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Abstract
This paper presents an analysis of social experiences around
wine consumption through the lens of Vivino, a social network
for wine enthusiasts with over 26 million users worldwide. We
compare users’ perceptions of various wine types and regional
styles across both New and Old World wines, examining them
across price ranges, vintages, regions, varietals, and blends.
Among other things, we find that ratings provided by Vivino
users are not biased by cost. We then study how wine charac-
teristics, language in wine reviews, and the distribution of wine
ratings can be combined to develop prediction models. More
specifically, we model user behavior to develop a regression
model for predicting wine ratings, and a classifier for deter-
mining user review preferences.

1 Introduction
Over the years, research has shown that food and alcohol con-
sumptions are strongly shaped by social influences [8, 22], of-
ten mirroring those of people with shared social connections
[19]. In fact, eating and drinking habits are increasingly part of
our social media footprints. Moreover, regional factors, such
as economic, cultural, and lifestyle variations, inevitably affect
perceptions and choices [2]. Therefore, the rise of dedicated
social apps, as well as the growing use of social media to dis-
cuss and share such habits, offer new opportunities to elicit
valuable insight at a large scale.

Previous work has studied the cultural and socio-economic
factors determining what we eat and drink [4]. More recently,
researchers have analyzed food consumption on mainstream
social networks such as Twitter [1] and Instagram [9], as well
as beer habits on social networks like Untappd [3]. However,
to the best of our knowledge, wine consumption has long been
overlooked, even though it has played an important societal
role in many cultures for thousands of years [23].

Aiming to bridge this gap, this paper studies Vivino, a social
network application for wine enthusiasts with over 26 million
active users worldwide. Vivino provides a platform for review-
ing and rating wines, forums for sharing experience and knowl-
edge, as well as a marketplace for buying and selling wines.
We focus on Vivino as it allows us to perform a large-scale

∗A preliminary version of this paper appears in the Proceedings of the
IEEE/ACM International Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM 2018). This is the full version.

measurement of wine consumption.
Specifically, we focus on two main research objectives: (1)

Characterizing the Vivino social network in terms of how re-
gional factors, user biases, and wine characteristics affect wine
ratings; and (2) Integrating wine characteristics, reviews, and
wineries on Vivino to develop practical models for predicting
wine ratings and user reviews.

We crawl Vivino to collect data about wines, including
prices and ratings, as well as attributes, such as their vintage,
type, regional style, and the winery from which they originate.
We also collect user data, including ratings, reviews, taste pro-
file, ranking, country, and followers, as well as the users whom
they follow. Next, we study the relationship between ratings
and a number of wine characteristics, and examine users’ bi-
ases as to which wines they drink and how they score them, as
well as the language used in both the user biographies and the
wine reviews. Lastly, we integrate the findings of our analysis
to develop systems for predicting users’ ratings and reviews. In
other words, we show how to use the patterns uncovered in the
data analysis of Vivino wines, users and user-generated con-
tent, to generate: (i) a predictive model for wine ratings, and
(ii) a model for categorizing user preferences.
Main findings. Overall, we find that:

1. The ratings and the reviews supplied by Vivino users dis-
play the same rich knowledge of wines as professional
wine reviews. However, unlike the latter, Vivino users’
ratings do not seem to be affected by wine prices;

2. Vivino users have an affinity for rating local wines. There
are also strong geographical similarities in how wines
from adjacent countries are rated;

3. Vivino’s user-generated data produces accurate practical
models for the prediction of wines. The regression mod-
els for predicting wine ratings achievedR2 scores>65%,
and the user preference classifier has a mean accuracy
score of almost 80%.

2 Related Work
Previous work has studied online diaries of food and drink
consumption habits, e.g., examining how dietary choices are
linked to food-related tweets by Twitter users in the United
States. Abbar et al. [1] find a strong correlation between food
mentions on Twitter with obesity and diabetes statistics, while
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Mejova et al. [10] present a large-scale analysis of pictures
taken at US restaurants. Sharma and De Choudhury [18] inves-
tigate how nutritional information about food is communicated
through Instagram.

Researchers have also analyzed recreational eating on so-
cial networks. Guidry et al. [7] study how hashtags in social
media are used to express (dis)approval of fast food chains,
while Mejova et al. [9] collect a dataset of Instagram con-
versations including certain hashtags, and characterize three
kinds of users: singletons, residents, and travelers, showing
that travel drives emotions associated by users to hashtags.

Another line of work introduces models for predicting the
cuisine and the original geographical region a dish from its
recipe [6, 16], collecting data from wiki-like pages, rather
than social networks. These mostly aim to develop supervised
learning models to predict the cuisine, via multi-class learn-
ing. This is similar to one of the models we propose, although
we also use a regression based one to determine wine ratings
in real-value terms. Moreover, the datasets they use are sig-
nificantly smaller than ours, i.e., thousands vs millions of en-
tries. We also find that confusion matrices presented in previ-
ous work show that the most commonly misclassified cuisines
are from the same regions of the world, thus, the presumable
source of their ingredients is from the same locations. In our
work, we aim to discover if there was any detectable confusion
between Old and New World wines; besides looking at pre-
diction models, we also consider models for recommendation.
These allow us to learn more about users, as they introduce
users to new genres, in our case, wine types, which they might
have not previously considered.

Overall, while numerous studies focus on eating habits and
food consumption, fewer analyze the behavior driving con-
sumption of drinks, in particular alcoholic beverages. A no-
table exception is the work by Chorley et al. [3], who analyze
the beer-oriented app Untappd. Specifically, they study beer
ratings and highlight that Untappd users express a generally
favorable opinion of lagers and ales. They also also find corre-
lation between scores assigned to beers by American and Eu-
ropean drinkers, showing that Untappd displays a power-law
distribution like most real networks [5].

3 Datasets
3.1 Background: Vivino

Vivino is a wine marketplace and online community for
wine enthusiasts, which is available both as a web and a mo-
bile application. It was founded in 2009 by Heini Zachariassen,
with his colleague Theis Sondergaard joining the venture in
2010. Vivino has grown rapidly since then, boasting 29 mil-
lion users as of March 2018. In a nutshell, the application al-
lows users to review and purchase wines through third-party
vendors. The mobile application also provides a wine scanner
functionality, i.e., users can upload pictures of wine labels and
access reviews and details about the wine/winery.

Vivino is really a social network, as it allows wine enthu-
siasts to communicate with and follow each other, as well
as share reviews and recommendations. As of March 2018,

Vivino reports featuring 9.2M wines (including dessert and
port wines), covering a multitude of wine styles, grapes, and
geographical regions, as well as 89.4M ratings and almost
29.9M reviews.1 Users can also earn a variety of rewards
for their activity, e.g., receiving likes on their posts, and get
prompted to unlock achievements, e.g., if they “scan a wine
from Argentina.” High-performing reviewers also become am-
bassadors or receive labels like “Top Ten in Country Califor-
nian Meritage.”

In terms of reviews, Vivino claims that their 5-star rat-
ing system (with 0.5 granularity) has a good correlation with
Robert Parker’s 100 point scale [14], and argues that its users
are able to produce a greater number of ratings than the seven
most prolific wine experts (in fact, Vivino users have produced
ratings for 1.4M wines in the period between 2011 and 2015,
while only 370k wines received expert ratings).2

3.2 Crawler
Vivino does not offer an API to collect data from their site,

therefore, we gathered data about wines, wineries, and users
from the Vivino website using a custom web crawler in Python,
relying on the Selenium and requests packages. To avoid gen-
erating an extensive amount of traffic, causing possible issues
for the site operators, we throttled the crawler to 0.2 requests
per second, and ran it over five months (November 2016 to
March 2017).

3.3 Wines, Users, Reviews, and Wineries
Our crawl yields four datasets, respectively, containing

wines, users, reviews, and wineries, as discussed next.

Wines dataset. In total, we collected data for 1.06M wines.
We gathered the following attributes: Name (of the wine), Type
(i.e., white, red, rosé, port, dessert, or sparkling), Vintage (i.e.,
year of production), Average Price, Average Rating, Number of
Ratings, Ratings Breakdown (i.e., the number of 1.0, 2.0, 3.0,
4.0, and 5.0 stars received), Country, Region (e.g., Bourgogne),
Regional Style, (e.g., Spanish Rioja) Winery, Food Pairings
(e.g., lamb), and Grapes (e.g., merlot).

Note that some fields are sparsely populated, e.g., Regional
Style. Also, the Average Price really depends on the availabil-
ity at suppliers working with Vivino, and 474.3k wines are not
listed at any supplier, thus the corresponding field is empty.

Users dataset. Next, we selected the 10k most active users
from each of the 15 countries with the highest level of wine
consumption according to the International Organization of
Vine and Wine (OIV) [13], i.e., Argentina, Australia, Brazil,
Canada, China, France, Germany, Italy, Portugal, Romania,
Russia, South Africa, Spain, UK, and USA. We did so since
the majority of Vivino users do not submit any review, while
we wanted to make sure to capture a non-negligible number
of reviews per user. In order to get the top users, we used
Vivino’s ranking system, which ranks users by country accord-
ing to their activity (i.e., number of reviews) and contributions
to the platform (i.e., posts receiving likes and comments). Out

1https://www.vivino.com/about
2https://www.vivino.com/wine-news/vivino-5-star-rating-system
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Country Wines Users Wine Reviews Wineries

Argentina 43.5k 4% 8.8k 6% 35.5k 5% 0.19k 2%
Australia 56.0k 5% 9.5k 6% 55.0k 7% 0.41k 5%
Brazil 3.9k 0% 8.6k 6% 0.8k 0% 0.01k 0%
Canada 7.9k 1% 9.4k 6% 9.5k 1% 0.05k 1%
China 0.0k 0% 9.9k 7% 0.0k 0% 0.00k 0%
France 252.0k 24% 9.9k 7% 139.6k 18% 1.89k 23%
Germany 23.6k 2% 9.7k 7% 8.4k 1% 0.08k 1%
Italy 222.7k 21% 10.7k 7% 132.1k 17% 1.76k 21%
Portugal 52.1k 5% 9.4k 6% 20.4k 3% 0.44k 5%
Romania 2.1k 0% 9.5k 6% 0.5k 0% 0.02k 0%
Russia 0.4k 0% 10.8k 7% 0.0k 0% 0.00k 0%
South Africa 41.2k 4% 9.8k 7% 50.3k 7% 0.31k 4%
Spain 73.6k 7% 10.5k 7% 48.1k 6% 0.62k 8%
UK 1.3k 0% 10.9k 7% 1.2k 0% 0.00k 0%
USA 173.0k 16% 9.8k 7% 209.8k 27% 1.70k 21%
Others 109.4k 10% 6.7k 5% 60.7k 8% 0.76k 9%

Total 1.06M 147.1k 771.9k 8.3k

Table 1: Summary of the wine, user, wine reviews (initial posts, not replies) and winery datasets collected by crawling the Vivino
website, broken down by country.

of the 150k top users (10k for 15 countries), we acquired data
for 147.1k (98%); the rest was missed due to crawler failure,
errors, and/or time limitations. We were unable to collect all
the top users because of web crawling restrictions and time
limitations.

Overall, for each user, we collected: Username, Biography,
Country, Ranking (i.e., how the user ranks in terms of rat-
ing/review contributions compared with other users in their
country), Number of Followers the user has acquired, Number
of Users Followed, Taste Profile (the regional styles reviewed
by the user, with counts and average ratings), the Total Number
of Ratings supplied by the user to Vivino, and whether the user
has been Featured by Vivino – a special status where the users
profile is promoted on the application to other users.

Reviews dataset. We also collected the reviews posted by each
of the top users in our user dataset, gathering 771.9k review
posts for 86.6k unique wines. (In other words, we created a
database with wine reviews collected using the IDs of a sam-
ple of the wines scraped.) For each review, we gathered: Wine,
Vintage, Content (which includes the author’s username and
the number of ratings provided by them), Date, and Replies.
Overall, we gathered 771.9k reviews, which were posted by
370k unique authors. Additionally, these initial review posts
garnered 617.7k replies collectively.

Wineries dataset. Similar to the wines dataset, we also got
records for 8.3k wineries, which represent the 1.06M wines
scraped from Vivino. Specifically, we retrieved: Basic Details
(i.e., name, number of wines produced, URL of its Vivino pro-
file page), Ratings (number and average score), Wine Maker (if
any), Location (GPS, region, and country), and Websites (Twit-
ter, Facebook, and official websites).

3.4 General Characterization
In Table 1, we present a summary of our datasets. As dis-

cussed above, we have data for 1.06M wines as well as 147.1k

user profiles, along with 771.9k reviews and 8.3k profiles of
wineries.

Countries. The entire wine dataset includes wines from 49
distinct countries. Interestingly, 98% of them (1.04M) are pro-
duced in 21 different countries3 The top four countries, i.e.,
France, Italy, Spain. and the United States, account for more
than two third of all the wines on Vivino (69.1%). This is not
surprising since these are also the four largest wine producing
countries, accounting for 62% of the worldwide wine produc-
tion in 2014 [12].

Ratings. The ratings awarded to wines are generally favorable.
The most common ratings are either 3.0 or 4.0 stars. All of the
21 wine-producing nations have a mean rating higher than 3.2,
and no country has wines whose average rating exceeds 3.9.
Brazilian (3.36), Chilean (3.46) and Romanian (3.28) wines
have the lowest average ratings. The highest average ratings
belong to the US (3.84), Germany (3.79), and France (3.78).
The countries with the highest number of wine ratings per wine
are Argentina (145.35), Chile (112.57), and Brazil (99.51).
However, the wines with largest number of total ratings are
Italy (1.4M), France (1.1M) and the United States (1.0M). In
Figure 1, we report the CDF of wine ratings divided by country
(a) and of vintages by rating (b).

Prices. As mentioned, we also collected the (average) price
for each wine, when available. We find interesting differences
across countries. The country with the most expensive wines is
France (£127.12 average price); this is inline with the fact that
a disproportionate number (41 out of 50) of the world’s most
expensive wines are produced in France [17]. After France, we
find the United States (£67.54), followed by Portugal (£64.69).
Conversely, the three countries with the lowest mean prices
are Croatia (£15.94), South Africa (£15.54), and Romania
3As per most wines: France, Italy, USA, Spain, Australia, Portugal, Chile,
Argentina, South Africa, Germany, New Zealand, Austria, Canada, Hungary,
Israel, Brazil, Greece, Romania, Georgia, Uruguay, Mexico, Switzerland.
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Figure 1: CDFs of average ratings by country and vintages by rating.
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Figure 2: CDFs of the average price for the wines in our dataset.

(£11.62). In Figure 2, we report the CDFs of wine prices di-
vided by country (a) and ratings (b).
User Reviews. Finally, we find that wines from US, France,
and Italy receive the bulk of the written reviews – 209,8k,
139.6k, and 132.1k, respectively (see Table 1), in addition
to the highest number of replies to these review posts, with
127.7k, 148.7k, and 117.7k. Whereas, the highest levels of en-
gagement, i.e. replies per comment, are for wines from Croatia
(1.8), United Kingdom (1.689) and Israel (1.321). The levels
of engagement for wines from US, France and Italy are 0.609,
1.065, and 0.891. The mean engagement overall is 1.2519
replies per post. Also, reviews for Italian and French wines
have the largest number of unique authors – 83.8k, 60.3k, and
65.5k respectively.

4 Rating Analysis
As mentioned, Vivino users assign ratings to wines on a scale
between 1.0 and 5.0 stars, with a 0.5 granularity. We now ana-
lyze the Vivino wine ratings, investigating the relationship be-
tween them and prices, origins, types, style, and grapes.

4.1 Rating Trends
Evolution over time. Expert wine reviews have at times been
criticized for a perceived inflation in wine reviews, i.e., that the

preferences of wine suppliers for highly rated wines influences
the reviews produced by experts [21]. (Naturally, the higher
the rating of a wine, the greater the demand, which, accord-
ing to market forces, also drives up the price.) This trend has
also somewhat manifested itself in the fast growing number
of wines receiving a perfect score on the Robert Parker scale,
which went up from 17 in 2004 to 38 in 2009, 103 in 2013, and
69 in 2014. Calls for new evaluation methods for wine quality
have been increased [20]. By contrast, we find that, regardless
of type, country of origin, varietal, or blend, “older” wines,
i.e. those produced between 1960 and 2000, are preferred to
“newer” wines, i.e., those produced after 2000. Across all wine
variables: type, country, varietal, blend, there is a decline in
average ratings between 2000 and 2010, but begin to increase
again for 2016 vintages.

Grapes (both varietals and blends) and countries also show
a similar ratings decline over the years. However, of the four
most popular wine-producing countries: France, Italy, Spain
and the United States, wines from the latter show the least de-
cline (from 3.87 to 3.83 a decrease of 0.04 in the period be-
tween 2000 and 2010), whereas, Italy wines show a decline
of 0.21, French wines experience a decline of 0.26, and Span-
ish wines fall in popularity by 0.17 stars. As we discuss later,
this is partially due to biases of Vivino users, and in particu-
lar American users, for local wines. One reason for the general
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(a) Country (b) Type

(c) Single Varietal Wines (d) Blended Wines

Figure 3: Average prices distribution for Vivino wines with average prices in the interval [£5, £1M). The plots have been truncated
at £200.

trend in falling ratings could be that users have a more pos-
itive perception of older wines. Another reason is that as the
number of users on the social network has grown, the distribu-
tion of wine ratings may have changed to reflect a more diverse
(and perhaps discerning) user base.

4.2 Wine Ratings and Prices
We first examined the trend in prices across (a) country, (b)

type, (c) varietals, and (d) blends as shown in Figure 3. Price
listings on Vivino are based on averages generated from a lim-
ited set of vendors and the price data for wines has a very low
frequency (see Section 3). Therefore, we cannot guarantee the
reproducibility of these results, however, our analysis can pro-
vide an indication of the correlation between price and ratings.
We find that prices vary substantially across wine variables,
in particular vintage, as expected older wines are more expen-
sive than newer ones. Similarly, wines from specific countries:
France in particular, but also the United States are more expen-
sive than others.

Next, we set out to test whether the average price (in GBP)

of the wine correlates to high average ratings. We found no
evidence to support a relationship between the price of a wine
and its average rating i.e. that more expensive wines receive
higher scores than less expensive wines (see Figure 3).

We split the wine prices into quartiles, and looked for ev-
idence of discrepancies in ratings between the quartiles with
a minimum of 10 and a maximum of 914.9k. Q1, Q2 and Q3
having the values 15.73, 24.99 and 46.40. When grouped by
both country of origin and wine type, only a slight difference in
the average ratings is observed. The median rating for all wine
types is within 0.1 star for all four price ranges. Similarly, for
all wine types there is no difference in the interquartile range,
apart from rosé wines, which have a smaller interquartile range
and maximum for the upper most quartile. Also, for countries
price has no significant effect on ratings.

4.3 Use of Language on Vivino
For our analysis of language employed by Vivino users, we

examine the biographies and reviews of users. User biogra-
phies are tag-lines and short snippets of text, which appear on
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(a) #Followers (b) #Users Following (c) #Ratings

Figure 4: Distributions for the top 10k Vivino users from countries with the highest levels of wine consumption.

# Comment n-gram Freq. LR Reply n-gram Freq. LR

1 (’full’, ’bodied’) 1916 2455.13 (’long’, ’finish’) 93 141.959
2 (’long’, ’finish’) 1574 1976.26 (’full’, ’bodied’) 88 136.86
3 (’easy’, ’drinking’) 1244 1773.29 (’pinot’, ’noir’) 51 97.2578
4 (’well’, ’balanced’) 1574 1602.5 (’thanks’, ’sharing’) 77 82.3297
5 (’pinot’, ’noir’) 854 1584.19 (’easy’, ’drinking’) 49 74.0608
6 (’easy’, ’drink’) 941 1198.65 (’looking’, ’forward’) 37 72.807
7 (’good’, ’value’) 1499 1139.07 (’black’, ’cherry’) 52 69.0606
8 (’green’, ’apple’) 577 1126.39 (’medium’, ’body’) 48 68.653
9 (’medium’, ’bodied’) 788 922.062 (’well’, ’balanced’) 68 68.1572

10 (’fruit’, ’forward’) 807 831.71 (’dark’, ’fruits’) 44 58.9347

Table 2: Top 10 n-grams from wine reviews comments and replies ranked according to Likelihood Ratio (LR).

a profile page, they often state a user’s motivation for joining
the social network and occasionally provide a link to the indi-
vidual’s personal or professional websites. User wine reviews,
which are typically accompanied by a quantitative score, vary
from single word comments, stating either approval or disap-
proval, to lengthier descriptive texts, which outline a user’s ex-
periences of a wine. These usually detail the taste and appear-
ance of the beverage, and suggest dishes which complement
the wine and from time to time describe occasions where the
wine could be served.

4.3.1 User Biographies
Only 16,045 (11.6%) of the 137.5k high-ranking users have

biographies. This finding, coupled with the power-law distribu-
tions plotted in Figure 4, which show α = 1.05, α = 1.06, and α
= 1.17 for followers, users following, and ratings respectively,
indicates that wine ratings, and not social connections, are the
main motivation behind users’ interactions on the platform.

We find that 683 biographies contain the word sommelier;
434 biographies abbreviations WSET, N2, N3, N4 or N5 (names
of professional wine tasting qualifications); 120 contain the
word expert; 33 the phrase wine expert; 135 simply the word
professional; 15 the bigram wine professional, and 94 mention
ABS, the wine agencies group. Conversely, 300 users describe
themselves as amateur, 159 as learning, and 9 think of them-
selves as a learner. Interestingly, significantly more Vivino bi-
ographies contain keywords implying that users are wine ex-
perts, than those implying they are novices. However, the sam-
ple size is relatively small, and therefore few findings can be
confidently drawn from these data. Furthermore, 274 biogra-
phies contain a web address, of these, 114 are email addresses.
Thus, it would be fair to assume that these users are looking to

forge professional connections, rather than social ones.
We also examine how user biographies vary across region,

ranking and number of ratings contributed. Biography unigram
and bigram frequency distribution does not vary significantly
by user ranking. However, it does when users are grouped by
the number of ratings contributed. For users with fewer rat-
ings, their bios typically have a high frequency of the words
learning, student, amateur and enthusiast. On the other hand,
for users who have contributed more than 1,000 wine ratings
on Vivino, the frequency for enthusiast is significantly lower.
These users are much more likely to describe themselves as
certified, having a WSET qualification and provide their email
address in their biography.

4.3.2 Wine Reviews
We analyze reviews published between the dates 8 Septem-

ber 2012 and 27 March 2017. These comments, which we call
reviews in this section, are also associated with replies or feed-
back posts. There is a one-to-many relationship between re-
views and replies. And although many reviews do not receive
a reply, on average a review has 1.2519 replies. The contents
of replies are not of as much interest to us as the content of
reviews: typically, replies express agreement or gratitude as
shown in Table 2. In fact, the two most common bigram col-
locations for replies are (dear, thank), with a likelihood ra-
tio of 77.2083, and (Thanks, sharing), with a likelihood ra-
tio of 69.8736. Recall that a collocation is a sequence of to-
kens which of appears with a high probability in a text, and
can be determined, e.g., using the Natural Language Toolkit
(NLTK) Python package. We use the likelihood ratio associa-
tion metric to determine bigram collocations. Mean word count
is 64.05, the standard deviation is 37.33. Although the written

6



Regression Model Train R2 Test R2 Train MSE Test MSE

MLP 0.645 0.640 0.0459 0.0469
DT 0.701 0.608 0.0383 0.0520

Table 3: R2 Scores and mean squared error (MSE) for wine
ratings prediction models for a 75% train set and 25% test set.

reviews provided by Vivino users are short in length, they con-
tain a wide range of vocabulary. In particular, the words em-
ployed by users to describe wines are taken from a lexicon
commonly employed by professional wine critics [15]. The
most frequently occurring descriptors are: good, nice, great,
smooth, dry, fruity, light, red, sweet, well. The most common
unigrams include tannins and acidity - which are among the
most common words used in professional reviews [15].

5 Wine Prediction Models
Next, we set out to build two predictive models: (1) a regres-
sion model for predicting the average rating of a wine; and (2)
a classification model for predicting the taste profile or reviews
history of a Vivino user. For the former, we evaluate the perfor-
mance of both a Decision Tree (DT) regressor and a Multilayer
Perceptron Neural Network (MLP), while, for the latter, we use
a Support Vector Machine (SVM).

5.1 Predicting Wine Ratings
First, we develop feature engine for the model as part of the

pre-processing stage. The task of constructing a good feature
representation is essential in order to train supervised learn-
ing models effectively. As we aim to implement a generalized
model, with capabilities of predicting the average rating of any
given wine, we discount the following wine and winery spe-
cific columns of the wine dataset: wine name and winery name.
We find that, even though there are recurring noun phrases
in the wine names, these noun phrases either referred to the
grapes, which constituted to the wine or the vintage or the
wine’s type – data which is already present in other columns of
the of the wine dataset. We also exclude, from the feature rep-
resentation, wines with less than 75 ratings. One-hot encoding
is used to represent the categorical data: region, country, wine
type (e.g. red, white, sparking, port), regional style, food pair-
ings and grapes. The outcome of the preprocessing stage is a
feature representation with 4̃.4k dimensions. Univariate feature
selection is then employed to reduce the dimensions to 1k. The
combined train and test sets account for 124,397 wines. Fi-
nally, we use a train-test ratio of 75% : 25% for both the MLP
and DT regressor models.

Although DT regression outperforms the MLP approach on
the training set, the MLP shows the best generalization on the
test set. The accuracy metric chosen to compare the two mod-
els is the coefficient of determination. This regression model
error metric is commonly denoted as R2[11], where:

R2 = 1 −
∑
i

(yi − ŷi)
2/

∑
i

(yi − ȳ)
2

The maximum value for R2 is 1.0. Negative values can also be
produced for poorly performing models.

# Decision Tree (DT) Feature Gini

1 average price 0.82400
2 number ratings 0.02160
3 food pairing: poultry 0.00954
4 grape: Zinfandel 0.00678
5 regional style: Italian Vino Nobile Di Montepulciano 0.00588
6 regional style: Austrian Pinot Gris 0.00502
7 regional style: New Zealand Chardonnay 0.00420
8 regional style: Italian Ripasso 0.00392
9 regional style: Israeli Syrah 0.00320

10 regional style: Spanish Montsant Red 0.00314
11 regional style: South African Malbec 0.00314
12 food pairing: Cured meat 0.00286
13 regional style: South African Cabernet Franc 0.00249
14 grape: Cabernet Franc 0.00232
15 regional style: Northern Italy Muller Thurgau 0.00226
16 regional style: Australian Viognier 0.00222
17 regional style: Greek Amyndeon Red 0.00214
18 country: South Africa 0.00213
19 grape: Mourvedre 0.00207
20 regional style: South African Merlot 0.00207

Table 4: Gini importance for Decision Tree (DT) features used
to train wine ratings predictors, in descending order of impor-
tance.

R2 for both methods is shown in Table 3. The DT model
achieves an accuracy of 70% on the train set, whereas the MLP
achieves a lower accuracy score of 64%. When the models are
performed on the test set, the accuracy of the DT model de-
creases by 15.4%, whereas the MLP model only decreases by
0.744%. This is most likely because the one-hot coded repre-
sentation of the wine features allows the MLP to generalize to
unseen data more effectively.

Table 4 shows the Gini index values of the ten most impor-
tant features used to train the Decision Tree (DT) model. The
feature with the highest Gini index is average price, which is
far greater than that of number ratings, i.e., the second most
important feature. The other eight features represent one hot-
encoded features – one grape, one food pairing, and the re-
maining five are related to wine regional styles. The least im-
portant features are region: Dao (998th), year: 1858 (999th),
and region: Knights Valley (1000th).

5.2 Predicting Wine Preferences
Next, we attempt to use the data analysis in order to cre-

ate a wine style preferences classifier. Before we begin to de-
sign this model, we first extend our wine ratings analysis, with
a particular focus on users. From this analysis, we learn that
users show a preference for rating wines which originate in
their home countries. Figure 5 shows that for of 60% the coun-
tries, Vivino users are mostly likely to rate a local wine. For the
40% for whom this is not the case, users either have a strong
preference for rating wines that are produced in neighboring
countries or European wines. Most commonly rated wines are
not necessarily the most highly rated wines, as shown in Fig-
ure 6. Brazilian wines receive the lowest volume of ratings
from all Vivino users, apart from Brazilian users themselves.
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Figure 5: The total volume of ratings of wines from users from
15 countries with the highest levels of wine consumption in
2015 [13].
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Figure 6: The average rating of wines from users from 15 coun-
tries with the highest levels of wine consumption in 2015 [13].
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Figure 7: Confusion matrix for user preferences classifier based
on the 10 countries with the most ratings in the wine dataset.
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Figure 8: Confusion matrix for user preferences classifier based
on the countries/regions with the most ratings in the user taste
profiles.

As well as receiving the lowest volume of ratings, Brazilian
wines also receive the greatest proportion of ratings below 3.5.
French wines receive the greatest proportion of highest ratings:
users from all countries with the exception of British and Rus-
sian users. Aside from the US, New World wines (from Brazil,
Chile, Argentina, Australia and South Africa) receive lower
ratings that Old World wines. Argentina receives higher rat-
ings than other New World countries.

Preferences are acquired from the user taste profile, a history
of average ratings and number of wines rated of region styles a
Vivino user has reviewed. Given the tendency of users from
all countries to show more favorable ratings to wines from
France, and less favorable ratings to wines from Brazil. The
mean and standard deviation of both French and Brazilian wine
ratings are chosen as features for the classifier. Each example
in the user set is labelled as either a user with a preference
for wines from Chile, France (excluding the Bordeaux region),
Bordeaux, Italy, Spain or US. These countries are chosen as
their wines accounted for the majority of the taste profile sam-

ples. A decision tree ensemble method is used to classify user
preferences. The mean accuracy of the model was 79.8%.

We develop two versions of the classifier:
1. A model differentiating between the preferences for

wines from the 10 most commonly rated countries (from
the wine dataset): Argentina, Australia, Brazil, Chile,
France, Italy, Portugal, South Africa, Spain, and United
States. The accuracy for this model is 71.8%.

2. A second model based on the country of origin of wines
most frequently reported on in the taste profiles in the user
dataset. These countries and regions are Bordeaux, Chile,
France (excluding Bordeaux), Italy, Spain, and United
States. This model achieves a higher accuracy, namely,
79.8%. The confusion matrices for these two models are
shown in Figure 7 and Figure 8.

We also report the confusion matrix for the classifier in Fig-
ure 8. The confusion matrix shows that with the exception of
wines from France (excluding Bordeaux), which are most of-
ten confused for Bordeaux, all other wine preferences are most
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often confused for wines from France (excluding Bordeaux).

6 Conclusion
In this paper, we examined how user biases, regional factors
and wine characteristics affect wine ratings on Vivino, a social
network application for wine enthusiasts. Our analysis found
that the biggest indicator of how a user will rate a wine is
its vintage and region, i.e., there is a strong preference for
French wine styles, and users also have a more favorable opin-
ion of home-grown wines. Furthermore, our work shows that
on Vivino users wine preferences are not based on price. This is
in contrast to the bias researchers have found exists among pro-
fessional critics [21]. Language analysis also shows that Vivino
users generate relatively high quality user reviews, showing
that wine ratings and reviews produced by amateur wine en-
thusiasts can be quite useful.

We also aimed to explore how wine characteristics, natu-
ral language analysis of wine reviews and regional analysis of
wineries on Vivino could be integrated to develop a practical
model for predicting wine reviews. We developed two predic-
tions based on average wine ratings and users’ ratings histories
(which wines users rate and how they rate them). The mod-
els were evaluated using unseen examples from the dataset to
gauge their efficacy. The results demonstrate that there is con-
sistency across the ratings given by Vivino users, thus, spam
and/or troll content does not affect the credibility of ratings on
the social network. Our model also shows that wine ratings are
not random, but the ratings assigned to wines by users based
on informed and considered decisions. Overall, we believe that
the analysis of factors that influence wine ratings and the devel-
opment of models for predicting wine reviews are useful con-
tributions to the understanding of how specialist social media
platforms influence and shape our eating and drinking habits,
and how we can minimize the subjectivity of online food and
drinking ratings.

On the other hand, we acknowledge that our models do have
some limitations. For instance, the user data collected was not
of the same granularity as the wine data, and this may be one
reason for poorer performance of our ratings profile classifi-
cation compared to the wine ratings regression. The models
produced were only tested on Vivino datasets, thus, as part of
future work, we plan to evaluate them on user and wine reviews
data from other sources.
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