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Energy economists have identified two sa-
lient features of data on energy use and energy
prices: In time-series data, energy use does not
change much with energy price changes. (See
Ernst R. Berndt and David O. Wood, 1975.) In
cross-section data across countries, energy use
is responsive to international differences in en-
ergy prices. (See James M. Griffin and Paul R.
Gregory, 1976; Robert S. Pindyck, 1979.) In
this article, we consider two models of energy
use designed to reproduce the low short-run and
high long-run elasticities of energy use seen in
the data. We contrast the models’ implications
for capital and output as well as energy use in
the time series and in the cross section.

One model we consider is a putty-putty model
developed by Pindyck and Julio J. Rotemberg
(1983). The key features of this model are that
capital and energy are highly complementary and
that capital is subject to adjustment costs. Because
of the adjustment costs, the capital stock moves
slowly over time in response to changes in energy
prices. Since energy and capital are highly com-
plementary in production, energy moves slowly as
well. In the long run, the capital stock adjusts to
permanent differences in energy prices and so
does energy use.

The other model is a putty-clay model in which
a large variety of types of capital goods are com-
bined with energy in different fixed proportions.
The putty-clay model delivers a low elasticity of
energy use in the short run, because existing cap-
ital uses energy in fixed proportions. In the long
run, in response to permanent differences in en-
ergy prices, agents invest in different capital goods

with different fixed energy intensities. As a result,
in the long run, energy use is responsive to differ-
ences in energy prices.

When we compare the Pindyck-Rotemberg
putty-putty model with the putty-clay model,
we find that the models have similar implica-
tions for how energy use responds to energy
prices in the time series and in the cross section.
When simulated, both models deliver similar
predictions for the evolution of energy use and
energy expenditure relative to gross domestic
product (GDP). The models show some minor
differences in their time-series implications for
the capital-to-energy ratio. In the putty-clay
model, the capital-to-energy ratio lags the cor-
responding ratio in the data, while in the
Pindyck-Rotemberg model, it does not.

The major difference between the models is in
their cross-section implications for how capital
and output respond to permanent differences in
energy prices. In the Pindyck-Rotemberg model,
countries with permanently higher energy prices
have dramatically lower capital stocks and output,
while in the putty-clay model, they do not. The
response of capital in the Pindyck-Rotemberg
model is much larger than that estimated by
Griffin and Gregory (1976) and Pindyck (1979) in
the cross section. In contrast, the response of cap-
ital in the putty-clay model is similar to estimates
in those studies.

One of the economic implications of this dif-
ference is that the models give drastically different
predictions about the effect of an energy tax on
output. In a simplified version of the Pindyck-
Rotemberg model, we find that an energy tax that
doubles the price of energy leads to a fall in output
in the long run of 33 percent. In contrast, the same
tax in the putty-clay model leads to a fall in output
of only 5.3 percent. This drop in output in the
Pindyck-Rotemberg model is an order of magni-
tude larger than typical measures of the effects of
energy taxes, such as those of Lawrence H.
Goulder (1992, 1993, 1995) and Dale W. Jorgen-
son and Peter J. Wilcoxen (1993). The drop in
output in the putty-clay model is comparable to
the drop shown in these studies.
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This difference in the cross-section implica-
tions of the two models stems from the different
ways the models deliver the low short-run and
high long-run elasticities of energy use. In the
Pindyck-Rotemberg model, capital and energy
are highly complementary in both the short run
and the long run. Since capital and energy are so
complementary, energy use responds a lot in the
long run only if the capital stock does as well. In
contrast, in the putty-clay model, capital and
energy are highly complementary in the short
run, but are substitutable in the long run. Thus,
in the short run, energy use does not adjust to
energy price changes. In the long run, however,
the capital-to-energy ratio changes as agents
invest in new types of capital with different
energy intensities. Thus, in the long run, energy
use changes with energy prices even if the cap-
ital stock does not.

In most quantitative work to date, economists
have used the now standard putty-putty model
of production with smooth substitution between
capital and other factors. In that model, the
capital stock of the economy can be aggregated
into a single state variable. In contrast, in the
putty-clay model, capital goods come in a wide
variety of types indexed by the proportions in
which they can be combined with other factors,
and in general, no single capital aggregate can
be formed. The concern that this feature of the
putty-clay model might give rise to an intracta-
ble curse of dimensionality may have hindered
its application.

In applying this putty-clay model to data on
energy use, we find that despite the large num-
ber of capital goods, the model does not suffer
from the curse of dimensionality. In particular,
we show that as long as all types of existing
capital are fully utilized in equilibrium, the so-
lution to the putty-clay model with many capital
goods is equivalent to the solution to a model
with only two state variables: aggregate capital
services and aggregate energy use. Moreover,
when this condition that all existing types of
capital are fully utilized in equilibrium is satis-
fied, then in each period, all investment is con-
centrated in one type of capital with one energy
intensity. Thus, the condition that all existing
types of capital be fully utilized in equilibrium
simplifies the solution to the model consider-
ably. This solution applies to the putty-clay
model of energy because energy costs are a

small fraction of the total cost of capital and
energy, and the energy price does not vary so
much that it ever becomes optimal to leave
energy-intensive units of capital unutilized.

In the putty-clay model, capital is putty-clay
in terms of its energy intensity. Our theoretical
model builds on insights from an earlier litera-
ture in which capital is putty-clay in terms of its
labor intensity. This literature begins with the
work of Leif Johansen (1959), who developed
the basic putty-clay setup in a deterministic
growth model. Subsequently, Robert M. Solow
(1962), Guillermo A. Calvo (1967, 1976), E.
Sheshinski (1967), David Cass and Joseph E.
Stiglitz (1969), and many others investigate the
properties of this model.

For some recent work on a vintage approach to
modeling energy use, see Charles S. Struckmeyer
(1987). Plutarchos Sakellaris (1997) uses a vin-
tage model of capital accumulation to address the
link between shocks to factor prices and firm
profitability. In solving the model, Sakellaris uses
a full utilization condition which is similar to ours.
For some work incorporating imperfect competi-
tion into a model of energy use, see Rotemberg
and Michael Woodford (1996).

I. The Data

In this section, we discuss the time-series and
cross-section data on energy prices, energy use,
and energy expenditure. We argue that in the
time series, energy use is fairly inelastic, while
in the cross section, it is fairly elastic.

For the time series, we use current annual
data on energy prices, energy use, and energy
expenditure for the U.S. economy for the period
1960–1994. We interpret our putty-putty and
putty-clay models as covering all sectors of the
economy except the energy-producing sector.
As a result, in our measures of output and
energy use, we exclude the output and energy
use of the energy sector of the U.S. economy.
To obtain an aggregate series on energy use for
the U.S. economy, we construct a constant-price
measure of the use of electricity, petroleum,
coal, and natural gas. Correspondingly, our ag-
gregate energy price is the ratio of energy use
measured in current prices to energy use mea-
sured in constant prices. A full explanation of
the sources and methods used in our data con-
struction is given in the Appendix.
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In Figure 1, we plot the logarithms of our
data on the energy price relative to the GDP
deflator, energy use relative to real GDP, and
nominal energy expenditure relative to nominal
GDP for the period 1960–1994. These series
have all been normalized to have mean zero. As
is evident in this figure, energy use fluctuates a
lot less than the energy price or energy expen-
diture, while the fluctuations in energy expen-
diture are very similar to those in the energy
price. These data suggest that in the time series,
energy use responds rather inelastically to
changes in energy prices. This figure corrobo-
rates the finding by Berndt and Wood (1975)
that energy use moves less than energy prices in
the time series.

The relationships among energy prices, use,
and expenditure apparent in Figure 1 contrast
sharply with what is found when energy prices,
use, and expenditure are compared across coun-

tries. Griffin and Gregory (1976) and Pindyck
(1979) report that there is a wide disparity in
energy prices across countries in their data, due
primarily to differences in energy taxes, tariffs,
and import controls, but these international vari-
ations in energy prices do not closely track the
observed international variations in energy ex-
penditure shares. In particular, both of these
studies estimate an own-price elasticity of en-
ergy use of 0.8. Moreover, Griffin and Gregory
(1976) do not reject the hypothesis that energy
enters production in a Cobb-Douglas relation-
ship with other factors. Thus, in the cross sec-
tion, energy use is fairly elastic.

II. The Pindyck-Rotemberg Model

Pindyck and Rotemberg (1983) develop and
estimate a putty-putty model of production that
includes capital, energy, labor, and materials.

FIGURE 1. ENERGY PRICE, USE, AND EXPENDITURE

U.S. DATA 1960–1994

Notes:Energy price is the ratio of the implicit deflator for energy to the GDP deflator; energy use is the ratio of real energy
expenditure to real GDP; energy expenditure is the ratio of nominal energy expenditure to nominal GDP. All series are
measured in logarithms and demeaned. See the Appendix for details.
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Their model has adjustment costs on capital and
labor and a translog cost function describing
variable costs due to materials and energy. They
estimate this model using a data set that covers
the manufacturing sector in the United States
during the years 1948–1971. Pindyck and
Rotemberg (1983) find that their estimated
model produces both low elasticities of energy
use in the time series and high elasticities of
energy use in the cross section.

The basic mechanism of their model is as
follows. Capital and energy are highly comple-
mentary in both the short run and the long run,
so capital-to-energy ratios never move much. In
the short run, adjustment costs keep capital
from changing in response to energy prices, so
energy use does not change much either. In the
long run, capital does respond, but since capital
and energy are so complementary, energy use
responds a lot in the long run only if the capital
stock does as well. This basic mechanism im-
plies that in a cross section, the capital stock
falls substantially when the energy price rises.
More precisely, Pindyck and Rotemberg (1983
Table 2 p. 1074) estimate the cross-section
Allen elasticity of the capital stock with respect
to the energy price to be20.9, so a 1-percent
increase in energy prices drives down energy by
1 percent, drives down capital by 0.9 percent,
and raises the capital-to-energy ratio by only 0.1
percent.

This implication is not consistent with the
cross-section studies of Griffin and Gregory
(1976) and Pindyck (1979). These studies find
that when output is held fixed, capital stays the
same or even rises when energy prices are
higher. Griffin and Gregory’s point estimates of
the cross-section Allen elasticity of the capital
stock with respect to the energy price range
from 0.08 to 0.17, while Pindyck’s estimates
range from 0.03 to 0.12.

To illustrate the basic idea behind the
Pindyck-Rotemberg model, we present a sim-
plified version in which we abstract from mate-
rials and use constant-elasticity-of-substitution
(CES) production functions instead of a trans-
log cost function. We show that this model
reproduces the time-series and cross-section
patterns of energy use in the data. Throughout,
we interpret the cross-section elasticities in the
data as corresponding to cross–steady-state
elasticities in our theoretical models. We show

that the model has problems, however, in repro-
ducing the patterns of the capital stock and
output in the cross section.

In our simplified version of the Pindyck-
Rotemberg model, we index time byt 5 0, 1,
2, ... . Output is produced with inputs of capital,
energy, and labor. There are adjustment costs
for investment in new capital. Energy is im-
ported from abroad at an exogenous world price
pt, which is random, and energy imports are
paid for with exports of output, with trade bal-
anced in every period. The preferences of the
representative agent are given by

(1) E0 O
t50

`

b tu~ct !

wherect is consumption and 0, b , 1 is the
discount factor. Laborl t is supplied inelastically
and is set equal to the consumer’s time endow-
ment, which equals one.

The equilibrium allocation for this economy
is a set of sequences for capital, investment,
energy use, and consumption {kt11, xt, et, ct}
that maximizes (1) subject to

(2) ct 1 xt 5 G~F~kt , et !, l t ! 2 pt et

(3) kt11 5 ~1 2 d!kt 1 xt 2 f~xt /kt !kt

with k0, l t 5 1, and the stochastic process for
energy prices taken as given. Heref captures
the adjustment costs on investment,d is the
depreciation rate,F is a constant-returns-to-
scale function aggregating capital and energy
into capital services, andG is a constant-
returns-to-scale production function aggregat-
ing capital services and labor into output. We
assume thatF andG are CES production func-
tions with

F~k, e! 5 ~vF k12a 1 ~1 2 vF !e12a!1/12a

G~F, l ! 5 ~vGF12b 1 ~1 2 vG!l 12b!1/12b

where a, b, vF, and vG are parameters. Ad-
justment costs are given byf( x/k) 5 (D/ 2)(x/
k 2 d)2, where D is the adjustment cost
parameter.
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We choose the parameters of the production
functionsF andG and the steady-state energy
price p# to reproduce the elasticity estimates in
Pindyck and Rotemberg (1983) and the factor
shares in our data. The short-run Allen elasticity
of energy use with respect to the energy price is
found by differentiating the first-order condi-
tions of the cost-minimization problem with
output, the wage rate, and the capital stock held
fixed. Doing so yields the formula

(4) «sr 5
d log e

d log p
U dG50

dw50
dk50

5 2
1

~1 2 se!a 1 seb/sl

where sl is the share of output paid to labor,
(1 2 sl)se is the share of output paid to energy,
and (12 sl)(1 2 se) is the share of output paid
to capital. The cross–steady-state Allen elastic-
ity of energy use with respect to the energy
price is found by differentiating the first-order
conditions of the cost-minimization problem
with output, the wage rate, and the rental rate on
capital held fixed. This differentiation yields the
formula

(5) « lr 5
d log e

d log p
U dG50

dw50
dr50

5 2
~1 2 se!

a
2

sl se

b
.

With data on factor shares given, these elastic-
ities are simple formulas of the two curvature
parametersa andb.

In our data, mean factor shares aresl 5 0.57 for
labor and (12 sl)se 5 0.043 for energy. We
choose the curvature parametersa andb so that
our model reproduces a short-run elasticity of
energy use of21⁄3 and a cross–steady-state Allen
elasticity of energy use with respect to the energy
price of 21. These elasticities match those re-
ported in Pindyck and Rotemberg (1983 Table
2). The corresponding curvature parameters are
a 5 3.33 andb 5 0.079. Recall that Pindyck and
Rotemberg (1983) estimate the cross–steady-state

Allen elasticity of the capital stock with respect to
the energy price to be20.9. In our version of their
model, this elasticity is20.7, so our model leads
to similar implications.

To evaluate the ability of this Pindyck-
Rotemberg model toreproduce time-series data
on the energy price and energy use, we parame-
terize the rest of the model and simulate it, feeding
in the data on the energy price to obtain predic-
tions for the time paths of energy use, capital, and
output. For the energy price process, we follow In
Moo Kim and Prakash Loungani (1992) and Mary
G. Finn (1995) and estimate an ARMA (1, 1)
process parameterized by

(6) log pt11 5 ~1 2 rp!log p# 1 rp log pt

1 h«pt21 1 «pt

where «pt ; N(0, sp
2) and p# is the average

energy price in our data. Using our annual en-
ergy price data from the 1960–1994 period, we
estimate thatrp 5 0.90,p# 5 0.92,h 5 0.35,
and sp 5 0.108. For theconsumer’s prefer-
ences, we chooseu(c) 5 log(c) and setb 5
0.96. We set the depreciation rated 5 0.1 and
the adjustment cost parameterD 5 1.

In Figure 2, we compare the time series for
the logarithm of the ratio of energy expenditure
to nominal GDP and the ratio of energy use to
real GDP for the model and the data for the
period 1960–1994. Considering that we use
Pindyck and Rotemberg’s (1983) estimates of
the elasticity of energy use obtained from data
that does not include the energy price shocks of
the 1970’s and 1980’s, the model appears to
reproduce the time-series behavior of energy
use pretty well. In the figure, energy use as
given in the model appears to be more respon-
sive to the energy price than in the data. The
fit between the model and these data improves
if the production parameters are set to give a
smaller short-run elasticity of energy use.

In Figure 3, we compare the time series for
the logarithm of the capital-to-energy ratio for
the model and the data for the period 1960–
1994. In the model, the capital-to-energy ratio is
more responsive to changes in the energy price
than in the data. Again, the fit improves if the
production parameters are set to give a smaller
short-run elasticity of energy use.
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To highlight the difference between the
Pindyck-Rotemberg model and the putty-clay
model, we compute the drop in output that
would occur across steady states if energy
prices were to double as the result of an energy
tax. We assume that the revenue collected is
spent on public goods that affect neither steady-
state real returns nor the steady-state marginal
product of capital. In our simplified version of
the Pindyck-Rotemberg model, a doubling of
the energy price leads to a 33-percent drop in
output and a 78-percent drop in the capital
stock.

Goulder (1992, 1993, 1995) and Jorgenson
and Wilcoxen (1993) examine the impact of
increased carbon taxes on output. The numbers
in these studies are not directly comparable to
the ones calculated here, because they consider
a carbon tax that does not cover all forms

of energy, thus allowing some substitution to
untaxed forms of energy. Nevertheless, we
find their numbers instructive. Goulder and
Jorgenson and Wilcoxen find that the loss in
GDP is of the same order of magnitude as the
revenue raised from the taxes. In our version of
the Pindyck-Rotemberg model, the revenue
raised from an energy tax that doubles the en-
ergy price is 1.3 percent of long-run GDP.
Clearly, then, the impact of energy taxes on
long-run output in this model is many times
larger than the revenue raised by such taxes.

III. A Putty-Clay Model

In this section, we present an alternative
model that matches the observation that energy
use is inelastic in the time series and elastic
in the cross section. In this alternative model,

FIGURE 2. ENERGY EXPENDITURE AND USE

PINDYCK-ROTEMBERG MODEL VERSUSU.S. DATA 1960–1994

Notes:Energy expenditure is the ratio of nominal energy expenditure to nominal GDP; energy use is the ratio of real energy
expenditure to real GDP. All series are measured in logarithms and demeaned. See the Appendix for details.
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capital is putty-clay in terms of its energy in-
tensity. There is a continuum of capital goods
that is combined with energy in different fixed
proportions. The basic idea behind the model is
as follows. Since capital goods are designed
with a fixed energy intensity when constructed,
existing capital requires energy in fixed propor-
tions to provide capital services. Therefore, in
the short run, energy use is inelastic, because
there is no way to substitute existing capital and
energy. Over time, new capital goods embody-
ing a new energy intensity can be installed so
that, in the long run, energy use is elastic with
respect to the energy price. In what follows, we
present the model, develop a method for solving
the model, and present our results.

As before, output is produced with inputs of
capital, energy, and labor. Again, energy is im-
ported from abroad at an exogenous world price

pt, which is random, and energy imports are
paid for with exports of output, with trade bal-
anced in every period. Now, however, a variety
of differentiated capital goods exists with types
indexed byv [ V. A unit of capital of typev
provides capital services in production only in
combination with 1/v units of energy. Ifk units
of capital of typev are combined withe units of
energy, wheree . k/v, then the energy in
excess ofk/v is wasted. Ife , k/v, then the
capital in excess ofev is left idle. Use ofk units
of capital of typev, together withe units of
energy, yields

(7) ~min~k/v, e!!f~v!

units of capital services, wheref(v), f9(v) $ 0,
and f 0(v) , 0.

Heuristically, the relationship between this

FIGURE 3. CAPITAL-ENERGY RATIO

PINDYCK-ROTEMBERG MODEL VERSUSU.S. DATA 1960–1994

Notes:Capital-energy ratio is the ratio of the capital stock measured using the perpetual inventory method in real energy
expenditure. See the Appendix for details.
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production function and more typical putty-
putty production functions can be understood as
follows. Consider a constant-returns-to-scale
function describing capital servicesF(k, e),
wherek is the capital stock ande is energy use.
Production of capital services may be written as
ef(v), where v 5 k/e and f(v) 5 F(v, 1).
Thus, capital services can be expressed as a
function of the energy intensity of the capital
stockv and energy usee. To obtain the putty-
clay model, suppose thatv, the energy intensity
of the existing capital stock, is fixed as an
attribute of the existing capital, and let the out-
put of capital services be the same function of
energy use and capital as given above. Since at
mostk/v units of energye can be used produc-
tively with k units of capital of typev, equation
(7) follows.

The stock of capital in this economy at time
t is represented as a functionkt : V 3 [0, `),
wherekt(v) is the stock of capital of typev. The
allocation of total energy usemt is represented
as a functionet : V 3 [0, `), with et(v)
representing the quantity of energy used in pro-
duction in combination with capital of typev.
Thus, inputs of capital of different typeskt and
energymt allocated according toet yield aggre-
gate capital serviceszt with

(8) zt 5 E
v

~min~kt ~v!/v, et ~v!!!f~v!dv.

Output is produced by combining capital ser-
vices zt and labor l t in a constant-returns-to-
scale production functionG( zt, l t). Value
added in this economy is given by

(9) yt 5 G~zt , l t ! 2 pt mt

wheremt 5 *v et(v)dv is aggregate energy use.
We assume that all types of capital depreciate

at the same rated and that investment in each
type of capitalxt(v) must be nonnegative, so

(10) xt ~v! 5 kt11~v! 2 ~1 2 d!kt ~v! $ 0

for all v [ V. Aggregate consumption is de-
notedct, and the aggregate resource constraint
is given by

(11) ct 1 E
v

xt~v!dv 5 yt .

The preferences of the representative agent are
given by (1) and laborlt is supplied inelastically.

The equilibrium allocation for this economy
can be found as the solution to theplanning
problem of choosing sequences of functions
{ kt11, xt, et, zt, mt, yt, ct} to maximize equa-
tion (1) subject to constraints (9), (10), (11),

(12) zt 5 E
v

et ~v!f~v!dv

(13) mt 5 E
v

et ~v!dv

(14) 0# et ~v! # kt ~v!/v

for all v [ V, with the functionk0 taken as
given. The use of constraints (12) and (14) in
place of equation (8) is justified by the obser-
vation that it is never optimal to use more en-
ergy than can be productively employed with
the current capital stock.

As stated here, this planning problem has en-
dogenous state variableskt(v) of dimension equal
to the number of elements inV. To allow smooth
substitution between energy and other inputs in
the long run, the number of elements inV must be
large or even infinite. Thus, the curse of dimen-
sionality prevents a direct attack on this problem.
In what follows, we show that if all existing cap-
ital goods are always fully utilized in equilibrium,
then the state variables functionk can be reduced
to two aggregate state variables, regardless of the
number of elements inV.

We begin by analyzing the decision to utilize
existing capital goods. Observe that this deci-
sion is static. Clearly, given a realization ofpt
and a capital stock functionkt(v), the choice of
energy use functionet(v) at t maximizes (9)
subject to constraints (12), (13), and (14). Anal-
ysis of this problem yields the following.

PROPOSITION 1 (A Cutoff Rule):Given a
capital stock function kt and energy price pt,
there is a cutoff type of capitalv*t such that
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capital of typesv . v*t is fully utilized at t and
capital of typesv , v*t is not utilized at all. This
cutoff type of capitalv*t is increasing in pt.

PROOF:
Consider the Lagrangian

max GS E
v

e~v!f~v!dv, 1D 2 p E
v

e~v!dv

1 E
v

m~v!~k~v! 2 e~v!v!dv

1 E
v

j~v!e~v!dv.

Observe that for any type of capitalv such that
k(v) . 0, j(v) 5 0 if m(v) . 0, andm(v) 5 0
if j(v) . 0. The first-order conditions for this
problem includeGz( z, 1) f(v) 2 p 5 m(v)v 2
j(v), wherez is given as in (12) andGz is the
partial derivative ofG with respect to its first
argument. From this first-order condition and
the condition that all of the Lagrange multipliers
are nonnegative, we get the result thatm(v)v 5
max[Gz( z, 1) f(v) 2 p, 0] for any type of
capital v for which k(v) . 0. Thus, existing
capital of type v is fully utilized if Gz( z,
1) f(v) 2 p . 0 and not utilized at all ifGz( z,
1) f(v) 2 p , 0. Sincef(v) is strictly increas-
ing in v, the result that capital usage is deter-
mined by a cutoff rule is established. The cutoff
type v* solves the equation

(15) Gz~z, 1!f~v* ! 2 p 5 0

and is increasing inp.
We now turn to the main result we use for

solving this putty-clay model. We present a
restricted programming problem with two state
variables (z and m), which we refer to asag-
gregate capital servicesand aggregate energy
use.We then show that if the solution to this
second problem satisfies the cutoff rule for cap-
ital utilization as summarized in Proposition 1,
then we can use it to construct the solution to
the original planning problem and thus to con-
struct the equilibrium of this model economy.

[It is worth noting for later use that since in this
model * kt11(v)dv 5 (1 2 d) * kt(v)dv 1
* xt(v)dv, the aggregate capital stock is still
measured in the standard way by using the
perpetual inventory method.]

Consider therestricted planning problemof
choosing sequences of functions {xt, zt11,
mt11, yt, ct} to maximize (1) subject to con-
straints (9), (11),

(16) zt11 # ~1 2 d!zt 1 E
v

xt ~v!
f~v!

v
dv

(17) mt11 $ ~1 2 d!mt 1 E
v

xt ~v!
1

v
dv

with xt(v) $ 0 for all v [ V, with the function
k0 and scalarsz0 5 *v k0(v)( f(v)/v)dv and
m0 5 *v (k0(v)/v)dv given.

We use the solution to this restricted planning
problem to construct a candidate solution to our
original planning problem as follows. Let {xt,
zt11, mt11, yt, ct} be the solution to the re-
stricted planning problem, withz0 and m0 de-
fined as above. Construct sequences {kt11, et}
usingxt and (10), and setet(v) 5 kt(v)/v for all
v. The resulting collection of sequences con-
structed in this way {kt11, xt, et, zt, mt, yt, ct}
satisfies the constraints of the original planning
problem. We now show that if the constructed
allocation also satisfies the cutoff rule in Prop-
osition 1 under which all existing capital is in
fact fully utilized, then it solves our original
planning problem.

PROPOSITION 2 (An Equivalent Problem):
Given the function k0, z0, and m0, let { xt, zt11,
mt11, yt, ct} be the solution to the restricted plan-
ning problem. Let{kt11, xt, et, zt, mt, yt, ct} be the
candidate solution to the original planning prob-
lem derived as above. Let Vˆ

t be the set of capital
typesv such that kt(v) . 0. If v . v*t for all v [
V̂t, with v*t defined as in Proposition 1, then our
candidate solution solves the original planning
problem and is an equilibrium of the model.

PROOF:
Under the assumption that all types of capital

are fully utilized, the constraints of our original
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and restricted planning problems are identical.
Clearly, the objectives in these two problems
are identical as well. Thus, our candidate solu-
tion solves the original problem.

We now show that in the solution to our re-
stricted planning problem, in each period, there is
positive investment in at most one type of capital.

PROPOSITION 3 (One Type of Investment):
Given the function k0, z0, and m0, let { xt, zt11,
mt11, yt, ct} be the solution to the restricted
planning problem. Then xt(v) . 0 for at most
one type of capitalv.

PROOF:
Let lt

c, lt
z, lt

m, and lt
x(v) be the Lagrange

multipliers on constraints (11), (16), (17), and
the constraintxt(v) $ 0, respectively. Taking
the first-order condition with respect toxt(v),
we get

(18) l t
x~v! 5 l t

c 2 l t
zf~v!/v 1 l t

m/v.

Investmentxt(v) . 0 only if lt
x(v) 5 0. Further-

more, this multiplier is nonnegative, so zero is its
minimum value. Thus, to prove the proposition,
we show thatlt

x(v) has a unique minimum. Equiv-
alently, we show that the termh(v) 5 lt

zf(v)/v 2
lt

m/v has a unique maximum. The multiplierslt
z

and lt
m are positive. The maximum ofh(v) is

attained at a pointv# that solves

(19)

h9~v# ! 5 l t
z

~ f9~v# !v# 2 f~v# !!

v# 2 1 l t
m

1

v# 2 5 0.

Notice that for allv, h9(v) and

h9~v!v2 5 l t
z~ f9~v!v 2 f~v!! 1 l t

m

have the same sign. The derivative ofh9(v)v2 is
lt

zf0(v), which is negative, sincelt
z is positive

and f(v) is strictly concave, and henceh9(v)v2

is strictly decreasing. Thus, sinceh9(v) and
h9(v)v2 have the same signs, forv , v# ,
h9(v) . 0, while for v . v# , h9(v) , 0. This
implies thath(v) has a unique maximum and
lt

x(v) has a unique minimum and proves that
there is at most onev for which xt(v) 5 0.

It is worth noting that one can construct an

example in which more than one type of capital
receives positive investment if some types of
capital are left idle in some states of nature.

To examine the implications of this putty-clay
model for time-series and cross-section data, we
parameterize the model as follows. We let the
production functionsF andG be Cobb-Douglas.
In this case, the only parameters for the production
functions that need to be set are the factor shares.
We choose these to match the average factor
shares in our data:sl 5 0.57 for labor and (12
sl)se 5 0.043 for energy. The parameters for the
energy price, consumer preferences, and the de-
preciation rate are the same as before.

To solve the model, we follow the solution
procedure outlined in Propositions 1–3. In par-
ticular, we impose the condition that all types of
existing capital are always fully utilized in equi-
librium and consider the restricted planning
problem. Following Proposition 3, we impose
that there is positive investment in at most one
type of physical capital in each period. Thus, if
we letxt denote the quantity of physical invest-
ment andvt denote the type of capital being
invested in, constraints (16) and (17) simplify to
zt11 5 (1 2 d) zt 1 xt f(vt)/vt and mt11 5
(1 2 d)mt 1 xt/vt. We solve a log-linear
approximation to the first-order conditions of
this restricted problem around the deterministic
steady state with the energy price set top# using
standard methods.

The final step in our solution procedure is to
verify that our assumption that all types of ex-
isting capital are always fully utilized is valid
for the solution we obtain. In theory, to ensure
that this assumption is valid in all states of
nature, we must assume that the energy price
process has bounded support. In parameterizing
the model, we choose a lognormal energy price
process which has unbounded support. We
choose this price process to make our results
more comparable to those in the literature. In
practice, when we use this unbounded price
process in our simulations, we find that the
probability that some type of capital is ever left
idle in equilibrium is vanishingly small. In par-
ticular, we simulate the model for 10,000 peri-
ods and do not find a single period in which this
assumption is violated.

This result that all types of capital are fully
utilized with probability very close to one can
be understood as follows. Letv# 5 k# /e# be the
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capital-to-energy ratio for existing capital, and
let v#* be the cutoff type of capital for the
deterministic steady state of our economy. For
our economy,v#/v#* 5 12.9 or logv# 2 log v#* 5
2.6. Log-linearizing the equationGz( z,
1) f(v*) 5 p that defines the cutoff type of
capitalv* around the deterministic steady state
gives for our parameterization

(20) log~v* ! 2 log~v# * !

5
sl

1 2 se
~log z 2 log z#!

1
1

1 2 se
~log p 2 log p# !

where z is capital services,se 5 0.1 is the
steady-state share of energy in the cost of cap-
ital services, andsl is the steady-state share of
labor in the cost of output.

In general, this equation is only a first-order
approximation to the cutoff rule and thus might
be inaccurate far away from the steady state. In
our formulation here, however, the production
functions F and G are Cobb-Douglas, so this
formula is exact. In our simulations, capital
services do not move very much. Thus, the
energy price must rise so that logp 2 log p# 5
2.3 orp/p# 5 10 before we must be concerned
about leaving the steady-state type of capital
idle. The probability that such a movement in
energy prices would occur in our model is es-
sentially zero. Indeed, given our price process,
an energy price this high would be over seven
standard deviations from the mean price, and
the probability of such a shock is on the order of
10212. The reason for this result is that steady-
state energy costs are only1⁄10 the costs of
capital services; therefore, it takes a huge in-
crease in the price of energy before these costs
become larger than the value of the capital
services provided by the capital.

To evaluate the ability of this putty-clay
model to reproduce our time-series data on
the energy price and energy use, we simulate
it, feeding in the data on the energy price to
obtain predictions for the time paths of energy
use, capital, and output. To check our as-
sumption that all capital is fully utilized, we
compute the paths for the cutoff type of cap-
ital v*t and the type of new capitalv t implied

by the path of prices realized in the data.
Figure 4 shows that for the period 1960 –
1994, the cutoffsv*t range from 3.4 to 9.6,
while the typesv t of new capital range from
51.7 to 92.6. Clearly, the assumption that all
types of capital are fully utilized for the real-
ized path of energy prices is satisfied with a
large margin for error.

In Figure 5, we compare the time series for
the logarithm of the ratio of energy expenditure
to nominal GDP with the ratio of energy use to
real GDP in the putty-clay model and the data
for the period 1960–1994. Clearly, the model
closely tracks the data. In Figure 6, we plot the
log of the capital-to-energy ratio from the putty-
clay model and the data for the period 1960–
1994. The responsiveness of the capital-
to-energy ratio to changes in the energy price is
similar in the model and the data, but this ratio
in the model lags that in the data.

Consider now the implications of this
model for the cross-section data. Recall that
both Griffin and Gregory (1976) and Pindyck
(1979) find that the cross-section Allen elas-
ticity of energy use with respect to the energy
price is 20.8, while Pindyck and Rotemberg
(1983) find a long-run elasticity of20.99. In
terms of the cross-section Allen elasticity of
capital with respect to the energy price, Grif-
fin and Gregory (1976) find point estimates
from 0.08 to 0.17 across countries, while Pin-
dyck’s (1979) estimates range from 0.03 to
0.12. Our model implies a long-run energy
elasticity of 20.95 and a long-run capital
elasticity of 0.05, which are in the ranges of
the numbers reported above.

We also consider the effect on output of an
energy tax that leads to a doubling of energy
prices in this putty-clay model. We assume
that the revenue collected is spent on public
goods that affect neither the steady-state real
returns nor the steady-state marginal product
of capital. In this model, a doubling of the
energy price leads to a 5.5-percent drop in
both output and capital stock. The revenue
raised from the tax in the long run is 2.4
percent of long-run GDP. The effect of an
energy tax on output in this model is an order
of magnitude smaller than in the Pindyck-
Rotemberg model and comparable to the
numbers found in Goulder (1992, 1993, 1995)
and Jorgenson and Wilcoxen (1993).
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IV. Summary and Conclusions

Energy economists have observed that with re-
spect to the energy price, energy use is inelastic in
time-series data and elastic in cross-section data.
We have studied two models of energy use that
address these observations: a putty-putty model
with adjustment costs developed by Pindyck and
Rotemberg (1983) and a putty-clay model. Both
models can reproduce these differing elasticities;
however, they have very different implications for
how capital and output respond to permanent dif-
ferences in energy prices.

In the Pindyck-Rotemberg model, countries
with higher energy prices have dramatically
lower capital stocks and output. In this respect,
the Pindyck-Rotemberg model is not consistent
with the cross-section estimates in Griffin and
Gregory (1976) and Pindyck (1979) of the re-
sponsiveness of capital to the energy price.

Moreover, the effect of an energy tax on output
in this model is an order of magnitude larger
than numbers found in Goulder (1992, 1993,
1995) and Jorgenson and Wilcoxen (1993).

In the putty-clay model, the response of capital
and output to differences in energy prices is sim-
ilar to that reported in the cross-section studies,
and the effect of an energy tax on output is com-
parable to that found in the tax studies.

APPENDIX

In this Appendix, we document the construc-
tion of the data series we use in the empirical
part of the paper. We obtain the raw data from
four sources: (1)Survey of Current Business
(January 1992), (2)Survey of Current Business
(August 1994), (3)Annual Energy Review 1994
(1995), and (4)Citibase(1995). From now on,
we refer to these sources asSurvey of Current

FIGURE 4. ENERGY INTENSITY OF NEW CAPITAL AND THE CUTOFF ENERGY INTENSITY 1960–1994

Note:The energy intensity of new capitalvt and the cutoff energy intensityv*
t for the putty-clay model are determined from

equations (19) and (15) in the text given the realized path for the energy price.
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Business1, Survey of Current Business2, AER,
andCitibase.

Energy Price, Use, and Expenditure Series

The energy data covers the energy consump-
tion of end users. End users consume energy
mainly in four forms: Since our model does not
include an energy sector, we subtract the energy
use of the energy-producing sectors, namely,
the coal, petroleum, natural gas, and electricity
sectors.AER (Table 2.1 p. 39) gives data on
total energy consumption by end users mea-
sured in British thermal units (BTUs) disaggre-
gated into coal, petroleum (and petroleum
products), natural gas, and electricity. We de-
note these data on energy use for each type of
energy byQit

tot, where the indexi 5 1, 2, 3, 4
denotes the four forms of energy.

This measureQit
tot is already net of energy use

of the electricity sector. There are no correspond-
ing data on the energy use by type of the other
three energy-producing sectors. There are no data
on energy consumption by the natural gas sector.
We assume that the energy use of this sector is
zero. Data on energy consumption by the coal and
petroleum sectors are available from 1974 to 1991
and are not disaggregated into the four forms of
energy. We assume that for the years prior to 1974
and following 1991, energy use of these two sec-
tors is equal to the average use in the period
1974–1991. In addition, we assume that the BTUs
consumed are divided among the four forms of
energy according to the average shares of the
industrial sector. These shares are constructed
from data on consumption of energy of the indus-
trial sector (AER, Table 2.1 p. 39). Since the
absolute value of energy consumption of these

FIGURE 5. ENERGY EXPENDITURE AND USE

PUTTY-CLAY MODEL VERSUSU.S. DATA 1960–1994

Notes:Energy expenditure is the ratio of nominal energy expenditure to nominal GDP; energy use is the ratio of real energy
expenditure to real GDP. All series are measured in logarithms and demeaned. See the Appendix for details.
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two sectors is relatively small, about1⁄60 of total
energy consumption, the approximations we use
should not greatly affect the aggregate series.

We construct a constant-price measure of en-
ergy use in the standard fashion. We choose the
base year to be 1987 and define energy use to be
et 5 ¥i QitPi0, wherePi0 is the price in dollars per
BTU of energy of typei in 1987 fromAER.For
coal, natural gas, and petroleum, we use the pro-
duction price series (AER,Table 3.1 p. 85). For
electricity, we use the retail price of electricity
sold by electric utilities. (SeeAER,Table 8.11 p.
249. In Table 8.11, the price for electricity is in
cents per kilowatt-hour. We useAER,Table A7 p.
351 to convert the price to cents per BTU.) We
construct the energy price deflator as

Pt 5
¥

i
Qit Pit

¥
i
Qit Pi0

.

Finally, nominal expenditure is given byPtet 5
¥ i QitPit.

Output, Consumption, Investment, and the
Capital Stock

We follow the method described by Thomas
F. Cooley and Edward C. Prescott (1995 p. 19)
to construct broad measures of output, con-
sumption, investment, and the capital stock. For
output, investment, and capital, we subtract
from each of these series the corresponding
series for the energy producing sector. To cal-
culate the output of the energy sector, we sum
the value added of the coal, petroleum, electric-
ity, and natural gas sectors. The value added of
the coal and petroleum sectors is assumed to be
equal to the value of domestic production of the
two products. The series of domestic production

FIGURE 6. CAPITAL-ENERGY RATIO

PUTTY-CLAY MODEL VERSUSU.S. DATA 1960–1994

Notes:Capital-energy ratio is the ratio of the capital stock measured using the perpetual inventory method to real energy
expenditure. See the Appendix for details.
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are in theAER (Table 5.1 p. 139 for oil; Table
7.2 p. 211 for coal). The value added of the
electricity and the natural gas sectors are re-
ported inCitibase(series GAGUT and GYUT).
Real gross output is the sum of value added and
the expenditure on energy, namely,yt 1 ptet.
The investment in the energy sectors is defined
as the sum of purchases of structures in the
electricity, gas, and coal and petroleum mining
sectors (series GAPUE, GAPUG, and GANMG
in Citibase) plus the purchase of petroleum
pipelines (series GAPUO inCitibase). The cap-
ital stock of the energy sectorKener is computed
as the capital stock of coal mining, oil and gas
extraction, and gas and electricity sectors. The
series are found inSurvey of Current Business1
(Table 2 pp. 111–13) for the years 1960–1990
and inSurvey of Current Business2 (Table 2 p.
155) for the years 1991–1993.
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