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BACKGROUND
The World Health Organization recommends drug-susceptibility testing of Mycobac-
terium tuberculosis complex for all patients with tuberculosis to guide treatment deci-
sions and improve outcomes. Whether DNA sequencing can be used to accurately 
predict profiles of susceptibility to first-line antituberculosis drugs has not been clear.

METHODS
We obtained whole-genome sequences and associated phenotypes of resistance or 
susceptibility to the first-line antituberculosis drugs isoniazid, rifampin, ethambutol, 
and pyrazinamide for isolates from 16 countries across six continents. For each isolate, 
mutations associated with drug resistance and drug susceptibility were identified 
across nine genes, and individual phenotypes were predicted unless mutations of 
unknown association were also present. To identify how whole-genome sequencing 
might direct first-line drug therapy, complete susceptibility profiles were predicted. 
These profiles were predicted to be susceptible to all four drugs (i.e., pansusceptible) 
if they were predicted to be susceptible to isoniazid and to the other drugs or if they 
contained mutations of unknown association in genes that affect susceptibility to 
the other drugs. We simulated the way in which the negative predictive value 
changed with the prevalence of drug resistance.

RESULTS
A total of 10,209 isolates were analyzed. The largest proportion of phenotypes was 
predicted for rifampin (9660 [95.4%] of 10,130) and the smallest was predicted for 
ethambutol (8794 [89.8%] of 9794). Resistance to isoniazid, rifampin, ethambutol, 
and pyrazinamide was correctly predicted with 97.1%, 97.5%, 94.6%, and 91.3% sen-
sitivity, respectively, and susceptibility to these drugs was correctly predicted with 
99.0%, 98.8%, 93.6%, and 96.8% specificity. Of the 7516 isolates with complete 
phenotypic drug-susceptibility profiles, 5865 (78.0%) had complete genotypic pre-
dictions, among which 5250 profiles (89.5%) were correctly predicted. Among the 
4037 phenotypic profiles that were predicted to be pansusceptible, 3952 (97.9%) were 
correctly predicted.

CONCLUSIONS
Genotypic predictions of the susceptibility of M. tuberculosis to first-line drugs were 
found to be correlated with phenotypic susceptibility to these drugs. (Funded by the 
Bill and Melinda Gates Foundation and others.)
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Mycobacterium tuberculosis killed 
more people than any other pathogen 
in 2016, a year in which there were esti-

mated to be more than 10 million active cases 
and 1.7 million patients who died from tubercu-
losis.1 In 2014, the World Health Organization 
(WHO) set a target to “END TB” by 2035, acknowl-
edging that success depends on the development 
of better preventative, diagnostic, and therapeutic 
interventions. The global emergence of antimi-
crobial resistance poses a major challenge. De-
spite a call for universal access to drug-suscepti-
bility testing to guide individualized therapy, the 
high costs of the testing and shortages of people 
with the skills necessary to conduct it mean 
that it is unavailable in many countries with the 
greatest need. Consequently, only 22% of an 
estimated 600,000 patients requiring treatment 
for multidrug-resistant tuberculosis received di-
agnoses and were treated in 2016,1 which facili-
tated the onward transmission of multidrug-resis-
tant strains.2

The Xpert MTB/RIF assay (Cepheid) has par-
tially eased the global diagnostic need. It uses 
polymerase chain reaction (PCR) technology to 
identify both M. tuberculosis complex and muta-
tions in the rpoB gene (predictive of multidrug 
resistance) directly from clinical samples.3 How-
ever, because the assay targets only a few poten-
tial resistance-conferring mutations, antimicrobial 
susceptibility cannot be reliably inferred from a 
negative result.4 To devise individualized thera-
pies, a diagnostic assay is needed to determine 
which drugs to give, in addition to which drugs 
to avoid.

Advances in whole-genome sequencing mean 
that it is now feasible to consider how this tech-
nology can aid in the assessment of drug suscep-
tibility. Whole-genome sequencing is faster, more 
scalable, and likely to become less expensive than 
phenotypic testing.5 If all resistance-conferring 
mutations were known, it should be possible to 
infer M. tuberculosis antimicrobial susceptibility 
from their absence, because the number of ge-
nomic sites that whole-genome sequencing cov-
ers is virtually unrestricted,6 although resistance 
mechanisms with complex underlying gene in-
teractions may not be detected. Here, we assess 
how well whole-genome sequencing performs for 
the detection of susceptibility to first-line antitu-
berculosis drugs, given existing knowledge, as 
compared with the standards set forth in WHO 

target product profiles for new molecular assays7; 
we also assess whether whole-genome sequencing 
can be used to accurately guide antituberculosis 
therapy.

Me thods

Sample Selection

We analyzed a total of 23 collections of M. tuber-
culosis complex isolates from 16 countries, each 
sequenced as part of population-based or diag-
nostic studies (Table 1, and Table S1 in the Sup-
plementary Appendix, available with the full text 
of this article at NEJM.org). Six collections from 
Germany, Italy, the Netherlands, and the United 
Kingdom were unenriched for antimicrobial re-
sistance and were sequenced largely prospectively. 
Seventeen other collections from across six con-
tinents were enriched for antimicrobial resistance. 
Analyses of both the unenriched and the complete 
collection were planned.

Sequencing

Isolates were sequenced on Illumina platforms, 
and the reads were processed by the Public Health 
England bioinformatics pipeline at Genomics Eng-
land,8 as described previously.6 Stampy, version 
1.0.17,9 was used to map reads (with repetitive re-
gions masked) to the M. tuberculosis reference ge-
nome (GenBank accession number, NC_000962.2), 
which is susceptible to the four first-line antitu-
berculosis drugs isoniazid, rifampin, ethambutol, 
and pyrazinamide (i.e., pansusceptible). SAMtools 
mpileup, version 0.1.18,10 was used to make vari-
ant calls based on a minimum read depth of 5× 
and at least one read on each strand. Mixed calls 
were assigned where minority alleles composed 
more than 10% of the read depth. Insertions and 
deletions were identified with Cortex, version 
1.0.5.21.11

Drug-Susceptibility Testing and Prediction

Phenotypic drug-susceptibility testing was per-
formed locally with the use of an MGIT 960 
system (Becton Dickinson), by culture on 7H10 
or Löwenstein–Jensen agar, or by microscopic-
observation drug-susceptibility (MODS) assay, with 
method-specific critical concentrations for iso-
niazid (MGIT, 0.1 to 0.2 μg per milliliter; agar, 
0.2 μg per milliliter; and MODS, 0.4 μg per mil-
liliter), rifampin (MGIT, 1.0 μg per milliliter; agar, 
40 μg per milliliter), ethambutol (MGIT, 5.0 μg 

The New England Journal of Medicine 
Downloaded from nejm.org at UNIVERSITY COLLEGE LONDON on January 2, 2019. For personal use only. No other uses without permission. 

 Copyright © 2018 Massachusetts Medical Society. All rights reserved. 



n engl j med 379;15 nejm.org October 11, 2018 1405

Prediction of Susceptibility to Tuberculosis Drugs

Ta
bl

e 
1.

 N
um

be
rs

 o
f I

so
la

te
s 

A
cc

or
di

ng
 to

 C
ou

nt
ry

 o
f S

am
pl

e 
O

ri
gi

n 
an

d 
D

ru
g-

R
es

is
ta

nc
e 

Pr
of

ile
.

C
ou

nt
ry

Pe
ri

od
 I

so
la

te
d

En
ri

ch
ed

 fo
r 

R
es

is
ta

nc
e

Su
sc

ep
tib

le
 t

o 
A

ll 
Fo

ur
 D

ru
gs

Su
sc

ep
tib

le
 t

o 
Th

re
e 

D
ru

gs
*

Is
on

ia
zi

d-
R

es
is

ta
nt

, 
R

ifa
m

pi
n-

Su
sc

ep
tib

le
Is

on
ia

zi
d-

Su
sc

ep
tib

le
, 

R
ifa

m
pi

n-
R

es
is

ta
nt

Is
on

ia
zi

d-
R

es
is

ta
nt

, 
R

ifa
m

pi
n-

R
es

is
ta

nt
O

th
er

 
 P

at
te

rn
To

ta
l

A
us

tr
al

ia
20

06
–2

01
6

Ye
s

0
0

4
0

38
0

42

B
el

gi
um

20
07

–2
01

5
Ye

s
12

1
0

2
0

97
14

23
4

C
an

ad
a

20
03

–2
01

4
Ye

s
11

1,
11

8
16

4
14

24
12

1,
34

3

C
hi

na
20

09
–2

01
2

Ye
s

0
44

0
0

23
6

0
28

0

G
er

m
an

y
19

98
–2

01
5

N
o

24
8

0
9

1
13

2
27

3

It
al

y
20

08
–2

01
6

Ye
s 

an
d 

no
†

82
1

9
0

13
2

2
22

6

N
et

he
rl

an
ds

19
93

–2
01

6
Ye

s 
an

d 
no

†
42

0
42

24
1

14
9

31
66

7

Pa
ki

st
an

20
14

–2
01

5
Ye

s
47

5
11

6
34

5
1

41
5

Pe
ru

19
97

–2
00

9
Ye

s
24

12
49

18
19

9
13

31
5

R
us

si
a

20
08

–2
01

0
Ye

s
28

2
0

11
6

15
40

7
22

84
2

Se
rb

ia
20

08
–2

01
4

Ye
s

0
0

0
0

10
5

0
10

5

So
ut

h 
A

fr
ic

a
20

12
–2

01
4

Ye
s

59
3

11
37

69
15

1
13

0
99

1

Sp
ai

n
20

13
–2

01
5

Ye
s

45
3

5
2

8
1

64

eS
w

at
in

i‡
20

09
–2

01
0

Ye
s

2
13

0
14

4
11

6
7

27
3

Th
ai

la
nd

19
98

–2
01

3
Ye

s
0

53
7

4
18

8
0

25
2

U
ni

te
d 

K
in

gd
om

20
09

–2
01

7
Ye

s 
an

d 
no

†
3,

03
6

82
16

7
6

44
2

15
4

3,
88

7

To
ta

l
4,

91
1

1,
50

1
61

8
14

0
2,

65
0

38
9

10
,2

09

* 
 Is

ol
at

es
 in

 t
hi

s 
ca

te
go

ry
 w

er
e 

m
is

si
ng

 r
es

ul
ts

 fo
r 

py
ra

zi
na

m
id

e.
†

  M
or

e 
th

an
 o

ne
 c

ol
le

ct
io

n 
w

as
 d

er
iv

ed
 fr

om
 I

ta
ly

, t
he

 N
et

he
rl

an
ds

, a
nd

 t
he

 U
ni

te
d 

K
in

gd
om

, s
om

e 
of

 w
hi

ch
 w

er
e 

en
ri

ch
ed

 a
nd

 s
om

e 
of

 w
hi

ch
 w

er
e 

no
t 

en
ri

ch
ed

 fo
r 

re
si

st
an

ce
. D

et
ai

ls
 

ar
e 

pr
ov

id
ed

 in
 t

he
 S

up
pl

em
en

ta
ry

 A
pp

en
di

x.
‡

  U
nt

il 
re

ce
nt

ly
, e

Sw
at

in
i w

as
 k

no
w

n 
as

 S
w

az
ila

nd
.

The New England Journal of Medicine 
Downloaded from nejm.org at UNIVERSITY COLLEGE LONDON on January 2, 2019. For personal use only. No other uses without permission. 

 Copyright © 2018 Massachusetts Medical Society. All rights reserved. 



n engl j med 379;15 nejm.org October 11, 20181406

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

per milliliter; agar, 0.2 μg per milliliter), and 
pyrazinamide (100 μg per milliliter). Not all labo-
ratories routinely tested all agents (Table S1 in 
the Supplementary Appendix). Genotypic predic-
tions were based on mutations in or upstream 
from genes associated with resistance to isonia-
zid (ahpC, inhA, fabG1, and katG), rifampin (rpoB), 
ethambutol (embA, embB, and embC), and pyrazin-
amide (pncA).6 A knowledge base of mutations 
that are predictive of resistance or consistent with 
susceptibility was informed by the molecular tar-
gets of WHO-recommended line-probe assays 
(MTBDRplus or MTBDRsl, version 1.0 [HAIN Life-
sciences]), a systematic literature review,12 the 
Centers for Disease Control and Prevention (CDC) 
panel, and two recent studies that had no isolates 
in common with the present study (Table S2 in 
the Supplementary Appendix),6,13 of which one 
became available after the present study com-
menced.13

Isolates containing resistance mutations were 
predicted to be phenotypically resistant, whereas 
isolates containing only wild-type sequence, phy-
logenetic mutations,6 or mutations that were con-
sidered to be consistent with susceptibility were 
predicted to be susceptible. Predictions were with-
held for isolates containing mutations that affect 
target genes but that are of unknown associa-
tion or in instances in which no nucleotide call 
could be determined at a resistance-associated site. 
In these circumstances, the genotype was reported 
as “unknown” or “failed,” respectively. Using phe-
notypic results as the standard, we calculated the 
sensitivity, specificity, and negative and positive 
predictive values for the correct assignment of 
susceptibility or resistance. For the primary analy-
ses, we excluded phenotypes without a prediction.

Laboratory error was assumed in instances in 
which three or more phenotypes were discordant 
with the genotype of an isolate or in which sus-
ceptible phenotypes were recorded despite the 
presence of the high-level resistance mutation katG 
S315T for isoniazid or rpoB S450L for rifampin.14 
Such isolates were excluded from further analysis.

The analysis was performed with the use of 
Stata software, version 13.1 (StataCorp). No insti-
tutional-review-board approval was required, be-
cause this study used only data from mycobacte-
ria. In Thailand, approval was granted through 
Mahidol University as part of a larger study.

R esult s

Prediction of Phenotypic Susceptibility  
or Resistance to Individual Drugs

A total of 10,290 isolates were available for the 
study, of which 38 were associated with three or 
four phenotype–genotype discrepancies. High-level 
resistance mutations were found in 37 phenotypi-
cally susceptible isolates: 25 with the katG S315T 
mutation, which confers resistance to isoniazid, 
and 12 with the rpoB S450L mutation, which 
confers resistance to rifampin; 6 additional phe-
notypically susceptible isolates contained both 
of these mutations. All 81 of these isolates (0.8% 
of the total sample) were excluded from further 
analysis because of likely laboratory mislabeling. 
Of the 10,209 isolates that remained, full first-
line phenotypic profiles were available for 7516 
(73.6%), and partial profiles were available for the 
remainder. A total of 4911 (48.1%) isolates were 
phenotypically susceptible to all drugs (Table 1).

For each isolate, the complete sequence of nine 
genes and their promoter regions was interro-
gated to make genotypic predictions of each avail-
able phenotypic result. Predictions could be made 
for 8405 (93.6%) of 8976 phenotypic test results 
indicating resistance and 26,879 (93.5%) of 28,746 
phenotypic test results indicating susceptibility; 
the remainder were from isolates that had unchar-
acterized mutations or were missing key nucleotide 
calls. For isoniazid, rifampin, ethambutol, and 
pyrazinamide, the sensitivity of genotypic predic-
tion (i.e., the percentage of phenotypic test results 
indicating resistance that had concordant geno-
typic predictions) was 97.1%, 97.5%, 94.6%, and 
91.3%, respectively, and the specificity (i.e., the 
percentage of phenotypic test results indicating 
susceptibility that had concordant genotypic pre-
dictions) was 99.0%, 98.8%, 93.6%, and 96.8%. 
In comparison, the results expected from WHO-
recommended molecular assays (Xpert MTB/RIF, 
MTBDRplus, and MTBDRsl, version 1.0) on the 
basis of the mutations they probe having been 
identified from the genome-sequence data showed 
a significantly lower sensitivity than whole-genome 
sequencing for isoniazid, rifampin, and etham-
butol (P<0.001) but a greater specificity for iso-
niazid and ethambutol (P<0.001) (Table 2).

The negative predictive value of whole-genome 
sequence analysis (i.e., the percentage of geno-
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typic predictions of susceptibility that were correct) 
was greater than 98.5% for all four drugs. Al-
though it is necessarily dependent on the preva-
lence of resistance, the negative predictive value 
for each drug also varied according to the pheno-
types of susceptibility or resistance to the other 
three drugs. For example, at a prevalence of pyra-
zinamide resistance of 20%, the expected nega-
tive predictive value for pyrazinamide was 93.6% 
and 99.0% for isolates that were susceptible and 
resistant, respectively, to the other three drugs 
(Table 3, and Table S3 in the Supplementary Ap-
pendix).

Because some collections included clustered 
isolates, the analysis was repeated after random 
selection of one representative among genomi-
cally indistinguishable isolates and again from 
isolates that were within five single-nucleotide 
polymorphisms (SNPs) of another isolate. No sig-
nificant change in sensitivity or specificity was 
observed for any drugs (P>0.1) (Table S4 in the 
Supplementary Appendix).

To reflect the emerging practice of routinely 
sequencing isolates for clinical care, the analysis 
was repeated for the subset of 4397 isolates from 
German, Italian, Dutch, and U.K. collections that 
were not enriched for resistance. Among these 
isolates, 335 (7.6%) were isoniazid-resistant and 
125 (2.8%) were multidrug-resistant. For each 
drug, the specificity and negative predictive val-
ues were higher and the positive predictive values 
(the percentage of genotypic predictions of resis-
tance that were correct) lower than in the overall 
results. There was no significant difference in 
sensitivity (Table 2).

Prediction of Complete Phenotypic 
Susceptibility Profiles

In order for DNA sequencing to be useful for the 
individualization of therapy, a minimum require-
ment is that all phenotypes of resistance or sus-
ceptibility to first-line antimicrobial agents are 
predicted. Phenotypic profiles were thus predict-
ed for 7516 isolates that had phenotypic data 
available for all first-line drugs (Tables S1 and S6 
in the Supplementary Appendix). “Unknown” or 
“failed” predictions for at least one drug were re-
ported for 1651 profiles (22.0%). A total of 5865 
profiles (78.0%) were predicted completely, of 
which 5250 (89.5%) were predicted correctly (Ta-

ble S5 in the Supplementary Appendix). Among the 
5865 phenotypic profiles with complete genotypic 
predictions, 4037 were predicted to be susceptible 
to all four drugs, of which 3952 (97.9%) were pre-
dicted correctly; these 3952 correctly predicted 
profiles account for 98.6% of the 4007 phenotypi-
cally pansusceptible isolates for which complete 
predictions were made (Table 4).

Because the percentage of incompletely pre-
dicted profiles was substantial (22.0%), we as-
sessed whether pansusceptibility could still be 
accurately predicted for some of these isolates. 
Because susceptibility to isoniazid predicts sus-
ceptibility to other first-line drugs,15 we maxi-
mized the confidence in isoniazid predictions by 
making predictions only in the absence of “un-
known” mutations in isoniazid-related genes. Un-
known mutations that were relevant to other drugs 
were permitted. When this was done, pansuscepti-
bility was correctly predicted for 4481 (97.8%) of 
4582 isolates, including 545 (33.0%) of 1651 previ-
ously incompletely predicted profiles (Table 4). 
Among the collections that were unenriched for 
resistance, 3439 (99.7%) of 3450 profiles were 
thereby correctly predicted to be susceptible to 
all four drugs (Table S7 in the Supplementary 
Appendix).

To simulate how this approach would per-
form in contexts with differing burdens of anti-
microbial resistance, we assessed the decline in 
negative predictive value associated with an in-
creasing prevalence of resistance to individual 
drugs and with an increasing prevalence of any 
resistance within drug profiles. We randomly sub-
sampled 1000 isolates to represent every 1-percent-
age-point increment in the prevalence of antimi-
crobial resistance between 10% and 90% and 
repeated this step 1000 times for each drug and 
for complete drug profiles. The negative predic-
tive value declined further for ethambutol and 
pyrazinamide than for complete drug profiles, 
but it declined least for isoniazid and rifampin. 
Below a 47.0% prevalence of resistance to any drug, 
the simulated negative predictive value remained 
above 95% for 97.5% of drug profiles (Fig. 1).

Discrepancy Analyses

In Australia, 11 ethambutol-susceptible isolates 
containing embB mutations associated with re-
sistance to ethambutol were rephenotyped. Three 

The New England Journal of Medicine 
Downloaded from nejm.org at UNIVERSITY COLLEGE LONDON on January 2, 2019. For personal use only. No other uses without permission. 

 Copyright © 2018 Massachusetts Medical Society. All rights reserved. 



n engl j med 379;15 nejm.org October 11, 20181408

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

Ta
bl

e 
2.

 P
re

di
ct

io
n 

of
 P

he
no

ty
pe

s 
of

 R
es

is
ta

nc
e 

or
 S

us
ce

pt
ib

ili
ty

 to
 In

di
vi

du
al

 D
ru

gs
.*

A
na

ly
si

s 
an

d 
D

ru
g

R
es

is
ta

nt
 P

he
no

ty
pe

Su
sc

ep
tib

le
 P

he
no

ty
pe

Se
ns

iti
vi

ty
 

 (
95

%
 C

I)
Sp

ec
ifi

ci
ty

 
 (

95
%

 C
I)

PP
V

 
 (

95
%

 C
I)

N
PV

 
 (

95
%

 C
I)

Se
ns

iti
vi

ty
, 

 A
ll†

Sp
ec

ifi
ci

ty
, 

 A
ll†

N
G

P
R

P

R
S

U
F

To
ta

l
R

S
U

F
To

ta
l

nu
m

be
r o

f i
so

la
te

s
pe

rc
en

t

W
G

S,
 a

ll 
is

o-
la

te
s

Is
on

ia
zi

d
30

67
90

93
44

32
94

65
63

13
21

5
11

7
67

10
97

.1
 

 (
96

.5
–9

7.
7)

99
.0

 
 (

98
.7

–9
9.

2)
97

.9
 

 (
97

.4
–9

8.
4)

98
.6

 
 (

98
.3

–9
8.

9)
93

.1
94

.1
4.

7
32

.9

R
ifa

m
pi

n
27

43
69

7
84

29
03

85
67

63
23

2
14

7
72

27
97

.5
 

 (
96

.9
–9

8.
1)

98
.8

 
 (

98
.5

–9
9.

0)
97

.0
 

 (
96

.3
–9

7.
6)

99
.0

 
 (

98
.7

–9
9.

2)
94

.5
93

.6
4.

6
28

.7

Et
ha

m
bu

to
l

14
10

81
94

55
16

40
46

8
68

35
78

1
70

81
54

94
.6

 
 (

93
.3

–9
5.

7)
93

.6
 

 (
93

.0
–9

4.
1)

75
.1

 
 (

73
.0

–7
7.

0)
98

.8
 

 (
98

.5
–9

9.
1)

86
.0

83
.8

10
.2

16
.7

Py
ra

zi
na

m
id

e
86

3
82

11
7

77
11

39
20

4
61

46
19

7
10

8
66

55
91

.3
 

 (
89

.3
–9

3.
0)

96
.8

 
 (

96
.3

–9
7.

2)
80

.9
 

 (
78

.4
–8

3.
2)

98
.7

 
 (

98
.4

–9
9.

0)
75

.8
92

.4
6.

4
14

.6

W
R

A
s,

 a
ll 

is
o-

la
te

s‡

Is
on

ia
zi

d
28

86
35

5
—

53
32

94
27

66
75

—
8

67
10

89
.0

 
 (

87
.9

–9
0.

1)
§

99
.6

 
 (

99
.4

–9
9.

7)
§

99
.1

 
 (

98
.7

–9
9.

4)
§

95
.0

 
 (

94
.4

–9
5.

5)
§

—
—

0.
6

32
.9

R
ifa

m
pi

n
26

69
14

3
—

91
29

03
12

9
68

26
—

27
2

72
27

94
.9

 
 (

94
.0

–9
5.

7)
§

98
.1

 
 (

97
.8

–9
8.

4)
¶

95
.4

 
 (

94
.5

–9
6.

1)
¶

97
.9

 
 (

97
.6

–9
8.

3)
§

—
—

3.
6

28
.7

Et
ha

m
bu

to
l

96
1

64
1

—
38

16
40

24
1

78
95

—
18

81
54

60
.0

 
 (

57
.5

–6
2.

4)
§

97
.0

 
 (

96
.6

–9
7.

4)
§

80
.0

 
 (

77
.6

–8
2.

2)
¶

92
.5

 
 (

91
.9

–9
3.

0)
§

—
—

0.
6

16
.7

W
G

S,
 u

ne
n-

ri
ch

ed
‖

Is
on

ia
zi

d
31

4
8

9
4

33
5

15
37

70
10

4
90

39
79

97
.5

 
 (

95
.2

–9
8.

9)
99

.6
 

 (
99

.3
–9

9.
8)

§
95

.4
 

 (
92

.6
–9

7.
4)

¶
99

.8
 

 (
99

.6
–9

9.
9)

§
93

.7
94

.7
4.

8
7.

8

R
ifa

m
pi

n
12

6
0

0
9

13
5

31
39

58
10

3
11

6
42

08
10

0.
0 

 (
97

.1
–1

00
.0

)
99

.2
 

 (
98

.9
–9

9.
5)

**
80

.3
 

 (
73

.2
–8

6.
2)

§
10

0.
0 

 (
99

.9
–1

00
.0

)§
93

.3
94

.1
5.

2
3.

1

Et
ha

m
bu

to
l

72
1

0
0

73
47

37
11

45
8

36
42

52
98

.6
 

 (
92

.6
–1

00
.0

)
98

.7
 

 (
98

.3
–9

9.
1)

§
60

.5
 

 (
51

.1
–6

9.
3)

§
10

0.
0 

 (
99

.8
–1

00
.0

)§
98

.6
87

.3
11

.4
1.

7

Py
ra

zi
na

m
id

e
10

9
6

4
6

12
5

30
40

03
14

58
41

05
94

.8
 

 (
89

.0
–9

8.
1)

99
.3

 
 (

98
.9

–9
9.

5)
§

78
.4

 
 (

70
.6

–8
4.

9)
99

.9
 

 (
99

.7
–9

9.
9)

§
87

.2
97

.5
1.

9
3.

0

The New England Journal of Medicine 
Downloaded from nejm.org at UNIVERSITY COLLEGE LONDON on January 2, 2019. For personal use only. No other uses without permission. 

 Copyright © 2018 Massachusetts Medical Society. All rights reserved. 



n engl j med 379;15 nejm.org October 11, 2018 1409

Prediction of Susceptibility to Tuberculosis Drugs

W
R

A
s,

 u
ne

n-
ri

ch
ed

†
†

Is
on

ia
zi

d
29

5
36

—
4

33
5

10
39

65
—

4
39

79
89

.1
 

 (
85

.3
–9

2.
3)

§
99

.7
 

 (
99

.5
–9

9.
9)

96
.7

 
 (

94
.1

–9
8.

4)
99

.1
 

 (
98

.8
–9

9.
4)

§
—

—
0.

2
—

R
ifa

m
pi

n
11

4
11

—
10

13
5

22
39

57
—

22
9

42
08

91
.2

 
 (

84
.8

–9
5.

6)
§

99
.4

 
 (

99
.2

–9
9.

7)
83

.8
 

 (
76

.5
–8

9.
6)

99
.7

 
 (

99
.5

–9
9.

9)
§

—
—

5.
5

—

Et
ha

m
bu

to
l

57
16

—
0

73
29

42
20

—
3

42
52

78
.1

 
 (

66
.9

–8
6.

9)
§

99
.3

 
 (

99
.0

–9
9.

5)
**

66
.3

 
 (

55
.3

–7
6.

1)
99

.6
 

 (
99

.4
–9

9.
8)

§
—

—
0.

1
—

* 
 N

G
P 

de
no

te
s 

no
 g

en
ot

yp
ic

 p
re

di
ct

io
n,

 N
PV

 n
eg

at
iv

e 
pr

ed
ic

tiv
e 

va
lu

e,
 P

PV
 p

os
iti

ve
 p

re
di

ct
iv

e 
va

lu
e,

 a
nd

 R
P 

re
si

st
an

ce
 p

re
va

le
nc

e.
 U

nl
es

s 
ot

he
rw

is
e 

in
di

ca
te

d,
 p

er
ce

nt
ag

es
 a

re
 b

as
ed

 
on

 g
en

ot
yp

ic
 p

re
di

ct
io

ns
 o

f r
es

is
ta

nt
 (

R
) 

or
 s

us
ce

pt
ib

le
 (

S)
 o

nl
y 

(i
.e

., 
ex

cl
ud

in
g 

is
ol

at
es

 w
ith

 m
ut

at
io

ns
 o

f u
nk

no
w

n 
as

so
ci

at
io

n 
[U

] a
nd

 g
en

ot
yp

ic
 p

re
di

ct
io

ns
 t

ha
t 

fa
ile

d 
be

ca
us

e 
of

 
m

is
si

ng
 d

at
a 

ar
ou

nd
 a

 g
en

om
ic

 r
es

is
ta

nc
e 

lo
cu

s 
[F

])
. F

 w
as

 r
ep

or
te

d 
in

 t
he

 p
re

se
nc

e 
of

 m
in

or
ity

 a
lle

le
s 

at
 r

el
ev

an
t 

si
te

s 
fo

r 
th

e 
re

su
lts

 e
xp

ec
te

d 
fr

om
 t

he
 W

or
ld

 H
ea

lth
 O

rg
an

iz
at

io
n 

(W
H

O
)–

re
co

m
m

en
de

d 
m

ol
ec

ul
ar

 a
ss

ay
s 

ju
st

 a
s 

fo
r 

th
e 

w
ho

le
-g

en
om

e 
se

qu
en

ci
ng

 (
W

G
S)

 p
re

di
ct

io
ns

.
†

 
 Pe

rc
en

ta
ge

s 
w

er
e 

ca
lc

ul
at

ed
 w

ith
 t

he
 t

ot
al

 n
um

be
r 

of
 is

ol
at

es
 (

R
, S

, U
, a

nd
 F

) 
as

 t
he

 d
en

om
in

at
or

.
‡

 
 D

at
a 

ar
e 

fr
om

 p
re

di
ct

io
ns

 o
f t

he
 p

er
fo

rm
an

ce
 o

f t
he

 W
H

O
-r

ec
om

m
en

de
d 

as
sa

ys
 (

W
R

A
s)

 (
M

TB
/R

IF
 X

pe
rt

 a
nd

 M
TB

D
R

pl
us

 o
r 

M
TB

D
R

sl
) 

fo
r 

al
l i

so
la

te
s.

 E
xp

ec
te

d 
pr

ed
ic

tio
ns

 o
f r

es
is

-
ta

nc
e 

fo
r 

th
e 

X
pe

rt
 a

nd
 M

TB
D

R
 a

ss
ay

s 
w

er
e 

ba
se

d 
on

 t
he

 p
re

se
nc

e 
of

 n
on

–w
ild

 t
yp

e 
se

qu
en

ce
 w

ith
in

 t
he

 g
en

om
ic

 r
eg

io
ns

 in
te

rr
og

at
ed

 b
y 

th
es

e 
as

sa
ys

. P
 v

al
ue

s 
ar

e 
fo

r 
co

m
pa

ri
so

ns
 

w
ith

 t
he

 a
na

ly
si

s 
of

 a
ll 

is
ol

at
es

. N
o 

re
su

lts
 a

re
 s

ho
w

n 
fo

r 
py

ra
zi

na
m

id
e,

 s
in

ce
 t

he
re

 is
 n

o 
W

R
A

 fo
r 

th
e 

de
te

ct
io

n 
of

 r
es

is
ta

nc
e 

or
 s

us
ce

pt
ib

ili
ty

 t
o 

th
is

 d
ru

g.
§ 

 P≤
0.

00
1.

¶
 

 P≤
0.

01
.

‖ 
 D

at
a 

ar
e 

fr
om

 c
ol

le
ct

io
ns

 o
f i

so
la

te
s 

fr
om

 G
er

m
an

y,
 I

ta
ly

, t
he

 N
et

he
rl

an
ds

, a
nd

 t
he

 U
ni

te
d 

K
in

gd
om

 t
ha

t 
w

er
e 

no
t 

en
ri

ch
ed

 fo
r 

re
si

st
an

ce
. P

 v
al

ue
s 

ar
e 

fo
r 

co
m

pa
ri

so
ns

 w
ith

 t
he

 a
na

ly
-

si
s 

of
 a

ll 
is

ol
at

es
.

**
  P

≤0
.0

5.
†

†
  D

at
a 

ar
e 

fr
om

 p
re

di
ct

io
ns

 o
f t

he
 p

er
fo

rm
an

ce
 o

f t
he

 W
R

A
s 

fo
r 

co
lle

ct
io

ns
 t

ha
t 

ar
e 

no
t 

en
ri

ch
ed

 fo
r 

re
si

st
an

ce
. E

xp
ec

te
d 

pr
ed

ic
tio

ns
 o

f r
es

is
ta

nc
e 

fo
r 

th
e 

X
pe

rt
 a

nd
 M

TB
D

R
 a

ss
ay

s 
w

er
e 

ba
se

d 
on

 t
he

 p
re

se
nc

e 
of

 n
on

–w
ild

 t
yp

e 
se

qu
en

ce
 w

ith
in

 t
he

 g
en

om
ic

 r
eg

io
ns

 in
te

rr
og

at
ed

 b
y 

th
es

e 
as

sa
ys

. P
 v

al
ue

s 
ar

e 
fo

r 
co

m
pa

ri
so

ns
 w

ith
 t

he
 a

na
ly

si
s 

of
 c

ol
le

ct
io

ns
 is

ol
at

es
 

fr
om

 G
er

m
an

y,
 I

ta
ly

, t
he

 N
et

he
rl

an
ds

, a
nd

 t
he

 U
ni

te
d 

K
in

gd
om

 t
ha

t 
w

er
e 

no
t 

en
ri

ch
ed

 fo
r 

re
si

st
an

ce
. N

o 
re

su
lts

 a
re

 s
ho

w
n 

fo
r 

py
ra

zi
na

m
id

e,
 s

in
ce

 t
he

re
 is

 n
o 

W
R

A
 fo

r 
th

e 
de

te
ct

io
n 

of
 r

es
is

ta
nc

e 
or

 s
us

ce
pt

ib
ili

ty
 t

o 
th

is
 d

ru
g.

The New England Journal of Medicine 
Downloaded from nejm.org at UNIVERSITY COLLEGE LONDON on January 2, 2019. For personal use only. No other uses without permission. 

 Copyright © 2018 Massachusetts Medical Society. All rights reserved. 



n engl j med 379;15 nejm.org October 11, 20181410

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e
Ta

bl
e 

3.
 In

di
vi

du
al

 D
ru

g 
Pr

ed
ic

tio
ns

 a
ga

in
st

 D
iff

er
en

t B
ac

kg
ro

un
d 

Ph
en

ot
yp

ic
 P

ro
fil

es
.*

D
ru

g 
an

d 
Ph

en
ot

yp
ic

 
Pr

of
ile

†
R

es
is

ta
nt

 P
he

no
ty

pe
Su

sc
ep

tib
le

 P
he

no
ty

pe

Pr
ev

al
en

ce
 

of
 

R
es

is
ta

nc
e

Se
ns

iti
vi

ty
Sp

ec
ifi

ci
ty

PP
V

N
PV

95
%

 C
I 

fo
r 

Ex
pe

ct
ed

 N
PV

 
at

 G
iv

en
 

Pr
ev

al
en

ce
 o

f 
R

es
is

ta
nc

e‡

C
al

cu
la

te
d 

N
PV

 a
t 

20
%

 
Pr

ev
al

en
ce

 
of

 R
es

is
ta

nc
e

C
al

cu
la

te
d 

N
PV

 a
t 

40
%

 
Pr

ev
al

en
ce

 
of

 
R

es
is

ta
nc

e

R
S

U
F

To
ta

l
R

S
U

F
To

ta
l

nu
m

be
r o

f i
so

la
te

s
pe

rc
en

t

Is
on

ia
zi

d

–S
SS

39
1

30
18

12
45

1
21

46
53

13
3

10
4

49
11

8.
4

93
10

0
95

99
.4

99
.3

–1
00

98
.2

95
.4

–R
SS

45
9

21
20

6
50

6
7

85
5

1
98

83
.8

96
92

98
80

.2
83

.5
–1

00
98

.8
96

.9

–R
R

S
42

4
3

13
4

44
4

2
2

2
0

6
98

.7
99

50
10

0
40

.0
73

.7
–8

5.
6

99
.6

99
.1

–S
R

S
24

4
1

0
29

0
10

1
0

11
72

.5
86

10
0

10
0

71
.4

90
.5

–9
5.

6
96

.6
91

.3

–S
SR

24
1

2
1

28
0

95
6

3
10

4
21

.2
96

10
0

10
0

99
.0

98
.5

–9
9.

7
99

.0
97

.4

–R
R

R
66

2
3

11
4

68
0

0
0

0
0

0
10

0.
0

10
0

—
10

0
0.

0
73

.7
–8

5.
6

—
—

–R
SR

21
7

3
5

5
23

0
0

3
0

0
3

98
.7

99
10

0
10

0
50

.0
73

.7
–8

5.
6

99
.7

99
.1

–S
R

R
13

0
0

2
15

0
0

0
0

0
10

0.
0

10
0

—
10

0
—

73
.7

–8
5.

6
—

—

R
ifa

m
pi

n

S–
SS

74
16

0
8

98
30

46
32

12
6

12
3

49
11

2.
0

82
99

71
99

.7
99

.3
–1

00
95

.7
89

.3

S–
R

S
6

0
0

0
6

1
9

1
0

11
35

.3
10

0
90

86
10

0.
0

97
.8

–9
9.

5
10

0.
0

10
0.

0

S–
SR

1
2

0
0

3
0

10
0

3
1

10
4

2.
8

33
10

0
10

0
98

.0
99

.3
–1

00
85

.7
69

.2

S–
R

R
0

0
0

0
0

0
0

0
0

0
—

—
—

—
—

—
—

—

R
–S

S
46

4
20

1
21

50
6

18
42

4
3

6
45

1
52

.9
96

96
96

95
.5

95
.8

–9
8.

6
98

.9
97

.2

R
–R

S
42

4
7

2
11

44
4

4
25

0
0

29
93

.9
98

86
99

78
.1

76
.2

–8
6.

6
99

.5
98

.8

R
–S

R
21

8
4

0
8

23
0

7
20

0
1

28
89

.1
98

74
97

83
.3

77
.9

–8
7.

9
99

.4
98

.4

R
–R

R
66

5
2

0
13

68
0

10
3

0
2

15
97

.8
10

0
23

99
60

.0
76

.2
–8

6.
6

99
.7

99
.1

Et
ha

m
bu

to
l

SS
–S

1
9

1
0

11
4

43
99

47
2

36
49

11
0.

2
10

10
0

20
99

.8
98

.8
–9

9.
9

81
.6

62
.5

R
S–

S
21

5
3

0
29

31
37

6
40

4
45

1
6.

0
81

92
40

98
.7

98
.8

–9
9.

9
95

.1
87

.8

SR
–S

4
2

0
0

6
1

93
3

1
98

5.
8

67
99

80
97

.9
98

.8
–9

9.
9

92
.2

81
.7

R
R

–S
37

5
20

30
19

44
4

20
3

24
1

48
14

50
6

46
.7

95
54

65
92

.3
93

.4
–9

6.
7

97
.7

94
.1

SS
–R

0
0

0
0

0
1

81
22

0
10

4
0.

0
—

99
0

10
0.

0
98

.8
–9

9.
9

—
—

R
S–

R
12

2
1

0
15

7
20

1
0

28
34

.9
86

74
63

90
.9

95
.7

–9
8.

1
95

.4
88

.6

SR
–R

0
0

0
0

0
0

3
0

0
3

0.
0

—
10

0
—

10
0.

0
98

.8
–9

9.
9

—
—

R
R

–R
62

5
9

26
20

68
0

15
0

50
25

5
23

0
74

.7
99

25
81

84
.7

82
.0

–8
8.

2
98

.6
96

.4

The New England Journal of Medicine 
Downloaded from nejm.org at UNIVERSITY COLLEGE LONDON on January 2, 2019. For personal use only. No other uses without permission. 

 Copyright © 2018 Massachusetts Medical Society. All rights reserved. 



n engl j med 379;15 nejm.org October 11, 2018 1411

Prediction of Susceptibility to Tuberculosis Drugs

repeat assays failed, but 7 of the remaining  
8 yielded now-consistent resistant phenotypes. 
In Peru, 10 of 16 repeated assays continued to 
indicate phenotypic susceptibility by MODS, de-
spite the presence of fabG1 C−15T or G−17T muta-
tions. In isolates from the Netherlands, 6 resis-
tant phenotypes that had been predicted to be 
susceptible were identified as clerical errors, and 
3 susceptible phenotypes that had been predicted 
to be resistant tested phenotypically resistant by 
means of alternative phenotypic assays (Table S8 
in the Supplementary Appendix). Although addi-
tional rephenotyping was not possible, we con-
ducted a “per mutation” analysis to further as-
sess discrepancies.

Of the 322 resistant phenotypes that had been 
predicted to be susceptible, 290 (90.1%) were in 
isolates that had no mutations affecting targeted 
genes, and 32 (9.9%) were in isolates that had 1 or 
more of 15 mutations that had previously been 
characterized as being consistent with antimi-
crobial susceptibility. In support of this finding, 
across all isolates in which no mutation other 
than 1 or more of these 15 was found, the pres-
ence of the mutations correctly predicted suscep-
tibility to isoniazid in 286 (97.6%) of 293 isolates 
and susceptibility to ethambutol in 95 (79.8%) of 
119 isolates. The 1 mutation that was relevant to 
pyrazinamide was found in 2 isolates, both of 
which were phenotypically resistant. None of these 
mutations were relevant to rifampin (Table S9 in 
the Supplementary Appendix).

Among the isolates with the 822 susceptible 
phenotypes that had been predicted to be resis-
tant, 145 different resistance-conferring muta-
tions were found. Of these, 142 (97.9%) featured 
as the only resistance-conferring mutation in at 
least 1 isolate in the data set, which allowed for 
the assessment of individual predictive perfor-
mance. The presence of these mutations correctly 
predicted resistance to isoniazid in 308 (83.0%) 
of 371 isolates, to rifampin in 548 (87.4%) of 627, 
to ethambutol in 1280 (73.4%) of 1743, and to 
pyrazinamide in 459 (69.2%) of 663 (Table S9 in 
the Supplementary Appendix). Of the 17 mutations 
leading to predictions of resistance to rifampin 
in phenotypically susceptible isolates, 14 (82.4%) 
were in the genetic region targeted by Xpert 
MTB/RIF and MTBDRplus.

Mislabeling of laboratory samples probably also 
contributed to discrepant results. This possibility 
was assessed for each collection on the basis of Py
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the proportion of isolates that were excluded be-
cause of katG S315T or rpoB S450L mutations be-
ing associated with susceptible phenotypes, the 
discrepancy rate within the collection, and the 
prevalence of antimicrobial resistance (Table S10 
in the Supplementary Appendix). Overall, approxi-
mately 43% of discrepancies for isoniazid and 
12% of discrepancies for rifampin were thereby 
judged to be attributable to mislabeling.

Discussion

This analysis of more than 10,000 M. tuberculosis 
isolates collected from 16 countries across six con-
tinents and representing all major lineages (Ta-

ble S1 in the Supplementary Appendix) suggests 
that whole-genome sequencing can now charac-
terize profiles of susceptibility to first-line anti-
tuberculosis drugs with a degree of accuracy suf-
ficient for clinical use. The importance of this is 
twofold. First, it shows that the genomic approach 
could be used to guide the choice of which 
drugs to prescribe and not just which drugs to 
avoid, in a way similar to phenotyping. Second, 
the data can be used to support plans to reduce 
the workload associated with culture and suscep-
tibility analysis in places where routine whole-
genome sequencing is performed.

The WHO target product profiles for new mo-
lecular assays for M. tuberculosis require more than 

Prediction and Genotypic Drug Profile

No. of Isolates 
 Predicted to 
 Have Profile

No. of Phenotypically 
 Pansusceptible Isolates 

 Predicted to Have Profile 
 (% Predicted Correctly)

Isoniazid Rifampin Ethambutol Pyrazinamide

Predicted to be pansusceptible

S S S S 4037 3952 (97.9)

Predicted to be pansusceptible when U mutations are 
 inferred to be consistent with susceptibility

S S S U 11 11 (100)

S S U S 410 399 (97.3)

S S U U 2 2 (100)

S U S S 93 88 (94.6)

S U U S 29 29 (100)

Total 4582 4481 (97.8)

Predicted to have some phenotypic resistance

R S R or S R or S 397 18 (4.5)

S At least one R, no U or F 158 36 (22.8)

R R R or S R or S 1273 1 (0.1)

Total 1828 55 (3.0)

No prediction made; drug profile prediction incomplete

U S or U S or U S or U 150 126 (84.0)

At least one F, no R 280 240 (85.7)

At least one R and one U, no F 499 6 (1.2)

At least one R and one F, no U 159 3 (1.9)

At least one R, one U, and one F 18 0

Total 1106 375 (33.9)

*  Among the 5865 profiles with complete predictions, the sensitivity of genetic prediction was 95.4%, specificity 98.6%, 
PPV 97.0%, and NPV 97.9%, with predictions made for 78.0% of isolates. When predictions were made only in the ab-
sence of U mutations in isoniazid-related genes (with U mutations that were relevant to other drugs permitted), the 
sensitivity was 94.6%, specificity 98.8%, PPV 97.0%, and NPV 97.8%, with predictions made for 85.1% of isolates.

Table 4. Genotypic Drug Profile Predictions of Pansusceptibility.*
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90% sensitivity and 95% specificity.7 Overall, both 
these targets were met for all drugs with the ex-
ception of specificity for ethambutol (93.6%). This 
is no surprise, since phenotyping is an imperfect 
standard, particularly for isolates with embB mu-
tations.6,13,16 For the collections that were not en-
riched for resistance, however, these targets were 
met for all drugs, and they were also met for the 
predictions of pansusceptibility in all collections. 
Only categorical agreement was assessed for 
complete drug-susceptibility profile predictions, 
because of the number of permutations. These 
predictions met the external quality assurance 
criterion (>80% concordance) for the European 
tuberculosis reference laboratory network.17

There are three reasons for the predictions 
regarding pansusceptibility being approximately 
98% correct. First, the knowledge base included 
both resistance-associated genomic mutations and 
mutations that were compatible with phenotypic 
susceptibility. Second, antituberculosis drug-sus-
ceptibility phenotypes are not independent of one 
another, which allows for the use of isoniazid 
susceptibility to predict susceptibility to other 
drugs. Third, no predictions were attempted for 
isolates that contained genomic variation of un-
known association in genes affecting isoniazid. 
This maximized confidence in the isoniazid pre-
dictions that were made. Consequently, the per-
formance in the prediction of drug profiles was 
better than that in the per-drug analysis for eth-
ambutol and pyrazinamide, and although there 
was a slight corresponding decline in performance 
for isoniazid and rifampin, simulations showed 
that the prevalence of resistance would have to 
exceed that seen in most of the worst-affected 
countries in the world before these predictions no 
longer satisfied the WHO targets.1

Our findings showed substantially better per-
formance of sequencing analysis relative to the 
the sensitivity that could be expected from WHO-
recommended PCR-based assays because whole-
genome sequencing is able to identify many more 
mutations. These additional mutations were, how-
ever, simultaneously responsible for the losses in 
specificity, largely because of the number of mu-
tations for which a minority of isolates did not 
manifest a resistant phenotype. A typical example 
is the rpoB I491F mutation, which is frequently 
associated with a result indicating susceptibility 
to rifampin in liquid culture but has been linked 
to treatment failure.4,18,19

The broader discrepancy analysis highlighted 
the same phenomenon. Although the predictive 
performance of individual mutations, whether 
probed by WHO-recommended assays or not, was 
good, each mutation has the potential to be associ-
ated with an unexpected phenotype in a minority 
of isolates. This is most likely where a mutation 
elevates the minimum drug concentration required 
to inhibit bacterial growth to close to the concen-
tration above which an isolate is considered resis-
tant. Canonical ethambutol mutations are a clas-
sic example,20 but there are many others, including 
the mutations missed by the MODS assay in 
Peru.16,21,22 Such phenomena are thus likely to ex-
plain the majority of isolates that were predicted 
to be resistant yet were phenotypically suscepti-
ble. They are also the most likely reason for the 
prediction of pansusceptible drug profiles being 
more accurate than the prediction of profiles that 
are apparently resistant to one or more drugs.

One limitation of our study was our inability 

Figure 1. Simulated Negative Predictive Values for Individual Drugs 
and Complete Drug Profiles.

Negative predictive values are shown for individual drugs and complete 
drug profiles, according to the simulated prevalence of resistance to each 
drug, or within each drug profile (any resistance). For each percentage 
prevalence between 10% and 90%, 1000 isolates were randomly selected, 
1000 times. Solid lines indicate the median, and shaded areas indicate the 
95% confidence intervals. Vertical dashed lines indicate the prevalence at 
which the 95% confidence interval intersects a negative predictive value 
of 95%.
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to definitively resolve most discrepancies because 
of the scale and cost of repeat sequencing and 
phenotyping. This was most worrisome for pheno-
typically resistant isolates that were predicted to 
be susceptible. For these discrepancies, possible 
explanations include further limitations of our 
study — namely, phenotypic error, resistant mi-
nority bacterial populations that went undetected 
by sequencing, mechanisms of resistance un-
known to us, or laboratory labeling error. To main-
tain or improve accuracy, ongoing surveillance for 
the phenotypic effect of new mutations will be 
required. Another limitation is the use of pheno-
typic susceptibility data as the standard. The lack 
of clinical outcome data to link the antimicrobial-
resistance phenotypes to treatment failure re-
quires us to infer potential clinical benefit.

More work remains to be done before predic-
tions can be extended to second- and third-line 
drugs and to newer compounds. However, after an 
external review, Public Health England has al-
ready decided to stop phenotyping isolates that 
are predicted to be susceptible to all first-line 
drugs (Crook D, National Infection Service: per-
sonal communication). Similar decisions have 
been made in the Netherlands (van Soolingen D, 
Rijksinstituut voor Volksgezondheid en Milieu: 
personal communication) and New York (Musser 
K, Wadsworth Center, New York State Department 
of Health: personal communication).

These data show how our understanding of 
the molecular determinants of resistance to first-
line antituberculosis drugs allows us to consider 
using DNA sequencing to guide therapy. Similar 
performance must now be replicated for the re-
maining drugs.
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