
MNRAS 479, 454–477 (2018) doi:10.1093/mnras/sty1412
Advance Access publication 2018 May 30

Flat-Sky Pseudo-Cls analysis for weak gravitational lensing

Marika Asgari,1‹ Andy Taylor,1 Benjamin Joachimi2 and Thomas D. Kitching3

1SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
2Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
3Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK

Accepted 2018 May 29. Received 2018 May 29; in original form 2016 December 14

ABSTRACT
We investigate the use of estimators of weak lensing power spectra based on a flat-sky imple-
mentation of the ‘Pseudo-Cl’ (PCl) technique, where the masked shear field is transformed
without regard for masked regions of sky. This masking mixes power and ‘E’-convergence and
‘B’-modes. To study the accuracy of forward-modelling and full-sky power spectrum recov-
ery, we consider both large-area survey geometries and small-scale masking due to stars and
a checkerboard model for field-of-view gaps. The power spectrum for the large-area survey
geometry is sparsely sampled and highly oscillatory, which makes modelling problematic.
Instead, we derive an overall calibration for large-area mask bias using simulated fields. The
effects of small-area star masks can be accurately corrected for, while the checkerboard mask
has oscillatory and spiky behaviour that leads to per cent biases. Apodization of the masked
fields leads to increased biases and a loss of information. We find that we can construct an
unbiased forward model of the raw PCls, and recover the full-sky convergence power to within
a few per cent accuracy for both Gaussian and lognormal-distributed shear fields. Propagating
this through to cosmological parameters using a Fisher-Matrix formalism, we find that we
can make unbiased estimates of parameters for surveys up to 1200 deg2 with 30 galaxies per
arcmin2, beyond which the per cent biases become larger than the statistical accuracy. This
implies that a flat-sky PCl analysis is accurate for current surveys but a Euclid-like survey will
require higher accuracy.
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1 IN T RO D U C T I O N

Weak gravitational lensing, the distortion of distant galaxy images
by the intervening matter, provides us with a unique probe of the
mass distribution over a large range of scales in the Universe and so
is sensitive to the properties of the dark matter and dark energy (for a
comprehensive review of weak lensing, see Bartelmann & Schnei-
der 2001, and for a recent review of cosmic shear, see Kilbinger
2015). In addition, it is sensitive to temporal and spatial distortions
of space–time and hence can be used as a probe of gravity. One of
the primary concerns of cosmology is the comparison of dark mat-
ter, dark energy, and modified gravity models and the estimation of
their parameters. Cosmological model comparison and parameter
estimation are usually carried out by compressing the data into a
form that can be most easily compared with the models. If the data
are Gaussian distributed, all of the relevant information is contained
in the 2-point statistics of the data. However, non-linear evolution of
the density field generates higher order correlations, which makes
2-point statistics insufficient for capturing the entire information
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content of the field. Nevertheless, much of the information is still
retained by the 2-point statistics and a lot of effort in cosmology
has gone into optimally extracting this information.

The 2-point correlations of the weak lensing shear field can be
estimated directly from the shear signal on the sky or from the
harmonic modes from a transformation of the data. Many cosmic
shear studies have focused on the real-space shear 2-point corre-
lation functions (2PCFs), since this statistic is not biased by the
sampling of the shear field from the lensed source galaxy images,
for the scales that are available in the survey. However, points in
the 2PCFs are correlated in a way that does depend on the galaxy
sampling including the mask and survey geometry (see Kilbinger &
Schneider 2004). In addition, the 2PCFs mix linear and non-linear
scales of the shear field. These non-linear scales can be more dif-
ficult to model, in particular, due to the presence of baryons that
affect the evolution of structure. The cosmic shear field can also
be decomposed into a convergence (even-parity or E-mode) field
that is generated by the matter-density field and a divergence-free
(odd-parity or B-mode) field that is mainly generated by ellipticity
noise and systematics for current surveys. The 2PCFs mix these two
modes; however, a full separation can be achieved using Complete
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Orthogonal Sets of E/B-Integrals (COSEBIs) (Schneider, Eifler &
Krause 2010) that can also be used to restrict the range of scales
(see Kilbinger et al. 2013; Huff et al. 2014; Asgari et al. 2017, for
cosmic shear with COSEBIs).

In harmonic space, the 2-point observable is the shear power
spectrum that, by definition, must be positive semi-definite for auto-
spectra. The spherical harmonic modes on the celestial sphere are
uncorrelated due to rotational invariance and homogeneity; more-
over, the covariance of the linear shear power spectrum on the full-
sky is diagonal for Gaussian perturbations before masking effects.
However, for 2-point statistics, the scales with the most cosmo-
logical information are in the non-linear régime where the shear
powers are correlated. In order to model accurately these non-linear
regimes, we need simulations, which are accurate over a finite range
in Fourier space, and so a harmonic analysis is well matched to sim-
ulated modelling. The decomposition into E- and B-modes is also
straightforward in harmonic space on the full sky.

The main drawback of a harmonic analysis of cosmic shear is the
effect of the source galaxy sampling. As the shear field is sampled
by the background source galaxies, a shear map is defined by the
position of the source galaxies. However, for data analysis it is
more convenient to bin the shear data for a harmonic analysis and
define a shear mask on the pixelated field where no source galaxies
are detected. Stellar images may also contaminate nearby galaxy
images and so these galaxies must be excluded. On the sky, the
mask multiplies the shear field, and so in harmonic space it is
a convolution. The convolution will correlate different scales and
will bias the shear power and covariance unless it is accounted for.

This problem is well known in cosmic microwave background
(CMB) analysis, where a spherical harmonic analysis is standard.
One common, and fast, direct measurement of the CMB power
spectrum is carried out by the Pseudo-Cl (PCl) analysis (Hivon et al.
2002). This method can rapidly analyse masked data in spherical
harmonic space and has been used to analyse CMB temperature
(see Planck Collaboration XVI 2014, for a full-sky analysis of
the CMB temperature) and polarization data (see Brown, Castro
& Taylor 2005; Brown et al. 2009, and references therein, for a
full-sky analysis of simulated and QUaD (Q and U Extragalactic
Sub-mm Telescope at Degree Angular Scale Interferometer) survey
data). While most CMB analysis takes place on the full, curved sky
where the spherical harmonic decomposition is well-defined, some
studies have used a flat-sky analysis (see e.g. Memari 2009, for a
flat-sky analysis of the QUaD CMB data). The main advantage of a
flat-sky analysis is speed, especially if very small scales are being
analysed, as Fast Fourier Transforms (FFTs) can be used, but the
choice of modes is more poorly defined than a full-sky analysis,
depending on the size of the patch analysed.

Hikage et al. (2011) used a curved PCl method to analyse simu-
lated data for small masks as well as investigating flat-sky PCl esti-
mation using similar masks. Kitching et al. (2014) used spherical-
Bessel transforms of the shear field on flat sky to preform a 3D
cosmic shear analysis of CFHTLenS data. Kitching et al. (2012)
also used PCls as a tool to estimate the impact of shape measure-
ment biases for the GREAT10 Challenge. Flat-sky PCl analysis has
also been applied to data to estimate the cross-power spectrum of
CMB and galaxy lensing maps (see Hand et al. 2015; Harnois-
Déraps et al. 2016) and galaxy–galaxy lensing (see Hikage & Oguri
2016).

CMB data are also analysed using Maximum Likelihood estima-
tors (see Planck Collaboration XVI 2014, for example), which can
also be used on shear fields (see Seljak 1998; Hu & White 2001),
and first applied by Brown et al. (2003) for the COMBO-17 survey

and Köhlinger et al. (2016) for the CFHTLenS data. However, these
methods may be too slow for current and future surveys where the
number of pixels and the general resolution are high. Other methods
exist that estimate the power spectrum indirectly, using 2PCFs (see
e.g. Szapudi et al. 2001; Chon et al. 2004; Becker et al. 2015). Fi-
nally, an alternative approach that shares many of the advantages of
the PCl technique, but can more easily treat the masked regions, is
Bayesian hierarchical modelling (Alsing, Heavens & Jaffe 2016a;
Alsing et al. 2016b), although this method is substantially slower
than a PCl analysis.

In this paper, we study the effects of masking in the PCl approach
for weak lensing, for both small and large masks, using Gaussian
and lognormal simulated shear fields on a flat sky. We first go
through the formalism of PCls in Section 2, where we explain how
the mode mixing can be modelled via a mixing matrix. In Section 3,
the resulting pseudo power spectra and the recovered power spectra
are shown and compared with their expected values from theory.
Finally, in Section 4 we propagate the random and mask modelling
errors to the cosmological parameters using a Fisher analysis and
check for significant biases.

2 FORMALI SM

In this section, we review the basic formalism and go through some
of the more important steps taken to calculate the mixing matrix,
which models the effects of masking on the power spectra. The de-
tails of these calculations are given in Memari (2009). The following
formalism is written for a flat-sky approximation. The formalism
here has some differences from the one outlined in Hikage et al.
(2011), and we apply an additional angular averaging to simplify
the relations and speed up the calculations.

The convergence can be separated into two real parts κE and κB

in real space. Weak gravitational lensing can produce only κE up
to first order in the Newtonian gravitational potential. Hence, any
κB would come from other effects, including systematic errors and
intrinsic galaxy alignments. In Fourier space, we can write κ in
terms of the Fourier transforms of κE,B(ϑϑϑ),

κ̂±(���) = κ̂E(���) ± iκ̂B(���), (1)

with

κ̂E,B(���) =
∫

d2ϑ κE,B(ϑϑϑ)e−i���·ϑϑϑ , (2)

where a hat refers to a Fourier-space quantity. Note that, κ̂E,B(���) are
complex quantities. We can also write γ ± as

γ±(ϑϑϑ) = γ1(ϑϑϑ) ± iγ2(ϑϑϑ), (3)

where γ 1, 2 are the shear components in Cartesian coordinates. The
Fourier transform of γ ± is

γ̂±(���) = γ̂1(���) ± iγ̂2(���), (4)

where γ̂1,2(���) are the Fourier transforms of γ1,2(ϑϑϑ), respectively. To
find the relation between κ̂±(���) and γ̂±(���), we note that they are
both functions of the lensing potential, ψ±, via

γ+ = 1
2 ∂∂ψ+ , γ− = 1

2 ∂∗∂∗ψ− , κ± = 1
2 ∂2ψ±, (5)

where

ψ± = ψE(ϑϑϑ) ± iψB(ϑϑϑ) , ψ− = ψ∗
+, (6)

and

∂ ≡ ∂1 + i∂2 , ∂∗ ≡ ∂1 − i∂2 and ∂2 ≡ ∂∂∗, (7)
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where ∂1, 2 are partial derivatives with respect to θ1, θ2. Eliminat-
ing ψ in equation (5) results in relations between the shear and
convergence,

κ+ = ∂∗∂∗∂−2γ+ and κ− = ∂∂∂−2γ−, (8)

where the inverse Laplacian operator is

∂−2 ≡
∫

d2ϑϑϑ ′

2π
ln |ϑϑϑ − ϑϑϑ ′| . (9)

In Fourier space, the relation between κ and γ is more straight-
forward. Using the relation between the partial derivatives in real
space with their Fourier counterparts,

F (∂) = i�̂ , F (∂∗) = i�̂∗, (10)

where F refers to a Fourier transform and

�̂ = �x + i�y , �̂∗ = �x − i�y, (11)

we find

κ̂+(���) = �̂∗�̂∗|�̂|−2γ̂+(���) ,

κ̂−(���) = �̂�̂|�̂|−2γ̂−(���) . (12)

Simplifying the above equations by substituting for �̂ from

�̂ = �eiϕ� , with � = |�̂|, (13)

results in

κ̂±(���) = e∓2iϕ� γ̂±(���), (14)

where ϕ� is the polar angle of both � and �̂.

2.1 Masking effects on shear fields

In any realistic scenario, parts of the images are masked. Formally,
we need to know only the position of source galaxies. However,
analysing a gridded image is significantly faster, since FFTs can be
utilized in this case. A PCl analysis relies on such gridded fields,
where any region with no signal resulting from observers’ choices
or faulty and empty pixels produces the mask. We can choose to
apodize the masked shear field with a smoothing kernel, S, to avoid
sharp mask features, which make the Fourier transform of the mask
challenging. The masks used in this work consist of ones and zeros
exclusively. However, in practice the detector defect masks are usu-
ally smoother, due to dithering of the observed images. If the mask
provided by the observer is smooth enough, then it will mimic an
apodized binary mask.

A mask, W, has a multiplicative effect on the shear field,

γ̃±(ϑϑϑ) = W (ϑϑϑ)γ±(ϑϑϑ), (15)

where we assume that W (ϑϑϑ) = 0 corresponds to a fully masked
region. Any quantity with a tilde denotes a masked or pseudo quan-
tity from here on. There are two ways to apodize a mask, one is to
convolve the masked shear field, γ̃ (ϑϑϑ), with S,

γ̃ s
±(ϑϑϑ) =

∫
d2ϑϑϑ ′S(ϑϑϑ − ϑϑϑ ′)W (ϑϑϑ ′)γ±(ϑϑϑ ′) . (16)

The superscript s denotes a smoothed quantity. The other method
is to take the mask and smooth its edges with a kernel. Note that
when this apodization method is used, the mask will maintain its
original zeros while smoothly transitioning to the unmasked parts,
where W (ϑϑϑ) = 1. Therefore, using this method enlarges the mask.
The original mask is then replaced by the new apodized mask. We
use this method for apodizing the masks in this work.

In Fourier space, the shear field is first convolved with the mask
(we will drop the hat for Fourier counterparts from here on for
simplicity, e.g. γ̂ (���) → γ (���)),

γ̃±(���) =
∫

d2�′

(2π)2
W (��� − ���′)γ±(���′), (17)

and then multiplied by the smoothing kernel if the first apodization
method is used,

γ̃ s
±(���) = S(���)

∫
d2�′

(2π)2
W (��� − ���′)γ±(���′) . (18)

Substituting from equation (14) into the above equation, we can
find a relation for the masked κ ,

κ̃±(���) =
∫

d2�′

(2π)2
W (��� − ���′)κ±(���′)e∓2iϕ��′

and κ̃ s
±(���) = S(���)κ̃±(���), where ϕ��′ = ϕ� − ϕ�′ . (19)

By adding and subtracting the equations above, we can find a rela-
tion between the masked and unmasked κE, B,

κ̃E(���) =
∫

d2�′

(2π)2
W (��� − ���′)[κE(���′) cos 2ϕ��′ + κB(���′) sin 2ϕ��′ ],

κ̃ s
E(���) = S(���)κ̃E(���),

κ̃B(���) =
∫

d2�′

(2π)2
W (��� − ���′)[κB(���′) cos 2ϕ��′ − κE(���′) sin 2ϕ��′ ],

κ̃ s
B(���) = S(���)κ̃B(���), (20)

where κ̃ s
E,B(���) are the smoothed and masked E/B-mode κ . The above

relations show that the mask affects the convergence in Fourier space
by mixing some of the E-mode components into the B-modes and
vice versa. Consequently, in order to utilize Fourier space infor-
mation in cosmic shear analysis, the effects of the mask must be
modelled.

The masks considered in this work are categorized into two
groups: small- and large-scale masks. We also combine these masks
to make the composite mask. Fig. 1 shows the star and checkerboard
masks used throughout this work. These are plausible mask models
that resemble masks used for real data (see Erben et al. 2013, for
example). The left-hand panel shows the star mask that contains
randomly positioned circles with random areas picked from three
ranges; 2 per cent of the field is covered with stars from [0.1, 0.5],
5 per cent from [1, 25], and 3 per cent from [15, 100], square arcmin-
utes. The checkerboard mask, which represents a Charge-Coupled
Device (CCD) chip pattern or any other regular large-scale pattern,
contains three dark pixels to simulate chip boundaries. These masks
contain only ones and zeros. The masked regions are shown in black.
The masks are zero padded to twice their size in each direction to
minimize artefacts from the assumed periodic boundary conditions.
As can be seen in Fig. 1, the masks have sharp features that motivate
smoothing.

2.2 The mixing matrix

For a Gaussian isotropic random field, all the information is con-
tained in the C(�), which depends only on the absolute value of the
wave numbers. However, the mask in general is not isotropic, which
means that its power spectrum depends on the wave number angle,
φ�, as well. In order to apply the mask to a theory power spec-
trum, averages over its angular dependences are taken and a mixing
matrix is calculated. In practice, aside from the mixing matrix, the
effects of �-mode binning have to be included for a more accurate
and comprehensive analysis. The exact steps that need to be taken
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Figure 1. Star and checkerboard masks. The star mask contains randomly positioned circles with random areas picked from three ranges, 2 per cent from
[0.1,0.5], 5 per cent from [1,25], and 3 per cent from [15,100] square arcminutes. The checkerboard mask mimics a CCD gap pattern. Three pixels are masked
in the gaps. These two masks are also combined to simulate a more realistic scenario.

in such an analysis are explained in Section 2.4. For simplicity of
the formalism, here we ignore the binning effects.

The power spectrum is defined as〈|κX(���)κ∗
Y(���′)|〉 = (2π)2δD(��� − ���′)C(�)XY, (21)

where X and Y represent E or B, and the angle brackets denote an
ensemble average. Therefore, the expected average C(�) is〈
C(�)XY

〉 = 1

A

∫ 2π

0

dϕ�

2π

〈|κX(���)κ∗
Y(���)|〉 , (22)

where the integral is a simple angle averaging and over a finite area
the Dirac delta in equation (21) is replaced by

δD(0) ≈ A

(2π)2
, (23)

where A is the area of the field. The full δD function is recovered
when A → ∞. In practice, because of the existing masks on the
images, we can measure only a pseudo power spectrum, C̃(�). In
the absence of noise, C̃(�) is defined in the same way as C(�)
in equation (22) by replacing κ(���) with the masked convergence,
κ̃(���). However, the cosmological models provide us with the power
spectrum, C(�). We can find a relation between C(�) and C̃(�) by
inserting for κ̃(���) from equation (20) into the masked version of
equation (22). For example, the E-mode PCl, C̃EE(�), can be written
as,〈

C̃(�)EE
〉

= 1

A

∫
dϕ�

2π
|S(���)|2

×
∫

d2�′

(2π)2
W (��� − ���′)

∫
d2�′′

(2π)2
W ∗(��� − ���′′)

× 〈∣∣[κE(���′) cos 2ϕ��′ + κB(���′) sin 2ϕ��′ ]

× [κ∗
E(���′′) cos 2ϕ��′′ + κ∗

B(���′′) sin 2ϕ��′′ ]
∣∣〉, (24)

where S(���) can be ignored if the mask is not smoothed or the second
apodization scheme is used. The mask is not a variable between the
realizations (that is, assuming that there is no correlation between
the mask and the underlying shear field); therefore, we can take
W out of the ensemble averages. Moreover, choosing a symmetric
smoothing kernel allows us to take |S(���)|2 out of the integral over

ϕ�. Using equation (21), we link the C̃(�) to the C(�),〈
C̃EE(�)

〉
= |S(�)|2

A

∫
dϕ�

2π

∫
d2�′

(2π)2
|W (��� − ���′)|2

×{
CEE(�′) cos2 2ϕ��′

+ [CEB(�′) + CBE(�′)] sin 2ϕ��′ cos 2ϕ��′

+CBB(�′) sin2 2ϕ��′
}

. (25)

The above equation is written for the E-mode power spectrum al-
though it can be extended to the other cases, shown in Appendix A.
While C(�

′
)XY depend only on |���′|, W (��� − ���′) and the trigonometric

functions in equation (25) depend on the polar angles ϕ�′ and ϕ�.
Therefore, the angle averaging part of the integrals in equation (25)
can be taken independent of the cosmological model (see Memari
2009). The details of the calculations are given in Appendix A. The
masking effect is hence modelled in the form of a mode mixing
matrix, M,

M(�, �′) ≡ |S(�)|2
(2π)2A

∫ π

0
dη Wγγ

(
L(�, �′, η)

)
Mη(η), (26)

where η is the angle between ��� and ���′,

L(�, �′, η) ≡ |��� − ���′| =
√

�2 + �′2 − 2��′ cos(η), (27)

and Wγ γ (L) is the power spectrum of the mask,

Wγγ (L) ≡
∫ 2π

0

dϕL

2π
|W (L)|2, (28)

and

Mη(η) ≡
⎛⎝1 + cos 4η 1 − cos 4η 0

1 − cos 4η 1 + cos 4η 0
0 0 2 cos 4η

⎞⎠ . (29)

As a result, we can write

C̃(�) =
∫ ∞

0
d�′�′M(�, �′)C(�′), (30)

where

C ≡ (
CEE(�), CBB(�), CEB(�)

)t
. (31)
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In practice, we need to change all the integrals in the above equa-
tions into discrete finite sums. Therefore, we write equation (30) as
follows for discrete values of �,

C̃(�i) =
∑

j

��j �jM(�i, �j )C(�j ) . (32)

The �i values depend on the size of the real-space size of the field
and the binning used. We explain the details of the binning used
in this work in Section 2.4. For the above equation, however, we
use the smallest �-bin that is allowed to keep the discrete sum as
close as possible to its continuous form in equation (30). Note that
the integrals in equations (26) and (28) also need to be changed
into discrete sums. These approximations are the main reason for
the biases that we will see in the Results sections. Full-sky PCls
also suffer from biases, which are discussed in Elsner, Leistedt &
Peiris (2016), where they offer a proposal to resolve them. A full-
sky analysis, however, does not suffer from some of the limitations
faced by flat-sky analysis since the limits on the Fourier modes and
the binning are well defined.

We absorb ��i�i in equation (32) in M(�i, �j ) and define a new
mixing matrix,

M�i�j
= ��j�jM(�i, �j ), (33)

which satisfies this matrix relation,

C̃� = M��′C�′ , (34)

where, for simplicity, we have dropped the i and j subscripts and
replaced them with � and �

′
instead and Einstein summation rules

apply. The C̃� are the elements of a vector of C̃(�) for discrete values
of �. Consequently, we can write the inverse of equation (34) and
recover the power spectrum,

Crec
� = (M−1)��′ C̃�′ , (35)

provided we can invert M.
A prominent source of noise in weak lensing analysis is the

galaxy shape noise that we model as a Gaussian random noise with
zero mean and σ ε dispersion corresponding to the dispersion of
the complex galaxy ellipticity (see Hu 1999). The mask affects the
noise in the same way as the shear field. We can write the noise as
a separate source of power with no � dependence,

Nε = σ 2
ε

2ngal
, (36)

where ngal = 30 per square arcminutes is the mean number density
of galaxies and σ ε = 0.3 is the intrinsic dispersion of galaxy ellip-
ticities, similar to values expected from a Euclid-like future survey
(see Laureijs et al. 2011).1 As a result, the measured PCl is

C̃ = M[C + Nε], (37)

and the recovered Cl is

C rec = (M−1)C̃ − Nε. (38)

2.3 Mask smoothing: apodization

We use three Gaussian smoothing kernels to apodize the masks us-
ing the second method (smoothing the edges of W (ϑϑϑ) before apply-
ing it to the shear fields). Hence, in the equations where S appears,
it should be ignored. The advantage of this method is that it al-
lows slower variations for the integrands in equations (26) and (28),

1www.Euclid-ec.org

Table 1. Apodization case name and the number of pixels, N, used in
defining the kernel. The kernels used in this work are Gaussian functions
with σ = (N − 1)/1.5 with a range of support equal to N pixels. The first
row shows the name given to each case.

Ap1 Ap2 Ap3

N 5 pixels 11 pixels 23 pixels

which could make their discrete approximation more accurate. As
can be seen in equation (26) in the case of the first apodization
method, the smoothing kernel comes into play only after the angu-
lar averages in equations (26) and (28) have been taken.

Note that using this method increases the effective masked area,
since the fully masked regions will remain the same, while their
edges will have a smooth transition from zero to one, which is deter-
mined by the size of the kernel. In general, any smoothing function
can be chosen as the kernel. However, here we use Gaussian kernels.
They are identified using the number of pixels that determines their
size in real-space pixels, N, which is an odd number. We set all the
values outside a box centred at the maximum of the Gaussian with
N pixels on each side to zero and set the dispersion of the Gaussian
kernel to (N − 1)/1.5. The apodization is done around the edges of
the masks, such that the apodized mask starts from 0 on the edge of
the original mask and transitions to 1 over roughly N-1 pixels. An
odd N is chosen so that the kernel is symmetric around its origin.2

Here we use three sizes for the Gaussian kernels that are listed in
Table 1. The main results are shown and compared for the original
masks and these three apodization schemes.

2.4 Binning and pixelization effects: theory CL and PCL

In practice, the 2D Fourier fields (shear and mask) are pixelated;
hence, their angle averaged values are not exact and depend on
the method used. We will ignore the window function of the map
pixel shape, as it is important only for very high Fourier modes
that are not used in this work. To take the angular average over
such a field, we choose an annulus around the centre of the field,
identify all the pixels with centres lying inside the annulus, and take
their average value. The Fourier mode, �, which corresponds to this
estimated value, is also calculated by averaging over the value of
the |���| modes that lie in this annulus. Fig. 2 demonstrates the angle
averaging scheme. The edges of the annuli are shown as concentric
circles, and the pixels that correspond to an annulus are shown in
different colours. The second annulus, for example, has 8 pixels
with their centres lying inside it, which are painted orange. As we
go to larger annuli, the number of pixels increases, which in turn
increases the accuracy of the angle averaging.

To estimate Wγ γ from equation (28), we use annuli of width equal
to the smallest Fourier mode, ��min, available in the field

��min = 2π

D
, (39)

where D is the side length of the square field after zero padding. Then
the estimated Wγ γ values are fed into equation (26). Since Wγ γ is
estimated only for discrete values, the integral in equation (26) needs
to be transformed into a sum over these values of L. This integral

2The apodization is done by first zero-padding each mask with (N − 1)/2
pixels and then convolving it with a 2D convolution method (filter2 in
MATLAB).
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Figure 2. A visual presentation of the angle averaging scheme. For the
smallest binning scheme, each annulus is defined between two adjacent cir-
cles. An average is taken over the pixels with centres lying in the annuli,
painted in different colours. The � value that corresponds to the angle aver-
aged quantity is also the average of the |���| of the relevant pixels. The binning
is done by merging two or more of the smallest annuli with each other.

is taken over η, the angle between ��� and ���′, which is calculated for
each L, � and �

′
from

cos η = �2 + �′2 − L2

2��′ . (40)

The values of � and �
′

depend on the binning scheme used. Note
that in equation (26), the available η do not form a regular grid,
therefore, dη is not constant.

To find the PCls from theory, first M��′ is estimated for the small-
est binning that corresponds to the field after zero-padding, similar
to Wγ γ . Secondly, the input theory power spectrum, Cinput(�), is laid
on a grid with the same pixel size and area. Then it is angle averaged
to find Cave

� . Cinput(�) and Cave
� show the largest differences for the

smallest � modes as expected, since the number of pixels that lie
in the first few annuli for the angle averaging is not representative,
which biases the results (see Fig. 2). Finally, the theory value of
PCls is estimated by applying M��′ to the sum of Cave

� and Nε . The
C̃(�) can then be re-binned into broader bins as desired. These steps
can be summarized in

C̃
th

b = B{M(Cave + Nε)}, (41)

where C̃
th

b is the binned theory PCl and Cave is Cave
� in vector format,

M is the mixing matrix, and B is the binning matrix defined as
follows:

We define n� as the number of smallest bins of size ��min that
are combined to make the wider bins. If the total number of initial
�-bins is ntot, then there are nbin = 
ntot/n�� wider bins, where 
x�
denotes the largest integer that is smaller than x. B is then an nbin

× ntot matrix of this form

Bb� =

⎧⎪⎨⎪⎩ np(�)

(
bn�∑

(b−1)n�+1
np(�)

)−1

(b − 1)n� < � ≤ bn�

0 � > bn� or � ≤ (b − 1)n�,

(42)

where np(�) is the number of pixels in each initial �-bin (see Fig. 2).

The ellipticity noise contribution, B(MNε), can be subtracted
from the theory and measured values subsequently. We forward
model the C̃ th

� , so it is the closest to the estimated PCls.
We can use two methods to recover a C�, which result in very

different values. The first method is to apply the inverse of the
mixing matrix on the C̃est

� measured from the fields and then bin the
result into wider �-bins,

I : C rec
b = B(M−1C̃

est
) − Nε, (43)

where C rec
b is the binned recovered C(�) in vector format. This

recovered power spectrum can be compared with a binned Cave
� .

The advantage of this method is that it is less computationally
intensive as the mixing matrix is applied only once on the C̃est

� and
not on the different theory values.

The second method is to recover C(�) by applying the inverse of
a binned mixing matrix to a binned estimated C̃(�)

II : C rec
b = M−1

b C̃
est

b . (44)

We can write the predicted theory value for this recovered Crec
� as

C th
b = M−1

b C̃
th

b = M−1
b B{M(Cave + Nε)}, (45)

where the noise contribution M−1
b BMNε can be subtracted from

both recovered and theory values in equations (44) and (45). To
use the second method, we would need to apply the mixing matrix
on the Cave

� value to find C̃ th
� . Therefore, this method is at least

as computationally demanding as the forward modelling where the
theory PCls are compared to their measured values. Furthermore,
as the binned mixing matrix is more diagonal, the shape of the

recovered C� from this method is similar to C̃
th

b , instead of the
underlying power spectrum.

2.5 Mask power spectra and mixing matrices

In the past sections, we explained the methods we use to find the
power spectrum and mixing matrix of a mask, as well as our apodiza-
tion scheme. Here we show the mask power spectra, Wγ γ (�) for all
the mask and apodization combinations and show examples of mix-
ing matrices.

Fig. 3 shows the mask power spectra defined in equation (28).
Each row belongs to a mask configuration, while each column shows
the results for different apodization cases, which are indicated at the
right-hand side of the rows and the top of the columns. The fields
are zero-padded before the FFT is applied to them; therefore, even
the ’No Mask’ case has a large-scale square-shaped mask, which
one could call the survey footprint. The zero-padding allows for a
higher resolution estimate of Wγ γ , effectively interpolating between
the natural � values of the original pixelated field. We zero-pad the
masks to double their size on each side.

Wγ γ is presented for the smallest binning available, since it is
used in this format to find the mixing matrix (see equation 26).
We use the ’No Mask’ option as the control case. By comparing
the first row in the figure with the following rows, we see that the
largest scale feature, at small � values, is due to the zero-padding.
The Fourier transform of a perfect square mask is a double sinc
function. Therefore, the power spectrum of such a mask oscillates
heavily, which is what we see for the ’No Mask’ version. As we add
more structures to the mask, this oscillatory behaviour is suppressed,
which is what we see in Fig. 3. One of the main differences between
the current work and Hikage et al. (2011) is that in contrast to
this work, they assumed periodic boundary conditions and only
small-scale masks to study PCls. Unlike the star mask that has a
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Figure 3. Normalized power spectra of all the mask and apodization combinations for the smallest binning (��min ≈ 18/rad). The fields are all zero-padded;
hence, even the ’No Mask’ case has a square-shaped mask. The composite mask is one that combines the star and checkerboard patterns. ’No Ap’ means that
no apodization has been applied to the original mask, while ’Ap1’, ’Ap2’, and ’Ap3’ indicate masks that are apodized using Gaussian kernel with increasing
support, respectively (see Section 2.3). Note that the x-axis is linear while the y-axis is in logarithmic scale.

relatively featureless power spectrum, the checkerboard shows very
prominent peaks, due to its regular pattern. The star mask shows
relatively constant power over a large range of � � 2000, since it
consists of randomly positioned stars of different sizes. The star
mask is basically self-similar for this range of scales. The features
in the power spectrum of the checkerboard mask form a comb
corresponding to the harmonics of the regular pattern. Specifically,
� 1150 corresponds to the first harmonic of the checkerboard pattern.

By comparing different columns in Fig. 3, we see that the apodiza-
tion dampens the tail of the power spectra, the scale and strength
of which depend on the size of the kernel. As a result, we see that
’Ap3’, which is the largest kernel we use, has a more dramatic effect
on Wγ γ compared to the smaller kernels. Note that the apodization
here only smooths the edges of the masked regions while keeping
the zeros in the mask intact; hence, more apodization results in a
larger effective masked area. The smoothing is not as effective on
the checkerboard power spectra, which will have important conse-
quences for the estimation of the convergence power spectra, the
effects of which will become apparent in Section 4.3.

Fig. 4 shows the mixing matrix for the composite mask (star and
checkerboard). The left-hand panel shows the matrix for the original
ones and zeros mask, while the right-hand panel shows the same for
the mask apodized with Ap1. Since the EB–EB part of the mixing
matrix is independent of the EE and BB parts, it is not shown here
and will not be used in any of the analysis. The mixing matrices are
binned with n� = 20 to produce 25 approximately linearly spaced
bins with �� ≈ n� × ��min = 360/rad. The matrices are plotted in
terms of the logarithm of the absolute value of their elements. As can
be seen in this figure, a smooth mask has a more diagonal mixing

matrix and a smoother off-diagonal behaviour. The importance of
this property of the mixing matrix will become clear in the next
sections.

3 MEASURED POW ER SPECTRA

To test the mask modelling, we use two sets of simulations: random
realizations of Gaussian and lognormal shear fields. The input power
spectrum is identical for both cases and is based on a cold dark
matter Universe with a dominant dark energy component, with
cosmological parameters given in Table 2.

The linear power spectrum is determined assuming a primordial
power-law power spectrum with Eisenstein & Hu (1998) transfer
function. Additionally, the halo fit formula of Smith et al. (2003) is
used for calculating the non-linear scales. We use a single redshift
distribution of Van Waerbeke et al. (2006) type with 0.2 < z < 1.3,
a median redshift of 0.7, α = 2, and β = 1.5.

All the simulations are originally made for a larger field (20◦ ×
20◦, 2048 × 2048 pixels) and then a 10◦ × 10◦ field (1024 × 1024
pixels) is cut out of the middle to simulate the non-periodic nature
of the Universe. 100 random realizations are generated for each case
in the analysis. After adding a Gaussian random shape noise with
σ ε = 0.3 to the shear fields, they are masked and then zero-padded
before the Fourier transform. The zero-padding scheme used here
changes the size of the fields to their original size, which means,
doubling the size of the field on each side by adding zeros. The zero-
padding ensures that a periodic boundary condition is not assumed
for the field when the FFT is applied to it. Zero-padding the field
more than this results in a computationally more expensive analysis
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Figure 4. The logarithm of the absolute value of the mixing matrix for the composite mask (star and checkerboard). The left-hand panel shows the mixing
matrix for the original mask with no apodization, whereas the right-hand panel shows the same for an apodized mask with Ap1. 25 linear �-bins in [245,8830]
are considered here, which correspond to n� = 20.

Table 2. The fiducial cosmological parameters consistent with Planck 2013
results (Planck Collaboration XVI 2014). The normalization of the power
spectrum, σ 8, is the standard deviation of perturbations in a sphere of radius
8h−1Mpc today. �m, ��, and �b are the matter, dark energy, and baryonic
matter density parameters, respectively. w0 is the dark energy equation-of-
state parameter, which is equal to the ratio of dark energy pressure to its
density. The spectral index, ns, is the power of the initial power spectrum.
The dimensionless Hubble parameter, h, characterizes the rate of expansion
today.

σ 8 �m �� w0 ns h �b

0.8 0.27 0.73 −1.0 0.96 0.72 0.045

while the result remains similar. The FFT of a zero-padded field
has a higher resolution; hence, zero-padding is also a non-unique
form of interpolation between the Fourier modes. As a result, the
resolution of the Fourier-transformed fields is 18/rad.

As we have seen in Section 2.2, the mixing matrices calculated
from pixelated masks are not accurate. The inaccuracy in mask
modelling is more severe for small � that propagates to all scales
(see equation 26). As a result, to first order a constant multiplicative
bias needs to be corrected for. We measured this bias for different
masks by taking the average ratio of the measured C̃(�) to their
theory value. This bias mainly depends on the mask and is shown
in Fig. 5 as

BM =
〈

C̃est
�

C̃ th
�

〉
, (46)

where the angled brackets mean that the average of the ratio is
taken over the 100 simulations and � modes. We show BM for
star, checkerboard, and three types of composite masks: compos-
ite without apodization, with Ap1, and a composite with a larger
checkerboard pattern apodized with Ap1. In Fig. 1, we showed the
checkerboard mask we use in the main analysis. The larger checker-
board pattern is coarser with one large rectangle instead of every
four smaller rectangles shown in Fig. 1. The masks are varied so
that the masked area changes. For the star mask, this is done by
keeping the size range of the stars as the original but changing the
percentage of star masks in each range. The checkerboard mask is
varied by changing the number of dark pixels between the chips.

Figure 5. Constant multiplicative bias caused by inaccuracies in mask mod-
elling on large scales. The x-axis shows the mean value of the square of the
mask, which is a measure of the masked area and the scaling effect of the
mask. BM is shown for five types of masks. Star, checkerboard, and com-
posite masks are explained in Section 2.2 and the apodization in Section 2.3.
The blue circles show a modified composite mask that consists of a coarser
checkerboard pattern (one rectangle for every four in the original checker-
board mask). The solid lines simply connect the symbols to guide the eye.
The error bars show the variance of the mean between the 100 simulated
field and are smaller than the symbols for all cases.

For the composite masks, both masks are varied simultaneously.
The change in the masked area is captured by W 2, corresponding
to the mean value of the square of the mask before zero-padding.
For a binary mask, W 2 is equal to the fraction of the sky which is
unmasked. Assuming no mode-mixing and zero-padding, applying
a mask on the field results in the scaling of the power spectrum by
W 2. As can be seen in Fig. 5, the relation between BM and W 2 is
roughly linear; however, it is not universal and depends on the type
of mask used. Generally, for heavier masking BM decreases, this
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can be explained by looking at Fig. 3. The first peak in the plots cor-
responds to the effect of zero-padding. As we add more structures
to the mask, the relative significance of this peak decreases, since
more masking produces power on other scales. Fortunately, BM is
not very sensitive to the underlying power spectrum or the binning
scheme. For example, in Fig. 5 we see that the scatter between
the different realizations is very small, which shows that the value
of BM is mostly sensitive to the mask and not the exact value of
the underlying power spectrum. BM here is shown for the forward
modelling case. A similar constant bias needs to be corrected for
when Crec

� is estimated, which has a similar behaviour and value.
This constant bias is present only when large-scale masks are con-
sidered; therefore, Hikage et al. (2011), who considered only star
masks with no apodization, did not report it.

We tested several different methods to estimate the mixing ma-
trix and concluded that the only way to systematically tackle this
challenge is to find and correct for BM using simulations. Note
that while changing the integration scheme or the number of zero-
padded pixels, can reduce or eliminate BM for certain masks, it will
not be applicable to other masks. For example, for a spherically
symmetric mask, the best method to estimate the angular averages
is to take averages over all the pixels (in Fourier space) with the ex-
act same distance to the middle of the field in Fourier space. Using
this method results in a smaller number of points for each � mode,
which will in turn result in a very inaccurate mask modelling, for
asymmetric masks. In conclusion, the method used in this paper is
the most robust approach to mask modelling for a flat-sky analy-
sis. The results presented in this work have all been corrected with
BM. Nevertheless, we acknowledge that the need for this calibration
makes this flat-sky FFT method less desirable than an all-sky PCl
method, which does not appear to produce this effect.

Flat-sky PCl methods have been applied to data for CMB tem-
perature and polarization as well as cosmic infrared background
anisotropy (Planck Collaboration XVIII 2011). In those previous
analyses, a correction factor has been used to account for all the re-
maining data effects (see e.g. Ponthieu, Grain & Lagache 2011, for
POKER algorithm). This factor is estimated using simulations and
thus is in principle cosmology dependent. Applying this correction
factor to the analysis can hide any residual masking effects. In the
current work, we treat this correction separately to understand its
effects on flat-sky PCl estimators.

Fig. 6 shows the average estimated and theory PCls and Cls of
the lognormal fields for the composite mask, with n� = 20 (see
Section 2.4 for the details of the �-binning and the definition of n�).
The noise contribution is subtracted from the estimated (pseudo-
)power spectra. C(�)input and C(�)ave are shown in green dashes and
magenta solid curve, respectively. As discussed earlier, due to the
pixelized nature of the fields, the input power spectrum and its angle
averaged version are not identical and show differences mostly at
small Fourier modes, which is apparent in the figure as the small
� difference between the green dashes and magenta curves. The
recovered C� are shown as magenta squares. We use method I (see
equation 43), which results in the closest recovery to the true power
spectrum. Since the second recovery method (equation 44) does not
provide any advantages (as discussed in Section 2.4), we will not
use it in any of the following analyses. The PCls shown in black are
rescaled by a factor of 1/W 2, which enables us to see the mode-
mixing effects of the mask. Furthermore, the noise contribution is
subtracted from the PCls. The E-mode PCls are shown as a solid
curve and filled circles while the B-mode PCLs are shown as a
dotted curve and empty circles for theory and estimated values,
respectively. This figure shows that the composite mask has a large

Figure 6. The estimated power spectra from the lognormal simulations
and their expected values from theory for the composite mask with no
apodization. 20 of the smallest �-bins are merged to make these power
spectra (n� = 20, �� ≈ 360/rad). The curves show the expected theory
values and the symbols show the estimated values from the simulations.
The dashed green curve shows the input power spectrum from which the
simulations are constructed. The magenta solid curve shows the input power
spectrum after angle averaging. The magenta squares belong to the first
recovery method defined in equation (43). The solid black curve and filled
symbols show the theory and estimated E-mode PCls, while the dotted black
curve and empty symbols show the theory and estimated B-mode PCls. The
ellipticity noise contribution is subtracted from the results. The error bars
correspond to the field-to-field variations between the realizations of the
shear fields. Similar plots for other masks are shown in Appendix B.

effect on the PCls over a large range of Fourier modes. Additionally,
some of the power is moved to the B-modes. The theory and the
estimated values of PCls are fairly consistent for the E-modes, which
is not the case for the B-modes, since the B-modes have a smaller
signal they are more sensitive to inaccuracies in mask modelling
and hence will not be used for the parameter estimation in the next
section. Similar plots can be seen in Appendix B for the other masks.

Since the variance on the mean of 100 fields is very small, it is
difficult to compare the theory to estimated C̃(�) or C(�) values in
Fig. 6. Therefore, the relative power spectra are plotted in Fig. 7
for the composite mask. The grey areas show the cosmic variance
for the simulated fields. The cosmic variance for C(�) assuming a
Gaussian distribution is estimated using

σ 2
cosm, Cl = 2

2� + 1

1

fsky��
(C(�) + Nε)2, (47)

where fsky is the fraction of the sky that is not covered by masks. ��

is the �-bin width and Nε is the noise power. For the 100 simulated
fields of 100 square degrees each,

fsky � 0.24 fimage, (48)
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Figure 7. The ratio of estimated to theory power spectra for the composite
mask with n� = 20, �� ≈ 360/rad. The top plot shows this ratio for the ˜C(�)
and the bottom for C(�). The noise contribution is not subtracted from ˜C(�),
while it is subtracted from Crec

� , to recover the input power spectra. The
black points show the ratio for the E-mode power spectra, whereas the red
ones correspond to the B-modes. The recovered C(�) is estimated from the
first binning method, for which the theory value of B-modes is zero; hence,
this ratio is not shown here. The shaded area shows the expected cosmic
variance.

where fimage is the effective fraction of each image not covered by
the mask. To find the cosmic variance for C̃(�), we need to use
the mixing matrix on the 〈�C(�)2〉. Doing so results in some off-
diagonal terms that we are not interested in, for the purposes of this
section, since we show only the diagonal terms and their associated
error bars. The off-diagonal terms are incorporated in the analysis
in Section 4.3. The diagonal terms are

σ 2
cosm, PCl = 2

2� + 1

1

fsky��
(C̃(�) + Ñε)2, (49)

which is the cosmic variance term for the PCls, where C̃(�) is their
expected value from theory.

The top plot in Fig. 7 shows the ratio of the estimated PCl to its
theory value for E-modes and B-modes. Unlike in Fig. 6, the noise
contribution is not subtracted from the PCls, since for the forward
modelling Fisher analysis in the next section, the PCls used contain
noise. As can be seen in the plots, the low-� ratios diverge from
unity, which shows an imperfect mask modelling at these scales.
The E/B-modes show an almost anti-correlated behaviour on these
scales, which suggests that theory PCls do not account for all the
mode-mixing and E/B leakage. The bottom plot shows the ratio of
C(�)rec defined in equation (43) to its theory value, which is equal
to the angle averaged input power spectrum, C(�)ave. Again here we
see that the agreement between the theory and estimated values is
better at scales above � ∼ 2000. Similar figures for other masks are
provided in Appendix B

4 ER RO R P RO PAG AT I O N

The ultimate goal of a cosmic shear analysis is to constrain cosmo-
logical models and their parameters in a typical scenario. Here we
use a Fisher analysis to put upper limits on the constraining power
of PCls. We use both C̃(�) (forward modelling) and C(�) (back-
ward modelling) to compare the constraints and biases on model
parameters.

4.1 Fisher analysis: formalism

The main purpose of this study is to determine the accuracy of a
PCl analysis and its limitations. The ratio of the bias on a deduced
model parameter to the errors associated with it can give us an
indication of the accuracy of such analysis. Ideally, the estimators
are unbiased; however, as we have seen throughout this paper, there
are sources of bias in a PCls analysis, originating from inaccuracies
in mask modelling and binning effects.

Formally, the Fisher matrix is defined as the ensemble average
of second derivatives of the negative log-likelihood function at the
maximum likelihood point,

Fij ≡
〈

∂2L

∂φi ∂φj

〉
, (50)

where φi are the parameters to be inferred.
Assuming a Gaussian likelihood distribution, to calculate the

Fisher matrix we can use the following relation,

Fij = 〈L,ij 〉 = 1

2
Tr[C−1 C,i C−1 C,j + C−1 Mij ], (51)

where C is the data covariance, C,i is the derivative of C with
respect to φi, and Mij is a matrix composed of the derivatives of μ,
the expected value of the data vector,

Mij = μ,i μt
,j + μ,j μt

,i , (52)

where μt is the transpose of μ (for the details of the derivation of
equation 51, see Tegmark, Taylor & Heavens 1997, for example).
The second term in equation (51) is dominant for a survey with
relatively large area as the covariance matrix is scaled inversely by
the area (see Eifler, Schneider & Hartlap 2009; Asgari, Schneider
& Simon 2012, where the exclusion of the first term is shown to
have a negligible effect). Hence, we will use only the second term
to calculate our Fisher matrices.

The Fisher matrix can also be used to propagate the bias in the
measured observables to the estimated parameters. Taylor et al.
(2007) showed that for a Gaussian-distributed likelihood, the linear
bias for a parameter, φμ, given the bias in the observables, x, is

Bμ = (
F−1

)
μν

μi,ν

(
C−1

)
ij

(
μj − xj

)
, (53)

where μj is the expected value of xj and Einstein summation rules
apply (also see Knox, Scoccimarro & Dodelson 1998; Kim et al.
2004).

4.2 Weak lensing covariance

To find the value for the Fisher matrix and the bias from equa-
tions (51) and (53), we need to find the covariance of C(�) and
C̃(�). In this work, we use lognormal shear fields as default and
compare the final results with Gaussian shear fields. The covari-
ance of a Gaussian field has been calculated in the literature (see
Kaiser 1998; Joachimi, Schneider & Eifler 2008, for example). In
Appendix C, we show a general calculation for finding the moments
of a lognormal field, which is then used to find the covariance of
the shear power spectra.

A lognormal distribution provides a more realistic characteriza-
tion of the convergence field, κ(θ ) (see Hilbert, Hartlap & Schneider
2011, and references therein). Therefore, we can use the formalism
in Appendix C to estimate the covariance of such a field. The equa-
tions in Appendix C are derived for the moments of the density
contrast, which has a minimum of −1, unlike κ(θ ). Hence, we need
to incorporate this difference to find the covariance of a lognormal
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κ(θ ) field. We can write the lognormal convergence field in terms
of a Gaussian field,

κ(θ ) = en(θ ) − κ0, (54)

where n(θ ) is a Gaussian random field and κ0 is the absolute value of
the minimum convergence (see Hilbert et al. 2011). For this work,
the value assumed for κ0 is 0.012, which corresponds to the value
found by Hilbert et al. (2011) for the Millennium simulation with
source galaxy redshift of 0.76. Using this definition instead of the
one for δln in equation (C1) introduces extra constant coefficients
in equation (C11). The final result after applying these changes is
shown here.

The covariance matrix of the power spectrum of a lognormal con-
vergence field can be written in terms of the sum of the covariance
of a Gaussian field and a purely lognormal term,

Ctot(�, �′) ≡ Cln(�, �′) + CG(�, �′)

= 〈Ĉ(�)Ĉ(�′)〉 − C(�)C(�′), (55)

where C(�) is the expected value of Ĉ(�). CG(�, �′) is given in Kaiser
(1998) as

CG(�, �′) = 4π

A���
(C(�) + Nε)2δ��′ , (56)

where δ��′ is the Kronecker delta, which makes this covariance
diagonal. Nε is the noise power spectrum given in equation (36).
�� is the width of the �-bin and A is the area of the field. Note
that this a model covariance matrix that assumes a simple survey
geometry.

The purely lognormal term, Cln(�, �′), can be calculated using
the purely lognormal terms of the fourth-order lognormal moments.
We put k1 = �, k2 = −�, k3 = �

′
, and k4 = −�

′
in equation (C18);

following Hilbert et al. (2011), we ignore all terms but IV, which
we simplify to find the desired relation,

Cln(�, �′) � 1

A2κ2
0

∫
dϕ�

2π

∫
dϕ′

�

2π
〈κ̂(�)κ̂(−�)κ̂(�′)κ̂(−�′)〉IV

= 1

Aκ2
0

{
2[C2(�)C(�′) + C2(�′)C(�)]

+ [C(�) + C(�′)]2

×
∫

dϕ��′

2π
[C(|��� − ���′|) + C(|��� + ���′|)]},

(57)

where ϕ��′ = ϕ� − ϕ�′ is the angle between ��� and ���′.
To find the binned covariance matrix, we first calculate the co-

variance matrix for the smallest binning and then apply the binning
matrix to it,

Ctot
b = BCtotBt, (58)

where B is the binning matrix defined in Section 2.4. The covariance
matrix for a binned C̃(�) is then,

C̃
tot

b = BMCtotMtBt . (59)

The cosmic variance term in equation (47) is basically the same as
the diagonal terms in equation (56) with 2� + 1 ≈ 2�. The area in
equation (56) is the area of the field before zero-padding; hence,
here we ignored the masking effect. But in equation (47), we use
the effective area of the field. The reason behind this difference
is that we use the unmasked covariance on the right-hand side of
equation (59) to find the masked one, which accounts for the loss
of area. Note that the covariance in equation (56) is an analytic esti-
mate for a Gaussian field, which is simply connected and when all

Table 3. The area scaling due to mask. The values in the table correspond
to the ratio of the field area after to its area before masking (fsky/A).

No Ap Ap1 Ap2 Ap3

1.00 1.00 1.00 0.99 No Mask
0.90 0.90 0.90 0.89 Star
0.86 0.70 0.49 0.17 Checkerboard
0.78 0.63 0.43 0.15 Composite

relevant angles are smaller than the extent of the field (see Joachimi
et al. 2008). In the next section, we use the area before masking to
measure the covariance of the recovered Cl. This is not an accurate
representation of this covariance as we are assuming that all the lost
information due to masking is recovered. Scaling this covariance
with the effective area is not a fair representation either. However,
in Table 3, we provide effective area scaling factors that can be used
to rescale the covariance values in the following section.

Here we limit our theory and simulation comparison to power
spectra and leave a covariance matrix comparison to future work.
For our finest binning, we have 500 �-modes. To get an unbiased
estimate of the inverse covariance, at least 625 simulations are
needed according to Anderson (2003) or ∼4000 for a more accurate
estimate (better than 5 per cent, see Hartlap, Simon & Schneider
2007).

4.3 Fisher analysis: results

In this section, we investigate the significance of the possible biases
in the estimated cosmological parameter due to a PCl analysis and
compare that to the errors on the estimations. We calculate the bias
on the parameter estimation from equation (53) for each simulated
field by comparing the expected value of the power spectra to their
observed value. The mean and standard deviation of the bias are then
measured from 100 realizations of the shear field for each set of the
simulations. The error on the other hand is calculated analytically
using a Fisher analysis (see equation 51) and a theoretical covariance
matrix for the power spectra (see Section 4.2) for a single 100 deg2

field. The error can be scaled by 1/10 to obtain the error for a
10 000-deg2 field.

We limit our study to two free parameters, σ 8 and �m, to demon-
strate the validity of the PCl method for weak gravitational lensing.
The number of free parameters does not change the main results.

We use a fixed �-mode range [∼(18–9000)rad−1] but in reality
a redshift-dependent maximum �-mode should be used in order to
create a consistent k-mode selection. This relation is approximately
�max = kmaxr(z), where r(z) is the co-moving distance. We choose a
maximum �-mode of ∼9000 that corresponds to the largest angular
mode that would be probed at the largest co-moving distance for
a kmax � 1. Some surveys might truncate at smaller �, especially
due to uncertainty in non-linear modelling. In addition, the S/N of
a power spectrum estimator is relatively flat between � = 1000 and
� = 10 000 (see e.g. Sato & Nishimichi 2013). Nevertheless, here
we want to demonstrate the constraints from the full �-range, which
can be relevant for baryonic physics.

Recall that in forward modelling, we apply the mixing matrix
on the theory power spectra, while in the backward modelling, we
instead correct the masking effects by applying the inverse mixing
matrix to the observed PCls. We use only the E-mode power spectra
for this analysis.

Figs 8 –10 show the absolute value of the mean bias, |B̄|, the
1 σ error, and their ratio for σ 8, while �m is marginalized over,
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Figure 8. The average bias on the estimated parameter, σ 8, with respect to the bin size. n� is the number of original � bins that are combined to make the
wider bins. All the other cosmological parameters are fixed to their fiducial values in Table 2, aside from �m which is marginalized over. The red empty
circles denote the forward modelling scheme, where the PCls are the observables and the theory mixing matrix is applied to the theory power spectra, while
the black full squares show the values for the backward modelling, where the mask correction is applied to the data instead of the theory power spectra. Each
row belongs to a different mask and each column to a different apodization scheme (see Section 2.3). A Fisher analysis is used for estimating the bias on the
estimated parameter. The error bars show the error on the mean estimated from the field-to-field variance between the 100 simulated fields. The lognormal
simulations are used here.

respectively. The results for �m are not shown here as they closely
follow the ones for σ 8. Each row belongs to a different mask which
is named at the right-hand side of the row and each column to
a different apodization scheme named at the top of the column.
All three figures show the results for all mask and apodization
combinations. For the description and definition of the masks and
apodization cases, see Sections 2.2 and 2.3. The x-axis in these
plots, n�, is the number of the smallest bins that are combined to
make a wider bin; therefore, the width of the corresponding bin is
n� times larger than that of the smallest bin. The smallest bin width
is 18/rad. The red empty circles and dashed lines belong to forward
modelling, while the black full squares and solid lines show the
backward modelling values. In Fig. 10, blue stars show the case
where no mask correction, other than a constant area factor, has
been applied. This is shown for a comparison with the corrected
versions. The σ for the blue stars is the same as the backward
modelling case. Note that the σ in Fig. 9 is an analytic calculation
which is noise free; however, the bias calculation changes for each
field and hence there is a scatter between them which is captured
by the error bars in Figs 8 and 10.

By studying the three Figs 8 –10, we can see that for the cases with
no apodization, the best method to use is the backward modelling,
as the bias is consistently the lowest as well as the bias to error ratio.
Note that in Fig. 9, the black solid line remains constant over all the
panels as the backward modelling covariance has no information
about the mask (see equation 58 and the discussion that follows).
On the contrary, the covariance for forward modelling depends on
the mask.

The forward modelling bias decreases as n� and hence the bin
width increases in agreement with Asgari & Schneider (2015), who
showed that narrower band power spectra are generally more biased.
We apply a binning matrix (see equation 42) to our modelling to
minimize this effect. The binning works better for the backward
modelling as can be seen from the approximately flat behaviour of
the bias with respect to n� in Fig. 8.

A comparison of different masks in Fig. 8 shows that the large-
scale mask is generally more difficult to model and results in a
larger bias. This effect is more pronounced for the composite mask
where all the scales are affected. Note that in all cases in this work,
zero padding is present, which affects the small �-modes and prop-
agates through to all modes in the mixing matrix estimation, and
this was corrected for earlier by a multiplicative factor which also
depends on the other properties of the mask (see Fig. 5). Apodizing
the mask increases the area covered by the mask, which in turn
results in a more biased estimate for σ 8. In Fig. 8, we see that
the apodization affects the backward modelling more than the for-
ward case, especially when the checkerboard mask is present. Ap3,
which has the largest kernel out of the three smoothing schemes,
has a drastic effect on both modelling schemes for the smallest
�-bins, but the PCl values recover after binning. Furthermore, in
Fig.10 we see that the ratio of bias to error is hardly affected for
forward modelling and seems to improve in contrast to backward
modelling. This can be explained by looking at Fig. 9 where we
see that the 1 σ error on σ 8 is adjusted in the forward modelling
case by the mixing matrix that allows for a lower bias to error
ratio.
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Figure 9. The 1σ error on the estimated parameter, σ 8, with respect to the bin size. n� is the number of original �-bins that are combined to make the wider
bins. All the other cosmological parameters are fixed to their fiducial values in Table 2, aside from �m which is marginalized over. The red dashed line belongs
the forward modelling scheme, where the PCls are the observables and the theory mixing matrix is applied to the theory power spectra, while the black solid
line shows the values for the backward modelling, where the mask correction is applied to the data instead of the theory power spectra. Each row belongs to
a different mask and each column to a different apodization scheme (see Section 2.3). Note that the black solid line remains constant between the different
panels, since it is unaffected by the mask. A Fisher analysis is used for estimating the error on the estimated parameter.

The general conclusion from inspecting Figs 8 –10 is that if the
data are masked in a binary manner (ones and zeros mask), which is
the ’no Ap’ case, a backward modelling where the recovered C(�)
are measured provides a better method, while for a non-binary mask
or other effects that can mimic such masks, the forward modelling
provides a better choice. For example, the inverse variance weight on
shape measurements that has a multiplicative effect on the measured
ellipticities can be interpreted as an apodized mask (see Miller et al.
2013, for the definition of the inverse variance weights). If the
combination of these weights and the already present masks form
a uniform structure in the images, they will resemble the apodized
checkerboard mask and hence we expect them to behave similarly.

Fig. 11 summarizes the main conclusions in this section. It shows
the Fisher constrains and the linear bias in the �m–σ 8 plane. The
ellipses show the 95 per cent confidence regions and they are shifted

from the fiducial position according to their bias value. The fiducial
position of the parameters is shown as a red x. The results are shown
for the composite mask with no apodization and ’Ap2’ for backward
(recovering C�) and forward modelling (applying the mixing matrix
to the theory). The non-apodized cases are shaded, the dashed black
one shows the backward modelling case, while the solid green one
belongs to forward modelling. The ellipse sizes do not change for
backward modelling as we saw in Fig. 9. The empty ellipses belong
to the apodized case with ’Ap2’ (see Table 1), where the dotted blue
refers to forward and the dashed red to backward modelling. The
results are shown for the binning case with n� = 14, ��≈ 252. Aside
from the backward modelling for the apodized mask, all the biases
are within the 95 per cent contours. The apodization changes the
size of the forward modelling ellipse, since apodizing the composite
mask results in significant loss of area that is captured by the mixing
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Figure 10. The ratio of the average bias to the 1σ error on the estimated parameter, σ 8, with respect to the bin size. n� is the number of original �-bins that
are combined to make the wider bins. All the other cosmological parameters are fixed to their fiducial values in Table 2, aside from �m which is marginalized
over. The red empty circles belong the forward modelling scheme, where the PCls are the observables and the theory mixing matrix is applied to the theory
power spectra, while the black solid line shows the values for the backward modelling, where the mask correction is applied to the data instead of the theory
power spectra. The blue stars show the ratio for the case where no mask correction is applied to either the theory or the observed power spectra aside from
a multiplicative area correction factor. The blue symbols show the level of importance of the mask correction for different masks. Each row belongs to a
different mask and each column to a different apodization scheme (see Section 2.3). A Fisher analysis is used for estimating the bias and error on the estimated
parameter. The error bars show the error on the mean estimated from the field-to-field variance between the 100 simulated fields. The Gaussian simulations are
used here.

matrix (see equation 59). However, the analytical covariance for the
backward modelling in equation (58) assumes a simplistic survey
geometry and hence is not exact, especially for a heavily masked
region. Consequently, the backward modelling shows large bias to
error ratios for an apodized mask with regular feature, such as the
checkerboard case (see Fig. 1).

5 C O N C L U S I O N

PCl analysis is a method that models the effects of masks on the
Fourier transform of a field. It provides a crude but fast, FFT-based
direct measurement of the power spectrum in the presence of masks
but may require calibration to simulated data. In this paper, we have
applied the flat-sky PCl approximation on simulated shear fields
to investigate the accuracy and potential biases in this method for
weak gravitational lensing analysis. This is particularly interesting
for both current surveys, where the flat-sky approximation is used,
and for future large-scale surveys such as Euclid3 and LSST4 where
rapid methods may be useful. However, we note that, given the
substantial need for calibration, running a flat-sky analysis on data
that covers large parts of the sky is not advantageous as the gain in
computational speed would at best be minimal. It remains poten-
tially competitive on small survey patches, e.g. early Euclid data.

3http://sci.esa.int/euclid/
4http://www.lsst.org/lsst/

Although flat-sky PCl has been used for CMB analysis, it has never
been tested to the extent that is done here. Here we show, for the
first time, the effects of incomplete mask modelling in a flat-sky
implementation of the PCl method on the estimated cosmological
parameters.

Masking introduces mixing of Fourier modes in the shear field,
and when the masked field is decomposed into E-convergence and
B-curl modes, there is mixing between the E/B-modes. In order
to forward-model this effect, or recover the all-sky power from a
masked field by deconvolution, the mask mixing matrix has to be
modelled to a high accuracy. We have shown the need to carefully
model the mask mixing matrix, taking into consideration the nu-
merical estimation of integrals on a pixelized field. To investigate
the effects of masking, we applied large-area masks, correspond-
ing to the limits of a survey, and small-area sub-masks that would
model the presence of star masks in a field, and a checkerboard
pattern to model the effects of field-of-view boundaries for a mo-
saicked survey observing strategy. In a previous study, Hikage et al.
(2011) performed an analysis of simulated shear fields with full
and flat-sky PCls. However, they considered only small-scale star
masks, with periodic boundary conditions, and did not propagate
the errors to the measured parameters. Hence, the analysis pro-
vided here complements and goes beyond Hikage et al. (2011).
To maintain realism and avoid periodic boundary conditions, all
the fields used in this work were cut out of larger fields for both
sets of Gaussian and lognormal simulated fields. As a result, when
analysing the fields we first zero-padded them to their original size.
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Figure 11. The 95 per cent Fisher contours for four different cases. The fiducial values of σ 8 and �m are marked by a red cross. The ellipses are shifted
according to the mean bias over 100 lognormal shear field realizations. The composite mask is considered here, with and without apodization. The empty
contours refer to the two apodized cases using Ap2 (see Table 1), while the filled ones belong to the non-apodized masks. The filled dashed (grey) and the
empty dashed (red) contours belong to backward modelling, where the power spectrum is recovered, whereas the green filled solid and the blue dashed contours
show the results for forward modelling. The power spectra are binned with n� = 14, which corresponds to an approximately linear binning with �� ≈ 252.
The size of these contours corresponds to a survey of 100 deg2 and ngal = 30/arcmin2.

Consequently, a large-scale mask was present for all masks in this
analysis.

We find that for a flat-sky implementation of the PCl weak lensing
power spectrum analysis an overall, constant calibration correction
for large-scale masks is required due to the sparsely sampled low-
l modes, and rapid oscillations of all modes of the mask power
spectrum (see Fig. 3). We have shown that this calibration bias is
insensitive to the input power spectrum. For small-area star masks,
the forward modelling and all-sky recovery both work well, result-
ing in slight biases in the lensing power spectra at a few per cent for
l < 2000. There is also a slight improvement with modest apodiza-
tion of the mask. For the checkerboard mask, again there is good
modelling and all-sky recovery on all scales above l = 2000, but
the large-angle bias is slightly worse, again a few per cent, which
apodization makes worse. While apodization suppresses small-scale
mask power, it does not help with the large-scale power and rapidly
oscillating power which lead to biases. Indeed, apodization intro-
duces significant biases into the full-sky retrieval, while notably
increasing both bias and errors in forward modelling due to the loss
of effective sky area.

While investigating the recovered all-sky power spectrum, we
found that the choice of binning of the mixing matrix made a sig-
nificant difference. If we bin the angular wavenumber in wider bins,
the mask mixing matrix becomes more diagonal which results in an
overall scaling of the masked power spectra. This arises due to the
loss of the fine structure in the mask power spectrum by l-binning.
However, if we evaluate the mixing matrix per-�, deconvolve, and
then re-bin, we preserve the fine tructure of the mask power, and
the recovery of the all-sky lensing power is as a result less biased
compared to the alternative case. In short, the binning of the mix-
ing matrix should be preferably as fine as possible but the power

spectrum needs to be re-binned for a better cosmological parameter
estimation.

Overall, following the large-area bias correction, we find that
the weak lensing convergence power spectrum can be both for-
ward modelled and the full-sky convergence power reconstructed
on scales greater than l = 2000 for smaller scale masking composed
of both stars and a checkerboard (field-of-view) pattern. On scales
less than l = 2000, we see a slight residual excess of a few per cent.

Propagating our lensing power spectra into the error and bias on
the cosmological parameters, σ 8 and �m, using the Fisher matrix
formalism for both Gaussian and lognormal fields, we find an unbi-
ased measurement compared to the expected errors for a simulated
survey of 100 deg2. To estimate the Fisher matrix, the covariance
matrix of the shear power is needed, and so in Appendix C we pro-
vide a novel algorithm for calculating the moments of a lognormal
field that we used to estimate the covariance of the power spectra
for the simulated lognormal shear fields.

From our analysis, we typically find a bias of around 1 per cent
on parameters, while the error for 100 deg2 is 3 per cent (with
galaxy mean number density of 30/arcmin2). Our results imply that
this approach will remain unbiased for surveys up to 1200 deg2.
However, further study will be needed to improve this for larger
surveys where the curvature of the sky will begin to be important.

In summary, we find that we can apply a flat-sky PCl analysis
for a masked finite survey with stellar and checkerboard masks and
that unbiased forward modelling and all-sky recovered convergence
power can be recovered on angular scales above l = 2000, with a
few per cent residual bias at lower wavenumbers. The flat-sky PCl
method requires calibration to simulations to correct for an overall
constant bias due to the survey geometry but requires no other
calibration. Both forward-modelled and all-sky-recovered power
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propagate into a small, percentage bias in measured cosmological
parameter, which remain below the statistical accuracy for surveys
of less than 1200 deg2. Given similar results for forward modelling
and all-sky recovery, there may be a slight preference for an all-sky
recovery, since the forward modelling requires a convolution of the
theory power spectrum at each point in parameter space.

Finally, we conclude that a flay-sky PCl method is suitable for the
current generation of Weak Lensing surveys but would be unsuited
to surveys with high galaxy number density that are larger than
1200 deg2, such as 15 000deg2 Euclid. The main bias seems to come
from the large-area treatment of the survey geometry, where curved-
sky effects will also become important. This could be alleviated with
an all-sky spherical harmonic treatment. Given this can be slower,
as FFT methods can be used only in the azimuthal directions, it may
be that a hybrid method using flat-sky PCls on small scales could
be optimal.
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Harnois-Déraps J. et al., 2016, MNRAS, 460, 434
Hartlap J., Simon P., Schneider P., 2007, A&A, 464, 399
Hikage C., Oguri M., 2016, MNRAS, 462, 1359
Hikage C., Takada M., Hamana T., Spergel D., 2011, MNRAS, 412, 65
Hilbert S., Hartlap J., Schneider P., 2011, A&A, 536, A85
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APP ENDIX A : M IXING MATRIX

In Section 2.2, we skipped some of the steps in calculating the mixing matrix. Here we show the details of the formalism (based on
Memari 2009). The pseudo power spectrum can be written for EE, EB, and BB correlations of the kappa map. In Section 2.2, we started
from equation (21), which shows the estimator used for the power spectrum, given the convergence on a finite patch of sky, and derived
equation (24) that connects PCls to the underlying convergence maps. Then we applied the ensemble averages to κE, B and used equation (21)
to find a relation between the PCls and Cls. Here we write equation (25) for all combinations of the convergence maps,〈

C̃EE(�)
〉

= 1

A

∫
dϕ�

2π

∫
d2�′

(2π)2
|W (��� − ���′)|2{CEE(�′) cos2 2ϕ��′ + [CEB(�′) + CBE(�′)] sin 2ϕ��′ cos 2ϕ��′ + CBB(�′) sin2 2ϕ��′

}
,〈

C̃EB(�)
〉

= 1

A

∫
dϕ�

2π

∫
d2�′

(2π)2
|W (��� − ���′)|2{CEB(�′) cos2 2ϕ��′ + [CBB(�′) − CEE(�′)] sin 2ϕ��′ cos 2ϕ��′ − CBE(�′) sin2 2ϕ��′

}
,〈

C̃BB(�)
〉

= 1

A

∫
dϕ�

2π

∫
d2�′

(2π)2
|W (��� − ���′)|2{CBB(�′) cos2 2ϕ��′ − [CBE(�′) + CEB(�′)] sin 2ϕ��′ cos 2ϕ��′ + CEE(�′) sin2 2ϕ��′

}
, (A1)

where ϕ��′ = ϕ� − ϕ�′ . Note that we have dropped S(�) here as it is not used in the current work. Since C(�) do not have angular dependencies
unlike W (��� − ���′) and the trigonometric functions, we can take the integrals over ϕ and ϕ

′
separately. To do so, we first write,

|W (��� − ���′)|2 = 2π
∫ ∞

0
dLL

∫ 2π

0

dϕL

2π
|W (L)|2δD

(
L − (��� − ���′)

)
, (A2)

where δD is the Dirac delta function, which we exchange with its integral form,

δD

(
L − (��� − ���′)

) =
∫

d2θ

(2π)2
e−iθθθ.(L−(���−���′)) , (A3)

and define

Wγγ (L) ≡
∫ 2π

0

dϕL

2π
|W (L)|2 . (A4)

Substituting for |W (��� − ���′)|2 in equation (A1) leads to〈
C̃EE(�)

〉
= 1

A

∫ ∞

0

d�′�′

(2π)2

∫ |�+�′ |

|�−�′ |
dLLWγγ (L)

(∫
d2θe−iθθθ.L

)
×

∫ 2π

0

dϕ�

2π

∫ 2π

0

dϕ�′

2π
eiθθθ.���e−iθθθ.���′{

CEE(�′) cos2 2ϕ��′ + [CEB(�′) + CBE(�′)] sin 2ϕ��′ cos 2ϕ��′ + CBB(�′) sin2 2ϕ��′
}

,

〈
C̃EB(�)

〉
= 1

A

∫ ∞

0

d�′�′

(2π)2

∫ |�+�′ |

|�−�′ |
dLLWγγ (L)

(∫
d2θe−iθθθ.L

)
×

∫ 2π

0

dϕ�

2π

∫ 2π

0

dϕ�′

2π
eiθθθ.���e−iθθθ.���′{

CEB(�′) cos2 2ϕ��′ + [CBB(�′) − CEE(�′)] sin 2ϕ��′ cos 2ϕ��′ − CBE(�′) sin2 2ϕ��′
}

,

〈
C̃BB(�)

〉
= 1

A

∫ ∞

0

d�′�′

(2π)2

∫ |�+�′ |

|�−�′ |
dLLWγγ (L)

(∫
d2θe−iθθθ.L

)
×

∫ 2π

0

dϕ�

2π

∫ 2π

0

dϕ�′

2π
eiθθθ.���e−iθθθ.���′{

CBB(�′) cos2 2ϕ��′ − [CBE(�′) + CEB(�′)] sin 2ϕ��′ cos 2ϕ��′ + CEE(�′) sin2 2ϕ��′
}

. (A5)

The angular dependence of the integral in parentheses can be taken separately to yield∫
d2θe−iθθθ.L = 2π

∫ ∞

0
dθθJ0(Lθ ) , (A6)

where J0 is the zeroth-order Bessel function of the first kind. We can now take the integrals over ϕ� and ϕ′
�, using the following relations,

Jn(x) = 1

2πin

∫ 2π

0
dϕ eix cos ϕein cos ϕ , J−n(x) = (−1)nJn(x) , (A7)

and

cos ϕ = eiϕ + e−iϕ

2
, sin ϕ = eiϕ − e−iϕ

2i
, (A8)

which result in these equations,∫ 2π
0

dϕ�

2π

∫ 2π
0

dϕ�′
2π eiθ� cos ϕ� e−iθ�′ cos ϕ�′ cos2 2ϕ��′ = 1

2

[
J0(�θ )J0(�′θ ) + J4(�θ )J4(�′θ )

]
, (A9)

∫ 2π
0

dϕ�

2π

∫ 2π
0

dϕ�′
2π eiθ� cos ϕ� e−iθ�′ cos ϕ�′ sin2 2ϕ��′ = 1

2

[
J0(�θ )J0(�′θ ) − J4(�θ )J4(�′θ )

]
, (A10)

∫ 2π
0

dϕ�

2π

∫ 2π
0

dϕ�′
2π eiθ� cos ϕ� e−iθ�′ cos ϕ�′ cos 2ϕ��′ sin 2ϕ��′ = 0 , (A11)
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where J4 is the fourth-order Bessel function of the first kind. After these simplifications, we are left with combinations of three Bessel
functions that are the only functions that depend on θ . We then find analytic solutions for the integrals over θ using,∫ ∞

0
dθ θJ0(Lθ )Jn(�θ )Jn(�′θ ) = cos nη

π��′ sin η
, (A12)

where η is the angle between � and �
′
(see Gradshteyn & Ryzhik 1994). Note that by definition L = ��� − ���′ (see equation A2), which means

that they form a triangle of area 1
2 ��′ sin η. Substituting for the θ , ϕ�, and ϕ�′ integrals in equation (A5), we find〈

C̃EE(�)
〉

= 1

A

∫ ∞

0

d�′�′

(2π)2

∫ π

0
dη Wγγ (L)

{
(1 + cos 4η)CEE(�′) + (1 − cos 4η)CBB(�′)

}
,〈

C̃EB(�)
〉

= 1

A

∫ ∞

0

d�′�′

(2π)2

∫ π

0
dη Wγγ (L)(2 cos 4η)CEB(�′) ,〈

C̃BB(�)
〉

= 1

A

∫ ∞

0

d�′�′

(2π)2

∫ π

0
dη Wγγ (L)

{
(1 − cos 4η)CEE(�′) + (1 + cos 4η)CBB(�′)

}
,

(A13)

where we used L2 = �2 + �
′ 2 − 2��

′
cos η to replace dLL/(��

′
sin η) with dη. Equation (A13) shows that the EB power spectrum does not mix

with EE and BB. Consequently, we ignored this term in Section 2.2. Note that the above calculations are accurate for an idealistic case where
all the angles are available. The mixing matrix is then formed directly from the above equations.

APPENDIX B: POW ER SPECTRUM PLOTS

The C(�) and C̃(�) plots for the composite mask were shown in Fig. 6. Similar plots for all the masks are shown in this appendix, including
a control case without a mask. All the cases are zero-padded before the measurements, even the control case. In addition, we show plots of
estimated to theory ratios for both the recovered C(�) and C̃(�) for all the masks. These plots were shown for the composite mask in Fig. 7.

In total, we have four mask types: ’No Mask’, ’Star’, ’Checkerboard’, and ’Composite’, as well as four types of apodization: ’ No Ap’,
’Ap1’, ’Ap2’, and ’Ap3’. ’No Ap’ means no apodization was applied and the rest of the apodization options are explained in Section 2.3. The
masks are discussed in Section 2.2.

Fig. B1 shows the estimated and theory values of C(�) and C̃(�) for all the mask configurations with a wide binning (n� = 20, �� ≈
360). In Fig. B1, the magenta curves and squares show the theory and recovered C(�), while the black curves and circles show the theory
and estimated C̃(�) (explained in more detail in the caption). The control case with no masks shows very little difference between the C(�)
and the C̃(�) for most scales. The largest difference is at very large and very small scales. At very large scales, the difference is due to the
zero-padding, which effectively acts as a large-scale mask. The small-scale differences appear at the scales where noise is dominant (� �
5000). Additionally, we see more fluctuations at these scales for C̃(�)est and C(�)rec as expected. The apodization has very little effect on the
no mask case.

The second row of Fig. B1 shows the results for the star mask, i.e. small circular masks. Looking at the left most plot in this row, the ’No
Ap’ case, we see that the overall effect of the star mask is to lower the amplitude of the small-to-mid-range E-mode C̃(�) by shifting the
power to B-modes. Apodization moves the �-modes at which the leakage takes place, which is directly related to the size of the smoothing
kernel (a larger kernel stops leakage for a larger range of �). As a result, the Star and Ap3 plot resembles the control plots.

The third row of Fig. B1 shows the results for the checkerboard mask, i.e. large CCD patterns. Similar to the star mask, the overall effect
is a leakage of E-modes into B-modes that decreases the amplitude of the E-mode C̃(�). However, the regular patterns in this mask produce
structures in the C̃(�). Apodization makes the resulting C̃(�) smoother at large � and pushes the structures to smaller �-modes. The mask
modelling fails to capture the structures accurately in the presence of apodization, as can be seen in the plots.

Finally, the last row of Fig. B1 shows the results for the composite mask. As both components of this mask reduce the amplitude of the
E-modes by moving the power to B-modes, the effect is more pronounced for the composite. The structures of the checkerboard mask can
also be seen here. The B-mode modelling is poor at certain scales for this mask. These scales are pushed to lower �-modes with apodization.

In order to objectively investigate the mask modelling and its limitations, we need to look at ratio plots rather than Fig. B1, since the
error bars are very small which makes any judgement from Fig. B1 difficult. Hence, Fig. B2 shows the ratio of the estimated C̃(�) to its
theory value for all the mask and apodization configurations. The y-range here is different from that in Fig. 7 for better inspection. The noise
contribution is not subtracted from C̃(�). The plots are shown for the lognormal fields and the largest binning (� � 5000). The red circles
show the ratio of the B-modes and the black squares the E-modes. The grey shaded area shows the expected cosmic variance contribution
for each case (see equation 49). The control case with no masking shows discrepancies at small � between the estimated and the theory C̃(�)
specially for the B-modes. However, the rest is within the cosmic variance band. The star mask cases also show a similar behaviour, whereas
the checkerboard mask pushes the small � discrepancies to larger values. The apodized checkerboard mask covers a much larger area of the
field compared to the non-apodized version, specially for Ap3. Consequently, the cosmic variance increases rapidly for this mask with larger
smoothing kernels. The discrepancies seen for the star and checkerboard masks add up for the composite mask.

Fig. B3 shows the ratio of the C(�)rec in equation (43) (method I) to the input C(�)ave. The noise contribution has been subtracted from
the recovered C(�). The grey shaded area shows the cosmic variance centred at 1. The No Mask row used as the control case shows a good
agreement between the theory and recovered values. The Star cases show a similar behaviour except for a slightly overestimated recovery of
the lowest �-mode. The checkerboard cases show disagreements up to � ≈ 2000, which can also be seen for the composite mask.
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Figure B1. C(�) and ˜C(�) plots for all masks and apodization configurations. The magenta solid curve shows the input angle-averaged power spectrum. The
magenta solid and open squares show the recovered C(�) from method 1 (see equation 43) for E/B-modes, respectively. The solid and dotted black curves show
the theory values of the ˜C(�) for E/B-modes, while the black solid and open circles show their estimated value from the simulated fields. The noise contribution
is subtracted here. The error bars show the variance of the mean of the 100 fields. The columns show the apodization used, whereas the rows show the mask
type used for each plot. ’No Ap’ and ’No Mask’ mean no apodization and no mask was used. The first row is used as the control case.
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Figure B2. ˜C(�) ratio plots for all masks and apodization configurations. The black squares show the ratio for the E-modes, while the red circles belong to
B-modes. The grey shaded area shows the expected cosmic variance centred at 1. We expect to find a good agreement between the estimated and the theory
values within the cosmic variance band if the mask modelling is accurate. The error bars show the variance of the mean and are estimated from the simulations.
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Figure B3. C(�) ratio plots for all masks and apodization configurations. The symbols show the ratios for the recovered E-mode C(�) to the input angle
averaged C(�). The grey area shows the cosmic variance contribution, which widens with an increased masked area. The error on the mean is estimated from
the field-to-field variance of 100 lognormal simulations.

A P P E N D I X C : LO G N O R M A L MO M E N T S

We can find the moments of a lognormal field using its relation to a Gaussian field. These moments will be used to calculate the covariance
matrix of the power spectrum of the lognormal realization, which will then be used to estimate the Fisher matrices. In this Appendix, we will
show how all the moments of a lognormal field can be written in terms of its power spectrum by taking the following steps.

A lognormal field, δln, is defined with respect to a Gaussian field, δ, with zero mean, as

δln(x) ≡ eδ(x)−σ 2/2 − 1 , (C1)
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where σ 2 is the variance of the Gaussian field. This implies that the variance of the lognormal field is exp σ 2. To find the moments of this
lognormal field, we take the following steps. In Fourier space, the Nth lognormal moment for a non-zero ki can be written as〈 N∏

i

δ̂ln(ki)
〉

=
〈 N∏

i

[(2π)nδD(ki) + δ̂ln(ki)]
〉

, (C2)

where δD(ki) is the Dirac delta function. Note that ki has n dimensions and δ(ki) is a 1D quantity on a multidimensional grid. Next, we write
the lognormal moments with respect to their real-space counterparts,〈 N∏

i

[(2π)nδD(ki) + δ̂ln(ki)]
〉

=
〈 N∏

i

∫
dxie

−iki .xi [1 + δln
i ]
〉

, (C3)

where δln
i ≡ δln(xi). We can take the ensemble average inside the integral and rewrite the above equation as〈 N∏

i

δ̂ln(ki)
〉

=
N∏
i

[∫
dxie

−iki .xi

]〈 N∏
i

[1 + δln
i ]
〉

. (C4)

The ensemble average, 〈∏N

i [1 + δln
i ]〉, can be expressed in terms of the 2PCFs by writing the lognormal fields in terms of their Gaussian

generators from equation (C1),〈 N∏
i

(1 + δln
i )
〉

=
∫ +∞

−∞
dδ p(δ)

N∏
i

[
eδi e−σ 2

i
/2
]

, (C5)

where δ ≡ (δ1, δ2, ..., δN ) and

p(δ) = e−δ C−1δt /2√
(2π)N det C

(C6)

is the multivariate Gaussian-distributed probability of δ with C as the covariance.
Since C is a covariance, i.e. symmetric and positive definite, we can write it in terms of its eigenvalues and eigenvectors as

C = ODOt , (C7)

where O is the orthogonal matrix made out of the eigenvectors of C and D is a diagonal matrix of the eigenvalues of C. As a result,

C−1 = OD−1Ot . (C8)

Substituting for C−1 in equation (C5) and defining X ≡ δO yields〈 N∏
i

(1 + δln
i )
〉

=
∏N

i e−σ 2
i
/2√

(2π)N det C

∫ +∞

−∞
dX e−XD−1Xt /2

N∏
i

[
e

Xj O t
ji

]
, (C9)

where | det O| = 1 was used to simplify the result. Rewriting equation (C9) in terms of its components results in〈 N∏
i

(1 + δln
i )
〉

=
∏N

i e−σ 2
i
/2√

(2π)N det C

N∏
j

[∫ +∞

−∞
dXj e

−X2
j
D−1

jj
/2+Xj

∑
i Oij

]
. (C10)

With the aid of another variable change, Yi = Xi

√
D−1

i , and completing the square, we solve this integral and find the desired relationship,

〈 N∏
i

(1 + δln
i )
〉

= exp

(∑
ij Cij − σ 2

i

2

)
= exp

⎛⎝∑
i<j

Cij

⎞⎠ . (C11)

Inserting for 〈∏N

i δ̂ln(ki)〉 from the above equation into equation (C4) results in

〈
N∏
i

δ̂ln(ki)〉 =
N∏
i

∫
dxie

−iki .xi

N∏
i<j

eCij . (C12)

The covariance of the Gaussian and lognormal fields is related via

eCij = 1 + 〈δln
i δln

j 〉 = 1 + ξ ln
ij , (C13)

where ξ ln
ij is the correlation between δln

i and δln
j . Consequently, we can write the lognormal moments in equation (C12) in terms of their 2PCFs

or alternatively their power spectra,

〈
N∏
i

δ̂ln(ki)〉 = 1

(2π)Mn

N∏
i

∫
dxie

−iki .xi

N ;M∏
j>i;m

∫
dlmeilm.(xi−xj )[(2π)nδD + P ](lm) , (C14)

MNRAS 479, 454–477 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/479/1/454/5025659
by University College London user
on 28 August 2018



476 M. Asgari et al.

where P(l) is the power spectrum of the lognormal field, n is the dimension of the field (for gravitational lensing n = 2), the subscript m
belongs to each pair of δln

i and δln
j which make 〈δln

i δln
j 〉 = ξ ln

ij , and M = N(N − 1)/2. The above integrals can be simplified by integrating with
respect to xi, since [(2π )nδD + P](lm) have no dependence on xi. The xi integrals will result in N delta functions of dimension n that depend
on ki and lm. There are M, lm integrals and 2M, [(2π )nδD(lm) + P(lm)] combinations. Writing the Delta functions found from the xi integrals in
the following form,

δ
∑̄

j−∑̄
k

i ≡ δ
+j+j ′+...−k−k′−...

i ≡ δD(ki + lj + lj ′ + ... − lk − lk′ − ...) , (C15)

will simplify the notation. Note that
∑̄

is not a real sum. We find that the two sums over the positive and negative lm modes can be formulated
as follows,∑̄

j =
∑̄i−1

r=1
(r − 1)N + i − r(r + 1)/2 −

∑̄
k = −

∑̄N−1

r=i
(i − 1)N − i(i − 1)/2 + r − i + 1 , (C16)

for a given N and i. We are now left with M integrals with 2M components for each,

〈
N∏
i

δ̂ln(ki)〉 = 1

(2π)n(M−N)

N ;M∏
j>i;m

∫
dlm[(2π)nδD + P ](lm)

N∏
i

δ
+∑̄i−1

r=1(r−1)N+i−r(r+1)/2−∑̄N−1
r=i (i−1)N−i(i−1)/2+r−i+1

i .

(C17)

The remaining M integrals over lm can be simplified using the N delta functions and the delta functions in the 2M combinations of δD(lm) and
P(lm). Some of these integrals vanish after considering the delta functions. In any integral if we come about a δD(ki), then that term is equal
to zero since we are not interested in ki = 0 terms and for the rest of the values, the delta function vanishes.

We can immediately see that for the third moment N = M = 3, i.e. only one integral will remain after the simplifications and the rest of
the term will either vanish or are products of power spectra and Delta functions which depend on several ki modes. We have developed an
algorithm that can simplify the moments for any given N.

The fourth moment of the lognormal fields is essential for calculating the covariance of their power spectra. Therefore, here the results
for the fourth-order moment will be explicitly shown. The fourth moment has many terms. These terms can be divided into four groups,
depending on the number of remaining integrals over the power spectra and an extra group that contains the Gaussian-only contribution.
Hence, in the following, each group will be represented separately. The fourth lognormal moment in Fourier space can be written as

〈δ̂ln(k1)δ̂ln(k2)δ̂ln(k3)δ̂ln(k4)〉 = (2π)nδD(k1 + k2 + k3 + k4){I + II + III + IV } + G , (C18)

where G is the pure Gaussian term,

G = (2π)2n
[
δD(k2 + k3)δD(k1 + k4)P (k1)P (k2)

+ δD(k1 + k3)δD(k2 + k4)P (k1)P (k2)

+ δD(k1 + k2)δD(k3 + k4)P (k1)P (k3)
]

, (C19)

and I, II, III, and IV are the pure lognormal terms shown below. The highest number of integrals remaining after the simplifications is 3. There
is only a single term of this form,

I =
∫

dl4dl5dl6P (l4)P (l5)P (l6)P (l4 + l5 − k2)P (l6 − l4 − k3)P (k4 + l5 + l6) . (C20)

There are six terms with two integrals, which can be factorized as

II =
∫

dl5dl6P (l5)P (l6)P (k4+l5+l6)
[
P (l5+l6−k2−k3)P (l5−k2) + P (l5+l6−k2−k3)P (l6−k3) + P (l5−k2)P (l6−k3)

]
+

∫
dl4dl6P (l4)P (l6)P (l6−l4−k3)P (k4+l6)

[
P (l4−l6+k1+k3) + P (l4−k2)

]
+

∫
dl4dl5P (l4)P (l5)P (l4+l5−k2)P (l4 + k3)P (k4+l5) . (C21)

The 15 terms that have one remaining integral are

III =
∫

dl6P (l6)
[
P (k1)P (l6−k3)P (l6−k2−k3) + P (k1)P (k4+l6)P (l6−k1−k3)

+P (k1)P (k4+l6)P (l6−k3) + P (k2)P (l6−k3)P (l6−k1−k3)

+P (k2)P (k4+l6)P (l6−k2−k3) + P (k2)P (k4+l6)P (l6−k3)

+P (k4+l6)P (l6−k2−k3)P (l6−k3) + P (k4+l6)P (l6−k1−k3)P (l6−k3)
]

+
∫

dl5P (l5)
[
P (k4+l5)P (l5−k2)P (l5−k2−k3) + P (k3)P (l5−k2)P (l5−k1−k2)

+P (k3)P (k4+l5)P (l5−k2−k3) + P (k3)P (l5−k2)P (k4+l5)
]

+
∫

dl4P (l4)P (k4)
[
P (l4−k2)P (l4−k1−k2) + P (l4+k3)P (l4+k1+k3) + P (l4−k2)P (l4+k3)

]
. (C22)
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And finally, there are 16 terms that do not have any remaining integrals and depend only on the power spectra of the lognormal modes,

IV = P (k1)P (k2)P (k3) + P (k1)P (k2)P (k4) + P (k1)P (k3)P (k4) + P (k2)P (k3)P (k4)

+ [P (k1)P (k2) + P (k3)P (k4)][P (k1 + k3) + P (k2 + k3)]

+ [P (k1)P (k3) + P (k2)P (k4)][P (k1 + k2) + P (k2 + k3)]

+ [P (k1)P (k4) + P (k2)P (k3)][P (k1 + k2) + P (k1 + k3)] . (C23)

IV has the highest contribution out of all of the pure lognormal terms as was shown by Hilbert et al. (2011) for the covariance of the 2PCFs.
Ergo, to find the covariance of the power spectra for a lognormal field, we neglect I, II, and III.
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