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Abstract 

We explore 11-12-year-old students’ emerging ideas of models and modelling as they engage in a 

data-modelling task involving inquiry of data obtained from an experiment. We report on a design-

based study where: students identified what and how to measure; decided how to structure and 

represent data; and made inferences and predictions based on data. Our focus was on: (1) the 

nature of the student-generated models and (2) how students evaluated the models. Data from 

written work generated by groups and transcripts of interviews were analysed using progressive 

focussing. The results showed that groups constructed models of actual data by paying attention to 

various aspects of distributions. We found a tendency to use differing criteria for evaluating the 

success of models. This data modelling process also fostered students’ making sense of key ideas, 

tools and procedures in statistics that are usually treated in isolation and without context in school 

mathematics. In particular, we identified how some students appeared to gain insights into how a 

‘good’ statistical model might incorporate some properties that are invariant when the simulation 

is repeated for small and large sample sizes (signal) and other properties that are not sustained in 

the same way (noise). 

Keywords: data modelling, distribution, informal statistical inference, middle 

school students  
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In today’s society, an abundance of information is available through media and 

technology. To be effective in such an environment in the 21st century, citizens 

need to be prepared for utilizing information, media and technology effectively 

(see Framework for 21st Century Learning, http://www.p21.org). Hence 21st 

century learning skills emphasize the importance of equipping young people with 

competencies for working collaboratively and for thinking critically and 

creatively about real-world problems and using data to deal with them. A 

significant source of such activity is the use of models in statistics since it bridges 

the real world where the problems reside and the theoretical world which analyses 

the data emerging from the problem context. Our aim in this study is to engage 

students in a data-rich task which will necessitate critical and creative thinking 

while we research the nature of the models constructed and how the students 

evaluate them. 

1. Models and modelling in mathematics and 

statistics 

Mathematical models have been a key element in the historical development of 

both the disciplines of mathematics and statistics. Lesh and Doerr describe models 

as “conceptual systems (consisting of elements, relations, operations, and rules 

governing interactions) that are expressed using external notation systems, and 

that are used to construct, describe, or explain the behaviours of other system(s) –

perhaps so that the other system can be manipulated or predicted intelligently” (p. 

10). So, modelling refers to this process of designing, describing or explaining 

another system for a particular purpose. 

In statistics, modelling and reasoning with models are considered as essential 

components of statistical thinking when analysing data (Wild & Pfannkuch, 

1999). Moore (1990) describes the role of statistical models in “moving from 

particular observations to an idealized description of ‘all observations’” (p. 109). 

For example, the Normal or uniform distributions are such models for describing 

the overall pattern in data. According to Garfield and Ben-Zvi (2008), one of the 

main uses of models in statistics is fitting a statistical model, such as normal 

distribution, to data that already exist or are collected through survey or 

experiment in order to explain and describe the variation in the data. The role of 

statistical graphs is also important in statistical modelling since they enable us “to 
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look for the shape, center, and spread of the displayed distribution, to weigh the 

five-number summary against  and s as a description of center and spread, and 

to consider standard density curves as possible compact models” (Moore, 1999, p. 

251). In other words, data representations can be seen as models for describing the 

overall pattern in sample data to make predictions about a population or 

phenomenon with a degree of uncertainty. 

2. Models and modelling in pedagogy 

Given the importance of models in mathematics and statistics, it is not surprising 

that school curricula over many decades have been peppered with the requirement 

that students are able to make use of given models such as Newton’s Laws of 

Motion in applied mathematics and the Normal Distribution in statistics. Such 

models have played a key role in transmission models of teaching and learning 

where the models appear as representations.  The challenge for the student 

experiencing the transmission model of teaching is one of recognising the nature 

of the set problem and translating (a term coined in this context by Gravemeijer 

(2002)) the problem into one of the various models that would have been 

previously introduced in the curriculum. These models/representations in 

themselves contain no intrinsic meaning and students often struggle to make sense 

of them.  

More recently, the Common Core Standards Writing Team (2013) pointed 

out that, although there was no single definition of mathematical modelling that 

was agreed upon, its various descriptions tended to have the following common 

features: “mathematical modeling authentically connects to the real world; it is 

used to explain phenomena in the real world and/or make predictions about future 

behavior of a system in the real world; it requires creativity and making choices, 

assumptions, and decisions; it is an iterative process; and there can be multiple 

approaches and answers” (p. 8). 

It seems then that it is not enough to simply manipulate and calculate with 

given statistical representations. A more holistic approach to teaching statistical 

concepts, ideas and tools within a broader context of data enquiry with emphasis 

on reasoning and inference is needed.  One way of doing this is to adapt a 

teaching perspective that focusses on informal statistical inference (ISI) (Bakker 

& Derry, 2011). This increasingly recognized approach entails the following 

x
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essential components: (1) making a generalization beyond the data; (2) using the 

data as evidence for the generalization; and (3) acknowledging uncertainty in 

describing the generalization (Makar & Rubin, 2009). A generalization beyond 

the data might, for example, involve identifying a signal in the data, that is to say 

a feature or trend in the data that might be explained by an associated or causal 

factor. Acknowledging uncertainty requires recognising the noise in the system 

which cannot be explained but could be regarded as random error. As more 

attention has been paid to innovative ways of connecting chance and data and to 

reasoning about uncertainty in the context of ISI, the role of statistical models and 

modelling has come into prominence in developing students’ statistical 

understanding and reasoning at different levels of statistics teaching (e.g., 

Fielding-Wells & Makar, 2015; Noll & Kirin, 2017).  

Yet, mathematical or statistical modelling within ISI contrasts with the 

transmission model of teaching and learning. Students do not translate problems 

to a given model. On the contrary, in ISI the expectation is that students impose a 

structure upon the real world problem. Gravemeijer (2002) calls this process 

‘organising’. The students select or generate data which might inform their 

investigation and then they seek to make sense of the data by representing it in 

many different forms, typically supported by the use of technology. Gravemeijer 

(2002) describes a process of emergent modelling in which students move from 

making a specific ‘model-of’ a situation to seeing the model as an entity in itself, 

a ‘model for’ more formal mathematical reasoning.  

To assist understanding of Gravemeijer’s ideas, let us point to similarities 

with notions of reification developed by Sfard (1991) and others (Tall, 1991), 

insofar as the movement towards model-for as an entity in itself parallels the 

learner’s facility to recognise a concept such as function as an object with its own 

attributes and properties, rather than being only a part of a process. Returning to 

statistics education, Pratt and Noss (2010) proposed a pedagogic tool in which 

learners would edit the configuration of a random generator, such as that of a 

digital version of a die, to control its behaviour until the configuration becomes so 

familiar it is recognised as a model for the concept of distribution with predictive 

power even without the need to run the process. In Gravemeijer’s terminology, 

Sfard’s students and those of Pratt and Noss progress from a model-of a situation 

to a model-for (function or distribution). 
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The notions of emergent modelling and ISI are relatively recent developments 

in statistics education research. Even so, there has been some recognition of the 

importance of modelling in standard curricula. For example, in the USA Common 

Core State Standards for Mathematics at high school, there is a tendency to 

include statistics when describing mathematical modelling in school mathematics 

as “using mathematics or statistics to describe (i.e., model) a real world situation 

and deduce additional information about the situation by mathematical or 

statistical computation and analysis” (Common Core Standards Writing Team, 

2013, p. 5). Focussing on statistical models and modelling in school mathematics 

can provide opportunities to connect data, chance and context but the use of 

modelling in these curriculum statements might be interpreted in the traditional 

transmission model or in terms of emergent modelling. In this study, we sought to 

explore the challenges that students might find when working within the emergent 

modelling paradigm. 

3. Research on the teaching and learning of 

modelling and distribution 

3.1 Models and modelling 

In mathematics education, Lesh and Doerr’s (2003) perspective on models and 

modelling focuses on designing instruction that promotes mathematical problem 

solving, learning and teaching of mathematics.  In alignment with the ISI 

approach, they typically present students with data-rich situations that might be 

elaborated by the construction of models. 

Lehrer and Romberg (1996) refer to this approach as data modelling: the 

construction (i.e., collecting certain types of information based on research 

questions) and use of data to solve a problem, a process closely linked to the 

development of mathematical models. They argue that “data require construction 

of a structure to represent the world; different structures entail different 

conceptions of the world” and thus “thinking about data involves modeling 

practices” (p. 70). Data modelling is a cyclic activity in which one begins with 

posing questions to solve a problem using a statistical investigation and 

identifying variables and their measures; moves to an analysis phase in which 
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decisions are made for structuring and representing data; then conducts inference 

in relation to knowledge about the world (Lehrer & Schauble, 2004). 

Using their data-modelling approach, Lehrer and Schauble (2004) conducted 

a design study in a 5th grade classroom and focused on the development of 

students’ modelling variation through their understanding about distributions in a 

context. Students investigated questions about the nature of plant growth over 

time, such as height change and the effects of fertilizer and light. Through 

student-invented displays of data in small groups, changes in the distributions of 

plant height measures were discussed and interpreted in relation to the overall 

shape of data in whole class discussions. Students also compared distributions of 

heights of the plants grown under different conditions. In addition, posing a 

question like “what if we grow the plants again?” provided opportunities to make 

inferences and reason about uncertainty which were not usually part of the 

curriculum at elementary grades. Researchers argued that generating, evaluating 

and revising models of data collected helped students to reason about natural 

variability. They emphasised the value of student-generated data representations 

in this data modelling process. After Gravemeijer, it would be reasonable to say 

that these students developed a ‘model-for’ natural variability, insofar as the 

students were able to recognise natural variability as a phenomenon evident across 

different situations.  

English and Watson (2017) developed a framework of four components to 

examine 6th grade (age 11) students’ modelling with data as students were 

required to construct a model for selecting a national swimming team for the 2016 

Olympics using the data sets on swimmers’ previous performances. The first 

component was called ‘working in shared problem spaces between mathematics 

and statistics’.  There is clearly a resonance here with our interest in the potential 

for emergent modelling to connect statistics and probability. The following three 

components were closely aligned to ISI: ‘interpreting and re-interpreting problem 

contexts and questions’; ‘interpreting, organising and operating on data in model 

construction’; and ‘drawing informal inferences’. 

During the task, students were able to use both statistical and mathematical 

reasoning/procedures in solving the problem as they were constructing their 

models based on given data. They also showed acknowledgement of key 

statistical ideas, such as calculating means (as a variable) as a way to account for 
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variability in data, the limitation of using only one performance variable and 

referring to uncertainty in team selections. In fact, English and Watson’s students, 

while being engaged in data modelling in the sense of Lehrer and Schauble, were 

developing models-for the mean (after Gravemeijer). That is to say, the students 

began not only to calculate means as part of the model-of the swimmers’ 

performance, they also began to appreciate how they could calculate the mean to 

find which data set of swimming times contained smaller numbers overall, 

imbuing mean with a certain utility in its own right. Moreover, students tended to 

consider both problem context and data variation in connection with selecting 

variables when constructing models. A consideration of problem context along 

with purpose of selecting a swimming team with the highest chance of winning in 

the Olympics also appeared in student responses.  This framework clearly has 

potential to inform our first research focus on the nature of the student-generated 

models. However, we needed to look elsewhere in order to elaborate our second 

focus on how students evaluate their models. 

With recent developments in technology, such as TinkerPlots 2.0 (Konold & 

Miller, 2011), research on data modelling has begun to focus on combining 

exploratory data analysis with probability through computer simulations. Konold, 

Harradine and Kazak (2007) reported on how middle school students built models 

of real-world objects using the random data generator devices in TinkerPlots to 

produce data, called data factories, and how they tested and refined their models 

through simulations and looking at graphs of their data. Building on this idea of a 

data factory, Ainley and Pratt (2017) developed a pedagogic approach, called 

purposeful computational modelling, which enabled 11-year-olds to build models 

for generating data that were represented in tables and graphs and to revise them 

using modelling and simulation features of TinkerPlots. Their research findings 

suggested some possible issues about how children might judge the success of a 

model: (1) evaluating whether the model was working as they expected by 

comparing the outcomes to the structure of the model built in TinkerPlots; (2) 

comparing the simulation results with the original data to see if the model was 

generating data resembling the original data; (3) evaluating whether the model 

worked in terms of generating realistic data. 
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3.2 Distribution 

Our research will focus on the emergence of a model-for the notion of model 

through data modelling by challenging the students to make sense of a distribution 

of data about the distances jumped by paper frogs. Konold and Kazak (2008) see 

distribution as the emergent, aggregate properties of data. This perspective on 

distribution fits well with the notion of emergent modelling since we wish to view 

statistical modelling as developing a model of data to move from individual cases 

or observations to describe a global pattern in data and then moving from data to 

context in which one makes sense of the data. We believe that reasoning about 

distributions to make inferences and predictions is a key aspect in this modelling 

process as argued by English and Watson (2017). Reasoning about distributions 

on the other hand requires an aggregate thinking about data, which is beyond 

simply reasoning about a form of visual representations of data (Konold, Higgins, 

Russell & Khalil, 2015). According to Konold et al., aggregate is defined as “the 

way in which that form is perceived, as indicated by the sorts of questions it is 

used to address” (p. 307). Although students can intuitively generate data 

representations to organize data to answer certain statistical questions (Lehrer & 

Schauble, 2002), previous research highlights young students’ difficulty in 

perceiving data as an aggregate (e.g., Cobb, 1999; Hancock, Kaput & Goldsmith, 

1992). In these studies, students tended to see data as individual cases rather than 

to focus on the global features of distribution, such as what the distribution of data 

looks like (shape), where the data values cluster and how spread-out they are. 

However, Konold, Robinson, Khalil, Pollatsek, Well, Wing et al. (2002) reported 

on how 7th and 9th grade students used a central range of values to refer to what 

was typical, called a modal clump, when describing distributions. In addition, 

these modal clumps can in some ways indicate how the data are distributed. Thus, 

it was suggested that “the idea of modal clump may provide a more useful 

beginning point for learning to summarize variable data” (p. 6). 

According to the previous studies described above, the idea of data modelling 

has a potential to connect data, chance and context through emergent modelling. 

The practices of data modelling could also provide a means of developing 

students’ understanding of key statistical ideas and tools, such as distribution, 

measures of central tendency and variability, data representations and inference. 

Even so, our research focus is to investigate young students’ emergent ideas about 
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models and modelling as they engage in reasoning about distributions during a 

data-modelling task. We have two research questions both of which relate to how 

a ‘model-for’ model might emerge as the students engage in data modelling: As 

students identify what and how to measure, decide how to structure and represent 

data, and make inferences and predictions based on data: (1) what is the nature of 

the student-generated models? and (2) how do students evaluate their models? 

4. Methodology 

4.1 Research setting 

Our study took place in Turkey, where the National School Mathematics 

Curriculum (MEB, 2018a, 2018b) includes data topics from the 1st grade to 9th 

grade and probability topics from 8th grade to 12th grade. The data topics do 

include the statistical investigation cycle (formulating research questions, data 

collection, data structuring and representation, data analysis and interpretation) at 

grades 5–8 (ages 11–14). This aspect of the curriculum offers a gateway for ISI; 

in our study we sought to engage the students in ISI through data modelling. At 

the same time, the Turkish curriculum places great emphasis on calculations and 

graphing and almost none on making inferences based on data at all grade levels. 

Moreover, probability topics are treated as completely separate from data. We 

intended that our approach in this study would construct a learning path that 

bridges data, chance and context in order to help learners develop competencies 

for using data to solve real-world problems. In this respect we see ourselves as 

aligned with English (2010) who argues that modelling can be used as a vehicle to 

provide an authentic problem situation for students to develop an understanding of 

important statistical ideas and tools. In fact, one such key idea is that of ‘model’ 

itself. In effect, we invite students to develop a ‘model-for’ model by evaluating 

their models that begin to emerge through their data modelling activity. That is to 

say, we intend that the student begin to gain a sense of ‘model’ as an entity in its 

own right which has power to allow prediction of outcomes from the situation 

being modelled, even prior to data collection or the running of a simulation. 

In this report we describe a possible learning trajectory for developing young 

students’ emergent ideas about statistical models and modelling. This learning 

trajectory was tested in two different 6th grade classrooms where students (ages 
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11–12) working in small groups engaged in a data-modelling task in the context 

of selecting one of the origami frog designs for the Olympics jumping race. 

4.2 Research design and participants 

In order to address the research questions stated above, we used a design study 

method (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) as we had an 

iterative process to design, test and revise a learning trajectory about developing 

and supporting young students’ ideas about models and modelling through data-

modelling activities. The retrospective analysis of the first cycle provided the 

basis for the new design phase in the second cycle. 

We conducted teaching experiments in two different 6th grade classrooms in a 

large urban middle school (with approximate enrolment of 1600 students from 5th 

to 8th grades) in Denizli, Turkey. While 30 students (13 boys, 17 girls) of ages 11–

12 participated in the first teaching experiment in April-May 2017, 16 students 

took part in the second teaching experiment in June 2017. Participants were 

familiar with formulating research questions, collecting data, making frequency 

tables and bar graphs to structure and represent data, computing and interpreting 

the mean and the range of a data set and using them to compare two data sets, but 

had no experience with using computer simulation tools, such as TinkerPlots, and 

were usually required to work with small data sets. They were familiar with 

conducting experiments in science where they take measurements and record data. 

4.3 Task description and procedure  

The data modelling task, called the Frog Olympics, is designed to engage young 

students in experiences of data modelling that involves what and how to measure, 

deciding how to structure and represent data, and making inferences and 

predictions based on data. The purpose of the task was to determine which of the 

given two different frog designs made by origami (Fig. 1) to choose for a 100-

meter ‘jumping’ race in the Frog Olympics. 
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Fig. 1 Two different frog designs used in the Frog Olympics task (the smaller one is referred to as 

“pink frog” and the bigger one as “orange frog” throughout the paper) 

We designed and tested a learning trajectory (Table 1) to support young 

students’ data modelling. This learning trajectory addressed reasoning with key 

statistical ideas, such as distributions, central tendency, variability and predictions 

with uncertainty, and developing ideas about statistical models and modelling. 

Students worked in small groups (4–5 students). The teacher and researcher acted 

as facilitators as students worked together on the task. Each small group 

discussion was followed by a whole-class discussion. Due to the nature of design 

study, as the classroom implementation of the task proceeded, the research team 

negotiated revisions to reshape the next teaching session throughout the study.  

Table 1 Learning trajectory for the Frog Olympics task (one class period=40 min) 

Stages of the task Concepts/ideas Duration 

1) Introducing the game and planning how 

to choose between two frog designs (group 

work and a whole class discussion) 

Context, variables One class 

period 

2) Planning experiment (group work and a 

whole class discussion) and collecting data 

(group work) 

(Materials: Two different frog designs, a 

measuring tape, a ruler) 

Defining and measuring 

variables, structuring data 

One class 

period 

3) Representing data (group work) 

(Materials: A ruler and two graph papers) 

Data representations, distribution Two class 

periods 

4) Analysing data and making inferences 

(group work and a whole class discussion) 

Context, informal inference, 

distribution, shape, central 

tendency, variability  

One class 

period 

5) Introducing dot plot representation, 

creating dot plots of data (group work), 

analysing data and making inferences 

(group work and a whole class discussion) 

(Materials: Graph paper) 

Context, informal inference, data 

representations, distribution, 

shape, central tendency, 

variability  

Two class 

periods 

6) Sketching a model for prediction: 

Introducing a follow-up scenario, sketching 

a model to make a prediction (group work) 

Context, distribution, models and 

modelling, predicting outcomes 

beyond experimental results 

One class 

period 

7) Testing the models in TP and evaluating 

them (a whole class discussion) 

Context, testing and evaluating 

models 

One class 

period 

 

To introduce the context of the task, the teacher initiated a class discussion 

about Olympics in real life and then explained the 100-meter ‘jumping’ race rules 

in the Frog Olympics: “One of the games in the Frog Olympics is a 100-meter 

jumping race. In this race, each frog begins to jump at the start line and keeps 
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jumping to finish the race. The frog arriving at the finish line first wins the game. 

When any part of the frog crosses the finish line, it wins the race.” After each 

group discussed how they could decide which frog design to choose for the Frog 

Olympics, a mutual decision for collecting repeated measures of a single jump 

distance was made as a whole class. Each group was asked to discuss and write 

down how they would collect data after playing with the two origami frogs. After 

a whole class discussion of various ways of collecting data, each group marked a 

start line and fixed the measuring tape perpendicularly (starting from 0) on their 

desk to measure how far the frog jumped and repeated this 15 times for each frog 

design. In the next class, students were asked to make a graphical representation 

of the jump distances of each frog design on the given graph papers in a way to 

help them decide which frog to choose for the Olympics. Using their 

representations, students were encouraged to make informal inferences. During 

the first iteration of the task, Group E spontaneously created a physical dot plot 

using stickers even though this had not been taught. So we encouraged the other 

groups to make dot plots of their data and interpret them. 

In order to foster students’ ideas about models and modelling, we combined 

the experimental data from all groups in the dot plots for each frog design in 

TinkerPlots that were displayed on the classroom interactive board and asked 

students to predict what the two frogs might do in many repeated jumps in the 

future. The following scenario was introduced: 

A mobile game developer wants to make a digital version of each frog design 

for a game. Your task is to help the developer, using the data you collected 

from flipping paper frogs. By looking at the dot plots of jump distances of 

pink and orange frogs, what might the distribution of jump distances for each 

frog design look like if we were to collect more data? 

We did not raise issues about sample size as we wanted to know whether the 

students would decide if this was relevant and how. We introduced sketching as a 

way to generate a model of expected results. When instructing students on how to 

sketch a distribution shape using a curve, we demonstrated quick sketching and 

emphasised paying attention only to the overall shape. Then each group sketched 

their prediction on the worksheet, including a horizontal axis for the jump lengths 

scaled from 0 to 100 for each frog design, and explained how they made the 

prediction. 
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Building and testing groups’ models (the sketches) using TinkerPlots did not 

work in the class as we planned due to technical difficulties using the software on 

the interactive board. Then the research team decided to conduct interviews with 

specific groups to examine their ideas about evaluating models more closely after 

the last class. As seen in Table 2 five groups were asked to evaluate 3-4 sketches 

including theirs where their model sketch has the same nomenclature as their 

group. Note Group D was not interviewed but their model sketch was used in the 

student evaluation. 

Table 2 Groups interviewed for evaluating models  

Group Participants Models evaluated 

B Two girls; two boys B, D, F, G 

C Two girls; three boys C, D, F, G 

E Two girls; two boys E, B, C 

F Four girls F, B, C, E 

G Two girls; two boys G, B, C 

 

After the evaluations, the interviewer showed the students the TinkerPlots 

model created based on their sketch. Since they did not have a prior experience of 

using the software, the interviewer explained how the TinkerPlots model was 

created and how the simulation worked. Then to make sure they understood the 

process, the interviewer asked them to describe what would happen when they ran 

the simulation. When everyone was happy with this model, the interviewer ran the 

model and asked the group whether the results turned out the way they expected 

and how so. After a few more runs, the interviewer asked whether they wanted to 

change anything in the model and why.  By simulating the agreed model for 

distances jumped by each frog design using a moderate sample size, such as 

n=500, we intended to reveal different behaviours between models with a hump 

and models that were wavy with spikes in places where there were comparatively 

large frequencies of distances jumped. In the case of a model with a hump, the 

outcomes when running the model would show a similar hump, suggesting an 

invariant feature. In contrast, in the case of the wavy models, there would be no 

such invariance unless the model was run for a very large sample. Then the 

students were shown the given models again to evaluate to see if they changed 

their ideas about their initial evaluations after testing their model. In the end, 

groups were asked again which frog design they would choose for the Olympics. 
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4.4 Data collection and analysis   

Teaching sessions and interviews were co-conducted by the first author as the 

teacher-researcher, and the third author who was the classroom teacher. The 

interviews with selected groups were 20–30 minute long to discuss how they 

produced their model and evaluated the given models generated in the last class 

by sketching. The data consisted of written artefacts, including responses on the 

worksheets and representations generated by group work, audio-recordings of 

interviews and field notes. Since the second teaching experiment was conducted 

towards the end of spring semester, there was a high absenteeism among the 

participants in the last teaching sessions. Therefore, in this article we focus mainly 

on the data from the first teaching experiment and mention the results from the 

second teaching experiment only in passing. 

Documents including written artefacts from each group work and transcripts 

of audio recordings of group interviews were analysed qualitatively. In our 

analysis we used progressive focussing (Parlett & Hamilton, 1977) to describe and 

interpret the data throughout the teaching sessions by concentrating on the 

emerging features of the practices of data modelling in the classroom.  In 

progressive focussing, the researcher commits to multiple stages of analysis 

during which insights can gradually emerge allowing the data to be compacted 

around those insights. For our progressive focussing, in the first stage, the data 

captured by audio of the interactions was transcribed into Turkish. In the second 

stage, the students’ written responses along with the pictures of student-generated 

representations and models and the researchers’ field notes about each session 

were translated from Turkish into English. In addition, the following two foci 

were used to select excerpts of the transcribed data, which were also translated: 1) 

how students explained construction of their own model; and 2) how they 

evaluated the given models and their interpretation of simulation data. In the third 

stage, the authors independently analysed the content of these documents and 

transcripts using the following six foci: 1) What the student-generated sketches 

tell us about their ideas about models of real data distributions; 2) what were the 

distinguishing features in the students’ models; 3) what made some students pay 

attention to the overall trend in the data while others were influenced by the ups 

and downs in the data; 4) how students judged what was a good model; 5) what 

sorts of criteria they used when evaluating the models; and 6) how simulating the 
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models in TinkerPlots affected their model evaluations. In the fourth stage, the 

first and second authors compared and discussed their analyses through which 

process themes began to emerge. In the fifth stage, further detailed discussion 

between these two authors focussed on interpreting and re-interpreting these foci. 

5. Results 

The presentation of findings is divided into two subsections corresponding to the 

research questions addressed in the study: (1) what was the nature of the student-

generated models? (2) how did students evaluate their models? 

5.1 Students’ models 

Students’ emergent models of actual data distributions for predictions arose 

from several actions in which they constructed a graphical representation of 

empirical results in the earlier stages of the task (3-5 in Table 1). Similar to the 

anticipated path described in Gravemeijer (2002), students spontaneously began to 

make sense of their empirical data with their choice of representation consisting of 

value bars each of which corresponds to a single measure of distance jumped on 

the vertical axis (Fig. 2). This representation led students to talk about the 

regularity and consistency of the jump distances when comparing each frog 

design to make a decision. Then the dot plot representation, introduced to the 

students as part of our learning trajectory, played a key role in transitioning from 

“the magnitude-value-bar graph” (Gravemeijer, 2002, p. 4) to a graph of a density 

function that is the sketched model constructed by the students to make 

predictions within the scenario described in section 4.3. For example, when 

interpreting dot plots of their actual data, students used various ways: groups B 

and C tended to compare modal clumps and group F compared the piling-up in 

each distribution.  
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Fig. 2 Value-bar graphs (showing the order of trials on the horizontal axis, i.e. trial 1, trial 2 etc., 

and jump distances on the vertical axis) made for pink frog (on the left) and orange frog (on the 

right) by group G 

Since the height of the stacked dots at a given range could be considered as a 

measure of the density in that interval, the perceived shape of the dot plot through 

sketching could be seen as a qualitative precursor to the visual density function as 

argued by Gravemeijer (2002). Our data support this argument. For instance, 

when group B constructed their emergent model (Fig. 3 B) which was based on a 

modal clump around a broad range of jump distances, as seen in the excerpt 

below, students primarily focussed on a range of data where the most frequently 

values were clustered and how the data were distributed in the combined 

experimental results (Fig. 3 A): 

Taha: We tried to make the curve higher where the most of the jumps are in 

the class data 

Berk: We determined the range of values where the most are 

Taha: For example between 10 and 65 for the orange frog 

Mina: Here (the orange frog) jumped mostly around this area. Here (the pink 

frog) scattered but jumped still more around a certain area. We paid attention 

to that. 

(A) 

 

(B)                              (C)    (D) 

(E)                                   (F)      G) 
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Fig. 3 (A) Dot plots of combined data showing the distance jumped on the horizontal axis for 

orange frog (at the top) and pink frog (at the bottom); (B and C) Models based on a modal clump 

around a broad range of jump distances (by groups B and C respectively); (D, E, F and G) Models 

based on several small ranges of jump distances (by groups D, E, F and G respectively) 

Similarly, in their written explanation, group G stated, “Based on the data of 

the orange and pink frogs [Fig. 3 A], we decided that if we made them jump more, 

they could jump to the same places (the same distances) more”. During the 

interviews they also commented on the several smaller humps for the pink frog in 

their emergent model, which was based on several small ranges of jump distances 

(Fig. 3 G). They argued that those were because of the “waviness” in the actual 

data and they made some of them taller since there were more dots stacked up. In 

addition to the overall shape, the emergent models took the minimum and 

maximum value of distances jumped into account. For example, one of the 

students, Seda, in group G expressed a concern that, although they paid attention 

to the start point (the minimum distance jumped) in sketching their model, they 

made a “mistake” in the end point (the maximum distance jumped) which was 

extended to 100. Sevil’s in reply to that, suggested, “Actually if we were to flip 

the frog more times, it could have these jump distances”, which indicated an 

acknowledgment of uncertainty in the long run for their emergent model.  

As a result, we found the following tendencies to generate models of real data 

distributions as seen in Fig. 3 (B-G): 

 Matching ‘ups and downs’ in the actual data but not the jump distance 

values on the horizontal axis  

 Matching the minimum and maximum values or only the minimum values 

of the model and actual distributions 

 Going a bit lower/higher than the actual range of data 

 Drawing the curve higher than the maximum height of the actual clusters  

Then two categories of models were identified from these analyses. In the 

first category, students tended to use their idea of a modal clump around a broad 

range of jump distances (Fig. 3 B and C). Two groups (groups B and C) created a 

model of this nature. In the second category, students chose to have several small 

ranges of jump distances, which led to a series of ‘ups and downs’ (Fig. 3 D, E, F 

and G). The other four groups (groups D, E, F and G) created such a model. 
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5.2 Students’ model evaluation criteria  

Above we presented how the features of emergent models across the groups 

differed. In evaluating these models, although all groups (note Group D was not 

interviewed) believed that the model distribution should look like the real 

distribution, their ideas about what made a good resemblance varied too. Table 3 

gives a summary of the criteria the students used to evaluate their and others' 

models. We now present examples of how each group evaluated the various 

models including how they tended to use the same criteria for evaluating others' 

models as they used for creating their own. 

Table 3 Summary of criteria used to evaluate emergent models 

Match between the model and real distributions 

Shape Start/end points 

a) Overall shape based on modal clumps (group B) 

b) The number of ‘ups and downs’ (groups E and F) 

c) The height of the curve (groups B and C) 

d) The minimum and maximum values 

at which the model data and real data 

start and end (groups B and G) 

5.2.1 Examples of groups’ evaluation of emergent models 

Group B This group created a more holistic model and examined the models 

B, D, F and G in Fig. 3. They agreed that the model G was “good” because it was 

“well thought out” and looked like the actual results. They thought their model 

(B) was “OK” since it showed which jump lengths were the most common 

(criterion a in Table 3) but was a “rough sketch” compared to the model G. They 

rated the models D and F as “bad” using the shape criteria c and d in Table 3.  

However, students switched their ratings for model G to “OK” and theirs (B) to 

“good” after seeing the simulation results of these models (Fig. 4 and Fig. 5) for a 

large number of trials. They reasoned that the simulated results for the orange frog 

in Fig. 5 did not look like the actual data because there were ‘ups and downs’ 

where there was a cluster of most jump distances in the actual distribution. For 
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this group, a ‘good model’ seems to have a general shape based on where the 

cluster of data is located in the actual distribution. 

  

Fig. 4 On the left the Sampler built for group B’s model in TinkerPlots using the curve device and 

on the right simulation results from a large number of trials that show the distance jumped on the 

horizontal axis for orange frog (at the top) and pink frog (at the bottom) 

 

Fig. 5 Group G’s model in TinkerPlots using the curve device and simulation results from a large 

number of trials that show the distance jumped on the horizontal axis for orange frog (at the top) 

and pink frog (at the bottom) 

Group E Since this group tended to show details in their model, they were 

given the other two more holistic models, which were constructed based on a 

modal clump around a broad range of jump distances (B and C in Fig. 3) to 

evaluate. While the students rated the model B as “good”, they considered the 

model C to be in between “OK” and “bad”. The main criterion used in their 

evaluation was the shape of the distribution (criterion b in Table 3). They rated 

their model (E) as “OK” since they thought that the rises and falls were good but 

there was too much detail. After watching the simulation results of their model 

created in TinkerPlots several times, the students tried to test the match between 

their model and the actual distribution by superimposing the sheet with their 

model onto the sheet with the actual distributions as seen in Fig. 6. After repeating 

this test for the other models, they changed their initial ratings based on the match 

they observed: “good” for Model E, “OK” for model B and “bad” for model C. 
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For this group, a ‘good model’ is the one that has a shape with ‘ups and downs’ 

similar to the ones seen in the actual distribution. 

  

Fig. 6 Members of group E comparing the match between models and actual data 

Group F For the evaluation, this group was given the other two models 

which were more holistic (B and C in Fig. 3) and another model (E) similar to 

theirs (F). Initially they considered models B and C as “sloppy” because “the 

students did not try hard” while they thought that the models E and F were more 

thorough. Similar to the group E, their attempt to superimpose the models on the 

actual data distributions to see the match was a clear indication of their attention 

to the details of rises and falls in the data (criterion b in Table 3). Therefore, they 

rated the models B and C as “bad” and the models E and F as “good”. After 

seeing the simulation results of their model created in TinkerPlots several times, 

they thought that the results were as good as they expected and did not need to re-

evaluate the models. Similar to group E, this group seems to consider that a ‘good 

model’ needs to have a shape matching the ‘ups and downs’ in the actual 

distribution.   

Group C This group created a more holistic model and evaluated the models 

C, D, F and G in Fig. 3. The group rated the model F as “good”. Nadide reasoned 

“because they made the increases and decreases well” and Yaman added “they 

made them proportional, very similar to [the experimental results]”. They 

considered model G and their model (C) were “OK” using the shape criterion c 

(Table 3). Similarly, they rated model D as “bad” because according to Meltem 

“the zigzags are too high, they could be lower”. After running the group’s model 

created in TinkerPlots several times, the group members re-evaluated each model 

but their ratings did not change. According to this group a ‘good model’ seems to 

show the waviness of the actual distribution to some degree with a proportional 

curve height.  
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Group G The students evaluated the two models which were more holistic (B 

and C in Fig. 3) and their model (G). They rated the model C as “good”, the 

model G as “OK” and the model B as “bad”. The main criterion in their decision 

seemed to be the match between the start and end points of the model and the 

actual data (criterion d in Table 3). Furthermore, in model B the students were 

concerned about the curve starting at 0 for the orange frog because they thought 

that would not be possible. After seeing the simulated results in TinkerPlots, 

students switched their rating for the model C to “OK” and theirs (G) to “good” 

because they thought, “The jump distance of 100 could occur with 500 or 1000 

jumps”. However, they insisted that the jump distance of 0, as seen in model B, 

could not occur. This group seems to value where the curve starts and ends and 

thinks that a ‘good model’ needs to start and end at a ‘reasonable’ value in the 

data context. 

In summary, the students tended to pay more attention to the shape than the 

start and end points when evaluating the models. The inclination to match the ‘ups 

and downs’ in the actual distribution with a proportional curve height appeared to 

be strong in these evaluations.  

6. Discussion and conclusion 

In this article, we presented a possible learning trajectory for developing 6th grade 

students’ ideas about models and modelling as they engaged in reasoning about 

distributions during a data-modelling task. We focussed on the following research 

questions: (1) what was the nature of the student-generated models? and (2) how 

did they evaluate the models? 

6.1 Emergent modelling 

As we reflect on the findings of our study in relation to our two research 

questions, we turn to Gravemeijer’s (2002) emergent modelling view (as opposed 

to modelling as translation) in which we observe students’ ideas about models as a 

result of an organising activity during a data-modelling task.  

Initially students structured the empirical data collected as part of the problem 

situation to make a decision. Using their value-bar graphs and dot plot 

representations, they began to see patterns in the distributions (where the data 

were clustered and how they were spread out) and in turn they made a decision 
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about selecting one of the frog designs for the Olympics. Introduced to a new 

scenario in which they were required to predict the future distributions of jump 

distances of each frog design if more data were collected, students then proceeded 

to create a model based on empirical distributions through a sketching activity (as 

seen in Fig. 3). In Gravemeijer’s terms, we can describe these sketched 

distributions as a ‘model-of’ a set of measures (jump distances in the given 

problem context) since they tended to represent rather too literally the data 

themselves without expressing a sense of how random effects might be a model-

for variation and signal a model-for invariant features of the system. At this stage, 

students were primarily concerned with the ‘ups and down’ and the minimum and 

maximum values in the real data when constructing their models. 

Our findings suggest that there is an ongoing process in developing a ‘model-

for’ the notion of a statistical model incorporating a signal (explained variation) in 

the presence of noise (unexplained variation). We do see the beginning of the shift 

from ‘model of’ to ‘model for’ when we examine the change in how some 

students applied criteria for evaluating other students’ models. Thus, in the first 

instance, one group (B) argued that the other group (G) had a better model 

because it looked like the actual data, whereas they had a different criterion when 

judging their own model earlier – “it shows which jump distances were most 

common (between 10 and 65)”. Yet, after seeing the simulated data in TinkerPlots 

for both models, the same group decided their own model was in fact better. They 

appeared to have a sense of how further data (as the sample size increased) would 

not necessarily match the ‘ups and downs’ in the original small set of data 

whereas the overall trend would continue to match. In this example we see how 

the model this group of students constructed becomes part of their thinking about 

models in general as they evaluate the other group’s model. Their evaluation 

involves insights into properties of models, such as the unchanging aspects of the 

population or process (i.e. signal), when they expect a modal clump within the 

range of 65 and 100 in 500 flips. 

6.2 The role of data-modelling activity 

The data modelling activity presented in this article was designed on the premise 

of reasoning about distributions. As seen in previous studies (e.g. Cobb, 1999; 

Konold et al., 2015; Lehrer & Schauble, 2002; English & Watson, 2017), 
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focussing on the idea of distribution and reasoning about distributions to make 

inferences and predictions helped our students make sense of key statistical ideas 

and procedures (e.g. mean, range, variability, data representations etc.) that are 

usually treated in isolation and without context in school mathematics. 

Throughout the task students engaged in interpreting value-bar graphs and dot 

plots each of which was a representation of the distribution (Gravemeijer, 2002) 

while using the notions of centre, spread, consistency and variability to talk about 

the patterns in the data. Then through the sketching activity students eventually 

constructed models of empirical distributions to make predictions. While students 

in previous studies developed a ‘model for’ natural variability (Lehrer & 

Schauble, 2002) and a ‘model for’ the mean (English & Watson, 2017) through 

reasoning about distributions, our study particularly focussed on development of 

the key idea of ‘model’ itself through students evaluations of models that began to 

emerge from comparing the models and real distributions. 

However, we observed some challenges that students might find when 

working within the emergent modelling paradigm. When sketching a model of 

jump distances of pink and orange frogs to predict a future distribution, most 

groups were strongly influenced by the ups and downs from one cluster to another 

in the original combined data of jump distances. In this tendency of matching the 

generated distribution to the original distribution, several small ranges of jump 

lengths in the model look almost similar to the more naive focus on individual 

cases (Cobb, 1999; Hancock et al., 1992). Only two groups (B and C) seemed 

better able to look through the data and see a more general trend as seen in 

statistical models (Moore, 1990). These were the two groups that used modal 

clumps (Konold et al., 2015) when comparing their dot plots earlier in the task. 

Their models seemed to have a sense of ‘signal’ as describing a range of values 

repeated the most.  

Although the tendency to draw the curve higher where there is a pile of data 

and to go a bit higher/lower than the actual range of data in sketching models 

appeared to be a common intuition to acknowledge the likelihood and variability 

under uncertainty, one group (G) particularly was concerned about the 

‘reasonableness’ of a model starting from 0 rather than 5 or 10 like in the actual 

data during their evaluation. This finding suggests a tendency to evaluate whether 

the model is the realistic representation of the actual situation (Ainley & Pratt, 
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2017). In general, use of different criteria for judging what is a good model 

(Ainley & Pratt, 2017) was evident in groups’ evaluations of models. For 

instance, some groups seemed to compare the model with the original dot plot of 

data to match start and end points of the distributions. While most groups paid a 

lot of attention to the several ‘ups and downs’ in their model evaluations, they did 

not worry about the actual lengths of the jumps, except the match between the 

start points and endpoints.  

6.3 Implications 

This study extends previous research on modelling with young students as it 

examines the emergence of a ‘model-for’ the notion of model through data 

modelling, in which the students are required to compare and reason about 

distributions of their experimental data. The learning trajectory we described here 

provided the students with an opportunity to experience practices of data 

modelling in an engaging context. This data-modelling process also fostered 

making sense of key ideas, tools and procedures in statistics that are usually 

treated in isolation in school mathematics. Sketching models of distances jumped 

by origami frogs enabled students to make predictions beyond the data. 

Evaluating different models offered insights into different criteria that might be 

used by students for judging what good model is. It was through this process of 

emergent modelling that students began to develop a ‘model-for’ a notion of 

model in statistics. However, findings would have been enhanced by further 

exploration of this process with more support by the use of computational 

modelling (Ainley & Pratt, 2017). Although we attempted to use the simulation 

features of TinkerPlots in testing and evaluating models during the interviews, its 

use was limited in this study. The students could benefit more if they had an 

experience of building ‘data factories’(Konold et al., 2007) prior to this task and 

were then allowed to create their own models and test them in TinkerPlots. 

Moreover, the learning trajectory component of this study has the potential to 

suggest a learning environment that broadens data analysis activities in schools 

through modelling. 
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