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ABSTRACT
An ISP’s customers increasingly demand delivery of their
traffic without congestion and with low latency. The ISP’s
topology, routing, and traffic engineering, often over multiple
paths, together determine congestion and latency within its
backbone. We first consider how to measure a topology’s ca-
pacity to route traffic without congestion and with low latency.
We introduce low-latency path diversity (LLPD), a metric that
captures a topology’s flexibility to accommodate traffic on
alternative low-latency paths. We explore to what extent 116
real backbone topologies can, regardless of routing system,
keep latency low when demand exceeds the shortest path’s
capacity. We find, perhaps surprisingly, that topologies with
good LLPD are precisely those where routing schemes strug-
gle to achieve low latency without congestion. We examine
why these schemes perform poorly, and offer an existence
proof that a practical routing scheme can achieve a topology’s
potential for congestion-free, low-delay routing. Finally we
examine implications for the design of backbone topologies
amenable to achieving high capacity and low delay.
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1 INTRODUCTION
In recent years, low-latency communication has taken on
a new importance. Latency matters, not just for obviously
latency-sensitive applications such as telephony or games [15],
but also for applications such as web browsing. Much effort
has been put into reducing buffer bloat [35], improving TCP
loss recovery [10], and deploying congestion control that tries
not to build queues [6]. Content providers often reduce la-
tency by moving content closer to users. ISPs can also reduce
latency by choosing low-propagation delay paths, though as
queueing inflates latency, traffic must be placed on low-delay
paths so as to avoid causing congestion.

An ISP has two design choices available that determine
the congestion and delay experienced by traffic within its
backbone: the topology itself and the placement of traffic on
that topology, as determined by a combination of routing and
traffic engineering.1 There has been little systematic study of
the interaction between a topology’s design and the behavior
of routing schemes when run on it. A topology’s designer
must, even if only implicitly, take into account how the rout-
ing system will behave on that topology. Similarly, a new
routing system’s designer would have in mind (again, perhaps
implicitly) topologies on which routing should perform well.
Each of these approaches starts by fixing a “legacy” design
(either the routing or the topology) and attempts to tailor the
other to it. If either legacy design isn’t a good fit with placing
traffic to avoid congestion and achieve low latency, the ability
of the ensemble to meet those aims will suffer.

In this paper we break with this approach and develop a
routing-agnostic, first-principles understanding of the sorts
of ISP topologies that fundamentally have the potential to
deliver time-varying traffic demands with low latency and
without congestion: namely, those with diverse low-latency
paths. We quantify the extent to which 116 real ISP backbone
topologies from the Internet Topology Zoo [29] exhibit this
potential. From there, we explore in detail how well today’s
widely known routing systems manage to exploit these same
ISP topologies’ inherent potential for congestion-free, low-
latency traffic placement. We find, somewhat surprisingly, that
on topologies with diverse low-latency paths—precisely those
with the greatest potential of this sort—status-quo schemes
from shortest-path routing to B4 [25] and MinMax traffic
engineering (e.g., TeXCP [27]) arrive at traffic placements
that suffer congestion or high latency stretch. We reveal why

1In the interest of brevity, we will often refer to this combination as routing.
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these routing designs encounter these poor outcomes on these
promising topologies.

Further, a routing scheme that aims for congestion-free,
low-latency traffic placements must not congest links when
traffic demands vary over time. A simple way to guard against
overloading links when demands increase is to enforce head-
room: to reserve some minimum fraction of each link’s ca-
pacity to accommodate foreseen but rare demand increases.
Putting capacity aside to soak up demand spikes, however,
can be seen as changing the topology; a capacity-aware rout-
ing scheme may move some traffic to longer paths when the
capacity of a short-delay path is “reduced.” We explore this
interplay, and show that one may view the design space of
congestion-free, low-delay routing schemes as falling along a
continuum. At one extreme is a notional scheme that employs
no headroom on any links—and thus achieves the lowest
delay a given topology can offer, at the expense of risking
congestion when demand increases. At the other are MinMax
schemes, which by definition leave as much headroom on
links as possible. These are resilient to congestion caused by
demand changes, at the expense of using longer paths. In an
ISP setting, where demand isn’t known perfectly in advance,
it is an open question where on this continuum a practical
routing scheme should lie. Is there a sweet spot with enough
headroom to cope with demand variability, yet not so much
that paths are needlessly circuitous, incurring high latency?

We sketch an approach to routing on path-diverse topolo-
gies that achieves their potential more fully, while coping
with demand variability. We do not claim that this approach is
ready for deployment, or has every engineering detail worked
out. Rather, our contributions lie in:

• revealing the nuanced interaction between a topology’s
path diversity and routing schemes that aim to deliver low
latency without congestion;
• revealing exactly why existing routing schemes cannot

unlock the low-latency potential of path-diverse topologies;
• identifying the central role of headroom in effecting a nec-

essary trade-off between avoiding congestion and reducing
path latency when traffic demands vary; and
• characterizing a routing approach that avoids the patholo-

gies to which existing approaches fall prey on path-diverse
topologies, that parsimoniously yet safely applies head-
room to cope with demand variability, and that is computa-
tionally tractable at ISP scale.

This approach to routing can perform well on all topologies,
but it performs especially well where the topology offers a
good diversity of low-delay paths. We speculate that such
topologies may be rare today because they have been hard to
use effectively with existing routing schemes. The adoption
of techniques similar to those presented may eliminate this
obstacle to building more “mesh-like” network topologies
well suited to low-latency, congestion-free traffic delivery.

2 ASSESSING TOPOLOGIES’
POTENTIAL FOR LOW LATENCY

If an operator wishes to build a network well-suited to pro-
viding robust low-delay communication, how would they
measure the extent to which they had succeeded? One could
say a topology offers low latency if the shortest paths between
points of presence (PoP) lie close to the corresponding great
circle routes, but this falls short as a metric for two reasons:

• Geographic, geopolitical, and economic constraints limit
where links can reasonably be provisioned.
• Shortest paths may end up congested if demand diverges

from that envisaged during provisioning, leading to queu-
ing delays and loss. Avoiding congestion without massive
over-provisioning requires using alternate, longer paths.

We don’t claim any deep insight into geopolitical or eco-
nomic constraints that limit link deployment. For now, let us
consider only network links that exist in real ISPs.

What we would really like is a metric, agnostic to both rout-
ing and traffic, that characterizes how well suited a topology
is to providing robust low-latency communication. Although
the shortest paths in a network may not be ideal, they are
the best paths we are sure are viable to provision. How well
suited is a network topology to providing low-latency service
under traffic loads that are not trivial to route?

To derive such a metric we start from a network map that
includes all PoPs and link latencies. For each PoP pair, we
compute the lowest latency path. Then for each link on the
path, we consider the latency cost to route around that link if it
were congested. If the map contains link capacities, we must
also take these into account. For example, it is unreasonable
to consider a 1 Gb/s link as providing a viable alternate to a
congested 100 Gb/s path. We consider an alternate path as a
viable alternate if its bottleneck has at least the capacity of the
bottleneck on the shortest path. If there are multiple alternate
paths, we progressively add the n lowest latency alternate
paths until their min-cut is sufficient to form a viable alternate.
When this is necessary, we consider the propagation delay of
the alternate to be that of the nth lowest latency alternate.

We define path stretch to be the fraction da/ds , where the
viable alternate path’s propagation delay is da and the delay
of the shortest path between the two PoPs is ds . We set a
threshold for path stretch—for example, we may consider a
path stretch of 1.4 to be acceptable—and measure alternate
path availability (APA), defined as the fraction of links on the
shortest path that can be routed around without exceeding this
stretch limit. Each PoP pair gives an APA data point in the
range from zero (no links can be routed around without ex-
cessive delay) to one (all links can be routed around). A CDF
of those data points characterizes the network. The resulting
curve gives insight into the availability of low-latency alter-
nate paths, and is scale-invariant, so can be used to compare
networks of different size and geographic scale. This curve
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Figure 1: CDF curves of APA for all networks, given path
stretch limit of 40%. Five random curves are highlighted.

captures the feasibility of routing around hotspots caused by
congestion without dramatically inflating delay.

Figure 1 shows a CDF for each of the 116 networks with
diameter greater than 10 ms in the Topology Zoo (augmented
with computed link latencies [16]).2 Networks vary consid-
erably in how well they provide low-latency alternate paths.
Consider the x-axis value of 0.7; this indicates paths where
70% of links can be routed around without excessive delay.
A corresponding y-axis value of 0.25 indicates that 75% of
paths have low-latency alternates that route around at least
70% of the hops. Thus topologies whose curves are to the
lower right on this graph provide usable path diversity.

A few curves are horizontal lines; these are clique topolo-
gies. We understand these to be overlay networks; for exam-
ple, one is an older network provisioned using ATM virtual
circuits. Overlays are not really interesting from our point of
view: the ISP likely uses the overlay technology to provision
on demand, rather than rely on intra-domain routing.

To reduce each curve to a single metric for each network,
we compute low latency path diversity (LLPD) as follows.

LLPD =
number of PoP pairs with APA ≥ 0.7

total number of PoP pairs
The choice of 0.7 here is not crucial; as Figure 1 shows, the

rank ordering does not change greatly if we choose a different
threshold in the upper half of the distribution.

An LLPD of close to one indicates that for most PoP pairs,
we can route around most of the links on their shortest path
without incurring excessive delay. Conversely, we observe
an LLPD of close to zero usually indicates a more tree-like
network. Networks with mid-range LLPD often consist of
wide rings: while they have path diversity, the latency cost of
going the “wrong way” around the ring can be high.

Networks with high LLPD typically fall in two categories.
Some are well interconnected, resembling a two-dimensional

2The Topology Zoo is not without limitations; some topologies are rather
old, and PoP locations are often unverified. Nevertheless, it gives a useful
view of diverse WAN topologies over time; even older topologies elucidate
then-current backbones’ delay characteristics.

Figure 2:
GTS’s Central
Europe topology.

grid. An example of this class is GTS’s network in central
Europe, shown in Figure 2. Others, such as Cogent, span
more than one continent, with good path diversity between
continents. The long latency baseline between continents
makes it easier to score well on latency stretch, but high
LLPD also requires good connectivity within continents.

3 PATH DIVERSITY IS HARD TO USE
In earlier work [21] we showed using small synthetic exam-
ples that two-dimensional grid networks can be hard to route,
as they inadvertently concentrate traffic. We use LLPD to
understand to what extent this is a problem in real networks.

For each topology from the Topology Zoo we synthesize
100 traffic matrices, each representing a moderate load for
that network’s available capacity. To do so, we use a variant
of the gravity model [39]. This model generates traffic aggre-
gates between PoP pairs according to a Zipf distribution, as
real-world traffic has been characterized. The original model,
however, ignores geographic proximity between endpoints.
By contrast, many content providers today place content ge-
ographically near to users, yielding greater traffic locality.
To see how traffic locality affects routing, we extend traffic
matrix generation with a locality parameter. The original grav-
ity model dictates the ingress and egress traffic volumes at
each PoP; our extension moves load among aggregates that
span different distances according to the locality parameter.
For values greater than zero we redistribute some traffic from
longer-distance flows to shorter-distance ones. Specifically, a
locality parameter of ℓ allows short-distance flows to increase
by ℓ times their original demand.3 We find that a locality of
one suffices to add significant locality, while larger values
tend to under-load long-distance links too much to justify
their presence in the topology. Unless stated otherwise, we
use a locality value of one in our analyses.

3We express these constraints in a simple linear program whose solution
yields per-aggregate traffic volumes; we refer the interested reader to [20]
for full details.
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Figure 3: Networks with high LLPD tend to concentrate
traffic when using SP routing.

We scale each traffic matrix so that the network is moder-
ately loaded, but not close to being overloaded. The goal is
that with optimal routing it is still (just) possible to route the
network without congestion if all traffic increases by 30%.
This gives a network where, if we minimize maximum link
utilization, the min-cut has 23% headroom4. In most topolo-
gies this corresponds to a median link utilization of 20-30%.

Shortest path routing. We first look at how shortest-path
routing [33, 36] performs when link costs are proportional
to delay. Figure 3 shows the median and 90th percentile of
congested source-destination pairs across all topologies and
traffic matrices, when networks are sorted by their LLPD
value (on the x-axis). The figure shows that under moder-
ate load shortest-path routing tends to concentrate traffic in
networks with multiple low-latency paths (high LLPD).

One conclusion is that networks with good LLPD are not
designed to be used with shortest-path routing. Such networks
have many low-latency alternative paths, and it seems likely
that they have evolved to be run with a traffic engineering
scheme able to use these alternative paths. To understand the
interplay between topology and routing, we need to examine
them using active load-dependent routing systems.

Latency optimality. In Figure 4 we show the performance of
active routing schemes. The top of each graph is the same as
in Figure 3; it shows the fraction of paths that are congested.
The bottom half of each graph is inverted and shows latency
stretch, calculated as

∑
f df /

∑
f df ,sp , where df is the delay

seen by flow f when routed by the scheme, and df ,sp is the
shortest path latency between that source and destination.

Figure 4(a) refers to an optimal routing scheme, where opti-
mality is expressed as minimizing the sum of the propagation
delays seen by all flows. Specifically, this scheme minimizes∑

a

na
∑
p∈Pa

xapdp (1)

subject to the constraints that no link is overloaded and all
flows are routed. Here, na is the number of flows in aggregate
a, Pa are the paths a may take, dp is the propagation delay of
path p, and xap is the fraction of a’s traffic routed on path p.
4Min cut load is 77%, so the traffic can increase by a factor of 1

0.77 = 1.3.

Figure 4(a) shows that it is possible to route all traffic with-
out causing excessive delay stretch. An exception, Globalcen-
ter, is a full-mesh topology, so likely is an overlay network
where it makes little sense performing dynamic routing at the
IP level. Grid-like networks such as GTS and diverse intercon-
tinental networks like Cogent that were prominent in Figure 3
give low delay with this sort of optimal routing, which can
make very effective use of their low-delay path diversity.

Greedy low latency routing. How do deployed traffic engi-
neering schemes perform? Automatic bandwidth allocation
for MPLS-TE [42, 43] considers one aggregate at a time,
and places each aggregate on its shortest non-congested path.
B4 [25] uses a central controller to assign traffic from aggre-
gates with a slightly improved algorithm. It starts by incre-
mentally placing traffic from each aggregate onto its shortest
path. This is done in parallel for all aggregates. When an
aggregate’s shortest path fills up, B4 starts allocating that ag-
gregate onto the next shortest path, and so forth. Hence, while
it considers low-latency paths first, B4 still uses a greedy al-
gorithm. B4 includes prioritization for subsets of traffic. We
give all traffic equal priority, as it is generally unclear how an
ISP should prioritize demands. In the following, we focus on
B4 but the same observations also hold for MPLS-TE.

Figure 4(b) shows the performance of B4 on the topolo-
gies from the Topology Zoo, with the same parameters as in
Figure 4(a). B4 matches the optimal performance on many
of the simpler networks. However, for most of the networks
with mid-range LLPD, B4 gives slightly sub-optimal latency.
Even more interestingly, it induces congestion on some of the
networks with greatest path diversity: for GTS and Cogent, in
particular, more than half of B4’s paths cross a saturated link
in the median case. Clearly, B4’s greedy strategy frequently
becomes locked into local minima in these topologies.

In [21] we reported a similar effect, and showed a synthetic
topology susceptible to Braess’s paradox [3]. We initially
suspected that this was what was happening here too, but in
fact there are other more likely local minima that can trap
B4. Consider the part of GTS’s network shown in Figure 5.
This is a central part of this network, and a large number of
aggregates flow through this region. Consider the aggregate
from Veszprem (V) to Gyor (G). As B4 allocates traffic, link
1 fills up in the eastbound direction, occupied by the green
and many blue aggregates. B4 would normally then start
to allocate capacity on the second-best paths. For the blue
aggregate of traffic flows, this is possible. However, if there
are more red aggregates than blue ones, B4’s algorithm will
have already filled link 2 in the westbound direction with
red traffic. There is no spare capacity for the green traffic
as both link 1 eastbound and link 2 westbound are full, and
these are the only links out of V. Of course, this example is a
simplification of the real traffic allocation. In reality, the red
and blue aggregates are hundreds of different aggregates, and
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(a) Optimal latency
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(b) B4
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(c) MinMax
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(d) MinMax K=10

Figure 4: Effects of active routing on congestion and delay.

other flows, not shown, are also present. However, the figure
captures the basic cause and effect of B4’s greedy choices.

The example shows that B4 cannot avoid congestion in this
well-connected part of the network. In contrast, an optimal
placement would move red traffic aggregates onto the frac-
tionally longer path through G, allowing room for the green
traffic on link 2, and so avoiding congestion.

Even when B4 can fit the traffic, latency can be excessive.
In Figure 6, two aggregates share a bottleneck link on their
shortest paths. B4 will allocate this link equally between the
two aggregates until it fills, then start filling the next-shortest
path for each aggregate. However, the next-shortest paths
have different latency costs, with the blue aggregate needing
to take a long detour. It would have been better to allow
the blue aggregate to remain on its shortest path, and move
more of the red aggregate to its second-best path, as there is
minimal latency cost to the red aggregate from doing so.

MinMax based routing. Other traffic engineering schemes
such as TeXCP [27] and MATE [11] take the MinMax ap-
proach. A pure MinMax approach optimizes traffic placement
so as to minimize the maximum link utilization. This is in-
sufficient, as it does not generate unique solutions—many
possible placements may have the same maximum link uti-
lization, including ones with very suboptimal high-latency
paths. One way to obtain a practical routing system is to min-
imize the sum of path latencies as a tie-break between traffic
placements with equal maximum link utilization.

By definition, MinMax will fit the traffic if it is possible
to do so, and Figure 4(c) shows no congestion. However, by
focusing on utilization first and only using latency as a tie-
break, many aggregates suffer significantly higher latency
than they would with optimal routing (see Figure 4(a)). The
reason is not complicated: to reduce maximum link utilization,
some aggregates are forced over circuitous paths.



SIGCOMM 2018, August 20–25, 2018, Budapest, Hungary Gvozdiev et al.

V	

G	
Link	1	on	
green’s	
shortest	
path	fills	
eastbound	

Link	2	on	green’s	
only	alternative	
path	is	already	
filled	westbound	
by	red	aggregates	

Figure 5:
Inadvertent
congestion
on GTS
using B4.

Link	fully		
allocated	

Shortest	paths	

Next	shortest	paths	
Figure 6:
Excessive
latency
in the GTS
topology
using B4.

To prevent long paths from being selected unnecessarily,
routing schemes such as TeXCP limit path choice to the k
shortest paths. The intuition is that if long paths are never
given to the MinMax algorithm, a good balance will be struck
between reducing latency and minimizing peak utilization.

Figure 4(d) shows the results of running the MinMax algo-
rithm using latency to tie-break, but supplying only the ten
shortest paths, as suggested by TeXCP. For most networks
with lower LLPD, there is little difference between full Min-
Max and MinMax with k = 10. These networks have little
low-latency path diversity, hence some of the ten shortest
paths are long. For networks with high LLPD, things are
more interesting. Limiting path choice clearly improves la-
tency, though it is still worse than under B4. However, now
MinMax can no longer always avoid congestion; networks
with high LLPD have a very large number of possible, often
non-disjoint, paths, so simply limiting choice to the k best for
a constant k is insufficient to avoid congestion.

4 THE HEADROOM DIAL
So far we have considered traffic as a fixed quantity that
can be packed into a network. Real network traffic is neither
constant in rate nor entirely predictable. A plausible option
for a practical routing system is to reserve some minimum
fraction of each link’s capacity to accommodate foreseen but
rare demand increases. We refer to this fraction as headroom.

Living on the edge. Let us first examine how minimizing
delay uses links’ capacity. We consider again the GTS net-
work, which has high LLPD. Figure 7 shows CDFs of link
utilization using latency-optimal placement and our MinMax
formulation, the two extreme approaches in terms of link

0.0 0.2 0.4 0.6 0.8 1.0
link utilization
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Latency-optimal (mean 0.32)
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Figure 7: Link utilization in GTS’s median case in Fig 4.

utilization, for the median of GTS’s traffic matrices from Fig-
ure 4. The median latency stretch for this topology is 15%
for MinMax and 4% for latency-optimal routing. Despite this,
Figure 7 shows that most links are lightly loaded and exhibit
similar utilization under both schemes. Clearly, what matters
is how loaded the most desirable links are.

Figure 7 also highlights that the few busiest links are loaded
very close to 100% in the optimal routing scheme. No real
network would be deliberately operated with such extreme
link utilizations, since traffic variability would cause (short-
term) queuing which in turn would add delay. In practice
some degree of headroom must be left on links.

We can regard headroom as a dial that can be controlled by
the routing system. We can calculate latency-optimal paths
for a given value of headroom by simple scaling down link
capacities by the chosen headroom and running the optimal
routing scheme on the modified topology. With headroom
set to zero, we get the latency-optimal curve, but short-term
queuing will adversely affect traffic. If we set headroom to
the value MinMax calculates as the maximal free capacity on
the busiest links (about 23% in Figure 7), then the latency-
optimal algorithm converges with MinMax, giving identical
traffic placements. In between the two lies the viable range
of traffic placements that all fit the traffic, but which trade off
latency against headroom to accommodate traffic variability.5

Two key questions emerge from this view of headroom:
• How much headroom can be left before it starts to greatly

impact latency?
• How much headroom is needed to statistically multiplex

busy links without causing excessive short-term queuing?

Headroom vs. latency. To see the effect of increased head-
room on latency, consider Figure 8. This plot shows the me-
dian latency stretch as headroom is increased, when perform-
ing latency-optimal routing. To see the trend more clearly, we
start with a slightly less loaded network - one in which the
traffic matrix could be scaled by a factor of 1.65 before it is
no longer possible to fit the traffic (i.e., the min-cut of the
network is loaded at 60%). We then progressively increase
the reserved headroom in steps from 0% reserved headroom
5Figure 4 shows that B4 and MinMaxK10 sometimes lie outside this range.
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Figure 8: Latency stretch as headroom is increased.

to 40%. For this traffic level, with 40% headroom the latency-
optimal placement converges with the MinMax placement.

The most prominent spikes with high LLPD are again from
the clique networks; as noted before, these are less interesting
because they are overlay networks, so have alternative ways to
mitigate congestion. With the exception of these cliques, the
other networks show relatively little delay stretch as headroom
increases. This is the case even for networks with high LLPD.
Only as headroom finally reaches the extreme of MinMax
does delay stretch really increase greatly.

The implication is that it is probably unnecessary to live
right on the ragged edge of triggering congestion to get paths
with reasonably low latency. At the same time, minimizing
headroom will normally decrease latency, so it is likely to be
worthwhile actively estimating how much headroom is really
needed to avoid significant transient queues building.

How much headroom is needed? Any load-dependent rout-
ing system must use estimates of traffic volumes to make
its routing decisions. These estimates are inevitably imper-
fect. Suppose, for example, that the routing system recalcu-
lates routes every minute. Two factors need to be considered.
First, how predictable is the mean traffic rate from minute
to minute? Second, how well does short-term variability of
aggregates sharing each link statistically multiplex? If we can
answer these questions, we can decide how much headroom
needs to be allocated when calculating paths, so as to mini-
mize propagation latency while avoiding queuing latency.

Prior studies indicate that mean traffic demands are pre-
dictable over minute-long timescales on a WAN, and are
more predictable than demands on a LAN [37]. Furthermore,
a more recent study of Google’s WAN [22] measures a typical
backbone link’s utilization, which varies less than 10% from
minute to minute. To see whether the same conclusions might
hold for ISP traffic, we analyzed the best publicly available
traffic data. These CAIDA packet traces date from 2013 to
2016, and contain all packet headers from four 10 Gbps links
within a U.S. Tier-1 ISP’s backbone [5]. For each link we
have 40 one-hour traces, typically ranging from 1 to 3 Gbps.

Algorithm 1: Predicting next minute’s mean level.
prev_value // Value measured last minute
prev_prediction // Value predicted last minute
decay_multiplier ← 0.98 // 2% decay when level drops
f ixed_hedдe ← 1.1 // 10% hedge against growth
scaled_est ← prev_value ∗ f ixed_hedдe;
if scaled_est > prev_prediction then

next_prediction ← scaled_est ;
else

decay_prediction ← prev_prediction ∗decay_multiplier ;
next_prediction ←max (decay_prediction, scaled_est );
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Figure 9: Predictions of mean traffic level (Tier-1 ISP).

We compute the mean traffic level for each minute and
apply Algorithm 1 to predict the mean rate in the next minute.
This implements a simple conservative strategy: the estimate
increases in line with values measured during the last minute,
and decays slowly when the measured rate decreases. The aim
is aggregates can grow by 10% before exceeding our target.

Figure 9 shows a CDF across all the CAIDA traces of
measured mean bitrate in the next minute divided by pre-
dicted bitrate. If the traffic were constant, all values would
be 1/1.1 = 0.91. The traffic is very predictable on minute-
to-minute timescales: only 0.5% of the time does the actual
traffic exceed the target, and then never by more than 10%.

From these traces, we tentatively conclude that 10% link
headroom may be sufficient to allow changes in mean traffic
rate from minute to minute. When several such aggregates are
placed on the same 10Gbps or 100Gbps core link, it is very
unlikely they will all exceed their predicted values simultane-
ously, so in many cases less headroom may be needed. There
is a limit to what we can conclude from such traces though:
although they do measure Tier-1 backbone traffic, we simply
do not know if they are typical of other ISPs.

We also see significant variability on sub-second timescales.
We measure the bit-rate from the CAIDA traces each millisec-
ond, and calculate the standard deviation of these values for
each minute. Figure 10 is a scatter plot of the standard de-
viation in minute t plotted against the standard deviation in
minute t + 1. Different colors map to different traces, though
some colors are reused. The absolute value of standard devia-
tion spans a large range, but the points are tightly clustered
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around the x = y line, indicating that traffic variability does
not greatly change from one minute to the next. In these
traces, the variability of each aggregate can therefore be char-
acterized so that a routing system can predict how aggregates
statistically multiplex. In turn, such a prediction can be used
to adjust the headroom needed on a link-by-link basis.

5 DEALING WITH SCALABILITY AND
TRAFFIC VARIABILITY CHALLENGES

Given the inability of existing routing schemes to leverage
topologies’ potential for low latency traffic delivery, the ob-
vious question is whether it is possible to design a practical
routing system that both computes low-delay paths and auto-
matically fine-tunes the headroom dial.

Since we aim for close-to-optimal paths, a centralized de-
sign seems a promising starting point. Any centralized load-
dependent routing system must progress through three stages:
measure network demand; calculate paths; install paths in
routers. Others have deployed working solutions of this form,
especially for modern private WANs [23, 25, 28].

We are primarily interested in the feasibility of the low-
delay path calculation stage. To calculate paths, the central-
ized controller needs traffic measurements. We assume that
ingress routers can measure traffic, and can report traffic vol-
umes and approximate numbers of flows to the controller.
For the former information, they periodically send the con-
troller batches of traffic counter values. Those values can
be collected by reading hardware counters multiple times
each second, as demonstrated in [8, 32]. For the latter, ingress
routers can use known techniques to track the number of flows
per aggregate – e.g., through specific hardware support [12]
or estimations from sampled mirrored packet streams [9].

Given this data, the controller has to calculate the nec-
essary headroom, reserve this capacity, and then optimize
traffic placement so as to minimize latency subject to the
constraint of avoiding congestion. This is challenging for
two reasons. First, the optimization itself may be expensive
on large networks that provide good LLPD, since by defini-
tion they have many (low-latency) paths. Second, computing
necessary headroom involves understanding how aggregates

Figure 11: High-level overview.

statistically multiplex, and this in turn depends on which
aggregates might share a link. How should an intra-domain
routing system design address these two challenges?

Design overview. For the path computation to scale on large,
dense networks and to account for aggregates’ multiplexing,
a centralized controller can iterate through three phases, as
shown in Figure 11:

(1) find the best low latency solution, using current estimates
of needed headroom.

(2) appraise how well the proposed solution statistically mul-
tiplexes on busy links.

(3) tweak headroom when multiplexing is unsatisfactory, and
repeat from (1).

This approach requires that finding low latency solutions and
checking statistical multiplexing are both fast, as online route
computation needs to run in seconds.

Path optimization. Given tentative values for headroom, for-
malizing the optimization problem is relatively simple. One
way to do it is to cast path selection as a multi-commodity
flow problem, with one commodity per aggregate, in the spirit
of Bertsekas et al. [2]. However, the size of this optimization
model scales with the product of number of aggregates and
number of links, hence this approach may quickly become
impractical for large networks with high LLPD.

An alternative path-based formulation is shown in Fig-
ure 12. This is not only more efficient, but also better suited
to iterating for adjusting headroom. Despite being similar to
a standard path-based formulation of the multi-commodity
flow problem, a few differences are worth noting.

If aggregates’ demands globally exceed the capacity of
possible paths, congestion cannot be avoided. In this case the
formulation spreads traffic as equally as possible across all
links, as expressed by the last term of the objective function.

Otherwise, the formulation selects the lowest-delay paths
subject to the constraint that they avoid congestion; M2 is
large to ensure this term dominates. Once this term is satisfied,
the delay minimization term determines the choice of paths.
This term has two factors: the first factor minimizes the sum of
path latencies, while the second factor guarantees uniqueness
of the solutions, hence predictability of routing. If there are
two aggregates competing for a link, and moving either of the
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Figure 12: Linear Program for latency optimization.

two to a longer path yields the same total delay, this second
factor ties-breaks by moving the aggregate whose RTT is
already larger – e.g., giving more predictable latency based
on geography, and fitting better with how CDNs work. To
ensure this is only a tie-break, M1 is a very small constant.

To directly optimize this model using a linear program
(LP) solver would require all possible paths for all aggregates
be considered. Such a direct approach is inefficient for large
networks with high LLPD, which are precisely the ones which
we expect to benefit the most from this optimization approach.

Fortunately, this is not necessary, given the path-based
objective function above. Consider an aggregate that does not
fit on its shortest path. An optimal solution places as much
traffic as possible on the shortest path, then allocates the rest
to the next-best path. If the next-best path is not congested,
adding further paths for this aggregate serves no purpose, as
they will never be used. Essentially, there is a “delay threshold”
for each aggregate, beyond which paths of longer delay will
never be used. We don’t know this delay threshold a-priori,
but we can learn it from successive runs of the LP solver.

The above approach is represented in Figure 13. We asso-
ciate each aggregate with the list of its k shortest paths, where
initially k = 1. We formulate an LP where possible paths for
each aggregate are those from its list. We then solve the LP
and look for links that are maximally overloaded – i.e., such
that Ol = Omax > 1. For all aggregates that cross those links
we extend the list of paths by generating shortest paths for an
increasing k , run the LP again and repeat. We iterate until we
find paths with no overloaded links.

Even though this approach involves multiple runs of the LP
optimization, it actually runs very quickly because the number
of variables (paths) in each run is small. The bottleneck is not
the linear optimizer, but the k shortest paths algorithm [49],
the results of which can be readily cached. This yields sub-
second runtimes even with tens of thousands of aggregates.

Figure 13: Obtaining paths and per-path aggregate frac-
tions, assuming each aggregate’s demand is known.

Figure 14: Iteration to assess statistical multiplexing.

Link multiplexing check. Given a representative demand Ba
for each aggregate, the iterative LP approach will compute
a latency-optimal solution. Unfortunately aggregates cannot
be characterized by their mean bitrate; doing so will cause
excessive queuing if no headroom is allocated. Since different
aggregates have different variability, the headroom needed
to allow for statistical multiplexing depends on which aggre-
gates are placed onto each link. However, to determine which
aggregates should share a link, the LP optimizer has to know
how much headroom to leave. How can we break this cycle?

Our strategy is shown in Figure 14. First we compute a
prediction of the mean rate for each aggregate, based on its
measured behavior from the last minute. Using mean values
as an initial estimate of Ba , we perform a preliminary op-
timization of aggregate placement onto paths. We then use
the short timescale traffic measurements from the ingress
routers to assess whether these aggregates will statistically
multiplex well enough on each link. If this test passes for all
links, then the traffic placement is good. If it fails for any link,
we scale up Ba for those aggregates traversing that link, and
re-optimize ( A in Figure 14). Scaling up aggregates serves
to add headroom, but only for those aggregates that don’t
multiplex well. The alternative—scaling down the link speed
to add headroom—is less effective, as it prevents other less
variable aggregates being chosen to use the link instead.

Aggregates may fail to statistically multiplex, either be-
cause traffic bursts are temporally correlated [13], or because
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these aggregates are very variable and statistically likely to
exceed capacity of the links they share. Testing for temporal
correlation ( B in Figure 14) is simple. For each aggregate,
the controller has measurements of data transmitted in each
100 ms period. It simply sums the values from each aggregate
for each corresponding 100 ms period to test if the link’s band-
width would be exceeded. If it is, the excess traffic would be
queued, so is carried over to the next 100 ms period. The con-
troller rejects any solution yielding transient queuing delays
that exceed a maximum allowed value (say, 10 ms).

To evaluate uncorrelated multiplexing ( C in Figure 14),
we can treat aggregates as random processes, each with a
different discrete distribution given by its 100 ms bandwidth
measurements. When these aggregates multiplex on a link, we
care about the resulting multiplexed bandwidth distribution.
We treat each aggregate’s measurements as a probability mass
function (PMF). For each link, we take the convolution of
the PMFs of aggregates that cross that link, and examine the
convolved PMF. If the probability that this PMF exceeds the
link’s capacity is below a threshold, we can conclude that the
aggregates will multiplex well enough to fit. The threshold
comes again from the maximum queue we wish to allow—if
we allow 10 ms queues and the measurements span an interval
of 60 seconds, the threshold would be 10

60000 = 0.00016.
Despite having tens of thousands of aggregates, each with

a different PMF, two optimizations allow all the needed con-
volutions to be performed in milliseconds. First, we don’t test
multiplexing on a link if the sum of the 100ms peak traffic
levels of all aggregates placed on that link does not exceed the
link capacity: those links are indeed guaranteed to pass both
tests. Second, since convolution in the time domain is equiva-
lent to multiplication in the frequency domain, we can transfer
data to the frequency domain using a Fast Fourier Transform
(FFT), multiply the frequencies, and invert the FFT to get the
convolved distribution. This algorithm runs in O (N logN )
time, where N depends on the quantization applied to the dis-
crete time-domain data. We experimentally found that 1024
levels per distribution yields good performance.

Feasibility. For conciseness, we refer to the iterative latency-
optimal routing algorithm described above as Low Delay
Routing (LDR). To be practical, LDR must be able to calcu-
late paths quickly on large, dense networks. Figure 15 shows
CDFs of the runtime of the LDR algorithm on the Topol-
ogy Zoo networks whose LLPD exceeds 0.5; these are the
hardest to route. Several of these topologies are of significant
scale: the greatest number of nodes is 197 (90th percentile:
74 nodes) and the greatest number of links is 243 (90th per-
centile: 96 nodes). The “LDR” curve includes caching of
the k shortest paths, whereas the “cold cache” curve shows
the first run, before the cache is populated. For comparison,
the “link-based” curve shows that a multi-commodity flow
formulation of the same optimization is about two orders of
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Figure 15: Run time of optimization algorithms.

magnitude slower. We conclude that the LDR approach is fast
enough to use in online centralized routing systems.

6 LATENCY, LOCALITY, LOAD & LLPD
With a practical latency-optimal routing system to compare
against, let us revisit the landscape to better understand the in-
teractions between topology, traffic locality, load and latency.

In general, the higher the LLPD, the harder it is to route
a network using shortest path routing, but the more options
an active load-dependent routing system has to move load
around. With more options, heuristic algorithms such as B4
and MinMaxK10 can get stuck in a local minimum. Under
low load this is not usually a problem, but as load increases
and the routing system moves more traffic onto longer paths,
getting stuck in a local minimum becomes more likely.

Under very high load we see that unrestricted MinMax be-
comes close to optimal, as options for re-routing become lim-
ited. However, under low loads MinMax chooses circuitous
routes as it tries to minimize peak link utilization.

Traffic locality also plays a role here, though different
routing schemes are affected differently. If we set the locality
parameter to zero, increasing the mean distance that traffic
travels, we observe that B4 becomes significantly less optimal
as it fills the best long distance paths first, forcing some sub-
optimal routings thereafter. On networks with low LLPD,
when locality is low, both MinMax algorithms may increase
latency significantly. This is common on topologies with large
rings, where MinMax often routes traffic the long way round
the ring in pursuit of reduced utilization on the shorter path.
Conversely, increasing locality beyond our default value of
one has little effect on any routing scheme.

Finally, we must discuss headroom in the context of B4.
B4 was designed for use on Google’s network with controlled
traffic sources. If we wish to use it for ISP networks, we will
also need to add headroom. Our formulation for assessing traf-
fic predictability and statistical multiplexing is quite general,
so we can also apply it to B4 to calculate desired headroom.
When we do so, we find that headroom interacts with B4
in an interesting manner. Consider again the GTS topology
in Figure 5, where B4 became congested. If we allow, say,
10% headroom, B4 will stop short of saturating all the links
on the first pass, and move on to placing some of the long



On Low-Latency-Capable Topologies SIGCOMM 2018, August 20–25, 2018, Budapest, Hungary

0 20 40 60 80 100
times greater than shortest path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

B4
LDR
MinMaxK10
MinMax

(a) LLPD < 0.5, no headroom

0 10 20 30 40 50
times greater than shortest path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

B4
LDR
MinMaxK10
MinMax

(b) LLPD > 0.5, no headroom

0 20 40 60
times greater than shortest path

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

B4
LDR
MinMaxK10
MinMax

(c) LLPD > 0.5, 10% headroom

Figure 16: Maximum path stretch
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Figure 17: Effect of load on median latency stretch

distance traffic on the slightly longer path via G. If the traffic
from G→V that B4 failed to place can fit within the reserved
headroom, then it can still be routed after all other traffic has
been placed. Of course, the headroom was there to mitigate
transient congestion, and now less headroom is available, so
queuing is more likely. Still, we observe that congestion is
less likely with B4 when explicitly allocating headroom.

Let us examine some measurements that illustrate the ob-
servations above. First, how does LLPD and headroom affect
latency stretch? Figure 16 shows CDFs of the maximum path
stretch for each traffic matrix under the same conditions as
Figure 4 (min-cut 0.7 load and locality 1). The different curves
illustrate the effects of LLPD and headroom. In Figure 16(a)
we see the networks with low LLPD. These networks have
few low-latency alternate paths; for some topologies and traf-
fic matrices the maximum stretch is very high - over 100x in
the limit with B4. There is not much to choose between the
four algorithms here, as the topologies don’t provide many
routing options. No headroom is reserved in Figure 16(a), but
adding 10% headroom makes little difference to the CDF.

Figures 16(b) and 16(c) show the networks with high LLPD.
Where the CDF fails to reach 1.0, this indicates that in the
remaining scenarios the routing system could not find a place-
ment that would fit all the traffic. This happens with both
B4 and MinMaxK10. When headroom is added, B4 can fit
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Figure 18: Effect of locality on median latency stretch

traffic in a wider range of scenarios, though these graphs
don’t capture the degree to which B4 eats into the supposedly
reserved headroom to do so. B4 also pays a latency price
in such cases. LDR with headroom and MinMax give very
similar maximum stretch; this is mostly because our MinMax
formulation optimizes for latency once its utilization goal has
been satisfied. As we saw in Figure 8, LDR with headroom
and MinMax exhibit very different median latency stretch.

To understand how robust the results are as load changes,
we examine the median latency stretch across all traffic matri-
ces in the topologies with LLPD greater than 0.5. In Figure 17
we observe how this changes as we increase overall load. B4
is quite sensitive to high load levels in these networks, but the
other schemes are not. Note that at low load, when everything
fits on the shortest path, B4 is optimal, whereas at high load,
the MinMax and optimal curves converge.

Figure 18 shows the same metric as we adjust the locality
of the traffic matrix. A locality of zero tends to load long
distance links more, whereas localities above one tend to load
local links more. B4 is especially sensitive to congesting the
wide-area links, so a traffic matrix with low locality tends to
hurt latency. The MinMax algorithms don’t congest the wide-
area links, but they do load-balance more traffic off them than
is strictly necessary, so they also exhibit increased latency
with low locality. All the schemes give better results when
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the traffic matrix exhibits higher locality, though the MinMax
curves are rather level with locality greater than 1.5.

7 RELATED WORK
The research community has previously devoted attention
to topology, routing, and demand in ISPs’ backbones, but
prior work has typically discussed each of these aspects in
isolation. For example, studies of WAN topology design and
optimization [4, 18, 38] ignore the network’s routing system.
We have shown that it is critical to consider the interplay
between topology and routing—e.g., the routing system may
impose constraints on how the topology can be evolved (§8).

Measurement studies [34, 41] consider the impact of fac-
tors including topology and (BGP) routing policies on inter-
domain path latency. In this work we focus on intra-domain
routing, and show that it significantly impacts path latency in
WANs. The flattening of the AS-level hierarchy [17] and the
rapid increase in popularity of Content Delivery Networks
are also likely to magnify the impact of intra-domain routing.

Most prior intra-domain routing systems [11, 27, 30, 46]
focus on maximizing spare link capacity, a problem pro-
foundly different from the delay minimization one we study.
These two problems’ different natures also motivate oblivious
and semi-oblivious approaches [7, 31]—while maximizing
spare capacity is inherently more robust to demand fluctua-
tions, delay minimization requires judicious application of
headroom to keep paths as low-latency as practicable while
maintaining slack capacity for demand spikes.

We are far from the first to look at low-delay routing. Gal-
lager [14] provides a general LP-based definition of path
optimization problems whose objective functions can encom-
pass delay. Follow-on contributions [26, 45, 47] consider the
problem of minimizing per-packet latency, assuming that de-
lay is a function of the load on traversed links—which is the
case if those links are bottlenecks. In the WAN scenario this
is often not the case, as most flows that traverse the network
are already bottlenecked at a slower access link.

Alternative mechanisms, e.g., based on specific queuing
schemes [19] or new transport layer mechanisms [48, 50],
can also provide low latency, especially to delay-sensitive,
short-lived flows. However, those mechanisms require precise
information about latency-sensitive and latency-insensitive
flows that ISPs typically do not have (but see §8).

We are also not the first to advocate for the importance of
delivering Internet traffic with low delay. Recent contributions
span specific intra-datacenter solutions [1] to more general
techniques for use in networked systems [44], and calls to
arms for the research community [40]. We contribute a sys-
tematic study of the interplay between routing and topology,
and leverage that understanding to describe a new approach
to routing that can best exploit low-latency path diversity.
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Figure 19: Same shortest-path routing data as in Figure 3,
but with Google’s topology (LLPD = 0.875) added.

8 DISCUSSION
We have explored the interplay between the diversity of low-
latency paths in a topology and the ability of a routing scheme
to exploit that diversity to achieve congestion-free, low-delay
traffic delivery. While we have taken an initial step toward
routing that better harnesses this diversity in today’s ISP
topologies, important questions in this area remain.

Modern enterprise networks. The Topology Zoo consists
largely of transit networks from recent decades, most of which
were not designed with dynamic, latency-minimizing routing
in mind. How do state-of-the-art enterprise networks com-
pare? We examined a wide-area global enterprise network
owned by Google [24]. In Figure 19 we revisit the behavior
of delay-proportional shortest-path routing by augmenting
Figure 3 with results for Google’s network. The new data-
point clearly exhibits the greatest LLPD among all topologies
and, unsurprisingly, cannot be routed using shortest paths
alone. Google’s own B4 in fact performs nearly optimally on
this network without exhibiting the pathologies in Section 3.
We conjecture that this topology was explicitly designed for
dynamic latency-minimizing routing. We believe it to be an
important existence proof that it is possible and economically
viable to build a high-LLPD network that spans the globe. We
note though that an enterprise network can control traffic at
endpoints, so demand may be more predictable than at an ISP.

Does routing influence topology? The ISP topologies we
have studied were designed to be used with pre-existing rout-
ing schemes. Have routing systems’ limitations constrained
how networks themselves have grown? Apart from the ex-
ample of B4 and SNet, we cannot definitively answer this
question without deploying an optimal routing system and
waiting a decade or so to see how ISPs upgrade their networks.
Nor can we accurately determine which topology upgrades
might be likely; we have no model for the economic and
geopolitical constraints that gate new link deployment. We
can, however, examine the extent to which topology upgrades
enable better service from today’s routing systems. When
adding links to a topology in principle ought to improve ser-
vice but in practice does not, an ISP wouldn’t likely choose to
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grow the network in that way. If, however, the ISP had a rout-
ing system that could harness those added links to improve
service, the ISP would see benefit in adding them.

We examined four networks that are difficult to route with
low latency, even with optimal traffic placement. The net-
works chosen are those from Figure 4(a) with high latency,
but we exclude those with clique topologies, to which we can-
not add links. We use the LLPD metric to determine which
additional links might confer the greatest benefit. Of all the
links to be possibly added, we add the one that gives the
greatest increase in LLPD. We then repeat this process until
the number of links has increased by 5%. As each link added
improves LLPD, the resulting network will, in principle, be
more amenable to low-latency routing.

Figure 20 shows how much the different routing schemes
profit. As before, load is 0.7 and locality 1. The x-axis and y-
axis respectively show the latency stretch on the original and
enhanced networks. We plot points for each routing scheme:
crosses show median stretch, and dots the 90th percentile.
Ideally, all points would be close to the x-axis. At the very
least, we would hope for the points to be below the x = y line,
indicating that adding links reduces latency.

Only LDR fully takes advantage of the new links, giving
median latency stretch very close to unity. For three of the
networks, LDR’s 90th percentile is less than all other routing
systems’ median latency. B4 can also take advantage of new
links, though it is far from perfect. Both MinMax algorithms
fare much worse. In some cases, adding new links that im-
prove LLPD actually increases latency, as both algorithms
use the links to load balance more widely.

We conjecture on the basis of these preliminary experi-
ments that the routing scheme does determine which links are
best for an ISP to add. Although we cannot be sure that limita-
tions in today’s routing systems prevent ISPs from deploying
lower-latency topologies, it seems that may be the case.

Limits to LLPD’s applicability. We formulated LLPD as
a simple metric to retrospectively assess how well an exist-
ing topology supports the delivery of traffic with low delay.

What about prospectively, to determine which links to add
or increase in capacity when evolving a topology? We don’t
believe LLPD is always the best instrument for predicting
which evolved versions of a topology offer the lowest latency.

Consider an Asia-centered network already with high LLPD
that stretches to Europe in the West and the US in the East.
Adding a single non-redundant transatlantic link would reduce
latency for some Europe↔US traffic, but may actually reduce
LLPD, as there is no low-latency alternate path available.

Even if adding a link increases LLPD, without a routing
scheme such as LDR that can effectively use path diversity,
latency may not decrease, as shown in Figure 20. Where such
a routing scheme is used, if forecast traffic matrices are also
available, then the optimized value of LDR’s objective in
Figure 12 provides a better metric to evaluate the impact of
the adding of new links on latency. Combining this metric
with other constraints to reflect economic and other costs of
link deployment may be a fruitful direction for future work
on optimizing the evolution of a topology.

Extension to differentiated traffic classes. Not all flows
are equal; some applications may be more latency sensitive
than others, though it is not always easy for an ISP to know
which are which. If an ISP does know which flows should be
prioritized, it is straightforward to extend our optimization
framework to split aggregates according to priority, and to
modify the LP constraints and weights so as to prioritize
giving low latency paths to flows that will benefit most.

Generality of building blocks. We believe that LDR’s iter-
ative growth of the set of paths used to route an aggregate and
its convolution technique for determining headroom should
both be of use in other low-delay routing systems. For ex-
ample, B4 assumes no variation in traffic demands, as it is
designed for an enterprise setting in which the routing con-
troller has global knowledge of all sources’ exact rates. The
convolution approach to headroom could be useful in adapt-
ing B4 to the ISP setting. And while MinMax K10’s fixed
choice of the ten lowest-delay paths is bound to be too great
or too small for some aggregates, iteratively growing the path
set for MinMax per aggregate, subject to a bound on delay
stretch, should help MinMax avoid needless detours.

We hope our work can be a first step toward enabling the
deployment of ISP topologies that are better than today’s
for the provision of low-latency service, but remain unbuilt
because today’s routing systems cannot fully harness their
path diversity.

ACKNOWLEDGMENTS
We thank Michael Walfish, our shepherd Michael Schapira,
and the anonymous reviewers for their helpful comments.
Nikola Gvozdiev was supported by a Google European Doc-
toral Fellowship.



SIGCOMM 2018, August 20–25, 2018, Budapest, Hungary Gvozdiev et al.

REFERENCES
[1] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,

Nelson Huang, and Amin Vahdat. 2010. Hedera: Dynamic Flow Sched-
uling for Data Center Networks. In Proc. USENIX NSDI.

[2] Dimitri P. Bertsekas, Robert G. Gallager, and Pierre Humblet. 1987.
Data networks. Vol. 2. Prentice-hall Englewood Cliffs, NJ.

[3] Dietrich Braess. 1968. Über ein Paradoxon aus der Verkehrsplanung.
Unternehmensforschung 12, 1 (01 Dec 1968), 258–268.

[4] Robert S. Cahn. 1998. Wide Area Network Design: Concepts and Tools
for Optimization. Morgan Kaufmann Publishers Inc.

[5] CAIDA. 2018. Internet Data – Passive Data Sources. (2018). https:
//www.caida.org/data/passive/

[6] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Yeganeh,
and Van Jacobson. 2017. BBR: Congestion-Based Congestion Control.
Commun. ACM 60, 2 (2017), 58–66.

[7] Marco Chiesa, Gábor Rétvári, and Michael Schapira. 2016. Lying Your
Way to Better Traffic Engineering. In Proc. ACM CoNEXT.

[8] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagan-
dula, Puneet Sharma, and Sujata Banerjee. 2011. DevoFlow: Scaling
flow management for high-performance networks. ACM SIGCOMM
Computer Communication Review 41, 4 (2011), 254–265.

[9] Nick Duffield, Carsten Lund, and Mikkel Thorup. 2003. Estimating
Flow Distributions from Sampled Flow Statistics. In Proc. ACM SIG-
COMM.

[10] Nandita Dukkipati. 2013. Tail Loss Probe (TLP): An Algorithm for
Fast Recovery of Tail Losses. Internet Draft. (2013).

[11] Anwar Elwalid, Cheng Jin, Steven Low, and Indra Widjaja. 2001.
MATE: MPLS adaptive traffic engineering. In Proc. IEEE INFOCOM.

[12] Cristian Estan and George Varghese. 2002. New Directions in Traffic
Measurement and Accounting. In Proc. ACM SIGCOMM.

[13] Sally Floyd and Van Jacobson. 1993. The Synchronization of Periodic
Routing Messages. In Proc. ACM SIGCOMM.

[14] Robert G. Gallager. 1977. A Minimum Delay Routing Algorithm Using
Distributed Computation. IEEE Transactions on Communications 25, 1
(Jan. 1977), 73–85.

[15] Riot games. 2016. Fixing the Internet for real time applications: part
II. https://engineering.riotgames.com/news/fixing-internet-real-time-
applications-part-ii. (2016).

[16] Steven Gay, Pierre Schaus, and Stefano Vissicchio. 2017.
REPETITA: Repeatable Experiments for Performance Evalua-
tion of Traffic-Engineering Algorithms. CoRR abs/1710.08665 (2017).
arXiv:1710.08665 http://arxiv.org/abs/1710.08665

[17] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. 2008.
The Flattening Internet Topology: Natural Evolution, Unsightly Barna-
cles or Contrived Collapse?. In Proc. ACM PAM.

[18] Wayne D. Grover. 2004. Mesh-Based Survivable Networks. Prentice
Hall PTR.

[19] Liang Guo and Ibrahim Matta. 2001. The War between Mice and
Elephants. In Proc. IEEE ICNP.

[20] Nikola Gvozdiev. 2018. Traffic Matrix Generator.
https://github.com/ngvozdiev/tm-gen. (2018).

[21] Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, and Mark Handley.
2017. Low-Latency Routing on Mesh-Like Backbones. In Proc. ACM
HotNets-XVI.

[22] Avinatan Hassidim, Danny Raz, Michal Segalov, and Ariel Shaqed.
2013. Network utilization: The flow view. In Proc. IEEE INFOCOM.

[23] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving High
Utilization with Software-Driven WAN. In Proc. ACM SIGCOMM.

[24] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu,
Richard Alimi, Kondapa Naidu B., Chandan Bhagat, Sourabh Jain, Jay
Kaimal, Shiyu Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat
Ray, Malveeka Tewari, Matt Tierney, Monika Zahn, Jonathan Zolla,

Joon Ong, and Amin Vahdat. 2018. Managing Hierarchy, Partitioning,
and Asymmetry for Availability and Scale in a Software-Defined WAN.
In Proc. ACM SIGCOMM.

[25] Sushant Jain, Alok Kumar, Subhasree M, Joon Ong, Leon Poutievski,
Arjun Singh, Subbaiah Venkata, Jim W, Junlan Zhou, Min Zhu,
Jonathan Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015.
B4: Experience with a Globally-Deployed Software Defined WAN. In
Proc. ACM SIGCOMM.

[26] Umar Javed, Martin Suchara, Jiayue He, and Jennifer Rexford. 2009.
Multipath protocol for delay-sensitive traffic. In Proc. IEEE COM-
SNETS.

[27] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. 2005.
Walking the Tightrope: Responsive Yet Stable Traffic Engineering. In
Proc. ACM SIGCOMM.

[28] Srikanth Kandula, Ishai Menache, Roy Schwartz, and Spandana Raj
Babbula. 2014. Calendaring for Wide Area Networks. In Proc. ACM
SIGCOMM.

[29] Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and
Matthew Roughan. 2011. The Internet Topology Zoo. IEEE Journal on
Selected Areas in Communications 29, 9 (october 2011), 1765 –1775.

[30] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil
Kasinadhuni, Enrique Zermeno, C. Stephen Gunn, Jing Ai, Björn Carlin,
Mihai Amarandei-Stavila, Mathieu Robin, Aspi Siganporia, Stephen
Stuart, and Amin Vahdat. 2015. BwE: Flexible, Hierarchical Bandwidth
Allocation for WAN Distributed Computing. In Proc. ACM SIGCOMM.

[31] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Klein-
berg, Petr Lapukhov, Chiun Lin Lim, and Robert Soulé. 2018. Semi-
Oblivious Traffic Engineering: The Road Not Taken. In Proc. NSDI).

[32] Jeffrey C Mogul and Paul Congdon. 2012. Hey, you darned counters!:
get off my ASIC!. In Proc. ACM HotSDN.

[33] J. Moy. 1998. OSPF Version 2. RFC 2328. (April 1998). http://www.
ietf.org/rfc/rfc2328.txt

[34] Wolfgang Mühlbauer, Steve Uhlig, Anja Feldmann, Olaf Maennel,
Bruno Quoitin, and Bingjie Fu. 2010. Impact of routing parameters on
route diversity and path inflation. Computer Networks 54, 14 (2010),
2506–2518.

[35] Kathleen Nichols and Van Jacobson. 2012. Controlling Queue Delay.
Commun. ACM 55, 7 (2012), 42–50.

[36] Dave Oran. 1990. OSI IS-IS Intra-domain Routing Protocol. RFC 1142.
(1990).

[37] Yi Qiao, Jason Skicewicz, and Peter Dinda. 2004. An empirical study of
the multiscale predictability of network traffic. In Proc. IEEE HPDC.

[38] Bruno Quoitin, Virginie Van den Schrieck, Pierre François, and Olivier
Bonaventure. 2009. IGen: Generation of Router-level Internet Topolo-
gies through Network Design Heuristics. In Proc. IEEE ITC.

[39] Matthew Roughan. 2005. Simplifying the synthesis of internet traffic
matrices. ACM SIGCOMM Computer Communication Review 35, 5
(2005), 93–96.

[40] Ankit Singla, Balakrishnan Chandrasekaran, P. Brighten Godfrey, and
Bruce Maggs. 2014. The Internet at the Speed of Light. In Proc. ACM
HotNets-XIII.

[41] Neil Spring, Ratul Mahajan, and Thomas Anderson. 2003. The Causes
of Path Inflation. In Proc. ACM SIGCOMM.

[42] Richard Steenbergen. 2013. MPLS RSVP-TE Auto-Bandwidth: Prac-
tical Lessons Learned. https://www.nanog.org/sites/default/files/tues.
general.steenbergen.autobandwidth.30.pdf. (2013). Accessed: 2017-
10-31.

[43] Pete Templin. 2006. MPLS Traffic Engineering. https://www.nanog.
org/meetings/nanog37/presentations/pete-templin.pdf. (2006). Ac-
cessed: 2017-10-31.

[44] Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine
Sherry, Sylvia Ratnasamy, and Scott Shenker. 2013. Low Latency
via Redundancy. In Proc. ACM CoNEXT.

https://www.caida.org/data/passive/
https://www.caida.org/data/passive/
http://arxiv.org/abs/1710.08665
http://arxiv.org/abs/1710.08665
http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc2328.txt
https://www.nanog.org/sites/default/files/tues.general.steenbergen.autobandwidth.30.pdf
https://www.nanog.org/sites/default/files/tues.general.steenbergen.autobandwidth.30.pdf
https://www.nanog.org/meetings/nanog37/presentations/pete-templin.pdf
https://www.nanog.org/meetings/nanog37/presentations/pete-templin.pdf


On Low-Latency-Capable Topologies SIGCOMM 2018, August 20–25, 2018, Budapest, Hungary

[45] Srinivas Vutukury and JJ Garcia-Luna-Aceves. 1999. A simple ap-
proximation to minimum-delay routing. In ACM SIGCOMM Computer
Communication Review, Vol. 29. ACM, 227–238.

[46] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang,
and Albert Greenberg. 2006. COPE: Traffic Engineering in Dynamic
Networks. In Proc. ACM SIGCOMM.

[47] Zheng Wang and Jon Crowcroft. 1990. Shortest path first with emer-
gency exits. In ACM SIGCOMM Computer Communication Review,
Vol. 20. ACM, 166–176.

[48] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley.
2010. Design, implementation and evaluation of congestion control for
multipath TCP. In Proc. USENIX NSDI.

[49] Jin Y Yen. 1970. An algorithm for finding shortest routes from all
source nodes to a given destination in general networks. Quart. Appl.
Math. 27, 4 (1970), 526–530.

[50] Wenxuan Zhou, Qingxi Li, Matthew Caesar, and P. Brighten Godfrey.
2011. ASAP: A Low-latency Transport Layer. In Proc. ACM CoNEXT.


	Abstract
	1 Introduction
	2 Assessing Topologies' Potential for Low Latency
	3 Path diversity is hard to use
	4 The Headroom Dial
	5 Dealing with Scalability and Traffic Variability Challenges
	6 Latency, Locality, Load & LLPD
	7 Related Work
	8 Discussion
	References

