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Human lung development: recent progress and new challenges
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ABSTRACT
Recent studies have revealed biologically significant differences
between human and mouse lung development, and have reported
new in vitro systems that allow experimental manipulation of human
lung models. At the same time, emerging clinical data suggest that
the origins of some adult lung diseases are found in embryonic
development and childhood. The convergence of these research
themes has fuelled a resurgence of interest in human lung
developmental biology. In this Review, we discuss our current
understanding of human lung development, which has been
profoundly influenced by studies in mice and, more recently, by
experiments using in vitro human lung developmental models and
RNA sequencing of human foetal lung tissue. Together, these
approaches are helping to shed light on the mechanisms underlying
human lung development and disease, andmay help pave theway for
new therapies.
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Introduction
Lung cancer is the most common cancer worldwide, and end-stage
respiratory failure accounts for the third highest cause of
mortality due to non-infectious disease (Global status report on
noncommunicable diseases 2010, World Health Organization; http://
www.who.int/nmh/publications/ncd_report2010/en/). The mortality
is partly due to irreversible destruction of lung tissue and the inability
to meet the demands for transplantation. Lung transplantation itself is
a high-risk procedure that has a 5-year survival rate of only 54%,
partly due to immune rejection (Thabut and Mal, 2017).
Characterising the different progenitor populations in the
developing human lung is thus an essential part of regenerative
medicine, particularly as their therapeutic potential may differ from
that of adult stem cells. If in the future we are to help patients to
regenerate lung tissue, then we need to understand in detail how the
human lung develops and, in particular, how the various developing
cell populations contribute at a molecular and cellular level to the
creation of such a complex organ. This will also aid our
understanding of how other endodermal organs develop,
particularly those that share comparable developmental mechanisms.

Beyond regenerative medicine, the study of human lung
development is important for understanding disease mechanisms.
It is immediately obvious that human developmental biology will
provide insight into lung conditions experienced by premature
neonates whose lungs are still going through embryonic
developmental stages at the time of birth (Surate Solaligue et al.,
2017). However, a recent study revealed the surprising finding that
some of the most tightly linked genetic variants that predispose a
person to chronic adult lung disease were predicted to function in
lung development (Hobbs et al., 2017). This strongly suggests that
developmental events have life-long consequences for respiratory
health. Recently, a large study that examined lung structure in
>3000 individuals reported that developmental variation in human
lung branching, specifically a central airway branch variation, is
associated with chronic obstructive pulmonary disease (COPD)
(Smith et al., 2018). Moreover, one of these airway branch
variations is associated with genetic polymorphisms within the
FGF10 gene, which is known to be crucial for branching
morphogenesis in the developing lung (Bellusci et al., 1997;
Danopoulos et al., 2018; Park et al., 1998; Peters et al., 1994).

Advances in human developmental biology may also be directly
applied to treat disease. The discovery of induced pluripotent stem
cells (iPSCs) derived from human fibroblasts (Takahashi and
Yamanaka, 2006) opened the door to patient-specific disease
modelling. iPSCs can be derived from any somatic cell – typically
skin or blood – and differentiated into any cell type of interest for
disease modelling and drug screening. This technology also brings
us a step closer to personalised cell-based therapies. Research on
murine lung development has been crucial in providing a
developmental roadmap to direct the stepwise differentiation of
iPSCs into lung epithelial cells (Swarr and Morrisey, 2015).
However, only recently have equivalent studies been performed
using human embryonic lung tissue to allow iPSC differentiation
attempts to be further improved and adequately validated (Miller
et al., 2017; Nikolic ́ et al., 2017).

In this Review, we summarise our current knowledge of human
lung development, highlighting areas of similarity to and
divergence from mouse biology. We also discuss recent advances
in the available human in vitro model systems and how these are
already providing insights into developmental mechanisms. Finally,
we explore future challenges and important out-standing questions
for the field, with a focus on the technological hurdles, such as
validation of experimental systems and scale-up of cell production,
that must be overcome in order to move towards the clinic.

An introduction to human lung development
The human adult lung
The lungs are a complex structure of branched airways and blood
vessels that unite at the most distal part, the alveoli, for gas
exchange. They are found on either side of the heart and in humans
have three right and two left lobes (Fig. 1), with the bottom of the
lungs resting over the concave-shaped diaphragm (Drake et al.,
2014). Both lungs are surrounded by a membrane known as the
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pleura, which is referred to as the mesothelium in mouse (Hogan
et al., 2014; Morrisey and Hogan, 2010). The most proximal airway,
the trachea, divides at the carina forming the left and right main stem
bronchi. Each main bronchus divides further into secondary, or
lobar, bronchi and subsequently into progressively narrower airways
until the smallest bronchioles connect to the alveoli. Bronchi are
reinforced with hyaline cartilage in order to maintain airway
patency, whereas bronchioles are surrounded by smooth muscle. Air
is transported through the airways all the way to the alveoli, where
gas exchange takes place between the thin alveolar epithelial cells
and the fine capillary network that covers them (Weibel, 1963).

Human adult lung cell types
The various cell types found in human lungs can be categorised
into epithelium, endothelium (vasculature and lymphatics), pleura/
mesothelium, airway and vascular smooth muscle, pericytes,
fibroblasts, neurons and immune cells such as alveolar
macrophages. Many of these cell types can be further classified
based on their position along the epithelial branching tree. Generally
accepted lung cell type markers are listed in Table 1, although many
of these are not absolutely specific for a single lung cell type.

Airway cell types
Lung epithelial cells are broadly subdivided into airway (tracheal/
bronchiolar) and alveolar types. The human tracheobronchial
airways are lined by pseudostratified epithelium in which each
cell makes contact with the basement membrane. Below the
basement membrane are blood and lymphatic vessels, smooth
muscle, cartilage, fibroblasts and nerves (Hogan et al., 2014). The
height of the airway lining and the proportion and density of the
different cell types vary along the proximal-distal axis of the airways
(Mercer et al., 1994). In the mouse trachea, there is a similar basic
organisation of pseudostratified mucociliary epithelium and
underlying mesenchyme, whereas lower mouse airways have a
simple columnar epithelium (Hogan et al., 2014).
The conducting airway epithelia consist mostly of basal, secretory

(club, mucous and serous subtypes) and ciliated cells (Fig. 1).
Together, these cells comprise the mucociliary escalator, so called
because it transports inhaled particles trapped in the mucus up and
out of the airways. In both human and mouse adult airways, basal
cells are stem cells that self-renew and differentiate into secretory
and ciliated cells during homeostasis and repair (Evans et al., 2001;
Hong et al., 2004; Rock et al., 2009; Teixeira et al., 2013; Watson
et al., 2015). Basal cells are present throughout human conducting
airways, but are confined to the trachea and primary bronchi of mice

(Boers et al., 1998; Nakajima et al., 1998). In mice, it is clear that the
dome-shaped club cells in the bronchioles act as stem cells for day-
to-day airway epithelial maintenance and repair (Giangreco et al.,
2009, 2002; Hong et al., 2001; Rawlins et al., 2009b) and can even
contribute to the alveolar epithelium following injury (Guha et al.,
2017). In contrast, club cells within the pseudostratified mouse
trachea are progenitors that do not exhibit long-term self-renewal,
but do divide for a limited time and can produce new ciliated cells
(Rawlins et al., 2009b; Watson et al., 2015). Mouse tracheal club
cells can de-differentiate to a basal stem cell phenotype if the
endogenous basal cells are killed experimentally (Tata et al., 2013).
In human lungs, the secretory cells are predominantly of the mucous
subtype (Mercer et al., 1994). It is not clear whether mucous-
secreting cells retain the ability to proliferate and function as stem/
progenitor cells, or indeed if human club cells can do so (Teixeira
et al., 2013). In mice, ciliated cells are terminally differentiated and
do not proliferate even after injury (Pardo-Saganta et al., 2013;
Rawlins and Hogan, 2008; Rawlins et al., 2007); it is likely that they
behave similarly in humans.

Minor lung epithelial cell types
Rare cell types found in the airways include brush cells and
pulmonary neuroendocrine cells (PNECs). Brush cells make up less
than 1% of the airway epithelium and have recently been shown to
have a chemosensory role that may allow them to detect bacterial
infections (Krasteva et al., 2011, 2012; Tizzano et al., 2011).
PNECs are hypoxia-sensitive cells (Cutz et al., 2013). In the mouse
trachea, PNECs are rare, solitary cells that are derived from basal
cells (Watson et al., 2015). Lower down the mouse airways, PNECs
are clustered into groups of up to 30 cells, known as neuroendocrine
bodies (NEBs), which are located preferentially at airway branch
points and have been characterised as a putative stem cell niche
(Guha et al., 2012; Reynolds et al., 2000). Careful morphometric
studies in humans have shown that PNECs make up less than 1% of
airway epithelial cells and are mostly solitary, but can be observed in
clusters of six to eight cells (Gosney, 1993). Interestingly, although
the percentage of PNECs in the airways does not change with age in
humans, the number of NEB clusters is greatest during the foetal
stage and in young adults (Cutz et al., 1985; Gosney, 1993).
Additional rare airway stem cell types that can be activated
following severe injury have been identified in mice, but not yet
in humans. These include the putative bronchoalveolar stem cells
(Kim et al., 2005; Lee et al., 2014) and rare basal-like cells of the
distal airways (Kumar et al., 2011; Vaughan et al., 2015; Xi et al.,
2017; Yang et al., 2018; Zuo et al., 2014). Increasing numbers of
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Fig. 1. Human adult lung structure and cell types. Lobular structure of the human adult lung. Insets depict the cell types found within the airway epithelium (left)
and the alveolar epithelium (right).
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studies in mice are now showing that communication between the
airway epithelium and underlying mesenchymal cells is required for
normal homeostatic maintenance and a proliferative response to
injury (Lee et al., 2017; Volckaert et al., 2011; Volckaert et al.,
2017).

Submucosal gland cell types
Submucosal glands are continuous with the airway epithelium
and are located below the luminal surface. They secrete mucous
and other substances that help protect the lungs from particles and
infectious agents (Liu et al., 2004). In humans, and other large
mammals, submucosal glands are found in all of the cartilaginous
airways, whereas in mice they are restricted to the first few cartilage
rings of the proximal trachea (Borthwick et al., 1999; Innes and
Dorin, 2001; Meyrick et al., 1969). The submucosal gland
epithelium contains mucous- and serous-secreting cells, as well as
myoepithelial basal cells. In mice, the submucosal myoepithelial
basal cells function as stem cells for the submucosal gland itself and
also as reserve stem cells that contribute to regeneration of the
surface epithelium of the airways after severe injury (Lynch et al.,
2018; Tata et al., 2018a). Interestingly, pig submucosal glands also
contribute to the airway surface epithelium following injury,
strongly suggesting that the situation in the human lung will be
similar (Tata et al., 2018a).

Alveolar cell types
The alveolar epithelium (Fig. 1) consists of type I and type II
alveolar cells (AT1 and AT2 cells) that are surrounded by capillaries
and fibroblasts (Herzog et al., 2008; Weibel, 2015;Williams, 2003).
AT1 cells are flat, highly extended and specialised for gas exchange
as they cover more than 95% of the gas exchange surface area. AT2
cells are cuboidal, more common, and are specialised for the
production of surfactant – a complex mixture of proteins and
phosopholipids that decreases surface tension in the alveolar region
(Crapo et al., 1982; Hogan et al., 2014; Weibel, 2015; Williams,
2003). AT2 cells are the major alveolar epithelial stem cell as they
can both self-renew and differentiate into AT1 cells (Barkauskas

et al., 2013; Desai et al., 2014; Rock et al., 2011a). Recent reports
have characterised a subpopulation of mouse AT2 cells that
preferentially act as the alveolar stem cell during steady-state
turnover (Nabhan et al., 2018; Zacharias et al., 2018) and also
suggest that a similar subpopulation can be identified in adult
human alveoli. Adult rodent and human AT1 cells are characterised
by a limited proliferative capacity following injury in vivo and can
de-differentiate to AT2-like cells when cultured in vitro (Danto
et al., 2012; Evans et al., 1973; Hogan et al., 2014). There are
multiple populations of mouse alveolar fibroblasts, some of which
interact with the epithelium to maintain normal homeostasis (Lee
et al., 2017; Zepp et al., 2017). Traditionally, alveolar fibroblasts
have mostly been characterised as myofibroblasts and
lipofibroblasts but their exact roles are not yet defined and there is
even controversy about the existence of lipofibroblasts in human
lungs (El Agha et al., 2017; McCulley et al., 2015; Rehan et al.,
2006). The lung also contains a resident population of immune cells,
alveolar macrophages, that have important functions in surfactant
homeostasis and innate immunity (Bhattacharya and Westphalen,
2016).

Vascular cells
Blood vessels are an integral part of the lung both in the airway and,
especially, in the alveolar gas exchange region. The cellular
composition of the vasculature in terms of associated smooth
muscle, pericytes and other fibroblasts depends on the exact
location within the lung (Kool et al., 2014). Rather than just
delivering oxygen and nutrients, endothelial cells lining the vessels
also modulate blood coagulation, transport of inflammatory cells
and epithelial homeostasis and repair (Rafii et al., 2016).

Stages of human lung development
Human lung development is divided into different morphological
stages (Fig. 2A) that correspond to key developmental transitions:
(1) embryonic, (2) pseudoglandular, (3) canalicular, (4) saccular
and (5) alveolar (Burri, 1984; Rackley and Stripp, 2012). The timing
of the stages is anecdotally said to be overlapping due to non-

Table 1. Summary of epithelial cell markers in mouse and human

Human cell population Markers* References§

Basal cell KRT5, (KRT14), (NGFR), TP63, PDPN‡ (Hackett et al., 2011; Rock et al., 2009; Teixeira et al., 2013)
Ciliated cell Acetylated tubulin, β3-tubulin, FOXJ1 (Dye et al., 2016; Gao et al., 2015; Look et al., 2001)
Secretory club cell (PLUNC), SCGB1A1, (SCGB3A1), (SCGB3A2) (Dye et al., 2016; Khoor et al., 1996; Nakajima et al., 1998; Reynolds et al.,

2002)
Secretory goblet cell MUC5AC, MUC5B, SPDEF (Bingle and Bingle, 2011; Dye et al., 2016; Yu et al., 2010)
Type 1 alveolar
epithelial cell

AQP5‡, HOPX, HTI-56‡, PDPN‡, RAGE (Dobbs et al., 1999; Fujino et al., 2012; Nikolić et al., 2017; Shirasawa et al.,
2004)

Type 2 alveolar
epithelial cells

ABCA3, HTII-280, LAMP3, LPCAT1‡, pro-SFTPC‡,
SPA‡, SPB‡

(Barkauskas et al., 2013; Cau et al., 2016; Gonzalez et al., 2010; Khoor et al.,
1993; Khoor et al., 1994; Nikolić et al., 2017; Phelps and Floros, 1988;
Stahlman et al., 2007)

Distal tip SOX9‡, SOX2‡, MYCN, GATA6, ETV5, HMGA1,
HMGA2, HNF1B, ID2, CPM, CD47, (pro-SFTPC)

(Gotoh et al., 2014; Hawkins et al., 2017; Miller et al., 2017; Nikolić et al.,
2017)

Stalk bronchiolar
progenitors

SOX2 (Danopoulos et al., 2018; Miller et al., 2017; Nikolić et al., 2017)

Embryonic alveolar
progenitors

Co-expression of HTII-280, HOPX, PDPN (Nikolić et al., 2017)

Neuroendocrine cells ASCL1, CGRP, chromogranin A, GRP, NCAM,
substance P

(Cutz et al., 2013; Miki et al., 2012)

Vascular endothelium PECAM1, VECAD‡ (Augustin and Koh, 2017)
Lymphatic
endothelium

PECAM1, PDPN‡, VECAD‡ (Francois et al., 2011).

*Markers in brackets are found in a subset of this cell type.
‡Markers expressed in more than one cell type.
§References provided are either to the original description of the marker, or more recent definitive antibody staining.
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synchronous development of the lung, although there is likely to be
more inherent variation (either environmental or genetic) in human
development compared with laboratory animals. Standard human
embryo staging systems are typically used (Hern, 1984; O’Rahilly
and Muller, 1987), but there may also be some technical variation.
As is the case in mice, the human lung epithelium is derived from
the endoderm whereas the surrounding mesenchyme derives from
the mesodermal germ layer (Burri, 1984).
The embryonic phase of human lung development (Fig. 2B,B′)

spans approximately 4-7 post-conception weeks (pcw). During
this time, the primary left and right lung buds appear from the
foregut endoderm towards the end of week 4 and rapidly undergo
branching to set up the overall lobular structure of the lung by the
end of week 5.
The pseudoglandular phase occurs from approximately 5 to 17 pcw

(Fig. 2C,D). During this period, the lung continues to grow by
branching morphogenesis, the airway tree is laid down and begins to
differentiatewith cartilage, and the smoothmuscle andmucous glands

are already visible. It is likely that human airway branching occurs
mostly dichotomously (Isaacson et al., 2017). Studies in mice have
suggested that the epithelial branching pattern is relatively stereotypic
at this stage, although work in humans shows that there is comparably
more variation (Metzger et al., 2008; Smith et al., 2018). Foetal
breathing movements begin by 10-11 pcw and are hypothesised to
play a role in lung growth. Blood vessel development occurs
concurrently with epithelial branching, and vessels run alongside
the airways but branch more slowly (deMello and Reid, 2000). At the
end of the pseudoglandular stage, the complete structure of the human
airway tree has been laid down (Kitaoka et al., 1996) and airway
epithelial differentiation is progressing (Khoor et al., 1996).

The canalicular phase spans 16-26 pcw (Fig. 2E,F). It is estimated
that three further rounds of epithelial branching occur during this
stage in order to produce the future alveolar regions. Moreover,
existing airways continue to increase in size and the most distal
epithelial tubes – the future alveoli –widen into the airspaces and their
surrounding mesenchyme thins. The capillary networks come into
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Fig. 2. Stages of human lung development. (A) Schematics depicting general lung morphology across the five different stages of human lung development:
embryonic, pseudoglandular, canalicular, saccular and alveolar. For each stage, the developmental period is indicated, for human in post-conception weeks
(pcw) and for mouse in embryonic days (E) and postnatal days (P). Boxed area is enlarged to show the gas exchange occurring across the alveolar epithelium.
(B,B′) Cryosection of an embryonic stage lung showing the primary branches and SOX2/SOX9 co-expression in the tips; the boxed area is magnified in B′.
(C,D) Cryosections of pseudoglandular stage lungs showing ongoing tip SOX2/SOX9 co-expression and airway differentiation as indicated by the expression of
smooth muscle actin (SMA) (C, white), which marks smooth muscle cells, and TP63 (D, green), which marks differentiating basal cells. (E,F) Cryosections of
canalicular stage lungs showing SOX9+/SOX2− distal tips (in E). Alveolar differentiation is initiated at this stage, as indicated by the widening alveolar spaces.
Proximity to developing vasculature, as marked by VE-cadherin (VECAD; CDH5) (green) and podoplanin (PDPN, red) is illustrated in F. Note that there is a
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alveolar stage postnatal lungs, showing the expression of SOX9 (cartilage, green), SOX2 (airway cells, red) and ACTA2 (smooth muscle, white) in G, and NKX2-1
(lung epithelium, green), FOXF1 (mesenchyme) and ACTA2 (smooth muscle, white) in H. At this stage, SOX9+ distal tips are no longer seen (G), but there has
been continued growth and septal formation tomake alveoli (H). Images in A-F are reproduced fromNikolić et al., 2017. Images in G and Fwere kindly provided by
Jeff Whitsett, University of Cincinnati College of Medicine (https://research.cchmc.org/lungimage/). Scale bars: 200 μm (B); 50 μm (C,D,F); 100 μm (E,G,H).
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close proximity to the distal epithelial airspaces (Fig. 2F) (deMello
and Reid, 2000) and the first morphological signs of alveolar
epithelial cell differentiation (a decrease in columnar height) occur.
The saccular stage ranges from about 24 to 38 pcw and

coincides with the end of branching morphogenesis. The distal
airspaces now appear as thin-walled terminal saccules that cluster
at the ends of the airways. These further increase in size and
become completely wrapped in a capillary bilayer, which appears
to be formed as the capillaries that surround each saccule are
pushed together as they expand (Burri, 1984). Alveolar epithelial
differentiation continues and, in particular, the surfactant system of
the AT2 cells matures and lamellar bodies – specialised organelles
for the production and recycling of surfactant – and surfactant
secretion can be detected (Khoor et al., 1994; Oulton et al., 1980;
Stahlman et al., 2007).
The alveolar stage refers to the process of alveolar formation

during which septae grow from the saccular walls to subdivide the
distal saccules into alveoli, thus increasing the surface area for gas
exchange (Fig. 2G,H). In parallel, microvascular maturation occurs
and the double capillary network observed at the saccular stage
fuses into a single capillary system, meaning that each capillary is
completely surrounded by gas exchange surfaces (Schittny, 2017).
Alveolar formation has typically been considered to occur from
36 weeks up to 3 years after birth. However, the use of new imaging
technologies and detailed stereology suggest that alveolar formation
continues into young adulthood (∼21 years) (Herring et al., 2014;
Narayanan et al., 2012). Prior to birth, the lung epithelium expresses
high levels of chloride channels and is a net secretor of fluid into the
amniotic cavity. At the time of birth, however, there is a rapid switch
to sodium, and hence water, absorption triggered by β-adrenergic
signalling.

The molecular regulation of human lung development
The molecular regulation of mouse lung development has been
extensively studied (Cardoso and Lu, 2006; Swarr and Morrisey,
2015). By contrast, very little information on the molecular
regulation of human lung development is currently available. A
key line of investigation has been the cloning of mutant genes from
human patients with congenital lung disease and mechanistic
investigation of gene function using genetically altered mice. For
example, the transcription factor Nkx2-1 is the first factor to be
expressed in the region of the embryonic foregut endoderm that will
bud into the lung (Ikeda et al., 1995; Lazzaro et al., 1991). Mouse
Nkx2-1 mutants fail to make lungs and Nkx2-1 has been shown to
be required throughout mouse lung development and in the adult
(Minoo et al., 1999; Tata et al., 2018b). Mutations in NKX2-1 are
associated with congenital lung disease, leading to the hypothesis
that NKX2-1 plays very similar mechanistic roles in mouse and
human lung development (Devriendt et al., 1998). Similarly, genes
that are mutated in human neonatal respiratory distress syndrome,
such as those encoding surfactant proteins B and C, ABCA3 and the
transcription factor FOXM1, have been shown to play key roles in
alveolar development in mice (Whitsett, 2014). The genetic
manipulation of human adult airway epithelial cell cultures has
also been used to identify transcription factors that are required for
ciliated cell differentiation, and these are largely assumed to also
function in the development of human embryonic airway ciliated
cells (Boon et al., 2014; Wang et al., 2018). However, until recently,
experimental systems that allow a mechanistic investigation of the
molecular regulation of human embryonic lung development have
been available to only very few laboratories and progress has
consequently been limited.

Studies of human lung development using human lung tissue
Studying human lung development, especially late-stage
development, is hindered by limited access to human foetal lungs.
Specifically, the lower limit of neonatal viability is approximately
23-24 pcw and in most countries human foetuses beyond ∼20 pcw
are not available for research. Although morphological analyses of
human embryonic and foetal lungs have been extensive, modern
molecular techniques have not been widely applied and the
embryonic mouse lung has thus been used as a substitute for
studying human lung development. However, recent advances in
RNA sequencing (RNA-seq) and single cell-based approaches have
allowed more detailed characterisations of human lung tissue to be
performed.

RNA-seq, for instance, has been used to characterise global gene
expression changes throughout whole human lungs in a
developmental time course (Bernstein et al., 2010; Feng et al.,
2014; Kho et al., 2016). More recently, comparative RNA-seq
between human foetal organs at ∼6-8 pcw was used to generate
organ-specific, including lung-specific, transcriptional signatures
(Gerrard et al., 2016). Cell type-specific transcriptome analysis has
also been performed on microdissected branching epithelial tip cells
from human pseudoglandular stage lungs by RNA-seq (Miller et al.,
2017; Nikolic ́ et al., 2017). A genome-wide comparison of the
transcriptome of human epithelial tip cells with previously
published mouse tip microarray data (Laresgoiti et al., 2016) has
shown that 96% of orthologous genes expressed in human tips are
also present in mouse (Nikolic ́ et al., 2017) (Fig. 3A). However,
multiple subtle differences between mouse and human were found.
For example, BMP2 and BMP7 are highly expressed in human tips
compared with Bmp4 in the mouse (Bellusci et al., 1996). These
data suggest that the human tip epithelium is analogous to the mouse
population with a highly conserved transcriptome, but that the
differences are likely to be functionally significant.

During mouse lung development, distal tip epithelial cells are
Sox9+/Id2+ and act as multipotent progenitors by generating first
bronchiolar, and then alveolar, descendants (Alanis et al., 2014;
Rawlins et al., 2009a). During the mouse pseudoglandular stage,
cells that exit the distal tip turn off Sox9, upregulate Sox2 and
differentiate along bronchiolar lineages. Hence, there is always a
clear demarcation between Sox9+ tip cells and Sox2+ stalk
bronchiolar progenitors, and this has been used routinely for
assessing mouse mutant phenotypes and for validation of human
pluripotent stem cell differentiation (Fig. 3B). By contrast, in human
lungs SOX2 is consistently co-expressed with SOX9 in tip cells
throughout the pseudoglandular stage (Danopoulos et al., 2018;
Miller et al., 2017; Nikolic ́ et al., 2017). As human cells exit the tip
progenitor domain and start to differentiate along airway lineages,
they turn off SOX9, but retain SOX2 (Fig. 3B). The function of
SOX2 in the human epithelial tip progenitors is currently unknown,
but this result illustrates one of the molecular differences between
human andmouse lungs and also shows that SOX2 expression alone
cannot be used as a marker for human bronchiolar progenitors.

The morphological and molecular differences between human
and mouse lungs strongly suggest that certain aspects of human lung
development can only be studied using human cells. One
experimental approach has been to grow late-stage (∼20 pcw)
distal human lung epithelium in 2D as a model for AT2 and AT1 cell
differentiation. Such studies have led to important molecular
insights, for example elucidating the roles of glucocorticoid
signalling (Mendelson et al., 1997; Mishra et al., 2018). The
culture of human foetal lung explants has also allowed the effects of
specific signalling activators and inhibitors on cell fate, proliferation
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and fluid secretion to be studied (Brennan et al., 2016; Haitchi et al.,
2009; Han et al., 2003; Rajatapiti et al., 2010). However, the major
limitations of these organ cultures are their inaccessibility to modern
genetic techniques and the need for a continuous supply of fresh
tissue. Organoid cultures have recently been grown from human
distal epithelial tips by initially expanding self-renewing tip cells in
Matrigel and subsequently differentiating them into an alveolar or
bronchiolar fate (Fig. 3C) (Miller et al., 2017; Nikolic ́ et al., 2017).
The self-renewing phase of these cultures can be maintained long-
term (without introducing karyotypical abnormalities), freeze-
thawed and should be amenable to genetic manipulation (Broutier
et al., 2016). A corresponding study using the equivalent population
of mouse epithelial tip cells also showed successful tip self-renewal
and subsequent production of airway and alveolar cell types,
although a different combination of growth factors and inhibitors
was reported (Fig. 3C) (Nichane et al., 2017). These differing media
requirements for growth illustrate that the molecular differences
observed between human and mouse embryonic lungs are indeed
functionally relevant. One limitation of the human lung embryonic
organoid cultures so far is that they have not yet been demonstrated
to produce mature, differentiated cell lineages, although this
problem is likely to be solved in the future.
The saccular/early alveolar period of human lung development

after 20 pcw is still largely unexplored, mainly owing to the lack of
tissue for analysis. Modern neonatal intensive care strategies can
allow premature neonates to survive from ∼23 pcw, although these
children often suffer from long-term respiratory conditions as a
result of lung immaturity at birth and the effects of the therapies that
kept them alive. Therefore, another approach for studying human
foetal lung development has been to mature tissue, or cells, from
<20 pcw lungs to a developmental stage at which the lung
pathologies affecting premature neonates can be modelled
(Fig. 4). For example, human foetal mesenchymal 3D organoid

cultures based on alginate beads have been used to study cell-cell
interactions and the effects of changes in oxygen levels for the
purposes of modelling idiopathic pulmonary fibrosis (IPF) and
bronchopulmonary dysplasia (BPD) (Sucre et al., 2016; Wilkinson
et al., 2017). However, late foetal epithelial and vascular
development is still very under-characterised. A recent
development has been to maintain human foetal AT2 cells for up
to 7 days in vitro by using organotypic co-cultures with matrix-
embedded fibroblasts (Sucre et al., 2018b). Another approach has
been to transfer human foetal lung pieces from ∼11-15 pcw into the
kidney capsule of immune-compromised mice for further
maturation. This kidney capsule technique has allowed the
maturation of tissue samples to a much greater degree than can be
obtained by in vitro organ culture (De Paepe et al., 2012; Maidji
et al., 2012; Pavlovic et al., 2008). For example, some alveolar
morphogenesis has been achieved, which could allow the cellular
mechanisms of microvascular development to be investigated (De
Paepe et al., 2012). Kidney capsule-grafted lung fragments have
also been used as a model of congenital human cytomegalovirus
infection (Maidji et al., 2012).

Lung development continues after birth as the lung grows; new
alveoli are formed and the microvasculature is remodelled (Schittny,
2017). Studies using postnatal developing lungs are, again,
restricted by lack of material. Efforts have been made to examine
lung morphology, molecular and global transcriptional changes in
the lungs of infants who have died with lung pathologies, compared
with non-lung pathologies (Bhatt et al., 2001; Bhattacharya et al.,
2012; Sucre et al., 2018a). Such work is now bringing insight into
the molecular mechanisms of both postnatal lung development and
lung pathologies. For example, it has long been established that
Pdgfa−/− mouse lungs have a failure of alveolar septation and low
levels of elastin caused by the loss of elastin-producing
myofibroblasts (Boström et al., 1996). Recently, it was shown that

~5-17 pcw
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Human   Mouse  

A  Transcriptome analysis
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2.8%
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E15-E17
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CHIR99021 (GSK3 inhibitor)*

EGF
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Egf
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Fig. 3. Selected differences betweenmouse and human lung development. (A) Comparison of human and mouse distal epithelial tip transcriptomes reveals
shared and unique transcripts (Nikolić et al., 2017). (B) One specific example of a molecular difference between mouse and human lungs is that SOX2
expression extends to the distal epithelial tip in pseudoglandular stage human lungs, but not in mouse. However, by the canalicular stage, human and mouse
lungs have similar SOX2 expression in the differentiating airway only. (C) Mouse (Nichane et al., 2017) and human (Miller et al., 2017; Nikolić et al., 2017)
distal epithelial tip progenitors are maintained in culture via the activation, or inhibition, of different signalling pathways. Asterisks indicates factors reported by
Miller et al., 2017 that were needed in addition to those reported by Nikolić et al., 2017 for the self-renewal of human epithelial distal tip progenitors.
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there is reduced PDGFRα expression in human lung fibroblasts
from ventilated pre-term infants and that attenuated PDGF
signalling independently contributes to defective septation in a
mouse model of BPD (Oak et al., 2017; Popova et al., 2014). The
challenges of studying the molecular and cellular mechanisms of
postnatal alveologenesis prompted the formation of the
collaborative LungMAP consortium (Ardini-Poleske et al., 2017).
Their efforts include detailed molecular and structural analyses of
human lung development from 23 pcw to ∼10 years, and human
postnatal imaging, transcriptomics and proteomics data are
gradually being released via their website (www.lungmap.net).
This will likely lead to new mechanistic insights into this
under-explored developmental phase.

Studies of human lung development using pluripotent stem
cells
Pluripotent stem cells (PSCs) can be derived from the inner cell
mass of the early embryo (in the case of embryonic stem cells,
ESCs), or can be reprogrammed from fully differentiated cells (in
the case of iPSCs). They retain the potential to differentiate into
every cell type of the body. Using human PSC differentiation to
mimic human lung development has provided a powerful tool for
understanding human organogenesis, and human (h)PSC-derived
lung cells are already being used for disease modelling and drug
screening (see Box 1). Moreover, iPSCs provide a gene-correctable
cell source that may be useful for autologous transplantation,
minimising the need for immunosuppression, although this remains
a controversial hypothesis (Liu et al., 2017).

A developmental roadmap for lung differentiation
Stepwise differentiation strategies that mimic the in vivo signalling
pathways driving human lung development have been developed
and adopted for the in vitro differentiation of hPSCs. Such protocols
have so far been almost exclusively based on mouse development

due to the lack of available human data. hPSCs are matured through
various developmental stages, including definitive endoderm,
anterior foregut endoderm and ventralised anterior foregut
endoderm (Fig. 5). This results in a mixed population of ventral
anterior foregut endoderm-like cells, including lung lineage cells
that are positive for NKX2-1 and SOX2, but negative for TUJ1
(TUBB3; neuronal lineage) and PAX8 (thyroid lineage).

Box 1. The use of hPSCs for pulmonary diseasemodelling
When fully optimised, PSC-derived models of pulmonary disease are
likely to be very useful for modelling the progression of genetic diseases
for which only end-stage samples are normally available. They could
also provide large numbers of disease-phenotype, and control, lung cells
for therapeutic discovery and toxicology testing. Proof-of-principle
pulmonary disease modelling has already been performed using
hPSC-derived lung cells. For example, iPSC-derived airway epithelial
organoids have been produced from cystic fibrosis patients and shown to
mimic known in vitro disease phenotypes (Dekkers et al., 2013;
McCauley et al., 2017). Similarly, iPSC-derived alveolospheres from
children with surfactant protein B mutations develop the observed in vivo
surfactant processing phenotypes (Jacob et al., 2017). iPSC-derived
alveolospheres have also been shown to recapitulate the in vivo
phenotype of swollen lamellar bodies when treated with the drugs
amiodarone or GNE7915, suggesting that such cells could be highly
useful for toxicology testing (Yamamoto et al., 2017). Finally, it may be
possible to model more complex conditions using hPSC differentiation
protocols that result in lung organoids containing both epithelial and
mesenchymal cell types. Such organoids have been successfully
infected with respiratory syncytial virus and recapitulate the epithelial
shedding observed in the early stages of the disease, although the lack
of immune cells may be a limitation here (Chen et al., 2017). Moreover, a
genetic form of pulmonary fibrosis was partially recapitulated in hPSC-
derived lung organoids and the data obtained suggested that epithelial
damage was a key driver of the disease (Chen et al., 2017).

Tips
 

3D culture in Matrigel

Approaches for
ex vivo culture of
developing human

lung tissue 

 C  Cells on alginate beads
D  Culture of foetal
    lung explants 

A  Organoid culture B  Mouse kidney capsule 

E  Co-culture with matrix-embedded fibroblasts

 

 Alveolar
type II cells

 Transwell
membrane

 Fibroblasts
in 3D matrix

Fig. 4. Methods for ex vivo culture of
developing human lung tissue. (A) Culture set-
up for distal tip organoids. Whole distal epithelial
tips are placed within Matrigel and growth medium
is added on top. (B-D) Other available culture
systems for human developing lungs and cells
include immune-compromised mouse kidney
capsule grafting (B), seeding cells on alginate
beads in bioreactors (C), culture of lung explants
floating at the surface (or submergedwithin) growth
medium (D) and co-culture with matrix-embedded
fibroblasts (E).

7

REVIEW Development (2018) 145, dev163485. doi:10.1242/dev.163485

D
E
V
E
LO

P
M

E
N
T

http://www.lungmap.net


Anterior foregut endoderm progenitors were first efficiently
generated from definitive endoderm by systematically screening for
conditions that activate SOX2 (a marker of the foregut) and repress
CDX2 (a marker of the hindgut). These progenitors could be further
induced to express surfactant protein C (SFTPC), a distal alveolar
progenitor marker (Green et al., 2011). Subsequently, NKX2-1+

lung progenitors were generated using similar stepwise induction
methods and then differentiated towards the major proximal lung
cell fates (Mou et al., 2012; Wong et al., 2012). These studies
pioneered in vitro pulmonary lineage specification. However, we
note that, in general, these methods generate a very low percentage
of NKX2-1+ lung progenitors and very few specific bronchiolar, or
alveolar, lineage cells (see Table S1). Moreover, there is extensive
variability between hPSC cell lines in terms of their differentiation
competence (Hawkins et al., 2017).
Until recently, stepwise differentiation protocols, mimicking

in vivo lung mouse lung development have not attempted to capture
the step from ventralised anterior foregut progenitors (NKX2-1+/
SOX2+) to distal lung tip progenitors (NKX2-1+/SOX2+/SOX9+)
(Nikolic ́ et al., 2017). These human tip progenitors are likely to give
rise to all pulmonary lineages, functioning similarly to mouse tip
progenitors (Nkx2-1+/Sox2−/Sox9+) (Rawlins et al., 2009a).
Recently, SOX2+/SOX9+ tip progenitor status has been achieved
by stepwise hPSC differentiation; these cells can be maintained in
relatively pure form for long-term passaging and also undergo
spontaneous differentiation (Miller et al., 2017). It will be
interesting to understand whether specifically passing through this
additional SOX2+/SOX9+ progenitor phase will improve hPSC

differentiation quality, or if the ability to expand this progenitor cell
type will increase the quantity of mature lung cells that can readily
be obtained.

Increasing the efficiency of lung differentiation
After the initial studies on lung differentiation from PSCs were
reported, subsequent research focused on increasing the efficiency
of pulmonary lineage progenitor induction. Highly efficient NKX2-
1+ (>85%) progenitor induction was achieved by refining the timing
of BMP, TGFβ, Wnt and retinoic acid signalling (Huang et al.,
2014). One debated question was whether NKX2-1 expression
identifies human lung-competent foregut progenitors fitting the
current paradigm of mouse lung development. This can be
addressed by testing whether hPSC-derived NKX2-1+ and
NKX2-1− foregut progenitors have equal potential to produce
lung lineages. Efforts were thus made to identify cell surface
markers that could distinguish NKX2-1+ and NKX2-1− foregut
cells. Carboxypeptidase M (CPM) was reported as a marker for
NKX2-1+ pulmonary lineage progenitors by comparing gene
expression profiles of in vitro-generated anterior foregut cells
before and after ventralisation (Gotoh et al., 2014). Sorted CPM+

cells were highly NKX2-1 enriched (∼90%) and have been shown
to give rise to bronchiolar and alveolar lineages in vitro using
various different differentiation conditions (Gotoh et al., 2014;
Konishi et al., 2016; Yamamoto et al., 2017). Systematic
exploration of surface markers for the NKX2-1+ population was
also achieved using a GFP reporter knocked into the endogenous
NKX2-1 locus (Hawkins et al., 2017). Single-cell RNA-seq of
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Fig. 5. Studying human lung development using hPSCs. The usual strategy for differentiating human pluripotent stem cells (hPSCs) to lung cells relies on
maturing the cells through sequential progenitor stages that correspond, as closely as possible, to normal embryonic development. Typically, hPSCs, which are
equivalent to the cells found in the inner cell mass of the blastocyst (ICM, day 6 post-conception), are differentiated to SOX17+/FOXA2+ definitive endoderm
(∼3 pcw, equivalent to E7.5 in mouse). These cells are then matured to SOX2+/FOXA2+ anterior foregut endoderm (∼4 pcw, equivalent to E8.5-E9.5 in mouse)
from which the lungs bud. Further differentiation proceeds via a NKX2-1+/SOX2+ ventralised anterior foregut endoderm that corresponds to the NKX2-1+ lung
foregut progenitor domain characterised in mice (5-6 pcw). NKX2-1 is known to be also expressed in the developing brain and thyroid, hence TUJ1−/PAX8−

marker selection is also used to define NKX2-1+ lung progenitor cells in vitro. Current hPSC stepwise differentiation protocols sort a pure population of NKX2-1+/
SOX2+/TUJ1−/PAX8− lung progenitor cells, which are subsequently differentiated towards airway or alveolar fate by modulation of Wnt signalling. Key signalling
pathways are depicted with a more detailed summary in Table S1. A, anterior; D, dorsal; DP, dorsal pancreas; Int, intestine; L, lung; Li, liver; P, posterior; RA,
retinoic acid; St, stomach; V, ventral; VP, ventral pancreas.
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NKX2-1+ and NKX2-1+/NKX2-1− mixed populations identified
CD47 expression as most highly correlated with NKX2-1 levels;
interestingly CPM expression was also highly correlated with
NKX2-1 levels. Combining flow cytometry for CD47+ cells with a
negative selection marker, CD26 (DPP4), also achieved a high
percentage (∼90%) of NKX2-1+ enrichment. NKX2-1− cells were
discovered to be more prone to non-lung lineage differentiation,
including oesophageal, liver and intestinal lineage-like cells. Thus,
the in vitro differentiation experiments confirmed that NKX2-1+

foregut cells are human lung progenitors, as has been indicated by in
vivo mouse experiments (Minoo et al., 1999; Serls et al., 2005).
Achieving a high induction efficiency, and isolating a pure

population, of pulmonary lineage progenitors has been beneficial
for downstream differentiation to mature lung cell lineages (Gotoh
et al., 2014; Jacob et al., 2017; McCauley et al., 2017). However,
there is still work to be done. A recent study used single-cell RNA-
seq to analyse the exact lineage specification of differentiated lung
cells obtained from a sorted population of NKX2-1+ lung
progenitors and found that 20-30% of the mature cells obtained
were of hepatic or gastric epithelial lineages (McCauley et al.,
2018). Biologically, this may reflect the endogenous potential of
NKX2-1+ foregut progenitors to contribute to multiple organs,
contamination of the sorted cell population with NKX2-1− cells, or
the in vitro derivation of non-lung progenitors that express a low
level of NKX2-1. These results highlight that the downstream use of
hPSC-derived lung cells may require identification of additional
surface markers for selecting pure populations of the mature cells.
We should note that surface marker-based purification of NKX2-1+

pulmonary progenitor cells is still at an early stage and these
methods often rely on reporter lines to faithfully reflect gene
expression levels, which may vary in activity between cell lines, or
lead to artefacts if the reporters do not behave as expected.
Efforts have also been made to generate specific functional lung

lineages more efficiently. For example, ciliated cells have been
derived in air liquid interface (ALI)-cultures with Notch signalling
inhibition (Firth et al., 2014), a strategy based on mouse
developmental biology (Rock et al., 2011b). However, more
mature ciliated cells are only generated using 3D culture (Konishi
et al., 2016; McCauley et al., 2017). The generation of AT2 cells has
also been of great interest because of their stem cell properties. In
this vein, alveolar spheroids have been generated by two groups
using surface-marker-based enrichment of NKX2-1+ lung lineage
progenitors with similar growth factor conditions (Jacob et al.,
2017; Yamamoto et al., 2017). These SFTPC+ spheroids can be
expanded long-term and share features of immature alveolar
progenitor and mature AT2 cells. Moreover, lamellar bodies can
be observed in these SFTPC+ cells, which also show the ability to
synthesise surfactant-specific lipids, suggesting a mature surfactant
processing function.
The differentiation of hPSCs into the various different cell types

of the lung provides a platform for drug discovery and possible cell
therapy (Box 1). However, it also can help to improve our
understanding of human lung development. Wnt, BMP4 and
retinoic acid were shown to be the minimal requirements for
inducing pulmonary lineage progenitors from hPSCs in vitro, a
finding that was subsequently confirmed in mice using ex vivo
culture systems (Serra et al., 2017). Wnt signalling is also important
for proximal-distal patterning and alveolar proliferation during
mouse lung development (Frank et al., 2016; Li et al., 2005, 2002;
Shu et al., 2005). Using in vitro differentiation, Wnt signalling has
been shown to have a similar role in human lung development,
acting by inhibiting proximal, and promoting distal, fate at the

NKX2-1+ lung progenitor stage (McCauley et al., 2017). During
late alveolar differentiation, by contrast, Wnt agonist withdrawal
appears to stimulate efficient generation of more mature SFTPC+

AT2 cells (Jacob et al., 2017), suggesting that Wnt signalling needs
to be tightly regulated at different developmental stages to balance
proliferation and differentiation.

Epithelial-mesenchymal interactions: towards improved in vitro
differentiation?
There has been increasing interest in understanding the epithelial-
mesenchymal interactions that occur during human lung
development. The co-culture of ventralised anterior foregut
progenitors with foetal lung mesenchyme enhances their
differentiation towards bronchiolar and alveolar lineages,
illustrating the importance of these cellular interactions. (Gotoh
et al., 2014; Yamamoto et al., 2017). However, the actual molecular
mechanisms are largely unknown. Interestingly, in some hPSC
differentiation methods, mesenchymal cells can be co-derived with
epithelial progenitors (Chen et al., 2017; Dye et al., 2016; Dye et al.,
2015). It has also been shown that hPSC-derived NKX2-1+

epithelial, and associated mesenchymal, cells self-organise into
lobular structures, possibly mimicking the tubular structures
observed in the developing human foetal lung (Chen et al., 2017).
In these experiments, the mesenchymal cells are gradually lost in the
cultures; moreover, it has not yet been shown whether the
mesenchymal cells obtained are specifically lung mesenchyme
and if they directly interact with the neighbouring epithelium. Thus,
further optimisation of co-derivation systems as models to dissect
epithelial-mesenchymal crosstalk is required.

Another way to achieve relatively robust and consistent lung
differentiation is by in vivo grafting into the mouse kidney capsule
or lung epithelium (Chen et al., 2017; Huang et al., 2014; Miller
et al., 2017). hPSC-derived lung organoids have also been cultured
on scaffolds implanted into immune-compromised mice, resulting
in improved airway epithelial, and mesenchymal, maturation
compared with in vitro differentiation (Dye et al., 2015; Dye
et al., 2016). In general, in vivo grafting experiments generate better
differentiation compared with in vitro models, including co-culture
with fibroblasts. This could be due to difficulties in mimicking the
multiple factors that contribute to proper lung development in vivo,
including mechanical forces, extracellular matrix and signals, such
as those provided by endothelial cells that co-develop with
epithelium or by immune cells that are recruited to the lung
during development (Li et al., 2018, 2017; Yamamoto et al., 2007).

Despite these various advances, we should note that cells
generated through hPSC-directed differentiation are still rather more
like foetal cells in most instances. Hence, understanding late-stage
lung development in mouse and other organisms will likely benefit
in vitro human lung differentiation. Conversely, systematic
optimisation of in vitro differentiation of hPSCs will also reveal
differences with mouse lung development.

Conclusions and future directions
Human lung developmental studies performed on bona fide human
lung tissue are still relatively rare, and much cellular and molecular
characterisation remains to be done. However, the efforts of tissue
banks, such as the UK Human Developmental Biology Resource
(Gerrelli et al., 2015), and focused consortia that make their data
available to the research community, such as LungMAP and the
proposed Human Developmental Cell Atlas (Behjati et al., 2018),
are bringing human studies to the forefront of lung developmental
biology. Biologically significant cellular and molecular differences
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have been identified between mouse and human lungs (Kho et al.,
2010; Nikolic ́ et al., 2017) and have highlighted that studying
human-specific mechanisms will be essential for understanding
disease mechanisms. In the short-term, improved characterisation
throughout all stages of human development is needed to better
understand the signalling networks and epithelial-mesenchymal
crosstalk involved in lung differentiation and morphogenesis.
Specific in vitro models of the epithelial-mesenchymal cross-talk
are also required. For instance, the late-stage vasculature develops
alongside the epithelium, and this proximity suggests a crosstalk
that has been largely unexplored. In addition, a recent report
suggests that mesenchymal changes in β-catenin phosphorylation
are conserved between bronchopulmonary dysplasia, which affects
neonates, and Idiopathic Pulmonary Fibrosis, which is a chronic
adult degenerative disease (Sucre et al., 2018a), further illustrating
the importance of understanding the mesenchymal contribution to
lung development.
An improved understanding of normal human lung development

will facilitate improvements in human in vitro experimental
systems. Novel methods of growing human embryonic lung cells
have recently been developed (Miller et al., 2017; Nikolic ́ et al.,
2017; Sucre et al., 2016; Wilkinson et al., 2017). These will allow in
vitro expansion, and genetic-modification, of scarce human material
for functional experiments. However, these methods will always be
relatively low-throughput and require validation against actual
human lung samples whilst they continue to be optimised. An
alternative in vitro approach is to differentiate hPSCs to lung fates;
such studies have already provided insights into human lung
developmental biology. Furthermore, hPSCs have the advantages of
limitless supply, ease of genetic manipulation and the possibility of
producing large numbers of cells for high-throughput experiments.
Similar to the human embryonic lung cells grown in vitro, hPSC
lung differentiation is still being optimised for the production of
pure populations of mature cells and requires continued validation
against human lung samples. These differing in vitro approaches are
largely complementary and can all be adapted for disease modelling
and testing regenerative strategies. Further improvements in these
models are likely to come from collaborations with bioengineers to
include more physiological features such as stretch, gas
concentrations and extracellular matrix (Gjorevski et al., 2016;
Schneeberger et al., 2017).
As in vitro experimental models progress, one challenge to be

faced by the field will be the validation of the in vitro cultures
against human lungs. Adult human lung cells are relatively easy to
obtain, as are embryonic samples up to 20 pcw. However, many in
vitro experiments aim to model late embryonic, or neonatal, lungs.
How are these to be validated? The work of the LungMAP
consortium in characterising human lungs from 23 pcw to 10 years
will help, but is unlikely to be able to collect all of the validation data
required. One approach could be to perform complementary
experiments in larger mammals whose lungs are more similar to
those of humans than of mice. For example, primates have been
used to study alveologenesis, bronchopulmonary dysplasia and
postnatal lung growth (Fanucchi et al., 2006; Maniscalco et al.,
2002). Premature lambs are used as models for BPD (Albertine,
2015), and transgenic pigs are used for modelling cystic fibrosis and
now also for fundamental developmental insights (Chen et al.,
2018; Rogers et al., 2008). Comparative approaches could be used
to determine the core features of neonatal lung cell types of large
animals, which could then be used to improve human in vitro
models. Comparative approaches would also be valuable for
identifying core, conserved molecular pathways that may be of

potential therapeutic use and even for testing those potential
therapies. Moreover, increasing the number of species used for
fundamental developmental studies may allow long-standing
questions about size control, branching morphogenesis and
developmental timing to be addressed.

The current rapid advances in the study of human lung
developmental biology make this an excellent time for
developmental biologists, geneticists and theorists to work
together to identify molecular mechanisms underlying human
disease. Numerous genetic variants have now been associated with
childhood-onset, and adult-degenerative, lung conditions, and
large-scale transcriptional and epigenetic datasets from diseased
human lungs are being mined by theorists to identify prospective
therapeutic targets. The addition of human lung developmental
biology to this mix should allow molecular mechanisms to be
validated and rational therapies moved towards the clinic.
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Nikolić, M. Z., Caritg, O., Jeng, Q., Johnson, J.-A., Sun, D., Howell, K. J., Brady,
J. L., Laresgoiti, U., Allen, G., Butler, R. et al. (2017). Human embryonic lung
epithelial tips are multipotent progenitors that can be expanded in vitro as long-
term self-renewing organoids. eLife 6, e26575.

O’Rahilly, R. and Müller, F. (1987). Developmental Stages in Human Embryos:
including a revision of Streeter’s ‘Horizons’ and a survey of the Carnegie
collection. Carnegie Institution of Washington: DC, USA.

Oak, P., Pritzke, T., Thiel, I., Koschlig, M., Mous, D. S., Windhorst, A., Jain, N.,
Eickelberg, O., Foerster, K., Schulze, A. et al. (2017). Attenuated PDGF
signaling drives alveolar and microvascular defects in neonatal chronic lung
disease. EMBO Mol. Med. 9, 1504-1520.

Oulton, M., Martin, T. R., Faulkner, G. T., Stinson, D. and Johnson, J. P. (1980).
Developmental study of a lamellar body fraction isolated from human amniotic
fluid. Pediatr. Res. 14, 722-728.

Pardo-Saganta, A., Law, B. M., Gonzalez-Celeiro, M., Vinarsky, V. and
Rajagopal, J. (2013). Ciliated cells of pseudostratified airway epithelium do not
becomemucous cells after ovalbumin challenge. Am. J. Respir. Cell Mol. Biol. 48,
364-373.

Park, W. Y., Miranda, B., Lebeche, D., Hashimoto, G. and Cardoso, W. V. (1998).
FGF-10 is a chemotactic factor for distal epithelial buds during lung development.
Dev. Biol. 201, 125-134.

Pavlovic, J., Floros, J., Phelps, D. S., Wigdahl, B., Welsh, P., Weisz, J., Shearer,
D. A., Leure du Pree, A., Myers, R. and Howett, M. K. (2008). Differentiation of
xenografted human fetal lung parenchyma. Early Hum. Dev. 84, 181-193.

Peters, K., Werner, S., Liao, X., Wert, S., Whitsett, J. and Williams, L. (1994).
Targeted expression of a dominant negative FGF receptor blocks branching
morphogenesis and epithelial differentiation of the mouse lung. EMBO J. 13,
3296-3301.

Phelps, D. S. and Floros, J. (1988). Localization of surfactant protein synthesis in
human lung by in situ hybridization. Am. Rev. Respir. Dis. 137, 939-942.

Popova, A. P., Bentley, J. K., Cui, T. X., Richardson, M. N., Linn, M. J., Lei, J.,
Chen, Q., Goldsmith, A. M., Pryhuber, G. S. and Hershenson, M. B. (2014).
Reduced platelet-derived growth factor receptor expression is a primary feature of
human bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell Mol. Physiol. 307,
L231-L239.

Rackley, C. R. and Stripp, B. R. (2012). Building and maintaining the epithelium of
the lung. J. Clin. Invest. 122, 2724-2730.

Rafii, S., Butler, J. M. and Ding, B.-S. (2016). Angiocrine functions of organ-
specific endothelial cells. Nature 529, 316-325.

Rajatapiti, P., de Rooij, J. D., Beurskens, L. W. J. E., Keijzer, R., Tibboel, D.,
Rottier, R. J. and de Krijger, R. R. (2010). Effect of oxygen on the expression of
hypoxia-inducible factors in human fetal lung explants. Neonatology 97, 346-354.

Rawlins, E. L. and Hogan, B. L. M. (2008). Ciliated epithelial cell lifespan in the
mouse trachea and lung. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L231-L234.

Rawlins, E. L., Ostrowski, L. E., Randell, S. H. and Hogan, B. L. M. (2007). Lung
development and repair: contribution of the ciliated lineage. Proc. Natl. Acad. Sci.
USA 104, 410-417.

Rawlins, E. L., Clark, C. P., Xue, Y. and Hogan, B. L. M. (2009a). The Id2+ distal tip
lung epithelium contains individual multipotent embryonic progenitor cells.
Development 136, 3741-3745.

Rawlins, E. L., Okubo, T., Xue, Y., Brass, D. M., Auten, R. L., Hasegawa, H.,
Wang, F. and Hogan, B. L. M. (2009b). The role of Scgb1a1+ Clara cells in the
long-termmaintenance and repair of lung airway, but not alveolar, epithelium.Cell
Stem Cell 4, 525-534.

Rehan, V. K., Sugano, S., Wang, Y., Santos, J., Romero, S., Dasgupta, C.,
Keane, M. P., Stahlman, M. T. and Torday, J. S. (2006). Evidence for the
presence of lipofibroblasts in human lung. Exp. Lung Res. 32, 379-393.

Reynolds, S. D., Giangreco, A., Power, J. H. and Stripp, B. R. (2000).
Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor
cells capable of epithelial regeneration. Am. J. Pathol. 156, 269-278.

Reynolds, S. D., Reynolds, P. R., Pryhuber, G. S., Finder, J. D. and Stripp, B. R.
(2002). Secretoglobins SCGB3A1 and SCGB3A2 define secretory cell subsets in
mouse and human airways. Am. J. Respir. Crit. Care Med. 166, 1498-1509.

Rock, J. R., Onaitis, M. W., Rawlins, E. L., Lu, Y., Clark, C. P., Xue, Y., Randell,
S. H. and Hogan, B. L. M. (2009). Basal cells as stem cells of the mouse trachea
and human airway epithelium. Proc. Natl. Acad. Sci. USA 106, 12771-12775.

Rock, J. R., Barkauskas, C. E., Cronce, M. J., Xue, Y., Harris, J. R., Liang, J.,
Noble, P. W. and Hogan, B. L. M. (2011a). Multiple stromal populations
contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal
transition. Proc. Natl. Acad. Sci. USA 108, E1475-E1483.

Rock, J. R., Gao, X., Xue, Y., Randell, S. H., Kong, Y.-Y. and Hogan, B. L. M.
(2011b). Notch-dependent differentiation of adult airway basal stem cells. Cell
Stem Cell 8, 639-648.

Rogers, C. S., Stoltz, D. A., Meyerholz, D. K., Ostedgaard, L. S., Rokhlina, T.,
Taft, P. J., Rogan, M. P., Pezzulo, A. A., Karp, P. H., Itani, O. A. et al. (2008).
Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs.
Science 321, 1837-1841.

Schittny, J. C. (2017). Development of the lung. Cell Tissue Res. 367, 427-444.
Schneeberger, K., Spee, B., Costa, P., Sachs, N., Clevers, H. and Malda, J.

(2017). Converging biofabrication and organoid technologies: the next frontier in
hepatic and intestinal tissue engineering? Biofabrication 9, 013001.

Serls, A. E., Doherty, S., Parvatiyar, P., Wells, J. M. and Deutsch, G. H. (2005).
Different thresholds of fibroblast growth factors pattern the ventral foregut into liver
and lung. Development 132, 35-47.

Serra, M., Alysandratos, K.-D., Hawkins, F., McCauley, K. B., Jacob, A., Choi, J.,
Caballero, I. S., Vedaie, M., Kurmann, A. A., Ikonomou, L. et al. (2017).
Pluripotent stem cell differentiation reveals distinct developmental pathways
regulating lung- versus thyroid-lineage specification. Development 144,
3879-3893.

Shirasawa, M., Fujiwara, N., Hirabayashi, S., Ohno, H., Iida, J., Makita, K. and
Hata, Y. (2004). Receptor for advanced glycation end-products is a marker of type
I lung alveolar cells. Genes Cells 9, 165-174.

Shu, W., Guttentag, S., Wang, Z., Andl, T., Ballard, P., Lu, M. M., Piccolo, S.,
Birchmeier, W., Whitsett, J. A., Millar, S. E. et al. (2005). Wnt/beta-catenin
signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-
distal patterning in the lung. Dev. Biol. 283, 226-239.

Smith, B. M., Traboulsi, H., Austin, J. H. M., Manichaikul, A., Hoffman, E. A.,
Bleecker, E. R., Cardoso, W. V., Cooper, C., Couper, D. J., Dashnaw, S. M.
et al. (2018). Human airway branch variation and chronic obstructive pulmonary
disease. Proc. Natl. Acad. Sci. USA 115, E974-E981.

Stahlman, M. T., Besnard, V., Wert, S. E., Weaver, T. E., Dingle, S., Xu, Y.,
von Zychlin, K., Olson, S. J. and Whitsett, J. A. (2007). Expression of
ABCA3 in developing lung and other tissues. J. Histochem. Cytochem. 55,
71-83.

Sucre, J. M. S., Wilkinson, D., Vijayaraj, P., Paul, M., Dunn, B., Alva-Ornelas,
J. A. and Gomperts, B. N. (2016). A three-dimensional human model of the
fibroblast activation that accompanies bronchopulmonary dysplasia identifies
Notch-mediated pathophysiology. Am. J. Physiol. Lung Cell Mol. Physiol. 310,
L889-L898.

Sucre, J. M. S., Deutsch, G. H., Jetter, C. S., Ambalavanan, N., Benjamin, J. T.,
Gleaves, L. A., Millis, B. A., Young, L. R., Blackwell, T. S., Kropski, J. A. et al.
(2018a). A shared pattern of β-catenin activation in bronchopulmonary dysplasia
and idiopathic pulmonary fibrosis. Am. J. Pathol. 188, 853-862.

Sucre, J. M. S., Jetter, C. S., Loomans, H., Williams, J., Plosa, E. J., Benjamin,
J. T., Young, L. R., Kropski, J. A., Calvi, C. L., Kook, S. et al. (2018b).
Successful establishment of primary type 2 alveolar epithelium with 3D
organotypic co-culture. Am. J. Respir. Cell Mol. Biol.
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