist. Indeed, brown dwarfs, similar to stars, are classified by the presence 

or absence of particular atomic and molecular features. The hottest such objects, the L dwarfs, contain 

features from electronic transitions of metal hydrides such as FeH [15] and CrH [16, 17]. T dwarfs are 

distinguished by hot H2O and CH4 transitions [18, 19]. NH3 is observed in late T dwarfs, with increasing 

concentrations as the objects cool [19, 20]. As such, NH3 is expected to characterize a yet cooler class, the 

Y dwarfs that have an approximate maximum temperature of ~700 K. Y-dwarfs have now been observed 

and NH3 appears as a shoulder on a feature at 1.58 μm [21, 22].  

Since the discovery of the first exoplanet in 1995 [23] more than 3500 have been discovered 

(http://exoplanet.eu/). If the planet passes in front of the star it orbits, then it may be detected by 

observation of periodic decreases in light intensity of the parent star. This technique is known as the 

transit method and was first used successfully to detect the planet HD 209458b [24] and has since been 

used by the Kepler mission to observe large numbers of exoplanet candidates [25]. This technique also 

allows the spectrum of the exoplanet atmosphere to be obtained by recording the transit dips as a 

function of wavelength [26]  and use of the method has resulted in the detection of a number of molecules 

such as H2O [27, 28], CH4 [29], CO [30] and CO2 [31]. As yet, NH3 has not been observed in the atmosphere 

of an exoplanet, however a number of modelling studies have predicted its presence in hydrogen-rich 

hot-Jupiters [32-34]. 

NH3 is a polyatomic molecule having four atoms arranged in a trigonal pyramid structure with C3v 

symmetry [35]. Ammonia has a complex infrared spectrum with 6 fundamental vibrational modes, two of 

which are doubly degenerate. The four fundamental vibrational frequencies are: the symmetric stretch at 

3336.2 cm-1 (ν1, a1), the symmetric bend at 932.5 cm-1 (ν2, a1), the antisymmetric stretch at 3443.6 cm-1 

(ν3, e) and the antisymmetric bend at 1626.1 cm-1 (ν4, e). 

There has been extensive work on the spectroscopy of ammonia in the infrared; for example experimental 

line lists have been obtained in the 2 μm [36] and 3 μm [37] regions. The most complete line assignments 

for NH3 in the infrared are compiled in the HITRAN 2012 database [38], however HITRAN is intended for 

http://exoplanet.eu/


applications near room temperature and lacks complete hot band coverage in this region [39]. The hot 

bands are essential when comparisons are made to high temperature atmospheres. A comprehensive 

theoretical line list, BYTe, has been calculated for NH3 that can be used at temperatures up to 1500 K and 

contains approximately 1.1 billion transitions [40]. The ro-vibrational calculations from Huang et al., [41, 

42] and references therein, provide an additional line list for ammonia in this region. High temperature 

experimental line lists have been obtained using emission spectroscopy at high resolution (0.01 cm-1)  from 

740-2100 cm-1 [43] and 1650-4000 cm-1 [44]. Absorption spectra at moderate resolution (0.09 cm-1) of hot 

samples at atmospheric pressure have also been recorded in the 500-2100 cm-1 [45] and 2100-5500 cm-1 

[46] spectral regions. Existing experimental line lists have been used in an energy level analysis (MARVEL) 

to predict a large number of unmeasured lines [47]. Our work reported below details an extension of 

these experimental line lists, in the 2400-5500 cm-1 region using an improved cell design and technique 

[48] to record transmission spectra of hot samples. We provide empirical lower state energies, intensities 

and line positions (± 0.002 cm-1) which can be used in atmospheric models for brown dwarfs and 

exoplanets. 

 

Experimental 

Transmission spectra were recorded at seven different temperatures, 23 °C, 200 °C, 300 °C, 400°C, 500 °C, 

600 °C and 700 °C, using a sealed quartz cell, tube furnace and Fourier transform spectrometer. This range 

includes the effective temperatures of the mid and late T dwarfs [19] and Y dwarfs [22] as well as the 

coolest observed hot Jupiters [32]. Above 700 °C thermal decomposition of the sample gas reduces the 

signal to such an extent that reliable spectra could not be obtained.  

The transmission spectrum for each temperature is obtained from four individual spectra that, when 

combined, correct for NH3 and cell emission; this method has been used previously to record spectra for 

methane [48]. An absorption spectrum (Aab) is recorded with NH3 in the cell at temperature with an 

external emission source (200 W tungsten halogen broadband lamp). A background reference spectrum 

for the absorption (Aref) is recorded without the NH3 in the cell. The emission spectrum (Bem) is recorded 

with NH3 in the cell at temperature without the lamp. The background reference spectrum for emission 

(Bref) is recorded without the sample in the cell and with the lamp turned off. These spectra are combined 

to calculate the transmission spectrum for each temperature as 

𝜏 =  
𝐴𝑎𝑏−𝐵𝑒𝑚

𝐴𝑟𝑒𝑓−𝐵𝑟𝑒𝑓
 . 

Spectra were recorded in the 2400 – 5500 cm-1 region, providing overlap with previous experimental work 

[44]. This previous work includes spectral regions that cover 3ν2/ν2+ ν4 and ν1/ν3/2ν4 bands and the work 

provided here extends this coverage to include spectral regions that contain the ν1+ν2/ν2+ν3 and 

ν1+ν4/ν3+ν4 bands as well as associated hot bands. 

The 50 cm quartz tube sample cell was used under static conditions to contain the NH3 sample. The cell is 

contained within the tube furnace which is heated to the appropriate temperature, which is accurate to 

within ±10 °C. The cell was aligned with the entrance aperture of a Bruker IFS 125 HR Fourier transform 

spectrometer, and radiation was focused into the spectrometer using a CaF2 lens. The spectrometer used 

a CaF2 beamsplitter, covering the spectral region 1650–7000 cm-1, and an indium antimonide (InSb) 

detector. Experimental parameters are summarized in Table 1. 



The resulting transmittance spectra contained a number of H2O lines which were removed manually using 

the Bruker OPUS software. After combining the spectra at each temperature to calculate a transmission 

spectrum, peaks were picked using WSpectra [49] to measure their position and intensity. Lines were 

calibrated for line position and intensity by matching strong and isolated lines that are also found in the 

HITRAN 2012 database. The number of lines found for each temperature is given in Table 2. 

The line intensity equation gives the line intensity as a function of temperature, 

𝑆′ =  
2𝜋2𝜈10𝑆𝐽′𝐽"

2𝜀0ℎ𝑐𝑄
exp (−

𝐸"

𝑘𝑇
) [1 − exp (

ℎ𝜈10

𝑘𝑇
)] 

where ν10 is the line frequency, SJ’J” is the line strength, ε0 is the permittivity of free space, h is the Planck 

constant, c is the speed of light, Q is the internal partition function, E” is the lower state energy, k is the 

Boltzmann constant and T is the temperature [35]. If a line is measured at different temperatures, the 

intensity of the line at each temperature may be compared to the intensity at a reference temperature 

by taking a ratio of the line intensity equation 

𝑆′

𝑆0
′ =

𝑄0

𝑄
exp (

𝐸"

𝑘𝑇0
−

𝐸"

𝑘𝑇
) [

1 − exp (−
ℎ𝜈10
𝑘𝑇

)

1 − exp (−
ℎ𝜈10
𝑘𝑇0

)
] 

where 𝑆0
′  and 𝑇0 refer to the line intensity and temperature of the reference measurement. For these 

results 500 °C was used as the reference as this temperature contained the most lines with which to 

compare the line intensities of other temperatures. If there was no line measured at 500 °C then the 

reference used was the temperature with the next greatest number of lines. The partition function used 

for NH3 was obtained from Yurchenko et al. [40], which for our temperature range is essentially the same 

as the more recent values of Sousa-Silva et al. [41]. 

The lower state energy can be obtained from a rearranged version of the line intensity equation 

ln (
𝑆𝑄

𝑆0𝑄0
[
1 − exp (−

ℎ𝜈10
𝑘𝑇

)

1 − exp (−
ℎ𝜈10
𝑘𝑇0

)
]) =  

𝐸"

𝑘𝑇0
−

𝐸"

𝑘𝑇
 

where the intensity ratio on the left hand side can be plotted against 1/kT. Plotted for multiple 

temperatures, the gradient of this line gives the lower state energy. 

 

Results and Discussion 

Forty Torr of NH3 was used in the sample cell for these measurements in order to observe weaker 

transitions. However, at this pressure, many strong lines become saturated, particularly in the Q branch 

of the ν1 fundamental mode and the lines are pressure-broadened. The resulting line lists are provided at 

each temperature (as supplementary material) and contain line position, line intensity and lower state 

energy (if calculated). For observed lines that could be assigned using the MARVEL or HITRAN line lists, 

the corresponding position, intensity, lower state energy and quantum number assignment is provided. 

Observed saturated lines, for which accurate positions and intensities could not be measured, were 



excluded and replaced with HITRAN lines with intensities greater than 2.0 x 10-20 cm molecule-1. The 

experimental positions were calibrated to strong lines in HITRAN, and the mean difference between all 

matched lines is approximately 4.0 x 10-4 cm-1 with a standard deviation of 3.0 x 10-4 cm-1 after calibration. 

Similarly, the accuracy of the intensities of the experimentally obtained lines is measured by comparison 

with matched HITRAN lines; for these the mean difference is within 20 %. 

The top panels of Figures 1 and 2 show overviews of the recorded spectra at 296 and 773 K, respectively. 

The middle panels show simulated spectra from the BYTe line list and the bottom panels similarly show 

simulated spectra from the HITRAN line list. The spectral simulation uses the Reference Forward Model 

[50], a line-by-line radiative transfer model, to calculate the transmission through a 50 cm cell with the 

experimental pressure and temperature. Individual line broadening parameters for the lines in BYTe were 

obtained as averages from HITRAN 2012 and applied to all lines. The HITRAN spectral simulation uses the 

line positions and intensities from HITRAN 2012 as well as the averaged broadening parameters applied 

globally, therefore allowing for comparisons between HITRAN, BYTe and our measurements. 

The experimental spectrum at 296 K (Figure 1) shows some saturated lines of the ν1 fundamental, 

ν1+ν2/ν2+ν3 and ν1+ν4/ν3+ν4 modes which have been replaced in the final line list. In general, there is good 

agreement between the three spectra at 296 K. For 773 K, the experimental and BYTe spectra in Figure 2 

clearly show a number of additional hot bands that are not present in the HITRAN spectrum, most notably 

the Q-branch of the ν1+3ν3-3ν3 band at around 3850 cm-1 and the ν2+ν3-ν2 band from 4000 cm-1 to 4200 

cm-1. Other hot bands are included in the 3000-3600 cm-1 regions and 4200-4700 cm-1 regions although 

they are not shown because of the density of lines. Some lines in HITRAN have an incorrect lower state 

energy which can be seen clearly in Figure 2 at, for example, around 4150 cm-1 where an error in lower 

state energy results in a ‘bad’ extrapolation with temperature. 

A more detailed view of short segments of the three spectra is shown in Figures 3 and 4. Figure 3 again 

shows the three spectra for 296 K. There are a number of lines that assignable in both the experimental 

and BYTe spectra; one example being the strong line at 4151.8 cm-1 (the R(6) line of the ν1 + ν2 band) that 

appears in all three spectra within 0.1 cm-1 with a similar intensity.  Even at room temperature, however, 

there are a number of lines in the experimental spectrum that are missing from HITRAN and a number of 

inconsistencies between the experimental spectrum and the BYTe simulation. Lines in the experimental 

line lists which have been matched to lines in either reference line list are marked by an asterisk. At 773 

K, the hot lines in the experimental spectrum at 4141.0 cm-1, 4147.4 cm-1 and 4153.2 cm-1 can be matched 

to lines in the BYTe spectrum, although their positions are shifted. In this region the shift is over 1 cm-1 

towards higher wavenumbers, although in other regions the shift value and direction vary. While the 

strong lines can be identified, it becomes more problematic to assign weaker features from BYTe primarily 

due to the observed shifts. The lines in Figure 4 which are not matched (i.e., those without an asterisk) 

include a number of strong lines, and these are mostly hot lines. This demonstrates the difficulty in 

assigning lines in regions with overlapping hot bands where the line position from calculated spectra is of 

insufficient accuracy. 

The empirical lower state energies are plotted against line position in Figure 5 in the lower panel along 

with those from HITRAN in the upper panel. The near-vertical lines are belong to Q branches and the 

parabolic features the left and right of the Q-branches are from the P and R branches, respectively.  

There are a number of notable differences between the HITRAN lower state energies and those obtained 

by experiment (Fig 5). The incompleteness of HITRAN can be seen between 3600 and 4100 cm-1, 



experimental data has been obtained in this region. There are also very few lower state energy values 

listed in HITRAN with energies above 2000 cm-1; some of these are from fundamental and combination 

transitions and can be seen in the bottom panel, particularly the Q branch of the ν1 band and the P and R 

branches of the ν1+ν2 band. However, most of the lines with high lower state energies are from hot 

transitions. The most notable ‘hot’ band in the lower panel is the strong Q branch at a position 3850 cm-

1, extending from a lower state energy of 2000-3000 cm-1, which is not provided in HITRAN. This feature 

can be seen in the 773 K NH3 spectra in Figure 2 in both the experimental data (top) and BYTe (center) 

panels and not in the HITRAN (lower) panel.  

The MARVEL analysis of NH3 [47] and re-analysis of the HITRAN NH3 database [39] are line lists in the 

region of interest which contain quantum number assignments. MARVEL provides a self-consistent list of 

fully assigned line positions, but no associated line intensities. Therefore, rather than using MARVEL 

directly, we used the MARVEL adjusted BYTe line list BARVEL, which was computed by replacing BYTe 

energies with the corresponding values from MARVEL. Disregarding the 13% of MARVEL states that could 

not be matched to corresponding BYTe states, BARVEL provides intensity data for roughly 18,500 (66%) 

of MARVEL transitions, plus many predicted transitions between MARVEL energy levels that have not 

been observed experimentally. The remaining line list consists of transitions for which either one or both 

of the states takes its energy from BYTe. We decided to only use the transitions for which both upper and 

lower state had their values taken from MARVEL to avoid any discrepancies in line positions due to the 

inaccuracy of BYTe. 

The positions and intensities from these lists may be compared to those obtained experimentally to 

provide tentative assignments. Lines with positions within 0.002 cm-1 and intensities between 0.5 and 2.0 

times that of the experimental lines were considered matched, with the number of assigned lines from 

each reference list given in Table 2, it should be noted that many of these assignments are for the same 

lines at different temperatures. Figure 6 shows the comparison of lower state energies from matched 

lines. 

 

Conclusions 

High resolution transmission spectra of ammonia recorded at seven temperatures between 22 °C and 700 

°C were used to calculate lower state energies in the 2400-5500 cm-1 region. These spectra include several 

hot bands which are not present in HITRAN even at room temperature with tentative assignments of J up 

to 22. Therefore, this work currently provides the most accurate line list for simulating room temperature 

(and higher) NH3 observations in this spectral region. Extrapolating room temperature HITRAN results to 

higher temperatures results in a substantial decrease in total intensity as the hot bands are not included 

(Table 4) and this work provides intensity estimates for the hot bands in this region.  

Calculated line lists such as BYTe [40] provide more lines than are experimentally observable due 

weakness of millions of lines in the spectrum and the sensitivity required to measure them. Calculations 

give a much more complete total intensity sum over multiple bands, however, positions of individual lines 

in BYTe are less well determined than in the experiment measurements. 

The experimental line lists obtained can be used directly in atmospheric models for brown dwarfs and 

exoplanets. The line lists can also be used to create template spectra for cross correlation with high 



resolution spectra of planetary systems. The cross correlation method for detecting molecules on 

exoplanets, such as those used to detect CO on HD 209458 [51] by analyzing Doppler-shifted spectral 

features of a transiting exoplanet, require high resolution template spectra with accurate line positions 

and intensities. The line lists of this work satisfy both the high temperature and high resolution 

requirements for current exoplanetary research. 

 

 

 

Table 1: Experimental conditions 

Parameter Value 

Spectral region (cm-1) 
Detector 
Beamsplitter 
Spectrometer Windows 
Lens 
Scans 
Resolution (cm-1) 
NH3 Pressure (Torr) 
Zerofilling factor 

2400-5500 
InSb 
CaF2 
CaF2 

CaF2 

300 
0.01 
40 
x 16 

 

Table 2: Total number lines, the number of added lines, partition functions and tentative assignments 

made via comparison with each line list at each temperature [40] 

Temperature 
(K) 

Number 
of lines 

HITRAN 
additions 

Partition 
function 

Down et al. 
assignments 

MARVEL 
assignments 

296 
473 
573 
673 
773 
873 
973 

8494 
16019 
20300 
23010 
20066 
18794 
9985 

722 
789 
825 
834 
713 
691 
598 

1769.563 
3792.440 
5320.817 
7252.482 
9705.249 
12818.840 
16759.410 

2136 
3020 
2976 
2913 
2569 
2296 
1660 

1813 
2721 
2839 
2906 
2594 
2346 
1178 

 

       



 

Figure 1: Overview of spectra of NH3 showing experimental data (top panel) and simulated spectra created 

to match the conditions of the experiment from the BYTe (center panel) and HITRAN (lower panel) line 

lists at 296 K.  

 



Figure 2: Overview of spectra of NH3 showing experimental data (top panel) and simulated spectra created 

to match the conditions of the experiment from the BYTe (center panel) and HITRAN (lower panel) line 

lists at 773 K.  

 

 

 

Figure 3: Detailed spectra of NH3 showing experimental data (top panel) and simulated spectra created 

to match the conditions of the experiment from the BYTe (center panel) and HITRAN (lower panel) line 

lists at 296 K. Experimental lines that have been assigned by matching are marked by asterisks. 

 



 

Figure 4: Detailed spectra of NH3 showing experimental data (top panel) and simulated spectra created 

to match the conditions of the experiment from the BYTe (center panel) and HITRAN (lower panel) line 

lists at 773 K. Experimental lines that have been assigned by matching are marked by asterisks. 

 

 



 

Figure 5: Comparison of lower state energies from the HITRAN line list [38] (top panel) and from the 

experimental line list (lower panel) as a function of line position. 

 



 

Figure 5: Comparison of matched lower state energies obtained from experiment (x-axis) and the HITRAN 

re-analysis of Down et al. [39] (y-axis).  
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