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Abstract

The work presented in this thesis focuses on developing compression techniques
to exploit fully the constraining power of high-order statistics when applied to
the cosmological observable of interest. We present four different methods in
the three-point (3pt) case. The mathematical theoretical framework is first de-
veloped and then followed, for all the methods, by application on real data. In
particular we use data from the CMASS sample of the Sloan Digital Sky Survey
III BOSS Data Releases 11 and 12. Our compression results are compared to
those obtained via standard analysis, for example Markov chain Monte Carlo
(MCMC) sampling.

First, we consider the three-point auto-correlation function as an integrated
compressed version of the standard correlation one. We derive analytic expres-
sions including corrections for the Primordial non-Gaussianity. We then test the
model on data to constrain cosmological parameters.

Secondly, we explore two methods of compressing the redshift-space galaxy
power spectrum and bispectrum with respect to a chosen set of cosmological
parameters. Both methods transform the original data-vector into a compressed
one with dimension equal to the number of model parameters considered using
the Multiple Optimised Parameter Estimation and Data compression algorithm
(MOPED) algorithm. Analytic expressions for the covariance matrix are derived
in order both to compress the data-vector and to test the compression perfor-
mance by comparing with standard MCMC sampling on the full data-vector.

Finally, we apply our compression methods to the galaxy power spectrum
monopole, quadrupole and bispectrum monopole measurements from the BOSS
DR12 CMASS sample. We derive an analytic expression for the covariance ma-
trix of the new data-vector. We show that compression allows a much longer
data-vector to be used, returning tighter constraints on the cosmological param-
eters of interest.



Impact Statement

The work presented in this thesis has the potential to become the standard
procedure to analyse three-point (and higher-order) statistics in future data sets
like those from the "Dark Energy Spectroscopic Instrument" (DESI), "Euclid"
and the "Subaru Prime Focus Spectroscopic" (PFS). The probe on which the
statistics used in this work focus is galaxy clustering. The surveys mentioned
above will create much larger and richer catalogues of galaxies than previous
generation surveys. This will require us to use the full potential of statistical
tools available in order to extract all the information contained in new data
sets. In particular, this can be interpreted as using all the possible elements of
data-vectors representing the statistics employed for the analysis of the data.
Limitations imposed by the high cost of computational power needed to analyse
the full data-vector can be overcome using the compression methods presented
here.

Moreover, these techniques can be applied to higher-order statistics applied
for other cosmological probes, for example weak lensing, cosmic microwave back-
ground anisotropies, 21cm emission lines and Ly-α forest.

The analytic work presented here also lays the foundation for a systematic
approach in the derivation of similar expressions for higher-order statistics, or
the same three-point statistics in other fields.

Outside of the astronomical environment, the compression methods can also
be applied to any situation in which it is possible to model the covariance ma-
trix of the data-vector of interest. In several areas outside academia it can be
interesting to study the deviations from Gaussianity of statistical fields.

In this era of "Big Data", one of the most pressing active research areas is
indeed the compression of large data-sets.



“Good Morning!" said Bilbo, and he meant it. The sun was shining,
and the grass was very green. But Gandalf looked at him from under
long bushy eyebrows that stuck out further than the brim of his shady
hat.

"What do you mean?" he said. "Do you wish me a good morning, or
mean that it is a good morning whether I want it or not; or that you
feel good this morning; or that it is a morning to be good on?"

"All of them at once," said Bilbo. "And a very fine morning for a pipe
of tobacco out of doors, into the bargain.

...

"Good morning!" he said at last. "We don’t want any adventures
here, thank you! You might try over The Hill or across The Water."
By this he meant that the conversation was at an end. "What a lot
of things you do use Good morning for!" said Gandalf. "Now you
mean that you want to get rid of me, and that it won’t be good till
I move off.”

— J.R.R. Tolkien, The Hobbit



Thesis roadmap

Current and future surveys like the Baryon Oscillation Spectroscopic Survey
(BOSS), the Dark Energy Survey (DES), the Dark Energy Spectroscopic Instru-
ment (DESI), Euclid, the Subaru Prime Focus Spectroscopy (PFS), will produce
extremely large and rich of information data-sets which require an improvement
of the current analysis techniques. In particular, beyond the level of two points
(2pt) correlation functions (or power spectra in Fourier space), 3pt statistics
represent the simplest higher-order alternative which can be used to study the
non-Gaussian components of the data. 3pt statistics are therefore fundamental
in better constraining the cosmological parameter space (e.g. how much dark
matter/energy are there in the Universe?) in order to discriminate between dif-
ferent models of the Universe. However, 3pt statistics are both theoretically and
numerically more difficult to measure and to model than the 2pt ones, suffer-
ing also of the limited number of computationally expensive simulations needed
to estimate the errors on their measurements. Efficiently compressing (minimal
information loss) 3pt statistics (in ways easily extendable to higher-order statis-
tics like 4-5pt ones, etc.) provides an effective solution to their drawbacks and
enhances their application to the cosmological data-sets.

In Chapter 2 we derive analytical expressions for the 2pt and 3pt auto-
correlation functions and for their ratio, the skewness. All quantities have been
derived considering also primordial non Gaussianity contributions. These are in-
tegrated statistics, namely of the 2pt and 3pt correlation functions. By integrat-
ing, the length of the data-vector is shortened. Nevertheless, as the measurement
on BOSS DR11 reveals, part of the information is lost.

In Chapter 3 are presented two compression techniques for the redshift space
galaxy power spectrum and bispectrum, both described in Gualdi et al., 2018b.
The first method consists in running an MCMC sampling on the compressed data
vector. In the second method, the parameter space is first orthogonalised using
a principal component analysis transformation. In this way, the transformed
parameters are uncorrelated. It is then possible to reconstruct the multidimen-
sional posterior distribution by randomly sampling the 1D posterior distributions
of the transformed parameter set.

ii



Chapter 4 describes the application of the compression methods presented
in Chapter 3 to the measurements from the DR12 BOSS CMASS sample of the
power spectrum (monopole and quadrupole) and the bispectrum (monopole).
This work has been reported in Gualdi et al., 2018a. In particular we studied
what happens to the 1 and 2D posterior distributions of the model parameters
when many more triangle configurations are included in the bispectrum part of
the data-vector.

Finally, we conclude in Chapter 5 where it is also presented an alternative way
to compress in general 3pt statistics using the geometrical properties of a triangle
configuration. This method performance is then applied to the measurement
from the DR12 BOSS CMASS sample of the bispectrum monopole, and compared
to the performances of the methods described in Chapters 3 and 4.
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“It’s a dangerous business, Frodo, going out your door. . . You step into the
Road, and if you don’t keep your feet, there is no knowing where you might be
swept off to.”

- J.R.R. Tolkien, The Fellowship of the Ring

1 | Introduction

1.1 Cosmology

The theory describing the evolution of the Universe on large-scales is General
Relativity which was proposed by Einstein in 1915. One of the greatest achieve-
ments and breakthrough of this theory is to connect the shape of space-time
with what is embedded in it. In other words, the Universe and its evolution are
shaped by its content. The equation

Gµν = 8π G
c4 Tµν , (1.1)

relates the Einstein’s tensor Gµν , which encodes the geometrical description of
space-time, with the stress-energy tensor Tµν , which describes the nature of the
matter or energy embedded in space-time. The matter content characterises the
geometry of space-time and the geometry of space-time defines the dynamics of
the matter content. In the above equation, G is Newton’s constant and c is the
speed of light (hereafter, set equal to one).

It is fairly logical to assume that the Earth, the point from which we observe
the Universe, is not located in a special position. It is also natural to expect
that the observations done by astrophysicists on our planet would be on aver-
age equivalent to the ones done from any other planet in any other galaxy in
the Universe. This is the Cosmological Principle: from all possible spatial posi-
tions the observed statistical properties of the Universe are the same. This idea
is supported by cosmological observations, which during the last century have
increasingly implied that our Universe is homogeneous and isotropic when ob-
served at large enough scales (≥ 100 Mpc, Hajian and Souradeep, 2003; Zunckel
et al., 2011, recently it has been proved by Saadeh et al., 2016 that anisotropic
expansion of the Universe is strongly disfavored, with odds of 121 000:1 against).
Isotropy means that the Universe appears the same in all directions. Homogene-
ity means that there is no preferred location: the properties of the Universe and
the physics describing them are everywhere the same. If these two properties are
assumed to be valid then a solution can be found to Einstein’s equations. The
solution is given by the Friedmann-Leimatre-Robertson-Walker (FLRW) metric:
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1.1. Cosmology

ds2 = c2dt2 − a(t)2
[

dr2

1−Kr2 + r2
(
dθ2 + sin2 θdφ2

)]
, (1.2)

where ds is the infinitesimal line element of space-time, t is the coordinate time
and r, θ, φ are the classical polar coordinates. Two parameters characterise the
nature and dynamics of space-time described by the FLRW metric: a and K.
a is the scale factor and is a function of time: if it increases (decreases) with
time then the Universe is expanding (contracting). K is the curvature constant
and parameterises the spatial geometry. If one defines a curvature radius rk such
that K = k/r2

k then the unitless constant k can take a discrete set of values:
+1, 0 and −1 corresponding to a spatial geometry that is closed, flat and open
respectively.

In cosmology it is usual to substitute coordinate time t and the physical
distance r with the conformal time η and conformal radius χ defined by the
transformations

η(t) =
∫ t

0

dt′

a(t′) and χ(r) = rkS
−1
k (r/rk) where Sk(x) :=


sin(x) if k = +1
x if k = 0
sinh(x) if k = −1 .

(1.3)
The FLRW metric can then be rewritten in the elegant form

ds2 = a2(η)r2
k

[
dη̃2 − dχ̃2 − S2

k(χ̃)dΩ
]
, (1.4)

where η̃ = η/rk, χ̃ = χ/rk and dΩ = (dθ2 + sin2 θdφ2).
In the 1920s and 1930s the consensus among physicists was for the Universe

to be static. Einstein, sharing this belief, introduced a cosmological constant Λ in
his equations in order for the Universe to be static. Soon after Hubble discovered
that galaxies were moving away from our Milky Way with a velocity proportional
to their distance from us (Hubble and Humason, 1931). He measured the distance
of far-away galaxies by exploiting the Cepheid stars property of having luminosity
varying with know periods. By observing the luminosity of Cepheid stars in
our Galaxy it was possible to infer the distance of other galaxies by measuring
their apparent luminosity. When light is emitted by a source that is not at rest
with respect to the receiver, it is observed at shifted frequencies according to
the Doppler effect. Spectral lines characterising the light emitted by a star are
shifted to longer wavelengths ("redshifted") if the star is moving away, and shifted
to shorter wavelengths ("blueshifted") if the star is moving towards the observer.
The Doppler effect states that the frequency shift is connected to the velocity of
the emitting object with respect to the receiver and is given by
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1.1. Cosmology

νemi − νobs

νemi
' vobs

c
, (1.5)

where νemi is the frequency of the light at the emission and νobs is the light
frequency measured by the receiver. Hubble realised that the great majority of
galaxies was moving away from us with velocity proportional to their distance
from the Milky Way, vobs = H d. The relation in Equation 1.5 can be rewritten
using the wavelengths to define the redshift z of an emitting object moving away
from the observer

z = λobs − λemi

λemi
, (1.6)

where λ is the wavelength. The implied equivalence between recessional veloc-
ity vobs and redshift is valid only at small cosmological scales. However from
Equation 1.2, imposing for the light ds2 = 0, at all scales one obtains

1 + z = a0

a
, (1.7)

where a0 is the scale factor today, usually set to be equal to unity. Equation
1.7 implies that the redshift can be used to parameterise the expansion of the
Universe as well as the scale factor. Therefore, the measured redshift of an
astronomical object can tell us how far both in space and in time (in terms of
how long ago was the light signal emitted) the object is from us.

1.1.1 Friedmann equation and cosmological evolution

In order to discover whether, during its history, the Universe has been expanding,
contracting, or remaining static, we need to study the evolution of the scale factor
as a function of time. For this reason it is necessary to solve Einstein’s equations
for the FLRW metric shown in Equation 1.2. Rewriting Einstein’s equations
including also the cosmological constant gives

Gµν = 8π G
c4 Tµν + Λ gµν , (1.8)

where we follow the modern interpretation by Gliner (1966) and Zel’dovich (1968)
of the cosmological constant being a contribution to the energy-momentum ten-
sor for the quantum vacuum. For the energy-momentum tensor describing the
content of the Universe, a common assumption is that it behaves as a perfect
fluid with

Tµν = −p gµν + (p + ρc2)uµuν , (1.9)

3



1.1. Cosmology

where p and ρ are respectively the fluid’s isotropic pressure and its energy density,
while u is the four velocity which, in a (co-moving) system of reference at rest
with the fluid, is (1, 0, 0, 0). From Einstein’s equations it is possible to derive the
Friedmann equations

H2 =
(
ȧ

a

)2
= 8πGρ

3 − kc2

a2 + Λc2

3 ,

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+ Λc2

3 , (1.10)

where H is the Hubble parameter and the over-dots indicate coordinate time
derivatives of the scale factor. From Equations 1.10, it is evident that for a
non-empty Universe (ρ 6= 0), the space-time is either contracting or expand-
ing. Depending on the values of ρ, p and Λ on the right hand side, the second
equation tell us whether the Universe expansion or contraction is accelerating or
decelerating.

Combining the two Friedmann equations or by imposing the energy conser-
vation condition ∇µT

µν = 0, where ∇µ is the covariant derivative, it is possible
to obtain the continuity equation

ρ̇ + 3 ȧ
a

(
ρ + p

c2

)
= 0. (1.11)

In Equation 1.10 if one temporarily sets the cosmological constant Λ = 0, then
H2 can be thought as the kinetic energy, 8πGρ

3 as the potential energy, and
− k
a2 as the conserved total energy. In order to better understand the physical

meaning of Equations 1.10, considering the Λ = 0 case, it is useful to introduce a
characteristic energy density for which the kinetic energy is equal to the potential
energy (giving flat space, k = 0). This is called the critical energy density

ρc = 3H2

8πG. (1.12)

If the total energy density is smaller than ρc then the Universe will be open
(k = −1) while if it is greater the Universe will be spatially closed (k = 1).
From this quantity it is also then possible to define density parameters for all
the energy components present in the Universe such as
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1.1. Cosmology

Ωm ≡ ρm

ρc
= 8πGρm

3H2 ,

Ωr ≡ ρr

ρc
= 8πGρr

3H2 ,

ΩΛ ≡ ρΛ

ρc
= Λc2

3H2 ,

ΩK ≡ ρk
ρc

= −kc
2

H2 , (1.13)

where Ωm, Ωr, ΩΛ and Ωk are respectively the density parameters for the total
non-relativistic matter, the relativistic radiation, the cosmological constant and
curvature contributions. By integrating the continuity equation 1.11 and by
labeling the quantities observed at the present day as (ρ0, a0) we find

ρ = ρ0 a
−3(1 +w) =⇒ a(t) = a0 t

2
3(1+w) for w 6= −1, (1.14)

where w = p/ρ is the equation of state parameter characterising each component.
The second equation for a(t) has been obtained by substituting the first into the
Friedmann equations. For pressureless matter w = 0; for relativistic species
w = 1/3 ; for a cosmological constant w = −1. The first Friedmann equation
(Equation 1.10) can be rewritten in terms of the density parameters

H2

H2
0

= Ωr,0 (1 + z)4 + Ωm,0 (1 + z)3 + ΩK (1 + z)2 + ΩΛ, (1.15)

where Equation 1.7 has also been used to convert between scale factor and red-
shift. From Equation 1.15 it is clear that different species evolve differently with
redshift. For example, the radiation density decreases more quickly, as (1 + z)4,
than the matter density, as (1 + z)3. For a spatially flat Universe, Equation 1.15
tell us that the cosmological history can be divided in three phases dominated
by the energy components:

• radiation: a(t) ∝ t
1
2 with H = 1

2t ;

• matter: a(t) ∝ t
2
3 with H = 2

3t ;

• cosmological constant: a(t) ∝ eH0 t with H0 =
√

Λ
3 .

All three phases describe an expanding Universe; however by checking the second
time derivative of the scale factor, it can be seen that expansion decelerates
during the radiation- and matter-dominated epoch, and accelerates during the
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1.1. Cosmology

Λ-dominated epoch. Extrapolating backwards in time, the Friedmann equations
indicate that the Universe started expanding from a single point. This idea has
been given the well-known name of the “Big Bang”. Nevertheless, this conclusion
brings up three important questions:

• why is the Universe observed today so near to spatial flatness? Looking
at Equation 1.15 and considering z −→ ∞ if the sum of all the current
day energy density components is close to the critical density, then the
difference between spatially curved and flat space must have been much
smaller at the beginning of the cosmological history. This is the so-called
"flatness problem".

• Since light signals have a finite speed, how can it be that different appar-
ently causally disconnected patches of the Universe observed today look
so similar (isotropic and homogeneous) and are well thermalised between
each others? (horizon paradox)

• How did structure form?

1.1.2 Inflation

In order to answer the above questions Guth (1981) proposed a mechanism known
as Cosmological Inflation. Several other physicists developed alternative versions
(Linde, 1982; Albrecht and Steinhardt, 1982). This theory describes an extremely
fast expansion of the early Universe (between ∼ 10−36 s and ∼ 10−32 s after
the initial singularity). The first models theorised that the cause of the fast
accelerated expansion was a scalar field called inflaton with equation of state
parameter w < −1/3. This requirement can be understood by computing the
deceleration parameter from the Friedmann equations 1.10 for a generic species
with energy density and pressure related by p/ρ = w

q = −aȧ
ä

=
ρ + 3p

c2

ρ
. (1.16)

For the flatness problem, manipulating the Friedmann equations it follows that:

(
Ω−1 − 1

)
ρ a2 = −3kc2

8πG. (1.17)

The right hand side of the above equation is constant with time, while the
left hand side is not. In particular the term ρ a2 increases during time, since the
scale factor grows exponentially during inflation. Therefore, the initial difference
|(Ω−1 − 1)| is irrelevant since by the end of a large enough period of inflation
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1.1. Cosmology

it can be made arbitrarily close to zero. This means that an extremely brief
inflation can flatten the spatial geometry of the very early Universe to such a
degree that, even with the departure from flatness described by Equation 1.15, it
is not unexpected nowadays to observe a spatial geometry very close to be flat.

The observation that apparently causally-disconnected regions of the Uni-
verse present extremely similar properties can also be explained through the
inflationary mechanism. During the very short time of accelerated expansion,
a small region in equilibrium with itself has expanded into several causally dis-
connected regions which preserved the same conditions of when they were in
equilibrium. Different regions of the Universe in particular at large-scales, mov-
ing far away from each other at a speed greater than the speed of light ("causally
disconnected"), can look statistically homogeneous and isotropic.

Finally, since inflation expands a tiny region by several orders of magnitude,
quantum fluctuations can be stretched to cosmological scales. After inflation is
over and the scalar field has decayed into matter and radiation in a process called
"reheating" (Shtanov et al., 1995; Linde, 1996; Kofman, 1996), these fluctuations
grow into under/over-densities of the matter and radiation fields. The imprinted
oscillations in the radiation and, in particular, the matter field act as seeds for
the formation of structure due to gravitational collapse.

Following inflation, the next fundamental step in cosmic history was baryo-
genesis. During this period, the first standard matter ( as we know it ) formed.
One particular aspect that several models have been proposed in the literature
to explain is the asymmetry between matter and antimatter. The first models
in the literature propose to explain the decay of super massive particles (Wein-
berg, 1979; Toussaint and Wilczek, 1979), and more recent models are based on
supersymmetry (Affleck and Dine, 1985).

Light element isotopes like D, 3He, 4He and 7Li were formed during the Big-
Bang Nucleosynthesis which took place when the average temperature of the
Universe was around 1 MeV.

1.1.3 Cosmic Microwave Background

Due to the cooling expansion of the Universe, at redshift z ' 1100 (∼ 379000
years after the Big Bang) the average temperature dropped below 3000 K. The
average kinetic energy of electrons became low enough for the hydrogen nuclei
to capture them and form neutral hydrogen atoms. As a consequence of this
process, labelled as "recombination", the photons were then free to propagate.
The cosmic microwave backround radatiation (CMB) is made of the photons
from this epoch also called "last scattering" (between photons and electrons).
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1.1. Cosmology

This blackbody radiation was first discovered by Wilson and Penzias (1965)
and afterwards investigated by dedicated surveys like the Cosmic Background
Explorer COBE (Smoot et al., 1992), the Wilkinson Microwave Anisotropy Probe
WMAP (Bennett et al., 2003b) and Planck (Planck Collaboration et al., 2014).
The CMB radiation is extremely well described by a black body with average
temperature T = 2.7255 K, with fluctuations that are five orders of magnitude
smaller. The surveys listed above had as their primary goal the mapping of
these temperature fluctuations. The resulting 2D maps can be described using
spherical harmonics, expanding the temperature field as a function of two angular
variables θ and φ,

T (θ, φ) =
∑
`m

a`mY`m(θ, φ), (1.18)

where ` andm are the orders of the multipole expansion and a`m are the spherical
harmonic coefficients. The multipole ` is related to features in the sky of size θ ≈
180◦/`. Since the temperature fluctuations field is to a very good approximation
independent of direction (statistically isotropic), most of the information can be
described using simply the variance of angular separation, parameterised by the
C` = 〈|a`m|2〉 coefficients which are estimated by

Ĉ` = 1
2`+ 1

∑̀
m=−`

|a`m|2. (1.19)

These C` values are shown as a function of the multipole ` in Figure 1.1 and
form the angular power spectrum of the CMB temperature fluctuations. It is
possible to divide the `-range in the regions listed below, which are dominated by
different physical processes modifying the primordial temperature perturbation
field:

• Integrated Sachs-Wolfe effect, ` ≤ 10 : low multipole anisotropies
correspond to the largest angular separations in the sky. These are affected
by the variation in time of the gravitational potential in the regions of space
crossed by the CMB photons. At these low multipoles and at low redshifts
the cosmological constant energy component dominates and photons find
themselves climbing out from a lower potential step than the one they fell
into, due to the repulsive action of Dark Energy. This changes the spatial
energy distribution of CMB photons, i.e. their anisotropies.

• Sachs-Wolfe Plateau, 10 ≤ ` ≤ 100 : the angular separation corre-
sponding to the horizon dimension at the time of the last scattering be-
tween electrons and photons is to ` ' 100. If the curvature perturbations

8



1.1. Cosmology

had a spectrum close to be featureless at the time of last scattering, then
it would imply a nearly constant value for the quantity shown in Figure
1.1, namely `(` + 1)C`. The effect that characterises this `-range is called
Sachs-Wolfe effect, the combination of intrinsic temperature fluctuations
and gravitational redshift.

• Acoustic Peaks, 100 ≤ ` ≤ 1000 : for perturbations inside the horizon at
the time of last scattering, oscillations of the baryon-photon plasma before
recombination can be observed. Before the formation of neutral atoms,
photons were tightly coupled with electrons via Compton scattering. The
photons followed the baryon oscillations which were formed by the balance
between the gravitational collapse of matter and the radiation pressure of
the tightly-coupled plasma. Later, when the efficiency of the Compton
scattering became low enough due to cooling from the Universe’s expan-
sion, the mean-free path of the photons became effectively infinite since
they decoupled from the electrons. Therefore, where at the last scattering
surface there was an over-density of the photon-baryon plasma, after the
decoupling more energetic photons were freed to propagate from that region
than for example from another region where there was an under-density.
These patterns in the photons reflect the distribution of matter at the time
of the last scattering and the amplitude of the soundwaves propagating in
the photon-baryon plasma. The shape and patterns of these oscillations are
strongly dependent on the cosmological model and its parameters. The-
oretically, the existence of these peaks was predicted since 1970 (Peebles
and Yu, 1970; Sunyaev and Zeldovich, 1970) and their detection and study
began in the early 1990s (Smoot et al., 1992; Scott et al., 1995).

• Silk Damping, ` ≥ 1000 : since recombination was not an instantaneous
process, the surface of last scattering had a finite thickness. The pertur-
bations corresponding to angular separations smaller than this thickness
were smoothed out by the residual recombination interaction inside the
shell. In other words, during the interval of time in which recombination
took place, the photons were still partially dragged by the baryons during
their oscillations. This is similar to what happens to a sand castle’s tower
after a wave passes back and forth over it).

1.1.4 Dark matter

A first indication of the need to introduce an exotic component of matter comes
from the expansion history of the Universe and in particular from the time at
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29. Cosmic microwave background 11

Figure 29.2: CMB temperature anisotropy band-power estimates from the Planck,
WMAP, ACT, and SPT experiments. Note that the widths of the ℓ-bands vary
between experiments and have not been plotted. This figure represents only a
selection of the most recent available experimental results, and some points with
large error bars have been omitted. At the higher multipoles these band-powers
involve subtraction of particular foreground models, and so proper analysis requires
simultaneous fitting of CMB and foregrounds over multiple frequencies. The x-axis
here is logarithmic for the lowest multipoles, to show the Sachs-Wolfe plateau, and
linear for the other multipoles. The acoustic peaks and damping region are very
clearly observed, with no need for a theoretical curve to guide the eye; however, the
curve plotted is the best-fit Planck ΛCDM model.

The band-powers shown in Fig. 29.2 are in very good agreement with a ‘ΛCDM’
model. As described earlier, several (at least eight) of the peaks and troughs are quite
apparent. For details of how these estimates were arrived at, the strength of correlations
between band-powers and other information required to properly interpret them, the
original papers should be consulted.

December 1, 2017 09:36

Figure 1.1: Plot of the angular power spectrum presented in the Cosmic Mi-
crowave Background section of the Particle Physics Review 2017 (Patrignani
et al., 2016). The data shown are from Planck, WMAP, Atacama Cosmology
Telescope (ACT Swetz et al., 2011) and the South Pole Telescope (SPT Schaffer
et al., 2011) surveys. In order to show the Sachs-Wolfe plateau, the x-axis scale
is logarithmic for the lowest multipoles, and it is linear for higher multipoles.
The acoustic peaks and damping region are well above the the errorbars limit
and therefore well detected. The black line show the best fit given by a ΛCDM
cosmology.

which the radiation-matter equivalence occurred. If only baryonic matter were
present in the Universe, then the equivalence time would have occurred much
later than what is necessary in order to allow the gravitational instability to
create the large-scale structures that we observe now. The inclusion of a dark
matter component increases the value of the redshift at which matter started
dominating, allowing enough time for structure formation.

In the last decades it was possible to determine through spectroscopic and
photometric surveys the total amount of baryonic matter in the Universe in the
form of either collapsed objects like stars or gas clouds. The density parameter
of baryonic matter Ωb has been estimated to be between Ωb ' 0.04 and 0.05
(Fukugita et al., 1998; Percival et al., 2010) with the most precise and recent
measurement being Ωbh

2 = 0.02242±0.00014 (Planck Collaboration et al., 2018)
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for Ωb multiplied by h2 where H = 100h (km/s)Mpc−1. Since the Universe has
been observed to be very close to spatial flatness, as tested recently by combining
of CMB and BAO data to constrain the curvature density parameter to be ΩK =
0.0007± 0.0019 (Planck Collaboration et al., 2018), then only approximately 4%
of the required energy density needed to reach the critical density is given by
baryons. Therefore the most straightforward hypothesis is to assume that there
is some kind of exotic matter which does not interact electromagnetically.

Moreover, the largest objects in the Universe (clusters of galaxies) require
dark matter to explain their dynamics, as understood first by Zwicky (1933).

Based on the dynamics of astrophysical objects, probably the strongest indi-
rect evidence in support of the existence of this "dark" form of matter came from
observations of star rotation curves inside galaxies (Rubin and Ford, 1970). Stars
have been observed to move around the center of the galaxy much faster than ex-
pected from gravitational potentials only taking into account visible matter. In
order to explain such higher velocities, especially at the largest radii, the concept
of a dark matter "halo" was introduced, where a cloud of dark matter embeds
the galaxy. One example supporting the halo-model is the Bullet Cluster (Clowe
et al., 2006). Including the haloes of dark matter in the energy balance, the
total matter density parameter reached the value of Ωm ' 0.3 (Burkert and Silk,
1997). The most recent constraint on Ωm was also given by Planck Collaboration
et al. (2018): Ωm = 0.3111± 0.0056.

Alternative theories have been proposed that do not require the introduc-
tion of another matter component in order to account also for the star rotation
curves in a galaxy. Among these the most known is the Modified Newtonian
Dynamics (MOND Milgrom, 2015). MOND however at the moment still has a
relativistic formulation (TeVeS, Bekenstein, 2004) but seems to have problem in
independently recovering the formation of large-scale structure as are observed
nowadays (Bernard and Blanchet, 2015).

General Relativity tells us that the energy/matter content shapes the space
time in which it is embedded. A dark type of matter would have this effect. When
light passes through an area where a halo of dark matter is present, its path devi-
ates from a straight line, it is bent. The distortions of the light path propagating
in the Universe due to the matter encountered along its path is known as "gravita-
tional lensing". Even if in practice this effect is very small (weak-lensing regime)
for each lens (beside more rare cases of "strong" gravitational lensing ), it is on
average statistically detectable by photometric and spectroscopic galaxy surveys
(Benjamin et al., 2007) and can be used to constrain the total amount of matter
in the Universe (Falco et al., 1998). Gravitational lensing indeed does not dis-
tinguish between visible and dark matter since both have the same gravitational
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effect on photon trajectories. Recent results from weak-lensing analysis have
been given in terms of the parameter S8 = σ8

√
Ωm/0.3 where σ8 describes the

matter density fluctuations amplitude averaged over a sphere of 8 Mpc/h. These
are S8 = 0.745 ± 0.039 (Hildebrandt et al., 2017) and S8 = 0.67 ± 0.03(Alsing
et al., 2017).

Of course the CMB described in the previous section also allows us to deter-
mine constraints on the total amount of matter present at the epoch of the last
scattering. Indeed the shape and amplitude of fluctuations of the photon-baryon
fluid imprinted onto the photon distributions after decoupling strongly depend
on the total quantity of matter.

1.1.5 Dark energy

The Friedmann Equations 1.10 predict that a Universe containing pressureless
matter would undergo a decelerated expansion. In the second half of the 90s
scientists wanted to quantify the deceleration of the expansion of the Universe
by using type Ia supernovae measurements. The fundamental quantity used in
these analyses is the luminosity distance which compares the apparent luminosity
(measured flux S by an observer) with its known intrinsic one L. The flux
measured by an observer at a distance r from the source is given by the inverse
square relation:

S = L

4πr2 . (1.20)

However this relation needs to be corrected in the case of an expanding Universe
by a factor of a because the radiation travelling to the observer gets redshifted.
Moreover another factor of a is necessary to take into account the time dilatation
due to the expansion. Finally, generaling to non-spatially flat cases by substit-
ing r with the normalised conformal radius defined in Eq. 1.4, the luminosity
distance dL is defined as:

dL = (1 + z)Sk [χ̃(r)] . (1.21)

Considering a null geodesic the normalised conformal radius can be computed
as:

χ̃(z) =
∫ z

0

dz′

H(z′) . (1.22)

Therefore by measuring the luminosity distance and comparing it with the
prediction made by Eq. 1.22 using the Friedmann equation, for example ex-
pressed as in Eq. 1.15, the relation between Ωm and ΩΛ can be constrained.
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Type Ia supernovae can be used to measure astronomical distances since they
all have approximately the same luminosity when exploding. By measuring their
apparent brightness and redshift, it is possible to use them as "standard candles".
Independently, two groups found out that the supernovae brightness was lower
than expected for their redshifts and that therefore they were further away than
as predicted by a decelerating model of the expansion. In other words they found
out that the Universe’s expansion was accelerating (Riess et al., 1998; Perlmutter
et al., 1999). This contribution to the energetic balance of the Universe was soon
called "Dark Energy" where the adjective reflects the fact that still up to now it
is an unknown form of energy.

One of the first hypotheses was to link this unknown form of energy to the
cosmological constant Λ, the vacuum energy density that Einstein introduced in
1917 in order to produce a static model of the Universe. However, it is still an
open problem to reconcile the measured value of Λ with what is theoretically
predicted from quantum field theory (∼120 orders of magnitude of difference).

Figure 1.2 shows representative plots from Riess’ fundamental work. In par-
ticular it can be seen that introducing a cosmological constant-like component
better fits the data in particular between redshifts 0.3 ≤ z ≤ 1. The surprising
aspect of the discovery was also given by the fact that this new component needed
to be ∼ 70% of the total energy balance of the Universe. CMB later confirmed
this subdivision of the total energy which in order to match the observations
needs to be close to the critical density (Komatsu et al., 2009). Previously to
the supernovae luminosity measurements, galaxy cluster evolution studies, for
example on the APM survey data-set (Maddox et al., 1990), already considered
the possibility of introducing a cosmological constant in order to better fit the
data (Baugh and Efstathiou, 1993; Gaztanaga and Frieman, 1994).

From the deceleration parameter in Equation 1.16, it follows that in order to
have an accelerated expansion the equation of state must satisfy p < −1

3ρ. In
the particular case of the cosmological constant the equation of state parameter
is w = p/ρ = −1 and from the continuity Equation 1.11 it is clear that sooner
or later it will become the leading component of the energetic balance of the
Universe since ρ̇Λ = 0. However it is possible to imagine different alternatives
for this substance characterised by a negative pressure with equation of state
w 6= −1 and even not constant in time. Refer to the several reviews available
in the literature for a description of these models (Joyce et al., 2016; Bamba
et al., 2012; Frieman et al., 2008b; Copeland et al., 2006; Peebles and Ratra,
2003). What is important in observational cosmology is to be able to translate all
these models into a common parametrisation which can be used to discriminate
among them. However, constraining a general evolution of the equation of state
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(a) Hubble diagram and residuals (b) Joint confidence intervals for (Ωm, ΩΛ)

Figure 1.2: Both left and right panels show plots contained in Riess’ seminal
paper (Riess et al., 1998). a) In the upper half is reported the Hubble diagram
with the magnitude (function of the observed brightness) as a function of red-
shift for all the supernovae considered in the analysis. The difference between
the three different models is more clear in the lower half where the residuals
between the data and the models are plotted with as reference the model with
parameters (Ωm = 0.2,ΩΛ = 0.0) which was the favoured one before the Dark
Energy discovery.
b) The 2D contours for the parameters (Ωm,ΩΛ) derived from the supernovae
analysis are shown. It can been seen that both 1σ and 2σ contours are well in-
side the accelerated expansion area denoted by the decelerating parameter being
q0 < 0.

parameter as a function of the redshift w(z) is extremely difficult, in particular
because of the strong degeneracy with the Hubble parameter H(z). For this
reason the following linear approximation is usually implemented:

w(a) = w0 + wa (1 − a) = wp + wa (ap − a), (1.23)

where a is the scale factor which can be easily converted into the redshift using
Equation 1.6, w0 = w(z = 0), wp is the value of w at a pivot redshift zp chosen
such that w is well constrained at the epoch for the considered survey.
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1.1.6 Cosmological probes

Below is a brief description of the main cosmological probes used to constrain
the parameters of a ΛCDM cosmology (and its extensions):

• Direct measurements of H : the study started by Hubble of the rela-
tion between the recession velocity of galaxies and their distance from us
has become more and more precise during the last decades. In particular
the Hubble Space Telescope Key Project (Freedman et al., 2001) used the
known empirical period-luminosity relation of Cepheid variable stars to ob-
tain a value of H0 = 73.2±1.7 km s−1 Mpc−1. However this measurement is
influenced by systematics like the high abundance of heavy elements in the
Cepheids stars and the uncertainties in the distance of the Large Magellanic
Cloud galaxy, which is used to normalise the Cepheids stars distances.

• Supernovae : the most widely accepted theoretical model for supernovae
are thermonuclear explosions occurring at the end of white dwarfs’s life-
time. These explosions are generated by the same elements, so the peak-
luminosity shows little variance. Therefore supernovae can be used as
"standard candles" to measure cosmological distances via the relation be-
tween apparent brightness and measured luminosity. This allows us to
constrain cosmological models by tracking the expansion of the Universe
and hopefully future experiments will reach such a precision to be able to
constrain the Dark Energy equation of state parameter’s evolution, w(z).
Key projects include: High-Z Supernova Search Team (Riess et al., 1998),
Supernova Cosmology Project (Goldhaber, 2009), Hubble Space Telescope
(Freedman et al., 2001), Supernova Legacy Survey (Astier et al., 2006) and
Sloan Digital Sky Survey (Frieman et al., 2008a)

• CMB : as mentioned in the previous Section 1.1.3, the cosmic microwave
background contains a picture showing us the primary anisotropies present
at the time of recombination. The photons radiated from the last scatter-
ing surface also carry information regarding the spacetime through which
they propagated. For example they are affected by the crossed gravitational
potential wells (Integrated Sachs-Wolfe effect) and their trajectories are de-
viated by the presence of mass clumps (lensing). These anisotropies create
particular and well defined features, for example the acoustic peaks in the
angular power spectrum (C`). These depend on the particular cosmological
model and allow us to put tighter constraints on the cosmological param-
eters. Among the main surveys dedicated to the CMB there are COBE
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(Wright et al., 1992), WMAP (Bennett et al., 2003a) and Planck (Lamarre
et al., 2003).

Table 1.1: Partial list of recent and future cosmological surveys. Table extended
from the one presented in Dark Energy section of the Particle Physics Review
2017-update (Patrignani et al., 2016), based on the review by Weinberg et al.
(2013). Abbreviations in the "Data" column refer to optical (Opt) or near-
infrared (NIR) imaging (I) or spectroscopy (S). For spectroscopic experiments,
the "z-range" column lists the primary redshift range for galaxies (gal.s), quasars
(QSOs), or the Lyman-α forest (LyαF). Abbreviations in the "Techniques" col-
umn are weak lensing (WL), gravitational lensing, clusters (CL), supernovae
(SN), baryon acoustic oscillations (BAO), and redshift-space distortions (RSD),
cosmic microwave (CMB).

Survey Years Area
[
deg2

]
Data z-range Techniques

BOSS 2008-14 10000 Opt-S 0.3-0.7 (gal.s) BAO/RSD
2.0-3.5 (LyαF)

DES 2013-18 5000 Opt-I WL/CL
SN/BAO

eBOSS 2014-20 7500 Opt-S 0.6-2.0 (gal.s/QSO) BAO/RSD
2.0-3.5 (LyαF)

DESI 2019-24 14000 Opt-S 0.0 - 1.7 (gal.s) BAO/RSD
2.0-3.5 (LyαF)

LSST 2020-30 20000 Opt-I WL/CL
SN/BAO

Euclid 2020-26 15000 Opt-I WL/CL
NIR-S 0.7-2.2 (gal.s) BAO/RSD

WFIRST 2024-30 2200 NIR-I WL/CL/SN
NIR-S 1.0-3.0 (gal.s) BAO/RSD

Planck 2009-13 full-sky CMB/ISW/GL

HSC 2018- 1400 Opt-I 0.0-7.0 WL/GL/SN

KiDS 2011-19 1500 Opt-I 0.1 - 1.2 WL/GL

• Baryonic Acoustic Oscillations : the oscillations of the photon-baryon
fluid imprinted on the photon distribution at the last scattering surface
had a characteristic scale (∼ 150 Mpc). In the following evolution of these
overdensities the corresponding comoving value of the oscillations particu-
lar length was preserved, meaning that there was a higher probability than
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average of finding two overdensities of baryonic matter separated by this
scale. Due to the cosmic expansion, this physical distance has also evolved.
By measuring it at different redshifts and by relating it to the initial value
deduced from the CMB it is possible to build a "standard ruler". This
can impose tighter constraints on the expansion of the Universe. Surveys
perfoming these studies include the 2-degree Field Galaxy Redshift Survey
(2dF Cole et al., 2005), WiggleZ (Parkinson et al., 2012), Sloan Digital Sky
Survey (SDSS Eisenstein et al., 2005) and in particular its extension, the
Baryon Oscillation Spectroscopic Survey (BOSS Anderson, 2014).

• redshift-space distortions and Alcock-Paczynski effect: the matter
density perturbation growth rate f = d ln δ/d ln a ' Ωγ

m(z) parameterises
the distortions in the galaxy distributions due to the measurement of their
redshift. f allows us to place tight constraints on alternative gravity the-
ories (for General Relativity and ΛCDM models, γ ' 0.55 Kaiser, 1987;
Guzzo et al., 2008; Nusser and Davis, 2011). For objects in the sky expand-
ing with the cosmological flow, there are two directly observable measures
of its size: the angular width (orthogonal to the line of sight) and the ra-
dial extent in redshift (parallel to the line of sight). If there is no preferred
alignment then on average the ratio between the two inferred sizes should
be equal to unity. One can then check the conversion factors from red-
shift interval and angular width to physical distances. This procedure is
called the Alcock-Paczynski test (Alcock and Paczynski, 1979). Both Wig-
gleZ and BOSS quantified both RSD and AP effects and the degeneracy
existing between them (Blake et al., 2012; Gil-Marín, 2017).

• Galaxy clustering : the matter distribution in the Universe at late-times
can impose additional constraints on the cosmological models and in par-
ticular to the consensus one, ΛCDM. By measuring the position of galaxies
in the sky via spectroscopic (3D mapping) and photometric (tomographic
bins projected 2D mapping) imaging, it is possible to use several statis-
tics like the galaxy power spectrum (which will be introduced later on) to
infer cosmological parameter values from the data. However the problem
of observing only the luminous form of matter is that the light-emitting
objects like galaxies are biased tracers of the total matter density distribu-
tion. This biased relation between baryonic matter and dark matter needs
to be taken into account in the modelling (Kaiser, 1984a). More complex
models like scale dependent or stochastic bias which (taking into account
the partially random nature of the baryons and dark matter fields) may
be also needed to be taken into consideration (Dekel and Lahav, 1999a).
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Another systematic present in this type of analysis is connected to the fact
that we measure the redshifts of galaxies and not their actual distance.
Galaxies have a proper motion due to the local gravitational field which
gives them a peculiar velocity. These peculiar velocities affect the galaxies’
redshift via the Doppler mechanism, introducing uncertanties. For example
at scales smaller than ∼ 10Mpc, galaxies tend to fall towards the center of
their cluster which their distribution squeezes along the line of sight. This
is because the average peculiar velocity of closer galaxies will be towards
the center, increasing the redshift of the galaxies via Doppler effect. On
the contrary further galaxies will have average peculiar velocities directed
towards the cluster core away from the observer, decreasing the redshift
of the galaxies. Finally at Megaparsec scales, galaxy velocity dispersions
create an elongation along the line of sight usually referred to as "Finger
of God" effect, since long thin filaments of structure in redshift-space point
directly back at observer. This arises since the Doppler effect from the pe-
culiar velocities of galaxies is only observed radially. Key projects include
BOSS (White, 2011), DES (Dark Energy Survey Collaboration et al., 2016)
and in the future DESI (Levi et al., 2013) and EUCLID (Laureijs et al.,
2011).

• Gravitational lensing : as was mentioned earlier in Section 1.1.4, GR
predicts the bending of light trajectories in proximity of a strong gravita-
tional field. The light that the telescopes observe coming from far away
galaxies has followed a non-linear path. If a background population of
galaxies is considered, their image observed by us will have been distorted
by the interposing mass distribution. The magnitude of this distortion is
the discriminant between "strong" and "weak" gravitational lensing. Strong
lensing happens when the image of a background galaxy is so distorted that
it appears as a full or segments of an arc, or even multiple images centered
around a mass clump. Smaller perturbations of the galaxy images are re-
ferred to as weak lensing phenomena. Even if they are very small effects,
for a large enough sample they are statistically significant and have the
advantage with respect to galaxy clustering of tracing the distribution of
the total mass, both luminous and dark. As for the galaxy clustering case,
the same statistics (projected on a 2D map orthogonal to the line of sight)
can be used to constrain cosmological parameters (reviews Bartelmann and
Schneider, 2001; Refregier, 2003; Kilbinger, 2015). Current surveys include
the Kilo-Degree Survey (KiDS de Jong et al., 2013b), the Dark Energy

18



1.1. Cosmology

Survey (DES The Dark Energy Survey Collaboration, 2005) and the Hy-
per Suprime-Cam Subaru Strategic Survey (Miyazaki, 2012).

• Lyman-α forest : as the name suggests this probe is based on the Lyman-
α electron transition of neutral hydrogen atoms. The light emitted by
distant quasars and galaxies (Lynds, 1971), during its travel towards an
observer, crosses gas clouds at different redshifts which creates in the light
spectra different absorption lines. Therefore the Lyman-α forest can be
used to investigate for example the intergalactic medium and the the pres-
ence of neutral hydrogen at different epochs. Cosmological parameter val-
ues can also be constrained using the Lyman-α forest (Weinberg et al.,
1998), for example to measure BAO at high redshift (Slosar et al., 2009),
as well as to test extensions to the standard model (neutrinos Rossi, 2014,
warm dark matter Baur et al., 2016, etc.).

In Table 1.1 are reported the main present and future cosmological surveys.

1.1.7 Best-fit cosmology

In Table 1.2 are reported the best-fit values for the principal cosmological pa-
rameters for a ΛCDM cosmology obtained by combining Planck data with other
cosmological surveys. The values obtained by Planck alone are also shown in
order to highlight the huge importance and prominence of CMB data for cos-
mology. The parameter shown are:

• Ωb h
2 : baryonic matter density parameter, multiplied by h2 where H =

100h (km/s)Mpc−1;

• Ωc h
2 : cold dark matter density parameter, multiplied by h2 where H =

100h (km/s)Mpc−1;

• τ : Thomson scattering optical depth due to reionization;

• ln (1010As) : scalar amplitude of the primordial perturbation power spec-
trum;

• ns : scalar spectral index;

• H0
[
km Mpc−1 s−1

]
: Hubble constant;

• ΩΛ : dark energy density parameter;

• Ωm : total matter density parameter;
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• σ8 : matter density fluctuations amplitude averaged over a sphere of 8 Mpc/h;

• zre : reionization redshift;

• t0 [Gyears] : age of the Universe;

• z∗ : redshift at photon decoupling;

• r∗ [Mpc] : comoving size of the sound horizon at the decoupling;

• 100 θ∗ [rad]: angular scale of sound horizon at last-scattering ×100.

Table 1.2: best-fit ΛCDM parameters from Planck Collaboration et al. (2014)
combined with other surveys. For Planck alone, TT represents the tempera-
ture power spectrum, TE is the temperature-polarization cross spectrum, and
EE is the polarisation power spectrum, lowP are the polarisation data for the
large-scales (small `) likelihood and "lensing" is the CMB lensing reconstruction.
The additional data sets included in the joint analysis are the baryonic acoustic
oscillations (BAO), the Joint Light-curve Analysis of supernovae (JLA) and the
Hubble constant (Efstathiou, 2014).

Parameter TT,TE,EE TT,TE,EE
+ lowP + lensing + lowP + lensing

+ BAO+JLA+H0

Ωb h
2 0.02226 ± 0.00016 0.02230 ± 0.00014

Ωc h
2 0.1193 ± 0.0014 0.1188 ± 0.0010

τ 0.063 ± 0.014 0.066 ± 0.012
ln (1010As) 3.059 ± 0.025 3.064 ± 0.023

ns 0.9653 ± 0.0048 0.9667 ± 0.0040
H0 67.51 ± 0.64 67.74 ± 0.46
ΩΛ 0.6879 ± 0.0087 0.6911 ± 0.0062
Ωm 0.3121 ± 0.0087 0.3089 ± 0.0062
σ8 0.8150 ± 0.0087 0.8159 ± 0.0086
zre 8.5+1.4

−1.2 8.8+1.2
−1.1

t0 13.807 ± 0.026 13.799 ± 0.021
z∗ 1090.00 ± 0.29 1089.90 ± 0.23
r∗ 144.71 ± 0.31 144.81 ± 0.24

100 θ∗ 1.04106 ± 0.00031 1.04112 ± 0.00029
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1.2 Perturbation theory

In this section are summarised the main concepts that will be the pillars of the
work presented in this thesis. For a more complete description see the clear ana-
lytic presentation in the "Physical Foundations of Cosmology" book by Mukhanov
(2005). For the first systematic approach and application see the seminal "Large-
Scale Structure of the Universe" book by Peebles (1980). For a recent review of
statistical tools derived from perturbation theory applied to real-world surveys
see the review by Bernardeau et al. (2002).

At recombination the CMB tells us that the inhomogeneities present in the
photon-baryon fluid and dark matter distribution could be very well described
by a homogeneous and isotropic Gaussian field. Nevertheless, at late-times spec-
troscopic and photometric surveys tell us that the Universe is rich of extremely
non-linear structures, such as galaxies, galaxy clusters, filaments, and voids. How
did the Gaussian fluctuations at the time of decoupling develop into the high-
density objects we observe today? Gravitational collapse is the most simple and
straightforward process. Gravity tends to grow the above-average density regions
by attracting additional matter from their neighbourhood. At the same time it
empties those patches of space which had an original unde-average density. In
order to describe this process it is useful to study the evolution of the density
perturbation field defined

δ(x) = ρ(x) − ρ̄

ρ̄
, (1.24)

where ρ(x) is the local energy density and ρ̄ is the average energy density. For
the purpose of this thesis work, it is enough to consider the evolution of the
density perturbations of non-relativistic matter at sub-horizon scales. Therefore
the Newtonian description of gravitational collapse is a very good approximation
for what is observed by current cosmological surveys. The matter contained in
the Universe can then be thought to follow the behaviour of a perfect fluid and
hence be described by the variables:

• ρ(x, t) : energy density;

• S(x, t) : entropy per unit of mass;

• V (x, t) : spatial 3-velocity.

These quantites are connected between each other by the hydrodynamical equa-
tions:
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∂ρ

∂t
+ ∇(ρV ) = 0,

∂V

∂t
+ (V ·∇)V + ∇p

ρ
+ ∇φ = 0,

dS(x(t), t)
dt

= ∂S

∂t
+ (V ·∇)S = 0,

∇2φ − 4πGρ = 0, (1.25)

where p is the fluid pressure and φ is the local gravitational potential. The
first equation is the continuity equation which imposes the conservation of en-
ergy/mass inside an infinitesimal element of volume. In the second line, it is
reported the Euler equation for a fluid which describes the dynamics of a fluid
under the force of gravity and the presence of an external pressure. The third
equation states the conservation of entropy for a matter element. The last equa-
tion, named the Poisson equation, describes the connection between gravitational
potential and the matter generating it. If the pressure is considered to be a func-
tion of the energy density and entropy through the equation of state for a fluid
p = f(ρ, S), then the set of Equations 1.25 form a closed system for the variables
ρ, V , φ, S.

1.2.1 Static Universe

It is useful to consider the case, as was first introduced by Einstein, of a Universe
in which the gravitational attraction created by a matter distribution with con-
stant homogeneous and isotropic energy density is perfectly counterbalanced by
a cosmological constant. This in order for the Universe to be static. Perturbing
the variables as for the energy density with

ρ(r, t) = ρ0 + δρ(r, t), (1.26)

the pressure perturbation can be expressed as a function of the energy density
and entropy perturbations

δp = c2
sδρ + σδS, (1.27)

where c2
s = ∂p/∂ρ defines the speed of sound (much smaller than c, the speed

of light, for p � ρ) and σ = ∂p/∂S. Substituting all the perturbations into the
set of Equations 1.25 and keeping only the terms linear in one obtains the closed
equation

∂2ρ

∂t2
− c2

s∆δρ − 4πGρ0δρ = σ∆δS, (1.28)
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where ∆ is the Laplacian operator (∇·∇ = ∆). In a static Universe, the entropy
perturbations act as sources of the energy density perturbations. If one considers
adiabatic perturbations (δS = 0), taking the Fourier transform of Equation 1.28
gives

δρ̈k +
(
k2c2

s − 4πGρ0
)
δρk = 0, (1.29)

where dots indicate coordinate time derivatives. The precise form of the solution

δρk ∝ e±iω(k)t, (1.30)

depends on the sign of the quantity under the square root of the expression
defining ω(t)

ω(k) =
√
k2c2

s − 4πGρ0, (1.31)

which can be be thought to depend on the associated wavelength (scale) to each
perturbation mode. The delimiting case, λJ = cs

√
π/Gρ0, is called the Jeans

length. Perturbations at scales smaller than the Jeans length evolve as sound
waves with

δρk ∝ sin(ωt + kr). (1.32)

Perturbation modes with characteristic scales larger than the Jeans length in-
stead have an exponential growth/decrease with time as

δρk ∝ e±|ω|t. (1.33)

From these large-scale modes, it is possible to see that gravity is very fast in
increasing even the smallest perturbations. In particular, considering the very
large-scale perturbation limit λ � λJ, we have that |ω| →

√
4πGρ0. We define

the characteristic collapse time

τJ = 1√
4πGρ0

, (1.34)

which tells us how long it takes for a perturbation to substantially collapse.
Since the only opposition to gravitational collapse is given by the fluid internal
pressure, the fate of an over-density is determined by the relation between the
collapse time and the time that a pressure wave takes to propagate through the
fluid τp ∼ λ/cs. If τJ < τp (in terms of the size of the perturbation λ > cs/

√
Gρ),

then the perturbation can collapse before a pressure wave can counterbalance
the force of gravity.
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1.2.2 Expanding Universe

In an expanding Universe, the energy density is no longer constant, but evolves
with time ρ = ρ(t). Combining from Equation 1.25 the divergence of Euler
equation with the Poisson equation, together with considering that the velocity
field obeys Hubble’s law ∆V = H0 ∆r, the first Friedmann equation 1.10 can
be derived.

In order to obtain a set of decoupled differential equations, it is useful to ex-
tract the expansion of the Universe by adoptiong both a physical and a comoving
sets of coordinates related by

r = a(t)x, (1.35)

where r is the physical distance which is equal to the product of the scale factor
a with the comoving separation x. Switching to the comoving set of coordinates
gives the following modifications to the derivative operators:

(
∂

∂t

)
r

=
(
∂

∂t

)
x

− (V0∇r) and ∇r = 1
a
∇x. (1.36)

Applying the above transformations together with using the fractional ampli-
tude of the matter density perturbation field δ = δρ/ρ0, Equations 1.25 can be
rewritten (substituting in the perturbed quantities and keeping only the linear
order terms):

∂δ

∂t
+ 1
a
∇δV = 0,

∂δV

∂t
+ HδV + c2

s
a
∇δ + 1

a
∇δφ = 0,

∆δφ − 4πGρ0a
2δ = 0, (1.37)

where now all the spatial derivatives are with respect to the comoving coordinate
system. Taking the divergence of the perturbed hydrodynamic equation together
with using the Poisson equation it is possible to derive that

δ̈ + 2Hδ̇ − c2
s
a2 ∆δ − 4πGρ0δ = 0, (1.38)

which is a closed equation for the relative matter density perturbation variable
in an expanding Universe.

Let us first consider the behaviour of matter perturbations in three different
scenarios for the Universe: radiation-, matter- and dark energy-dominated.
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Radiation-dominated Universe. Considering as in the following cases only
large-scales perturbations (k � kJ) for which the pressure term can be safely
ignored, Equation 1.38 reduces to

δ̈ + 2H δ̇ = 0, (1.39)

with the scale factor a ∝ t
1
2 as seen in Sec. 1.1.1. Depending on the size of the

perturbation, two solutions are possible. The first is a static one, δ(t) = const.
while the second one describes perturbation growing logarithmically as a function
of time δ(t) ∝ ln t.

Einstein-de Sitter Universe, Ωm = 1. We already saw in Sec. 1.1.1 that
when the energy content of the Universe is completely given by pressureless-like
matter, then the scale factor evolves as a ∝ t

2
3 . Equation 1.38 then becomes in

terms of the time variable t

δ̈ + 4
3t δ̇ −

2
3t2 δ = 0. (1.40)

The most general solution is given by a two term polynomial

δ(x, t) = A t
2
3 + B t−1, (1.41)

where A and B are two constants of integration and their values can be fixed
by imposing some initial conditions. The first of the two terms represents a
growing mode for the perturbations while the second is a decreasing mode which
can then be ignored. Comparing this growing mode with the one obtained for a
static Universe in Equation 1.33, the effect of expansion is clear, perturbations
grow much slower with respect to time, in particular the behaviour switches from
exponential to a power law.

De Sitter Universe, ΩΛ = 1. If dark energy keeps behaving as a cosmological
constant, the de Sitter Universe is the cosmological future limit towards which
our Universe is evolving. Equation 1.38 for this case is:

δ̈ + 2H0 δ̇ = 0, (1.42)

where H0 is constant (as can be checked from the first Friedmann equation
Equation 1.10). The above equation has two solutions, a constant one (δ =
const) and a decaying one. For a cosmological constant dominated Universe the
decaying solution is an exponential function of time δ(t) ∝ exp(−H0t). Therefore
over-densities in a de Sitter Universe can remain constant but cannot further
increase.
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Baryonic matter perturbations can be described with good approximation by
considering a fluid with equation of state p = p(ρ). At first order then we saw
that the pressure perturbation can be expressed in terms of the energy density
ones ignoring entropy perturbations

δp =
∣∣∣∣∣∂p∂ρ

∣∣∣∣∣ δρ = c2
sδρ. (1.43)

Consider the Fourier transform of the over-density field defined by the transfor-
mations:

δk ≡ δ(k, t) =
∫
d3x eik·x δ(x, t) and δ ≡ δ(x, t) = 1

(2π)3

∫
d3k e−ik·x δ(k, t).

(1.44)
Taking the Fourier transform of Equation 1.38

δ̈k + 2Hδ̇k + c2
sk

2

a2 δk − 4πGρ0δk = 0, (1.45)

which can be rewritten as

δ̈k + 2Hδ̇k + ω2
kδk = 0 where ω2

k = c2
sk

2

a2 − 4πGρ0. (1.46)

Whether ωk is an imaginary number or not determines the behaviour of the
baryonic perturbations. Physically, it is easier to think about the size of these
perturbation modes defined by their physical scale λphys = 2π a/k. Then ω2

k can
be rewritten as:

ω2
k = (2π)2c2

s

[
λ−2

phys − λ−2
J

]
where λJ = cs

√
π

Gρ
, (1.47)

where the Jeans length λJ has been used again. The fate of the perturbations
is related to their scale compared to the Jeans length. If they are much greater
(λphys � λJ) then it is clear that the perturbation equation tends to the one for
the collisionless case (dark matter) and the solution will be the same.

On the other hand for much smaller perturbations (λphys � λJ) and the
solution of Equation 1.46 is given by sound waves functions. For a speed of
sounds that changes adiabatically (Mukhanov, 2005) the solution for δk is:

δk ∝
1
√
csa

exp
(
±k

∫ cs dt

a

)
. (1.48)

An important aspect of Equation 1.47 is the fact that the relation between the
physical wavelength and the Jeans wavelength evolves with time and is related
to the Universe expansion. λ grows proportionally to the scale factor a, while λJ
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is inversely proportional to √ρ. For example in a pressureless matter-dominated
Universe with ρ ∝ a−3 ⇒ λJ ∝ a3/2, the Jeans wavelength grows faster than
the physical wavelength and eventually modes which were smaller than λJ become
larger passing from an acoustic wave behaviour to a collision-less matter one.

Modes larger than the Hubble radius. From the Hubble parameter it is
possible to define an important characteristic length scale, the Hubble radius.
This is defined for the present time as rH(t0) = c/H(t0) = c/H0. The Hubble
radius defines a three-dimensional sphere beyond which objects are receding from
us with a velocity greater than the speed of light. It is used in cosmology as a
proxy to determine the visible Universe. For the growth of structure, it is usually
used as an apparent horizon to separate between modes smaller (that we can
observe) and larger (which cannot be observed and therefore referred to as being
outside the horizon) than it.

Consider then two neighbouring regions of the Universe characterised by the
same Hubble parameter H, but one flat with energy density ρa, while the other
with energy density ρb and curvature Kb. Equating the Friedmann equations for
the two regions

8πG
3 ρa = 8πG

3 ρb −
Kbc

2

a2 . (1.49)

Rewriting the equation in terms of δ it is possible to see that δa ∝ (a2ρ)−1. This
result turns out to be correct even if the Newtonian classical approach has been
used for modes larger than the Hubble radius.

From Sec. 1.1.1 we know that during radiation and matter-dominated epochs
the energy density as a function of the scale factor goes as ρ ∝ a−4 and ρ ∝ a−3

respectively. Therefore perturbation modes outside the Hubble radius evolve as
a2 and a during radiation and matter-dominated epochs, respectively. From this
it is possible to see that dark matter perturbation behave in the same way both
outside and within the Hubble radius during the matter-dominated epoch.

1.3 Statistics of the density field

Since the Universe has been observed to be isotropic and homogeneous at large
enough scales, it is reasonable to assume that the perturbations of the density
field can be very well approximated (still at large enough scales) by a statistically
homogeneous and isotropic random field. This means that instead of showing
particular features at a certain position in the Universe at a certain time, the
over-density field δ has certain statistical properties (moments) which are invari-
ant under translation (homogeneity) and rotation (isotropy) transformations. In
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order to connect theoretical predictions with observations it is necessary to de-
velop a statistical framework for δ. First consider the spatial average of the
over-density field, by definition

〈δ(x, t)〉 = 0. (1.50)

Usually statistical quantities like the mean are evaluated by considering several
realisations of the same ensemble. However it is evident that this cannot be
done in cosmology since we can observe and collect data from our one Universe.
Nevertheless if far enough different patches of the Universe can be assumed to be
statistically uncorrelated then they can be thought as independent realisations of
the same ensemble. This property is called ergodicity, averaging over independent
sub-volumes of a realisation of a random variable is equivalent to averaging over
different realisations of one sub-volume.

Since the average of the over-density field is always null by definition, it is
necessary to consider the second moment of the perturbations of the density
field, namely the correlation function. The two-point (2pt) correlation function
is defined as the joint ensemble average of the over-density field evaluated at two
different points in space at the same time,

〈δ(x, t)δ(x+ r, t)〉 = ξ(x,x+ r, t). (1.51)

Knowing that the over-density field δ(x, t) is statistically homogeneous and
isotropic, it follows that the actual positions x and x + r do not influence ξ,
since there is no preferred location or direction. The only quantity affecting the
2pt correlation function is the separation between the two-point in space, |r|
and therefore ξ(x,x+ r, t) = ξ(|r|, t). The use of the 2pt correlation function in
cosmology was first introduced by Peebles (1980).

As we saw in the previous Section when deriving the equations for the time-
evolution of δ, switching the analysis to Fourier space can provide useful insights.
We use Equation 1.44 to convert δ(x, t) and δ(x+r) into δ(k) and δ(k′), respec-
tively. At least for the moment we can ignore the time dependence since all the
quantities are evaluated at the same instant t. We can then compute the second
moment of the density distribution in Fourier space,

〈δ(k)δ(k′)〉 = (2π)3 δD(k + k′)
∫

d3r eik·rξ(r) = (2π)3 δD(k + k′)P(k). (1.52)

where the power spectrum of the density perturbations P(k) has been introduced
as the Fourier transform of the 2pt correlation function. δD is the Dirac’s delta
which imposes equality between the wave-vectors k and k′. Notice also that
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1.3. Statistics of the density field

the power spectrum is only a function of the modulus of the wave-vector |k|
because of the homogeneity and isotropy assumptions. Both the 2pt correlation
function and the power spectrum describe how much structure is present at scales
r ∼ 2π/k.

If ones consider the inflationary paradigm described earlier in Sec. 1.1.2 in
order to produce the primordial density perturbations, with details depending
on the precise shape of the inflationary potential V (φ), the theory predicts a
power spectrum scaling as a power law of k. In particular, introducing the scalar
spectral index ns mentioned in Sec. 1.1.7, the power law can be expressed as
P(k) ∝ kns . The case in which the power spectrum is a linear function of k
(ns = 1) is called Harrison and Zel’dovich after the physicists who first derived
this power law behaviour.

Figure 1.3: Measurements from different cosmological probes of the matter power
spectrum presented in Tegmark et al. (2004). The red line show the best fit given
by a ΛCDM cosmology with Ωm = 0.28, h = 0.72, Ωb/Ωm = 0.16 and τ = 0.17.
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1.3. Statistics of the density field

1.3.1 From primordial to late-time matter power spec-
trum

In order to be able to constrain cosmological parameters with data from current
and future surveys the matter power spectrum, it is necessary to derive the
primordial one (or the power spectrum corresponding to an early time t0 very
close to inflation’s end). When solving the perturbation equations for the over-
density parameter δ, since it is assumed to be homogeneous on large enough
scales, the time and spacial dependencies are separated in two different functions
as in

δ(x, t) = δ(x)D(t), (1.53)

where D(t) is called the growth factor and is the variable whose solution is found
when solving for example Equation 1.38. If the same assumption as was used for
the over-density field can be assumed to be valid also for the power spectrum,
than its spatial and time dependencies can also be disentangled and assumed to
be independent between each others as in

P(k, t) = D2(t) P0(k), (1.54)

where P0(k) is the power spectrum for the wave number k evaluated at an arbi-
trary initial time t0.

Nevertheless this is not sufficient to connect the late-time power spectrum
with the primordial one since, as we saw in Sec. 1.2.2, perturbations grow dif-
ferently depending on which kind of energy density is dominating and also on
when the size of the perturbations becomes smaller than the Hubble radius. In
order to account for these factors, the initial power spectrum taken at an initial
time t0 is corrected via the square of the transfer function T (k):

P0(k) ∝ kns T 2(k). (1.55)

A first approximation for the transfer function can be computed by comparing
the wave number k of a determinate perturbation mode with the size of the
apparent horizon at the time of radiation-matter equality (redshift zeq). The
comoving Hubble scale at zeq is given by c/(aH)eq and therefore it is possible
to define the associated wave number keq = 2π(aH)eq/c. If k < keq than the
perturbation mode will enter the apparent horizon after the radiation-matter
equality while on the contrary if k > keq it will enter the apparent horizon during
the radiation-dominated epoch. Using the evolution of the growth factor with
respect to time while comparing an initial perturbation δ0 with its correspondent
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1.3. Statistics of the density field

one after zeq it is possible to see that T (k) = const. for k < keq while T (k) ∝ k−2

for k > keq. In Figure 1.3 it is indeed possible to see that at large-scales (small
k’s) the power spectrum evolves almost linearly with respect to the wave number
k, while at small scales (large k’s) it evolves as a negative power law. From the
measured data points the transition around keq appears to happen gradually and
not suddenly.

As we saw from Equation 1.48, on small scales the baryonic perturbation
modes have an oscillatory behaviour (sound waves). As we saw in the CMB sec-
tion 1.1.3 when describing the acoustic peaks, until recombination the baryons
were tightly coupled to the photons. On the contrary the dark matter perturba-
tions were free to collapse already after zeq. When finally after recombination the
baryons decoupled from the radiation component, their oscillations froze. In par-
ticular a prominent feature of these oscillations is given by those spherical sound
waves propagating outwards from dark matter over-densities (gravitational po-
tential wells) because of the fluid pressure. The distance of a wave-front of these
baryon-photon fluid oscillations from the center of the corresponding dark matter
well is equal to the product of the fluid sound speed (cs) and the interval of time
between the radiation-matter equality (when dark matter began collapsing) and
recombination. This quantity is normally called sound horizon.

Once the baryons decouple from the photons, at the sound horizon distance,
the over-density of baryons, previously corresponding to the wave front of the
baryon-photon fluid, is free to collapse because of the dark matter gravitational
potential. This creates a characteristic scale in the matter density field, which
physically translates into a higher probability of finding baryonic matter over-
densities separated by this length, which is usually labelled BAO-scale/peak. The
first detection of the BAO peak in the 2pt correlation function, using data from
the SDSS-BOSS survey, was presented by Eisenstein et al. (2005) who obtained a
value for the characteristic separation of ∼ 100 Mpc/h averaging over the redshift
interval 0.16 < z < 0.47.

In the power spectrum, the BAO peak present in the 2pt correlation function
transforms into a series of wiggles as it can be seen in Figure 1.3. Therefore
the BAO feature can be used to constrain cosmological parameters, such as
the baryon density parameter Ωb or other parameters strictly related to the
recombination time like z∗ and r∗.

Finally the BAO characteristic length can be used to build a standard cosmo-
logical ruler : by measuring the BAO scale at two different redshifts, it becomes
possible to study the evolution of the Universe and in particular its rate of ex-
pansion since the BAO comoving length remains constant.
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1.3. Statistics of the density field

1.3.2 Three-point statistics

Before introducing higher-order correlation functions of the over-density field, it
is fundamental to remind an important property of Gaussian fields, the Wick’s
theorem.

Wick’s theorem: All the statistical moments of the distribution of a zero-
mean Gaussian field:

• are equal to zero if the number of variables used to compute the moment
is odd (odd moments);

• are equal to the sum of all the terms given by the product of second mo-
ments which is possible to write starting from the original Gaussian vari-
ables.

In Fourier space, which as we saw is extremely useful in Cosmology, the Wick’s
theorem can be written as

〈δ(k1)δ(k2)...δ(k2n+1)〉 = 0

〈δ(k1)δ(k2)...δ(k2n)〉 =
∑

terms

l,m=1...2n∏
l 6=m

〈δ(kl)δ(km)〉, (1.56)

where the product is over all the δ-pairs that are possible to form with kl 6= km.
The importance of this result is given by the fact that the primordial energy den-
sity field fluctuations are predicted to be Gaussian (Guth and Pi, 1982; Starobin-
sky, 1982; Hawking, 1982; Bardeen et al., 1983). If that is the case then all the
statistical properties of the primordial δ are encoded in its 2pt correlation func-
tion or equivalently in its power spectrum.

However we know that gravitational instability along the history of the Uni-
verse transforms the distribution of the matter density field, in particular causing
the collapse of its over-densities. Therefore a late-time non-Gaussian component
is present in the matter over-density field. The easiest way to study it is to use
higher-order moments of the δ-distribution and the lowest is given by the 3pt
correlation function in configuration space

ζ(x1,x2,x3) = 〈δ(x1)δ(x2)δ(x3)〉c (1.57)
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where the connected component of a correlation function 〈 〉c is defined as the
ensemble average over the three δ’s minus all the possible combination of sub-
sets (disconnected). This concept will become explicit in Chapter 2 when we
will consider second order perturbation theory. It is possible then to define the
analogue of ζ in Fourier space, the bispectrum

〈δ(k1)δ(k2)δ(k3)〉c = (2π)3 δD(k1 + k2 + k3) B(k1,k2,k3) (1.58)

where the Dirac’s delta enforces the fact that the three wave-vectors must form
a connected configuration, a triangle.

1.4 Galaxy bias

All the statistical quantities introduced in the previous section are relative to
the matter over-density field, which now for clarity we relabel δm. However real
3D surveys measure the position (redshift, right ascension and declination) of
galaxies which represent only the luminous component of the matter present
in the Universe. Therefore it becomes necessary to understand and model the
relation between luminous and dark matter in order to compare observations with
theoretical predictions. How biased is the distribution of galaxies with respect
to the underlying dark matter one?

The most immediate hypothesis that can be made is that they are propor-
tional to each other

δg(x) = b δm(x), (1.59)

where b is called the linear bias parameter and δg is the local galaxy density
field. However this simple form does not hold at all scales and in particular not
at the small ones, where for example the creation of galaxies is influenced by
other forces beside the gravitational one and by still not completely understood
physical processes, like for example supernovae feedback.

Several attempts have been done by the research community to study the bias
relation using hydro-dynamical simulations (Springel, 2018; Katz et al., 1999;
Stinson et al., 2010; Genel et al., 2014; Pearce, 1999).

An alternative approach introduces a set of parameters describing the relation
between galaxies and dark matter distribution. These parameters are then tested
and fitted using real data together with the cosmological parameter of interest.
Finally in order to derive constraints on the set of cosmological parameters of
interest it is possible to marginalise over the posterior distributions of the bias
ones.

33



1.4. Galaxy bias

The first attempt of modelling the bias relation was done by Kaiser (1984a),
who described galaxy clusters as peaks of an underlying random Gaussian field
distribution (dark matter). His calculations where afterwards extended by Pea-
cock and Heavens (1985); Bardeen et al. (1986a).

If one considers large enough scales, then it is reasonable to assume that the
only force determining the relation between luminous and dark matter is gravity.
Analysing the bias relation at large-scales implies considering smoothed versions
of the galaxy and matter density fields:

δ(x, R) =
∫
d3y δ(y)W (y − x, R) , (1.60)

where W (y−x, R) is a smoothing window function with characteristic length R
(if spherical, thenR is the radius) centered at the position defined by the vector x.
Then the Eulerian bias model prescribes that if the galaxy over-density variable
δ̃g is a function of the matter density one δ̃m at a certain position x, then δ̃g can
be Taylor expanded as

δ̃g =
∞∑
i=0

bi
i! δ̃

i
m , (1.61)

where it is assumed δm � 1 for large enough R. In particular at first approxi-
mation the above equation implies that the galaxy power spectrum is related to
the matter one simply by:

Pg(k) = b2
1 Pm(k). (1.62)

It will be necessary to implement more bias parameters when higher-order cor-
relation functions are considered and when higher-order perturbative corrections
to the power spectrum are included.

The Euclidean model was recently extended in McDonald and Roy (2009a)
with the addition of the dependence of the galaxy density on the local value of the
gravitational potential and on the peculiar velocity field. This extension proves
that by using two more bias parameters, which encode the dependencies above
described, it is possible to model the power spectrum and bispectrum accurately
up to fourth order perturbation theory.

Another contribution to the bias relation could be caused by the fact that
galaxy formation does not depend only on the underlying dark matter distribu-
tion. Therefore the relation between δm and δg could have a stochastic component
(Dekel and Lahav, 1999a; Taruya et al., 1999):

δg(x) = F [δm(x)] + ε(x) , (1.63)
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where ε(x) is a random field parametrising the discrepancy between luminous and
dark matter distributions due to non gravitational physics. However this scatter
has been proved to become negligible at large enough scales for the two-point
statistics (Scherrer and Weinberg, 1998).

Finally another important approach to the bias problem is the one consider-
ing an intermediate step between the overall matter distribution and the galaxy
one. This intermediate step consists in studying the formation of dark matter
halos (White and Rees, 1978). The formation of halos is dominated only by
gravitational collapse, avoiding all the complications due to the other physical
processes. In order to connect matter distribution to the galaxy one using the
statistical properties of the halo distribution, the remaining challenge to over-
come is to derive a model for populating the halos with galaxies (Scherrer and
Bertschinger, 1991).

1.5 Redshift-space distortions

When real world survey data are used, the quantities measured to describe the
distribution of matter in the Universe are the right ascension and declination
angles φ, θ and instead of the radial distance r, the data contains the redshift
z (spectroscopic rather than photometric for 3D statistics studies). The conver-
sion from z to r depends on the assumed cosmology but it is also affected by
distortions caused by gravity. Indeed in the ideal case in which a galaxy would
not feel the influence of any gravitational field, it would simply move further
away from an observer with the Hubble flow velocity v = H0r, where H0 is the
Hubble constant today.

In the real world, due to the presence of gravitational fields, galaxies have
different peculiar velocities in addition to the receding movement from us due
to cosmic expansion. On large-scales this effect manifests when galaxies have
peculiar velocities with components due to the infall motion towards galaxy
clusters center. This causes large-scale structures to appear squashed along the
line of sight because of the combined effect of galaxies in-falling peculiar velocities
and Hubble flow (Kaiser effect Kaiser, 1987). On small scales the galaxies velocity
dispersion produces a "Finger of God effect" which causes structures to appear
elongated in redshift-space with respect to real space. Therefore the conversion
from redshift-space to real space is influenced by the line of sight component of
these peculiar velocities and the conversion formula is (from now on s labels the
redshift-space quantities)
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s(r) = r

[
1 + U(r)− U(r0)

r

]
, where U(r) = v · r

H0r
. (1.64)

In the paper by Heavens et al. (1998), it has been shown how to express the
redshift-space galaxy overdensity perturbation variable measured in the real sur-
veys δgs,k the Fourier transform) to the real space matter one δk,

δgs,k = F (1)
s (k) δk + 1

(2π)3

∫
d3k1d

3k2 δD (k − k2 − k1) F (2)
s (k1,k2) δk1δk2

+ 1
(2π)6

∫
d3k1d

3k2d
3k3 δD (k − k3 − k2 − k1) F (3)

s (k1,k2,k3) δk1δk2δk2 ,

(1.65)

where the kernels used are:

F (1)
s (k) = b1 + fµ2

F (2)
s (k1,k2)

= b1J
(2)
s (k1,k2) + fµ2K(2)

s (k1,k2) + 1
2b2

+ b1f

2

[
µ2

1 + µ2
2 + µ1µ2

(
k1

k2
+ k2

k1

)]
+ f 2

[
µ2

1µ
2
2 + µ1µ2

2

(
µ2

1
k1

k2
+ µ2

2
k2

k1

)]

F (3)
s (k1,k2,k3) =

= b1J
(3)
s (k1,k2,k3) + fµ2K(3) (k1,k2,k3) + b2

2 fµ
2
3 + b3

6 + b2

2 fµ1µ2
k2

k1

+ b2

2 fµ1µ3
k3

k1
+ b1f

2µ2
2µ

2
3 + 2b1f

2µ1µ2µ
2
3
k1

k2
+ b1f

2µ2µ
3
3
k3

k2
+ b1

2 µ
2
1µ2µ3

k2
1

k2k3

+ f 3µ2
1µ

2
2µ

2
3 + 3f 3µ1µ

2
2µ

3
3
k3

k1
+ 1

2f
3µ1µ2µ

4
3
k2

3
k1k2

+ J (2)
s (k2,k3)

(
b2 + b1fµ

2
1 + b1fµ1µ2+3

k2+3

k1

)

+K(2)
s (k2,k3)

(
b1fµ

2
2+3 + b1fµ1µ2+3

k1

k2+3
+ 2f 2µ2

1µ
2
2+3

+ f 2µ1µ
3
2+3

k2+3

k1
+ f 2µ3

1µ2+3
k1

k2+3

)
, (1.66)

where the K’s and J ’s are given by:
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J (2)
s (k1,k2) = 5

7 + k1 · k2

2k1k2

(
k1

k2
+ k2

k1

)
+ 2

7

(
k1 · k2

k1k2

)2

K(2)
s (k1,k2) = 3

7 + k1 · k2

2k1k2

(
k1

k2
+ k2

k1

)
+ 4

7

(
k1 · k2

k1k2

)2

J (3)
s (k1,k2,k3) = J (2)

s (k2,k3)
[

1
3 + 1

3
k1 · (k2 + k3)

(k2 + k3)2 + 4
9
k · k1

k2
1

k · (k2 + k3)
(k2 + k3)2

]

− 2
9
k · k1

k2
1

k · (k2 + k3)
(k2 + k3)2

k3 · (k2 + k3)
k2

3
+ 1

9
k · k2

k2
2

k · k3

k2
3

K(3)
s (k1,k2,k3) = 3J (3)

s (k1,k2,k3)− k · k1

k2
1
J (2)

s (k2,k3)

− k · (k1 + k2)
(k1 + k2)2 K(2)

s (k1,k2) (1.67)

,
where the growth factor is f ≡ d lnD/d ln w Ω0.55

m in standard ΛCDM models,
(D(a) growing mode of the amplitude and a is the scale factor) and µ = k · r̂/k,
k = k1+k2+k3 and µ2+3 ≡ (k2+k3)·r̂/|k2+k3| with r̂ = r/r. Each of the J and
K kernels represents the Fourier transform of the solution of the perturbation
equation of the same order for the over-density perturbation and velocity field
divergence variables, respectively. For example J (2) describes how the second
order matter density perturbation variable δ(2)

m is related to the first order one
δ(1)

m . The F kernels are the generalisation of the J and K ones to the galaxy field,
which implies taking into account the effect of redshift space distortions. In all
kernels it is possible to see that they have on average stronger amplitude when
the wave-vectors are as parallel as possible (scalar products) and when they are
very different in magnitude (ratio of the modules).

For the galaxy redshift-space power spectrum defined as

〈δgs,k1δ
g
s,k2〉 = (2π)3 Pg

s (k1) δD (k1 + k2) , (1.68)

substituting (1.65) into the above expression and applying Wick’s theorem as-
suming that the initial perturbation were Gaussian gets

Pg
s (k) ≡ Pg

s,11 + Pg
s,22 + Pg

s,13

=
(
1 + βµ2

)2
b2

1P11 (k) + 2
∫ d3q

(2π)3 P11 (q) P11 (|k − q|)
[
F (2)

s (q,k − q)
]2

+ 6
(
1 + βµ2

)
b1P11(k)

∫ d3q

(2π)3 P11 (q)F (3)
s (q,−q,k) , (1.69)

where F (3)
s (q,−q,k) is kernel corresponding to the third order level in pertur-

bation theory and which was originally reported in reported in Equation 1.66
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from Heavens et al. (1998). P11(k) is the linear matter power spectrum defined
analogously as (1.68).

Analogously for the redshift-space galaxy Bispectrum defined as:

〈δgs,k1δ
g
s,k2δ

g
s,k3〉 = (2π)3 Bg

s (k1,k2,k3) δD (k1 + k2 + k3) . (1.70)

The relation to the linear matter density power spectrum is at first order:

Bg
s (k1,k2,k3) = 2P11 (k1) P11 (k2)F (1)

s (k1)F (1)
s (k2)F (2)

s (k1,k2)

+ cyclic terms (1, 2)→ (2, 3) and (3, 1) . (1.71)

1.6 Data and simulations

In this section are described briefly the datasets and the simulations used in
this work. Additional details and potential overlaps are present in the following
chapters of this thesis which are self-consistent.

1.6.1 SDSS-III BOSS

The Baryon Oscillation Spectroscopic Survey (BOSS Dawson et al., 2013) which
is part of the Sloan Digital Sky Survey III (SDSS-III Eisenstein et al., 2011) is the
source of the data used in the following chapters. SDSS created one of the largest
and most accurate 3D maps of the Universe. The main purpose of BOSS was to
constrain cosmological parameters through the measurement of the BAO using
the clustering analysis of large-scales structures. In particular BOSS created a
catalogue of 1.5 millions luminous galaxies up to redshift z < 0.7 and 150, 000
quasars mapping the Lyα forest in the redshift range 2.15 ≤ z ≤ 3.5 using
the 2.5 m-aperture Sloan Foundation Telescope at Apache Point Observatory in
New Mexico (Gunn et al., 2006). It covered in total an area of 14, 555 square
degrees in the ugriz band (Fukugita et al., 1996). BOSS covers a large volume
(Veff ' 7.4 Gpc3) with a number density of galaxies ng ∼ 3 × 10−4 [hMpc−1]3.
These specifications were chosen in order to be sure that shot noise contributions
would have been subdominant at BAO scale (White, 2011).

In particular in the analysis it has been used the data-set corresponding to the
CMASS sample ("constant mass"), both south and north galactic caps (SGC and
NGC). The magnitude range of the CMASS galaxies is between 17.5 < i < 19.9
where i is the composite model magnitude. The redshift range of this sample is
0.43 < z ≤ 0.7. The average bias of the CMASS galaxies is b ∼ 2 (Gil-Marín
et al., 2015; Slepian et al., 2017a) with a prominent break at 4000 Å.
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Table 1.3: Specifications for the DR11 and DR12 BOSS-SDSS III data releases
CMASS samples (Reid, 2016; Gil-Marín et al., 2015).

DR11 DR12

Atot 8,498 10,252 [deg2]
ANGC 6,391 7,429 [deg2]
ASGC 2,107 2,823 [deg2]
N tot

gal 690,827 836,347
NNGC

gal 520,806 607,357
NSGC

gal 170,021 228,990
Veff 6.0 7.4 [Gpc3]

In Chapter 2 we used the Data Release 11 (DR11) data release of BOSS
SDSS-III while in Chapter 4 we used the last data release DR12 (Reid, 2016).
The effective redshift for both DR11 and DR12 for the CMASS sample was set to
zeff = 0.57 (Anderson, 2012). In Table 1.3 are reported the specifications for the
DR11 and DR12 CMASS samples data sets. In Figure 1.4 is shown the footprint
completeness map of the DR12 CMASS sample.

1.6.2 Galaxy mocks

For the analysis on DR11 data, in order to estimate the covariance matrix a set
of 600 galaxy mocks (Manera et al., 2013) were used for each of the CMASS
galaxy caps (1200 in total). The synthetic data were based on the BOSS survey
geometry and used the same weighting system for the galaxies in order to take
into account systematic errors. Galaxies were assigned to dark matter halos
using a Halo Occupation Distribution (HOD) prescription. The mocks are based
on the PT-halos algorithm, using second order Lagrangian perturbation theory
to implement the large-scale physical processes (Scoccimarro and Sheth, 2002;
Manera et al., 2013).

In Chapter 4 the covariance matrix for the DR12 CMASS sample was esti-
mated using a set of 2048 realizations (Kitaura et al., 2016) of the MultiDark-
Patchy BOSS DR12 mocks based on augmented Lagrangian perturbation theory
(ALPT Kitaura and Heß, 2013).

In total there are 12,288 light-cones available corresponding to an effective
volume of∼ 192, 000 [h−1Gpc]3, including a cosmic evolution in the redshift range
0.15 < z < 0.75. A reference galaxy catalogue based on the Halo Abundance
Matching modelling of the BOSS DR12 galaxy clustering data and on the data
themselves has been used to calibrate the mocks.
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Figure 1.4: Completeness map of the BOSS SDSS-III CMASS DR12 sample from
Reid (2016).

The mocks have been tested to reproduced within the 2pt correlation function
1σ confidence interval and the power spectrum up to k = 0.3hMpc−1.

More details are given in Chapters 2 and 4 where the mocks have been used
to estimate the covariance matrices necessary to evaluate the data-vectors likeli-
hoods.
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“There is nothing like looking, if you want to find something. You certainly
usually find something, if you look, but it is not always quite the something
you were after.”

- J.R.R. Tolkien, The Hobbit

2 | Skewness: 3pt auto-correlation
function

This Chapter focuses on the integrated quantity called "skewness" (Peebles, 1980)
which is a function of the ratio between third and second cumulative moments
of the matter overdensity distribution, 〈δ3〉 and 〈δ2〉. Where no references are
reported, the computations shown are original of this work. In this section we
drop the subscript "m" since all computations concern the matter overdensity
field. In turns these are the volume averages of the 3pt and 2pt correlation
functions ζ and ξ. The skewness is defined as

S3(R) ≡ 〈δ3(R)〉
〈δ2(R)〉2 . (2.1)

where the ensemble average is over different regions of space (e.g. spheres) of a
particular size R.

There are two main reasons for this choice of statistic. First, it represents
a way to compress the information available in the 3pt correlation function.
Secondly it will be shown later that another quantity can be derived from the
skewness which turns out to be fairly independent from the linear galaxy bias
and therefore useful in constraining cosmological parameters (by lifting the bias
degeneracies).

Skewness in the matter/galaxy field naturally arises as a consequence of gravi-
tational instability. Therefore, it is a good estimator of the late-time departure of
the matter/galaxy density field from the initial primordial Gaussian conditions,
for example observable in the CMB. In the case of primordial non Gaussianities
(PNG), also at late-times the skewness is expected to keep trace of their pres-
ence. A target of this Chapter is to separate late-time non-Gaussianity from the
primordial one in the auto-correlation functions analytic expressions.

We derive analytic expressions for S3, 〈δ2〉 and 〈δ3〉 including PNG contri-
butions. In the second part of this Chapter we will use the derived model to
constrain cosmological parameters of interest using BOSS DR11 data.
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2.1. Second-order perturbation theory

2.1 Second-order perturbation theory

Primordial perturbations are assumed to have been almost perfectly Gaussian.
However gravitational collapse during the cosmic history introduced a non-linear
component to the overdensity field. A good way to describe and to study this
departure from linearity is to expand the overdensity variable δ in terms of per-
turbative orders:

δ = δ1 + δ2 + δ3 + ..., (2.2)

where the subscript indicates the order of perturbation theory (and naturally
we assume that δ1 >> δ2 >> δ3 ). When we write down 〈δ3〉 in terms of this
expansion

〈δ3〉 = 〈δ1δ1δ1〉 + 3 〈δ1δ1δ2〉 + ... , (2.3)

the first term on the right hand side vanishes since all the odd moments of
a Gaussian field are equal to zero (see Wick’s theorem Sec. 1.3.2). In order to
proceed we need to derive the relation between δ2 and δ1. First we separate the
space and time dependencies of the i-th order perturbation variable δi (x, t) =
δi (x) Di (t) as also done in Sec. 1.3.1. Indeed we are just interested in the time
dependence since the matter density field is assumed to be homogeneous on large
enough scales. For the first-order (equivalent to Equation 1.38)

D̈1 + 2 ȧ
a
Ḋ1 −

3
2Ω0H

2
0

(
a0

a

)3
D1 = 0. (2.4)

Regarding the second-order, we want to reproduce the result obtained first by
Peebles, 1980 following the procedure presented in Kamionkowski and Buchalter,
1999, starting from the second-order equation

δ̈2 + 2 ȧ
a
δ̇2 −

3
2Ω0H

2
0

(
a0

a

)3
δ2 =

3
2Ω0H

2
0

(
a0

a

)3
+
(
Ḋ1

D1

)2D2
1δ

2
1 (2.5)

+
3

2Ω0H
2
0

(
a0

a

)3
+ 2

(
Ḋ1

D1

)2D2
1δ1,i∆1,i

+
(
Ḋ1

D1

)2

D2
1∆1,ij∆1,ij ,

where
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2.1. Second-order perturbation theory

∆1(x) = − 1
4π

∫
d3x′

δ(x)
|x− x′|

. (2.6)

Unfortunately Equation 2.5 cannot be solved directly because of the two differ-
ent time dependencies on the right hand side, the time dependent part of the
first-order perturbation solution and its derivative. The solution of 2.5 can be
found by considering the two equations each given by the left hand side of Equa-
tion 2.5 together with one of the two different time dependencies Kamionkowski
and Buchalter (1999). Writing also the second-order perturbation variable as
δ2(x, t) = D2(t)δ2(x), the two equations are

δ2 (x)×
[
D̈2,a + 2HḊ2,a −

3
2Ω0H

2
0

(
a0

a

)3
D2,a

]
= 3

2Ω0H
2
0

(
a0

a

)3
D2

1

[
δ2

1 + δ1,i∆1,i
]

δ2 (x)×
[
D̈2,b + 2HḊ2,b −

3
2Ω0H

2
0

(
a0

a

)3
D2,b

]
= Ḋ1

2 [
δ2

1 + δ1,i∆1,i + ∆1,ij∆1,ij
]
.

(2.7)

In order to decompose Equation 2.5 in the last two equations we impose the
initial conditions that the time dependent part of the first-order perturbation
solution and its derivative are zero for t = 0. As a consequence, the solution
can be written as

δ2 = (D2,a + D2,b) δ2
1 + (D2,a + 2D2,b) δ1,i∆1,i + D2,b∆1,ij∆1,ij . (2.8)

It is important to notice that Equations 2.7 and 2.8 are not really independent.
For example it can be verified that the following relation holds

D2,b = 1
2
(
D2

1 − D2,a
)
. (2.9)

The first line in Equations 2.7 can be analytically solved in the case of an Einstein-
de Sitter universe (Ωm = 1). For this kind of model we have the standard
relations

a ∝ t
2
3 , D1(t) = t

2
3 , 6πGρ = t−2 (2.10)

since Ω0 = 8πG
3H2

0
ρ0 =⇒ t−2 = 9

4Ω0 a
−3H2

0 .

Substituting Equation 2.10 into the first line of Equation 2.7 returns

ẍ + 4
3t
−1ẋ − 2

3t
−2x = 2

3t
− 2

3 , (2.11)

which has the solution

x = 3
7t

4
3 = 3

7D
2
1 = D2,a . (2.12)
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2.2. Skewness derivation

From the relation in Equation 2.9, gives D2,b = 2
7t

4
3 . Finally substituting these

two results into Equation 2.8 we have the expression for the second-order matter
density perturbation variable for an Einstein-de Sitter universe in terms of the
first-order one

δ2 = 5
7δ

2
1 + δ1,i∆1,i + 2

7∆1,ij∆1,ij. (2.13)

2.2 Skewness derivation

Before deriving an expression for S3, it is useful to work out the relation between
the variance of the matter density field 〈δ2〉 and the matter power spectrum
P(k), starting from the definition of 〈δ2〉 as the averaged two-point correlation
function. Here and in the following steps we introduce the concept of "smoothing
window function", which defines a maximum scale for computing the cumulative
function. By definition we have that:

〈δ2(x0)〉 = 〈
∫
d3xd3yW(y − x0)W(x− x0)δ(x)δ(y)〉 (2.14)

=
∫
d3xd3yW(y − x0)W(x− x0)ξ(x− y) .

Recalling that the two-point correlation function ξ is also the Fourier transform
of the power spectrum

ξ(x− y) = 1
(2π)3

∫
d3k P(k) eik(x−y), (2.15)

and substituting it into the Equation 2.14 it gives the final result:

〈δ2(x0)〉 = 1
(2π)3

∫
d3k P(k)

[∫
d3xW(x− x0)eikx

] [∫
d3yW(y − x0)e−iky

]
(2.16)

= 1
(2π)3

∫
d3k P(k)W2

k = 1
2π2

∫
dk P(k)W2

k k
2 = σ2 ,

where the Fourier transform of a spherical top-hat window function of radius R
whose Fourier transform is given by

W(k) = 3
(kR)3 [sin(kR) − kR cos(kR)] . (2.17)

When R = 8 Mpc/h the square root of Equation 2.16 gives the cosmological
parameter σ8, which is usually considered as a proxy of the dark matter field
oscillation amplitude.

Consider the numerator of S3, the three-point auto-correlation function 〈δ3〉.
When this is expanded up to the second-order in perturbation theory as
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2.2. Skewness derivation

〈δ(x0)δ(x0)δ(x0)〉 = 〈δ1(x0)δ1(x0)δ1(x0)〉 + 3〈δ2(x0)δ1(x0)δ1(x0)〉 + ... ,

(2.18)
the first term on the right hand side vanishes because the first-order perturbation
variable δ1 is assumed to be a Gaussian field. We consider only the lowest order
remaining term:

〈δ(x0)3〉 =
∫
d3x1d

3x2d
3x3

3∏
i=1

W(xi − x0) 3〈δ1(x1)δ1(x2)δ2(x3)〉 . (2.19)

Now recalling the expression in Equation 2.13 for the second-order perturbation
variable as a function of the first, it is useful to switch to Fourier space using the
following transformations previously introduced in Equation 1.44.
In order to transform the non-linear term in the expression in Equation 2.13 we
use the convolution formula found in Fry, 1984 :

F.T.{F1(x)...FN(x)} (k) =
∫ d3k1

(2π)3 ..
d3kN

(2π)3

[
(2π)3δD

(∑
ki − k

)]
F̃1(k1)...F̃N(kN)

= F̃1 ∗ ... ∗ F̃N , (2.20)

together with the useful relation (Fry, 1984) ∆̃(k) = − 1
k2 δ̃(k). In this way one

obtains

F.T.{δ2(x)} =

=
∫ d3k1

(2π)3
d3k2

(2π)3 (2π)3 δD(k1 + k2 − k)
[

5
7 + k1 · k2

k2
2

+ 2
7

(k1 · k2)2

k2
1k

2
2

]
δ̃(k1)δ̃(k2) .

(2.21)

Therefore the three-point cumulative Fourier transform becomes:

〈δ(x0)3〉 = 3
∫ 3∏

i=1
d3xiW(xi − x0)〈

∫ 3∏
i=1

(
d3ki
(2π)3

)
e−ikixi δ̃1(k1)δ̃1(k2)× (2.22)

×
∫ d3k4

(2π)3
d3k5

(2π)3 (2π)3 δD(k4 + k5 − k3) A(k4,k5)δ̃(k4)δ̃(k5)〉 ,

where

A(k4,k5) =
[

5
7 + k4 · k5

k2
5

+ 2
7

(k4 · k5)2

k2
4k

2
5

]
. (2.23)

Using the delta function we arrive to the expression
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2.2. Skewness derivation

〈δ(x0)3〉 = 3
∫ 4∏

i=1
d3xiW(xi − x0)

∫ 3∏
i=1

d3ki
(2π)3 e

−i(k1x1+k2x2+(k3+k4)x3)

× A(k4,k5)〈δ̃(k1)δ̃(k2)δ̃(k3)δ̃(k4)〉 . (2.24)

As explained in Amendola and Tsujikawa, 2010 chapter 12, the correlation term
〈...〉 for Gaussian variables vanishes except for identical k-pairs since different
modes are independent. This implies that:

〈δ̃(k1)δ̃(k2)δ̃(k4)δ̃(k5)〉 = 2× (2π)6δD(k1 − k4)δD(k2 − k5)P(k1)P(k2) , (2.25)

where P(k) is the power spectrum. Therefore

〈δ(x0)3〉 = 6
(2π)6

∫ 3∏
i=1

d3xiW(xi − x0)
∫
d3k4d

3k5 e
−i(k4x1+k5x2+(k4+k5)x3)

× A(k4,k5)P(k4)P(k5) . (2.26)

Defining the Fourier transform of a window function as

Wk =
∫
d3xW(x− x0) e−ikx , (2.27)

the three-point auto-correlation function becomes

〈δ(x0)3〉 = 6
(2π)6

∫
d3k4d

3k5Wk4Wk5W|k4+k5|A(k4,k5)P(k4)P(k5) . (2.28)

For spherical top-hat window functions (Equation 2.17), we then have two useful
relations for this type of window functions Bernardeau et al., 2002:∫ dΩ45

(4π)2 W|k4+k5|

[
1 − (k4 · k5)2

k2
4k

2
5

]
= 2

3W(k4)W(k5) (2.29)
∫ dΩ45

(4π)2 W|k4+k5|

[
1 + k4 · k5

k2
5

]
= W(k4)

[
W(k5) + 1

3k5RW′(k5)
]
,

where W(k) ≡W(kR) and W′(k) = dW(kR)
d(kR) . Rearranging the kernel

A(k4,k5) =
[(

1 + k4k5

k2
5

)
− 2

7

(
1 − (k4k5)2

k2
4k

2
5

)]
, (2.30)

it follows that

〈δ(x0)3〉 = 4
(2π)4

∫
dk4dk5P(k4)P(k5)

[ 34
7 W2

k4W2
k5 + 2k5RW2

k4Wk5W′
k5

]
k2

4k
2
5 .

(2.31)
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2.3. Skewness for a Ωm = 0 and ΩΛ = 1 Universe

Finally it is possible to compute S3:

S3 = 〈δ3〉
〈δ2〉2

= 34
7 + 2

2π2
1
σ2

∫
dk R k3WkW′

kP(k) . (2.32)

which was first derived by Peebles (1980) for infinitesimal cells. The last step
involves noticing that the window function is a function of kR and deriving the
variance with respect to R:

d

dR
〈δ2〉 = 1

π2

∫
dk k3 P(k)W(kR)W′(kR) , (2.33)

giving the skewness in the compact form:

S3 = 34
7 + d log σ2

d logR . (2.34)

In order to compute the skewness with numerical codes via the linear matter
power spectrum like for example CAMB (Lewis et al., 2000), it necessary to com-
pute the explicit expression of σ2 and of S3. Following the procedure presented
in the appendix of Juszkiewicz (2013) we have that

W′(kR) = dW(kR)
d(kR) = 9

(KR)4 (kR cos(kR) − sin(kR)) + 3
(kR)2 sin(kR) ,

(2.35)
we have that:

S3 = 34
7 + 27

σ2
1

R3π2

∫
dk

1
(kR)4

[
1
2 sin(2kR)

(
2kR− 1

3(kR)3
)

+

+ sin2(kR)
(4

3(kR)2 − 1
)
− (kR)2

]
P (k) (2.36)

σ2 = 1
2π2

9
R3

∫
dk

1
(kR)4

[
sin2(kR) + (kR)2 cos2(kR) − 2kR sin(kR) cos(kR)

]
P (k) .

(2.37)

Since the kernel of this expression is a function with infinite zero points, in order
to integrate it in an accurate way, it has been necessary to write an apposite
code which separately integrates each interval between the zeros of the kernel
and adds all those contributions together.

2.3 Skewness for a Ωm = 0 and ΩΛ = 1 Universe

We take now the extreme limit of what it is considered today the concordance
model: ΛCDM cosmology. In this cosmology we have that for t → ∞, Ωm → 0
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2.3. Skewness for a Ωm = 0 and ΩΛ = 1 Universe

while ΩΛ → 1. In order to compute the second-order expression of the matter
density perturbation field in this case Equation 2.4 becomes:

D̈1(t) + 2HḊ1(t) = 0

=⇒ Ḋ1(t) = B e−2Ht and D1(t) = B
2H

[
c0 − e−2Ht

]
, (2.38)

where the integration has been performed between a costant initial time ti and a
generic final time t. In order to fix the initial conditions for the Cauchy problem
to solve the differential equation (the constants B, c0) there are two possibilities
for the choice of the initial time ti:

• setting ti = 0 is equivalent to computing the initial conditions for a generic
time deep into the dark energy-dominated epoch, in this case c0 = 1;

• setting ti = teq where teq ⇔ ρm = ρΛ and in this case the initial conditions
require a more careful analysis in order for them to be fixed.

In this type of universe, we have to consider only the second of Equations 2.7
which simplifies to:

D̈2 + 2HḊ2 = Ḋ2
1

=⇒ D2(t) = B2

8H2 e−4Ht + c1

H
e−2Ht + c2 . (2.39)

The goal is to obtain, as in the case of an Einstein - de Sitter Universe
(EdS), an expression of D2(t) as a function of D1(t) in order to proceed in
the same way for the computation of the skewness. In order to do this it
is necessary to fix the constants B, c0, c1, c2, imposing specific conditions on
D1(ti), Ḋ1(ti), D2(ti), Ḋ2(ti).

Let’s consider the first of the two initial conditions fixing options. If we follow
the same assumptions made in the EdS case we have that:

D1(0) = 0 =⇒ c0 = 1
Ḋ1(0) = const =⇒ B = const
D2(0) = 0 =⇒ c2 = B2

8H2

Ḋ2(0) = 0 =⇒ c2 = − B2

4H .

(2.40)

It is immediate then to see that in this case it is possible to express the second-
order solution in term of the first-order one:

D2(t) = B2

8H2

(
e−4Ht − 2e−2Ht + 1

)
=⇒ D2(t) = 1

2D1(t)2 . (2.41)
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2.3. Skewness for a Ωm = 0 and ΩΛ = 1 Universe

Proceeding as in the EdS case and substituting Equation 2.41 into Equation 2.8,
we obtain the analogous expression of Equation 2.13:

δ2 = 1
2δ

2
1 + δ1,i∆1,i + 1

2∆1,ij∆1,ij , (2.42)

which, reproducing the skewness computations made before, implies that the
new analogous of the kernel in Equation 2.23 is:

A2(k1,k2) =
[

1
2 + k1 · k2

k2
2

+ 1
2

(k1 · k2)2

k2
1k

2
2

]
, (2.43)

In order to use the geometrical properties of the top-hat window functions we
can rewrite A2(k1,k2) as

A2(k1,k2) =
[(

1 + k1 · k2

k2
2

)
− 1

2

(
1 − (k1 · k2)2

k2
1k

2
2

)]
. (2.44)

Recalling the three-point function expression in Equation 2.28

〈δ(x0)3〉 = 6
(2π)6

∫
d3k1d

3k2Wk1Wk2W|k1+k2|A2(k1,k2)P(k1)P(k2) , (2.45)

we can now use the geometric relations in Equation 2.29 and obtain

〈δ(x0)3〉 =

= 4
(2π)4

∫
dk1dk2P(k1)P(k2)

[
6
(

1 − 1
3

)
W2

k1W2
k2 + 2k2RW2

k1Wk2W′
k2

]
k2

1k
2
2

= 4
(2π)4

∫
dk1dk2P(k1)P(k2)

[
4W2

k1W2
k2 + 2k2RW2

k1Wk2W′
k2

]
k2

1k
2
2 . (2.46)

Proceeding as in the standard case it is then finally possible to write the compact
expression for the skewness SΛ,3 like in the case of an EdS universe:

SΛ,3 = 4 + d log σ2

d logR , (2.47)

from which we can observe a small difference from the standard result ∆S3 =
S3 − SΛ,3 = 6

7 . The fact that the skewness parameter results smaller in a dark
energy dominated universe than in a EdS one agrees with the physical intuition
that an accelerated expansion phase tends to smooth the existing gravitational
inhomogeneities.

Considering a more realistic case in which the dark energy dominated epoch
is the extreme limit which follows after a cold dark matter dominated one, the
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2.4. Primordial non-Gaussianity contribution

computation should be done with the following boundary conditions (where t =
0 corresponds to an initial time in the dark energy dominated epoch):

D1(0) = a1 =⇒ a1 = B
2H [c0 − 1]

Ḋ1(0) = B =⇒ B = B
D2(0) = a2 =⇒ a2 = B2

8H2 + c1
H

+ c2

Ḋ2(0) = a3 =⇒ a3 = − B2

2H − 2c1 ,

(2.48)

where ai are constants which must be properly fixed depending on the choice of
the initial time t = 0 and precisely The cosmology corresponding to that time.
Solving the system one finds for the first and second-order solutions:

D1(t) = a1 + B
2H

(
1 − e−2Ht

)
D2(t) = B2

8H2 e−4Ht −
(

a3

2H + B2

4H2

)
e−2Ht + a2 + B2

8H2 + a3

2H , (2.49)

from which it is possible to see that in order to maintain the relation in Equation
2.41 and the same result for the skewness we have that only one of the ai is truly
a free parameter together with B. Indeed one obtains the constraints

a1 B = a3 and a2 = a2
1

2 , (2.50)

which physically makes sense since the second-order perturbation solution is
derived from the first-order one and hence its initial conditions should be bounded
to the first-order ones.

2.4 Primordial non-Gaussianity contribution

Following the results for the cases in which the primordial gravitational field has
been assumed to be perfectly Gaussian, it is now presented an analysis of the
effects on the late-time gravitationally induced non-linearities by the presence of
a particular kind of primordial non Gaussianities (PNG).

2.4.1 Three-point contribution

The case in which the distribution of the primordial anisotropies slightly deviated
from perfect Gaussianity can be mathematically expressed with the primordial
curvature perturbation field Φ represented as a function of an auxiliary gaussian
field φ,

Φprim.(x) = φprim.(x) + fNL
c2

(
φprim.(x)2 − 〈φprim.(x)2〉

)
, (2.51)
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2.4. Primordial non-Gaussianity contribution

where fNL expresses in particular the "local non-Gaussianity" of the field and
it is assumed to be constant. The primordial potential Φprim. is related to the
late-time one Φl.t. by the relation (Scoccimarro et al., 2004):

Φl.t.(a) = 9
10
D+

a
T(k)Φprim. , (2.52)

where T(k) is the transfer function, D+(a) is the growth factor from linear per-
turbation theory (it has been neglected the anisotropic stresses). Also, at late-
times we can express the total non-linearity of the matter density contrast field,
both due to PNG and gravitational collapse, adding a second-order term in the
expansion of the perturbation variable:

δ(x) = δ1(x) + δ2(x) + higher orders . (2.53)

The target of the following computation is to obtain the contribution of PNG at
first-order in fNL. The steps can be schematically seen below as

〈δ3〉 expand in−−−−−→ f
(
Φl.t.

)
substitutewith−−−−−−−−→ f (Φprim.)

expand−−−−→ f
(
φprim. + fNL

(
φ2

prim. + 〈φ2
prim.〉

))
express as−−−−−−→ f

(
Pi
φ(ki)

)
end in−−−→ f

(
Pl.t.
m

)
, (2.54)

where Pi
φ(ki) is the power spectrum of the primordial curvature perturbation φ

relative to the wave vector ~ki. Pl.t.
m (ki) is the late-time matter power spectrum.

At late-times we have the Poisson equation

∇2Φl.t.(x, a) = 3
2

ΩmH
2
0

a
δ(x, a) , (2.55)

which combined with Equation 2.52 gives the relation in Fourier space

δk
(
Φprim.

)
= 3

5
D+

ΩmH2
0
k2 T(k) Φprim. = β k2T(k) Φprim. . (2.56)

We then consider then the three-point function

〈δ(x0)δ(x0)δ(x0)〉 = 〈(δ1(x0) + δ2(x0)) (δ1(x0) + δ2(x0)) (δ1(x0) + δ2(x0))〉

= 〈δ1(x0)δ1(x0)δ1(x0)〉 + 3〈δ1(x0)δ1(x0)δ2(x0)〉

+ higher orders . (2.57)

51



2.4. Primordial non-Gaussianity contribution

The first term of Equation 2.57 would normally be equal to zero, being an odd
moment of what is usually a Gaussian field. Instead in the case of PNG this is
no longer true. Using the relation in Equation 2.52 together with the Poisson
equation in order to pass from late-time to primordial potential (the transfer
function will be added after going to Fourier space), the first term expands into

〈δ1(x0)δ1(x0)δ1(x0)〉 =

=
∫ 3∏

i=1
d3xi W (xi − x0) 〈δ(x1)δ(x2)δ(x3)〉

=
∫ 3∏

i=1
d3xi W (xi − x0) ×

∫ 3∏
i=1

d3ki
(2π)3 e

−ikixi〈δ(k1)δ(k2)δ(k3)〉

=
∫ 3∏

i=1

d3ki
(2π)3 W (ki, R) 〈δ(k1)δ(k2)δ(k3)〉

=
∫ 3∏

i=1

d3ki
(2π)3 k

2
iT(ki) β3 W (ki, R) 〈Φp

k1Φp
k2Φp

k3〉 , (2.58)

where W (ki, R) is the Fourier transform of a top-hat window function with radius
R. Expanding in Fourier space each non-linear primordial curvature potential
using the convolution formula reported in (Fry, 1984)

Φp
ki

= φki + fNL
c2

(∫ d3kad
3kb

(2π)3 δD (ka + kb − ki)φkaφkb − δD (ki) 〈φ2〉
)
, (2.59)

it is possible to resume the computation on the first term of the three-point
auto-correlation function in Equation 2.58:

〈δ1(x0)δ1(x0)δ1(x0)〉 =

= β3
∫ 3∏

i=1

d3ki
(2π)3 k

2
iT(ki) W (ki, R) ×

×
{〈[

φk1 + fNL
c2

∫ d3k4d
3k5

(2π)3 δD (k4 + k5 − k1)φk4φk5 −
fNL
c2 δD (k1) 〈φ2

〉]

×
[
φk2 + fNL

c2

∫ d3k6d
3k7

(2π)3 δD (k6 + k7 − k2)φk6φk7 −
fNL
c2 δD (k2) 〈φ2

〉]

×
[
φk3 + fNL

c2

∫ d3k8d
3k9

(2π)3 δD (k8 + k9 − k3)φk8φk9 −
fNL
c2 δD (k3) 〈φ2

〉]〉}
.

(2.60)

From Equation 2.60, remembering that φ is assumed to be a Gaussian random
field and therefore all the odd moments vanish, 〈φ2n+1〉 = 0, all the terms ∝ f 2

NL

vanish. The surviving term at order ∝ fNL is then
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〈δ1(x0)δ1(x0)δ1(x0)〉

= β3fNL
c2

∫ 3∏
i=1

d3ki
(2π)3 k

2
iT(ki) W (ki, R) ×

×
{∫ d3k4d

3k5

(2π)3 δD (k4 + k5 − k1) 〈φk2φk3φk4φk5〉 − δD (k1) 〈φk2φk3〈φ2〉〉

+
∫ d3k6d

3k7

(2π)3 δD (k6 + k7 − k2) 〈φk1φk3φk6φk7〉 − δD (k2) 〈φk1φk3〈φ2〉〉

+
∫ d3k8d

3k9

(2π)3 δD (k8 + k9 − k3) 〈φk1φk2φk8φk9〉 − δD (k3) 〈φk1φk2〈φ2〉〉
}
.

(2.61)

Consider for example the first term, applying the Wick’s theorem gets

∫ d3k4d
3k5

(2π)3 δD (k4 + k5 − k1)
[
〈φk2φk4〉〈φk3φk5〉+ 〈φk2φk5〉〈φk3φk4〉+ 〈φk2φk3〉〈φk4φk5〉

]
− δD (k1) 〈φk2φk3〉〈φ2〉 . (2.62)

Only the first two terms inside the square brackets survive. Using the defini-
tion of power spectrum for Gaussian variables 〈φkiφkj〉 = (2π)3δD(ki + kj)P(ki)
Equation 2.61 reduces to

〈δ1(x0)δ1(x0)δ1(x0)〉 =

= β3fNL
c2

∫ 3∏
i=1

d3ki
(2π)3 k

2
iT(ki) W (ki, R) ×

×
{

2
∫ d3k4d

3k5

(2π)3 δD (k4 + k5 − k1) (2π)6δD (k4 + k2) δD (k5 + k3) Pφ (k2) Pφ (k3) +

+ 2
∫ d3k6d

3k7

(2π)3 δD (k6 + k7 − k2) (2π)6δD (k6 + k1) δD (k7 + k3) Pφ (k1) Pφ (k3) +

+ 2
∫ d3k8d

3k9

(2π)3 δD (k8 + k9 − k3) (2π)6δD (k8 + k1) δD (k9 + k2) Pφ (k1) Pφ (k2)
}
,

(2.63)

which shows that the three terms are all the same integrals

〈δ1(x0)δ1(x0)δ1(x0)〉 =

= 6β3fNL
c2

∫ 3∏
i=1

d3ki
(2π)3k

2
iT(ki) W (ki, R) δD (k3 + k2 − k1) P (k2) P (k3) (2π)3

= 6β3fNL
c2(2π)6

∫
d3k2d

3k3 k
2
2k

2
3 (k2 + k3)2 Tk2Tk3Tk3+k2Wk2Wk3Wk3+k2Pφ

k2Pφ
k3 .

(2.64)
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In order to integrate the angular part we use the approximation introduced by
Scoccimarro et al. (2004)

∫ dΩ12

(4π)2 Tk3+k2Wk3+k2 (k2 + k3)2 ≈ k2
3Tk3Wk3

(
Wk2 + k2R

3 W′
k2

)
+ k3 ↔ k2 ,

(2.65)

which, substituted in Equation 2.64 and noticing that the two symmetric terms
are equivalent once integrated over all the k’s for both k1 and k2, gives:

〈δ1(x0)δ1(x0)δ1(x0)〉 =

= 48β3fNL
c2(2π)4

∫
dk2dk3k

6
2k

4
3T2

k2Tk3 W2
k2

[
W2

k3 + k3R

3 Wk3W′
k3

]
Pφ (k2) Pφ (k3) .

(2.66)

Using the standard relation from Dodelson (2003) to relate the primordial power
spectrum with the matter one

Pm (k) = β2k4T2
kPφ (k) , (2.67)

Equation 2.65 can be written as

〈δ1(x0)δ1(x0)δ1(x0)〉 = 5 ΩmH
2
0fNL

c2D+π4

∫
dk2dk3k

2
2T−1

k3 ×

×W2
k2

[
W2

k3 + k3R

3 Wk3W′
k3

]
Pm (k2) Pm (k3) . (2.68)

For second term of the three-point auto-correlation function, following the
same procedure one obtains
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3〈δ1(x0)δ1(x0)δ2(x0)〉 =

= 3
∫ 3∏

i=1
d3xi W (xi − x0) 〈δ1(x1)δ1(x2)δ2(x3)〉

= 3
∫ 3∏

i=1
d3xi W (xi − x0)

∫ 3∏
i=1

d3ki
(2π)3 e

−ikixi×

×
∫ d3k4

(2π)3d
3k5δD (k4 + k5 − k3) F2 [k4,k5] 〈δ(k1)δ(k2)δ(k4)δ(k5)〉

= 3
∫ 4∏

i=1

d3ki
(2π)3 Wk1Wk2Wk3+k4F2 [k3,k4] 〈δ(k1)δ(k2)δ(k3)δ(k4)〉

= 3β3
∫ 4∏

i=1

d3ki
(2π)3 k

2
iT(ki)Wk1Wk2Wk3+k4F2 [k3,k4] 〈Φp

k1Φp
k2Φp

k3Φp
k4〉

= 3β3
∫ 4∏

i=1

d3ki
(2π)3 k

2
iT(ki)Wk1Wk2Wk3+k4F2 [k3,k4]×

×
〈[
φk1 + fNL

c2

∫ d3k5d
3k6

(2π)3 δD (k5 + k6 − k1)φk5φk6 −
fNL
c2 δD (k1) 〈φ2

〉]

×
[
φk2 + fNL

c2

∫ d3k7d
3k8

(2π)3 δD (k7 + k8 − k2)φk7φk8 −
fNL
c2 δD (k2) 〈φ2

〉]

×
[
φk3 + fNL

c2

∫ d3k9d
3k10

(2π)3 δD (k9 + k10 − k3)φk9φk10 −
fNL
c2 δD (k3) 〈φ2

〉]

×
[
φk4 + fNL

c2

∫ d3k11d
3k12

(2π)3 δD (k11 + k12 − k4)φk11φk12 −
fNL
c2 δD (k4) 〈φ2〉

]〉
,

(2.69)

where the second-order perturbation theory kernel (Fry, 1984; Peebles, 1980) is

F2 [ka,kb] =
[

5
7 + ka · kb

k2
a

+ 2
7

(ka · kb)2

k2
ak

2
b

]
. (2.70)

Notice from the terms in the last expression in Equation 2.69:

• the only term without fNL gives the standard first-order term in the 3pt
auto-correlation function which is also the numerator of S3;

• all the terms ∝ fNL are formed by odd moments of a Gaussian random
variable (φ) and hence vanish;

• the first terms non-vanishing are of order f 2
NL which are beyond the purpose

of this work.
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2.4.2 Two-point contribution

In order to compute later the influence of PNG on the S3 parameter, we must
know its contribution to the variance. We proceed in the same way as in the
three-point case

〈δ(x1)δ(x2)〉 = 〈(δ1(x1) + δ2(x1)) (δ1(x2) + δ2(x2))〉 =

= 〈δ1(x1)δ1(x2)〉 + 2〈δ1(x1)δ2(x2)〉 + 〈δ2(x1)δ2(x2)〉 + high. ord.s . (2.71)

The first term, when PNG is not considered would give the standard variance,
but with PNG the expansion is

〈δ1(x0)δ1(x0)〉 =

=
∫ 2∏

i=1
d3xi W (xi − x0) 〈δ1(x1)δ1(x2)〉 =

∫ 2∏
i=1

d3ki
(2π)3 Wk1Wk2〈δ(k1)δ(k2)〉

= β2
∫ 2∏

i=1

d3ki
(2π)3 k

2
iT(ki)Wki〈Φ

p
k1Φp

k2〉

= β2
∫ 2∏

i=1

d3ki
(2π)3 k

2
iT(ki)Wki×

×
〈[
φk1 + fNL

c2

∫ d3k3d
3k4

(2π)3 δD (k3 + k4 − k1)φk3φk4 −
fNL
c2 δD (k1) 〈φ2

〉]

×
[
φk2 + fNL

c2

∫ d3k5d
3k6

(2π)3 δD (k5 + k6 − k2)φk5φk6 −
fNL
c2 δD (k2) 〈φ2

〉]〉
,

(2.72)

from which:

• the term without fNL gives the standard variance;

• all the terms ∝ fNL are odd moments of a Gaussian distribution and there-
fore they vanish;

• the first non-linear term to not vanish is of order f 2
NL.

Simplifying as before, the term proportional to f 2
NL is

〈δ1(x0)δ1(x0)〉 = 2
(
fNLβ

c2

)2 ∫ d3k3d
3k4

(2π)6 W2
|k3+k4|T

2
|k3+k4| (k3 + k4)4 Pφ (k3) Pφ (k3) ,

(2.73)

which can be easily converted to the matter power spectrum.

56



2.4. Primordial non-Gaussianity contribution

Figure 2.1:
left column: standard quantities σ2, δ3 and S3 computed in the case of fNL = 0
as a function of the window function radius R using Equations 2.36 for a standard
λCDM cosmology.
right column: Ratio between the quantities σ2

NL, δ3
NL and SNL3 and the standard

σ2, δ3, S3 (computed assuming fNL = 0) for different values of fNL, using the
expression derived in Equations 2.68, 2.76 and 2.77.
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Next we analyse the second term of the expansion in Equation 2.71.

2〈δ1(x0)δ2(x0)〉 =

= 2
∫ 2∏

i=1
d3xi W (xi − x0)

∫ 2∏
i=1

d3ki
(2π)3 e

−ikixi×

×
∫ d3k3

(2π)3d
3k4δD (k3 + k4 − k2) F2 [k3,k4] 〈δ(k1)δ(k3)δ(k4)〉

= 2β3
∫ 3∏

i=1

d3ki
(2π)3 k

2
iT(ki)Wk1Wk2+k3F2 [k2,k3] 〈Φp

k1Φp
k2Φp

k3〉

= 2β3
∫ 3∏

i=1

d3ki
(2π)3 k

2
iT(ki)Wk1Wk2+k3F2 [k2,k3]×

×
〈[
φk1 + fNL

c2

∫ d3k4d
3k5

(2π)3 δD (k4 + k5 − k1)φk4φk5 −
fNL
c2 δD (k1) 〈φ2

〉]

×
[
φk2 + fNL

c2

∫ d3k6d
3k7

(2π)3 δD (k6 + k7 − k2)φk6φk7 −
fNL
c2 δD (k2) 〈φ2

〉]

×
[
φk3 + fNL

c2

∫ d3k8d
3k9

(2π)3 δD (k8 + k9 − k3)φk8φk9 −
fNL
c2 δD (k3) 〈φ2

〉]〉
(2.74)

In the same fashion of the three-point case, from Equation 2.74 it is clear that:

• the term without fNL that goes as ∝ 〈φ̃(k1)φ̃(k2)φ̃(k3)〉 vanishes always
because it is an odd moment of a gaussian field;

• terms proportional to f 2
NL vanish for the same reason;

• the three terms proportional to fNL do not vanish and can be divided in
two cases, depending on the relation between the k’s inside the two kernels
in the integral.

In particular, using Wick’s theorem to simplify the resulting expression, one
derives two terms

Ia = 2β3fNL
c2

∫ 3∏
i=1

d3ki
(2π)3 k

2
iT(ki)Wk1Wk2+k3F2 [k2,k3]×

×
∫ d3k4d

3k5

(2π)3 δD (k4 + k5 − k1)× 2(2π)6δD (k4 + k2) δD (k5 + k3) Pφ(k2)Pφ(k3)

Ib = 4β3fNL
c2

∫ 3∏
i=1

d3ki
(2π)3 k

2
iT(ki)Wk1Wk2+k3F2 [k2,k3]×

×
∫ d3k6d

3k7

(2π)3 δD (k6 + k7 − k2)× 2(2π)6δD (k6 + k1) δD (k7 + k3) Pφ(k1)Pφ(k3) .

(2.75)
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Proceeding as in the three-point case, for Ia one obtains

Ia = 4β3fNL
c2(2π)6

∫
d3k2d

3k3 k
2
2k

2
3 (k2 + k3)2 Tk2Tk3T|k2+k3|W2

|k2+k3|F2 [k2,k3] Pφ(k2)Pφ(k3) ,

(2.76)

which can also be easily converted to the matter power spectrum expression.
Similarly

Ib = 8β3fNL
c2(2π)6

∫ 3∏
i=1

d3ki k
2
iT(ki)Wk1Wk2+k3F2 [k2,k3] δD (k1 + k2 + k3) Pφ(k1)Pφ(k3)

= 8β3fNL
c2(2π)6

∫
d3k2d

3k3 k
2
2k

2
3 (k2 + k3)2 Tk2Tk3T|k2+k3|W2

|k2+k3|

× F2 [k2,k3] Pφ(|k2 + k3|)Pφ(k3) , (2.77)

which is very similar to what was obtained for Ia. Both expressions can be
numerically integrated after being converted to the form with the matter power
spectrum. The skewness parameter including PNG contributions can then be
written as

SNL3 = 〈δ3
std.〉 + 〈δ3

NL〉
(〈σ2

std.〉 + 〈σ2
NL〉)

2 , (2.78)

and an interesting check is the ratio between the skewness obtained with the
contribution given by PNG in Equation 2.78 and the standard one:

ratio = SNL3
S3

, (2.79)

shown in Figure 2.1 for different values of fNL. Another option to account for the
impossibility of simplifying Ia and Ib is to assume that the contributions given
by the fNL terms are much smaller with respect to the standard ones, since
once squared they go as ∝ f 2

NL/c
4. In this case we can Taylor-expand the above

expression

SNL3 = 〈δ3〉 + 〈δ3
NL〉

〈σ2〉2
(

1 + 〈σ
2
NL〉
〈σ2〉

)2

' 〈δ
3〉 + 〈δ3

NL〉
〈σ2〉2

×

1 − 2〈σ
2
NL〉
〈σ2〉

+ 3
(
〈σ2

NL〉
〈σ2〉

)2
 . (2.80)

In this way it is possible to consider only the first term of Equation 2.80, ignoring
the non-linear contribution to the variance.

Comparing the theoretical predictions shown in Figure 2.1 with the work done
by Scoccimarro et al. (2004) and Mao (2014) we find good agreement especially
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when looking at the enhancement of the skewness signal in the case of PNG
parametrised by fNL = 100.

Currently, the best constraints on primordial non-Gaussianity are given by
CMB experiments and in particular Planck (Planck Collaboration et al., 2016b)
which constrained the local type of PNG up to f loc

NL = 0.8± 5.0 combining both
temperature and polarization data. The ratio in Equation 2.79 for fNL = 1
differs from unity by less than 0.5% up to the maximum scales shown in Figure
2.1.

2.5 S3 from data

In this section are presented the cosmological parameter constraints derived from
the measurement of the 2pt and 3pt auto-correlation functions on the SDSS
DR11 BOSS CMASS north sample data. In order to obtain 1 and 2D confidence
intervals, the galaxy mocks produced by Manera et al. (2013); Manera et al.
(2015) have been used to estimate the covariance matrix.

The main reason for these measurements was originally to find experimental
evidence of the result presented by Juszkiewicz (2013) relative to possibility of
observing a BAO signal in the skewness. Indeed even if the signal would have
been much smaller and less peaked than in the 2pt correlation function, from
the theoretical point of view it would have been almost completely independent
from the galaxy bias parametrisation.

In order to check the presence of BAO, Juskiewicz takes the ratio of an S3

with a physical power spectrum to an Ssmooth
3 obtained by using an analytic

expression for a no-wiggle power spectrum (Eisenstein and Hu, 1999). In this
way for a radius of∼ 55−60 Mpc/h of the top-hat window function, the ratio plot
has the center of an oscillation around unity with an amplitude of approximately
the 3% as shown in Figure 2.2 from Juszkiewicz (2013).

In our project, we planned to use a slightly different function in order to
check for the presence of BAO in three-point cumulative statistics. In particular
it has been considered an approximation of the derivative of S3, ∆S3 which given
a set of data points for different radii of the top hat window function S3(Ri) it
is defined using the Richardson’s extrapolation formula as

∆Si3 = −Si+2
3 + 8 Si+1

3 − 8 Si−1
3 + Si−2

3
∆R , (2.81)

where ∆R = Ri+1 − Ri and it is constant. This quantity has been introduced
for two main reasons. First, it is experimentally easier to observe and measure
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Figure 2.2: Plot from Juszkiewicz (2013) showing the skewness BAO feature.
The red solid line represents the volume-averaged skewness as function of top-hat
scale. It shows the characteristic skewness BAO feature, a mild shoulder around
the characteristic crossing scale. For comparison, the dotted line represents the
skewness for a "no-wiggle" power spectrum. The inset zooms in on the shoulder
at the crossing scale.

a peak as the one expected in ∆S3 than the crossing point expected in the S3

ratio.
Secondly, since it is not possible to directly probe the matter field distribution.

We measure the skewness of the galaxy field Sg
3, from the mocks and the BOSS

data, assuming that the galaxies act as tracers of the matter field. The bias
relation linking Sg

3 with Sm
3 (Fry and Gaztanaga, 1993) is

Sg
3 = 1

b
(Sm

3 + 3 c2) , (2.82)

where b and c2 are the two relevant bias parameters.
From this definition and from Equation 2.82 it is immediate to see the in-

dependence of ∆S3 from the bias parameter c2. A total independence from the
galaxy-matter bias is then gained by studying the ratio between ∆S3 obtained
from the data and the one obtained by smoothing the data. This is analogous
to the S3 ratio used by Juszkiewicz (2013) in his paper, with the advantage that

61



2.5. S3 from data

in this case there is theoretically no dependence from the bias

R∆S3 = ∆Sm
3

∆Sm,sm.
3

= ∆Sg
3

∆Sg,sm.
3

, (2.83)

where "m", "g" and "sm." stand for "matter", "galaxies" and "smoothed", respec-
tively.

Unfortunately, as soon as we measured δ2 and δ3 from both data and galaxy
mocks, it was evident that the cosmic variance error component was too large
for a detection of the BAO feature to be possible. We used the measurements
of the 2pt and 3pt correlation functions joint data vector to constrain model
parameters like the linear galaxy bias b1, the normalisation of the dark matter
oscillation amplitude σ8 and the primordial non Gaussianities parameter fNL.

2.5.1 BOSS DR11 data and mocks

In this work we use the DR11 CMASS north sample of the SDSS Baryon Os-
cillation Spectroscopic Survey, containing 579, 461 observed galaxies covering a
total area of 6, 769 deg2. The redshift range is 0.43 < z < 0.7.

In order to compute the covariance matrix for our analysis we have used 600
galaxy mocks and 600 random mocks for DR11 created by Manera et al. (2013).
The mocks for the galaxies contained also the "true" redshift of the galaxies
together with the observed one so that it has been possible to study the effect
of the redshift-space distortions of the used statistics. The galaxy mocks have
been constructed by placing dark matter halos in a 2LPT field and populating
them with galaxies. The cosmology of the mocks is compatible with WMAP5-7:
Ωm = 0.274, ΩΛ = 0.726, σ8 = 0.8, ns = 0.95, h = 0.7, Ωb∆h2 = 0.0224. The
galaxy mocks also have a weighting system that corrects for the incompleteness
of a real data-set: wcboss for galaxies/randoms reduced by completeness Cboss,
wcp close pairs weight, wred redshift failure weight. The system consists in using
only the galaxies with all three weights > 0 and applying to each one the weight:
wtot = wcp+wred−1. Therefore the total weight for each galaxy is increased if the
closest galaxy had a redshift failure or if the redshift was not measured since both
galaxies formed a close pair. The mocks have a survey geometry corresponding
to the BOSS DR11.

2.5.2 Statistical estimators

We measured separately 〈δ3
g〉 and 〈δ2

g〉 by randomly arranging an arbitrary num-
ber nsph. of spheres inside the survey volume on a regular three-dimensional grid,
and then counting the number of galaxies inside each sphere of radius R. The
same is done for a contrast field catalog with approximately one hundred times
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the density, distributing the points using a Poisson process. This allows us to
define a δg(R) for the galaxy field as a function of the sphere’s radius:

δg(R) = ng(R)
nr(R) F − 1 and F = ntot

r
ntot

g
, (2.84)

where F is the renormalisation factor. From now on unless specified, all quantities
refer to the galaxy field. Since we are dealing with a discrete distribution it is
necessary to use estimators for the continuous galaxy distribution field derived
from the discrete counting. What it is actually measured from counting ng(R)
and nr(R) inside the a sphere of radius R are the quantities:

k2 = 1
nsph.

∑(
ng(R)
nr(R) F − 1

)2

k3 = 1
nsph.

∑(
ng(R)
nr(R) F − 1

)3

. (2.85)

In order to relate these quantities with the continuous cumulative two- and three-
point functions for the continuous galaxy field 〈δ2〉 and 〈δ3〉 we need to average
the quantities in Equation 2.85 both over the galaxy Poisson sampling and the
cosmic variance. Averaging over cosmic variance means to average over different
realizations, in our case this is done by averaging over different mocks. For the
two-point expression with same redshift but different sampling densities (the
density of the points, galaxies or randoms, varies with the redshift z) we have
that the second moment of the discrete density distribution 〈k2〉 is given by

〈k2〉 = 〈δ2〉 + 1
nsph.

∑ 1
nr(x) , (2.86)

where nr(x) is the number of random points (not clustered) inside a sphere of
radius R at a position x inside the survey. Analogously the third moment of
discrete density distribution 〈k3〉 is related to the continuous one by

〈k3〉 = 〈δ3〉 + 〈δ2〉
nsph.

∑ 3
nr(x) + 1

nsph.

∑ 1
nr(x)2 . (2.87)

Both expressions agree with Gaztanaga (1994). Since by construction the galaxy
number density depends only on the redshift, in all the previous expressions can
be rewritten with nr(x) = nr(z).
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2.6 Treatment of noise sources

The fact that the survey has a finite volume, which has also masked zones, is
a source of noise in the measurement of the cumulative moments. Indeed one
can ask what happens when part of the sphere used to estimate the moments
of the distribution falls outside the survey volume. Since the perturbation to
the average density δ is computed by taking the ratio of the counted number of
galaxies with the counted number of randoms inside the sphere, its statistic is
independent of whether the sphere partially falls out of the survey. The problem
is to associate this statistic to an effective sphere radius Reff relative to a sphere
which would have the same statistic if its volume would be completely inside the
survey.

In order to avoid this complicated problem, in this work the measurements
have been considered in the analysis only up the maximum radius for which
spheres still fully lie inside the survey volume. Hence each sphere contributed
to the statistics up to the scale corresponding to their own maximum radius. In
this way all the volume of the survey is probed even if not uniformly for all the
scales: for larger window function radii R, fewer spheres were included in the
survey volume.

2.7 Redshift-space distortions effect

The galaxy mocks used for the analysis have both the true and the observed
redshift for the galaxies. It has therefore been possible to check its effect on δ2,
δ3 and S3. The effect of redshift-space distortions in galaxy clustering analysis
was studied using Lagrangian perturbation theory by Hivon et al. (1995). In
Figure 2.3 we show a plot of the observed effect in our measurements. In order
to empirically check for the statistical effect of redshift-space distortions on the
measurements, we run the pipeline on each of the 600 galaxy mocks once using
the "observed" z including RSD and once using the "true" z. In Figure 2.3 it has
been plotted the means of 2pt and 3pt auto-correlation functions, 〈δ2(R)〉 and
〈δ3(R)〉, together with the skewness S3(R) for both the "true" and "obs" redshift
cases with the shaded regions indicating the errorbars given by the mocks.

2.8 RSD-corrected expressions for 〈δ2〉 and 〈δ3〉

Figure 2.3 shows that there is a substantial difference between configuration
(without RSD) and redshift-space results ("TRUE Z" and "OBS. Z" in the Figure,
respectively), The parameter constraints obtained by using the real data would
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Figure 2.3: From top to bottom: 〈δ2(R)〉, 〈δ3(R)〉
and S3 measured from DR11 mocks Manera et al., 2015 once using the ’true’
redshift (without RSD) of the galaxies (blue) and the ’observed’ one (with RSD,
in red). The shaded area corresponds to the error-bars given by the sample
covariance matrices.

result biased if RSD were not taken into account. Using the relations presented
in Heavens et al. (1998) to relate the galaxy perturbation density function in
redshift-space to the matter one in real space, it is possible to compute the
corrected theoretical model for the two- and three-point correlation functions.
The perturbation theory derived kernels corrected for RSD used below have
been previously described in Section 1.5.

The statistics measured from data depend on the over-density of the galaxy
field in redshift-space 〈δg

s〉. Repeating Equation 1.65, 〈δg
s〉 is related to the linear

perturbation variable for the matter density field 〈δm〉 by
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δg
sk = F (1)

s (k) δk + 1
(2π)3

∫
d3k1d

3k2δD (k − k2 − k1)F (2)
s (k1,k2) δk1δk2

+ 1
(2π)6

∫
d3k1d

3k2d
3k3δD (k − k3 − k2 − k1)

× F (3)
s (k1,k2,k3) δk1δk2δk3 . (2.88)

Therefore starting with the 3pt auto-correlation function

〈δg
s(x0)3〉 =

∫ 3∏
i=1

d3xiWx−x0

d3ki
(2π)3 e

−ikixi〈δg
s(k1)δg

s(k2)δg
s(k3)〉

= 3
∫ 3∏

i=1

d3ki
(2π)3 Wki

∫ d3k4d
3k5

(2π)3 F (1)
s (k1)F (1)

s (k2)

× F (2)
s [k1,k2] δD (k3 − k4 − k5) 〈δm

k1δ
m
k2δ

m
k3δ

m
k4〉

= 6
(2π)6

∫
d3k1d

3k2Wk1Wk2W|k1+k2|

× F (1)
s (k1)F (1)

s (k2)F (2)
s [k1,k2] P(k1)P(k2) , (2.89)

where 〈δm〉 is a Gaussian variable. The first term of the expansion in Equation
2.89 vanishes giving

〈δg
s(k1)δg

s(k2)δg
s(k3)〉 = F (1)

s

3
���

���
�:0

〈δm
k1δ

m
k2δ

m
k3〉 + 3F (1)

s

2
F (2)
s 〈δm

k1δ
m
k2δ

m
k3δ

m
k4〉 + O

(
δ6
)
.

(2.90)

For the variance, proceeding in the same way it is possible to obtain:
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〈δg
s(x0)2〉 =

=
2∏
i=2

∫ d3ki
(2π)3 Wki〈δg

s(k1)δg
s(k2)〉

=
2∏
i=2

∫ d3ki
(2π)3 Wki

{
F (1)
s (k1)F (1)

s (k2) (2π)3δD (k1 + k2) P(k1)

+ 1
(2π)6

∫
d3kad

3kbd
3kcd

3kdδD (k1 − ka − kb) δD (k2 − kc − kd)

× F (2)
s [ka,kb]F (2)

s [kc,kd] 〈δm
kaδ

m
kb
δm
kcδ

m
kd
〉

+ 2
(2π)6F

(1)
s (k1)

∫
d3ked

3kfd
3kgδD (k2 − ke − kf − kg)F (3)

s [ke,kf ,kg] 〈δm
k1δ

m
keδ

m
kf
δm
kg〉
}

=
2∏
i=2

∫ d3ki
(2π)3 Wki

{
F (1)
s (k1)F (1)

s (k2) (2π)3δD (k1 + k2) P(k1)

+ 2
(2π)6

∫
d3kad

3kbF
(2)
s [ka,kb]

2
δD (k1 − ka − kb) δD (k2 − ka − kb) (2π)6P(ka)P(kb)

+ 6
(2π)6F

(1)
s (k1)

∫
d3ked

3kfd
3kgδD (k2 − ke − kf − kg)F (3)

s [ke,kf ,kg]

× (2π)6δD (k1 + ke) δD (kg + kf ) P(k1)P(kf )
}

=
∫ d3k1

(2π)3 W2
k1F

(1)
s

2 (k1) P(k1) + 2
(2π)6

∫
d3k1d

3k2W2
|k1+k2|F

(2)
s

2 [k1,k2] P(k1)P(k2)

+ 6
(2π)6

∫
d3k1d

3k2W2
k1F

(1)
s (k1)F (3)

s [k1,k2,−k2] P(k1)P(k2) . (2.91)

2.9 RSD-corrected expressions for 〈δ2〉 and 〈δ3〉:
fNL terms

It is also possible to compute the fNL contributions to the redshift-space galaxy-
field quantities. Similar expressions have been derived in the literature (Scocci-
marro et al., 2004) but the ones in Section 2.9 are original for this work. Starting
for example from the 3pt auto-correlation function, the first term of the expan-
sion in Equation 2.90 in the case of primordial non-Gaussianities does not vanish
and using the result obtained in Equation 2.64:
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〈δ1(x0)δ1(x0)δ1(x0)〉 =

= 6β3fNL
c2

∫ 3∏
i=1

d3ki
(2π)3k

2
iT(ki) W (ki, R) δD (k3 + k2 − k1) Pφ

k2Pφ
k3(2π)3

= 6β3fNL
c2(2π)6

∫
d3k2d

3k3 k
2
2k

2
3 (k2 + k3)2 Tk2Tk3Tk3+k2Wk2Wk3Wk3+k2Pφ

k2Pφ
k3 .

(2.92)

The 3pt expression in redshift-space for the galaxy field is then

〈δg
s(x0)3〉fNL = 6β3fNL

c2

∫ 3∏
i=1

d3ki
(2π)3 WkiF

(1)
s,i k

2
iTkiδD (k3 + k2 − k1) Pφ

k2Pφ
k3(2π)3

= 6β3fNL
c2

∫ d3k2d
3k3

(2π)6 k2
2k

2
3 (k2 + k3)2 Tk2Tk3Tk3+k2Wk2Wk3Wk3+k2

× F (1)
s,k2F

(1)
s,k3F

(1)
s,k3+k2Pφ

k2Pφ
k3 , (2.93)

which can be easily converted to the linear matter power spectrum using the
relation Pφ(k) = Pm(k)β−2k−4T−2

k . Using cylindrical coordinates along the line
of sight and decomposing the wave vectors in terms of parallel and perpendicular
components to the line of sight with the addition of the azimuthal angle, the six-
dimensional integral in Equation 2.93 can be reduced to a five-dimensional one.
In particular we use as coordinates the difference and the sum between the two
azimuthal angles of the two wave-vectors (the sum is integrated out):

〈δg
s(x0)3〉fNL = 6fNL

βc2(2π)5

∫
dk⊥2 dk

‖
2dk

⊥
2 dk

‖
3dθd k

⊥
2 k
⊥
3 T−1

k2 T−1
k3 Tk3+k2Wk2Wk3Wk3+k2

× k−2
2 k−2

3 (k2 + k3)2 F
(1)
s,k2F

(1)
s,k3F

(1)
s,k3+k2Pm

k2Pm
k3 . (2.94)

For the 2pt contributions, starting from Equation 2.91, the standard terms
of the expansion of 〈δg

s
2〉 do not give any contribution at order fNL. Only the

term that, without primordial non-Gaussianities would be zero due to linearity,
gives a contribution

〈δg
s(x0)2〉fNL =

=
2∏
i=2

∫ d3ki
(2π)3 Wki〈δg

s(k1)δg
s(k2)〉

=
2∏
i=2

∫ d3ki
(2π)3 Wki

{
2F (1)

s,k1

1
(2π)3

∫
d3k3d

3k4δD (k2 − k3 − k4)F (2)
s [k3,k4] 〈δm

k1δ
m
k3δ

m
k4〉
}
.

(2.95)
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Equation 2.95 gives the term already computed in the matter 2pt case corrected
for RSD

Ia = 4β3fNL
c2(2π)6

∫
d3k2d

3k3 k
2
2k

2
3 (k2 + k3)2 Tk2Tk3T|k2+k3|W2

|k2+k3|

× F (1)
s (k2 + k3)F (2)

s [k2,k3] Pφ(k2)Pφ(k3)

Ib = 8β3fNL
c2(2π)6

∫
d3k2d

3k3 k
2
2k

2
3 (k2 + k3)2 Tk2Tk3T|k2+k3|W2

|k2+k3|

× F (1)
s (k2 + k3)F (2)

s [k2,k3] Pφ(|k2 + k3|)Pφ(k3) . (2.96)

Finally we can convert them into the matter power spectrum form

Ia = 4fNL
βc2(2π)6

∫
d3k2d

3k3 k
−2
2 k

−2
3 (k2 + k3)2 T−1

k2 T−1
k3 T|k2+k3|W2

|k2+k3|

× F (1)
s (k2 + k3)F (2)

s [k2,k3] Pm(k2)Pm(k3)

Ib = 8fNL
βc2(2π)6

∫
d3k2d

3k3 k
−2
2 k

−2
3 (k2 + k3)2 T−1

k2 T−1
k3 T|k2+k3|W2

|k2+k3|

× F (1)
s (k2 + k3)F (2)

s [k2,k3] Pm(|k2 + k3|)Pm(k3) . (2.97)

Equation 2.97, as for the 3pt case, can be simplified and integrated using cylin-
drical coordinates.

2.10 Model parameters constraints from the joint
data-vector [〈δ2〉; 〈δ3〉]

Bayesian statistics is often used to infer the model parameters best fit the data
in Astrophysics. Bayesian statistics is based on Bayes’s Theorem, which is

P(M|D) = P(D|M)P(M)
P(D) . (2.98)

Bayes’s Theorem in Equation 2.98 states that the probability of the model given
the data (P(M|D) also known as posterior) is equal to the product of the prob-
ability of the data given the model (P(D|M) also known as likelihood) and
the probability (or better an assumed a-priori) of having that particular model
(P(M) also known as prior) divided by probability of having the data given
all the possible models made available by the theory (P(D) also known as ev-
idence). If no selection between different models is involved, the evidence can
then be safely treated as a normalisation constant and therefore ignored. For a
very good review of these concepts see Heavens (2009).
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In this Section we assumed that the likelihood distribution in our case could
be approximated by a Gaussian multivariate distribution:

L = P(D|M) = 1√
(2π)n det Cov

exp
[
−1

2 (x− µ)T Cov−1 (x− µ)
]
, (2.99)

where n is the number of model parameter (dimension of the multivariate Gaus-
sian distribution), x is the data-vector model given by a certain set of parameters,
µ is the data-vector measured from data and Cov is the covariance matrix which
could be either computed analytically or numerically estimated from simulations.

In our case to estimate the covariance matrix we used galaxy mocks. In this
case the covariance matrix element Covµν is given by

Covµν = 1
Nmocks − 1

Nmocks∑
i=1

(
xiµ − 〈xµ〉

)
×
(
xiν − 〈xν〉

)
, (2.100)

where xiµ is the µ-element of the data-vector x measured on the i-th galaxy mock.
〈x〉 is the average of the data vector x measured over all the galaxy mocks.

For the joint data-vector [δ2; δ3] measured on the BOSS CMASS NGC sam-
ple we constrained three parameters of interest: the linear galaxy bias b1, the
normalisation of the dark matter oscillations amplitude σ8 and the primordial
non-Gaussianity parameter fNL.

In order to compute the linear matter power spectrum we fixed a fiducial
ΛCDM-like cosmology with model parameters values close to the Planck cos-
mology: (h0 = 0.677, Ωm = 0.307, Ωb = 0.048, ΩΛ = 1 − Ωm, ns = 0.96,
As = 2.9× 10−9).

We used 5 millions spheres randomly distributed inside the survey 3D vol-
ume. The range of scales considered (radius of the spheres range) was between
rmin. = 40 Mpc/h and rmax. = 90 Mpc/h. The upper limit was chosen such
that cosmic variance was not dominant at the largest scales. We used flat unin-
formative priors for the cosmological parameters considered. The second-order
bias parameter was fixed at b2 = 0.50, a similar value to the one estimated in
Gil-Marín et al. (2015). For the growth rate f we used the approximation valid
in GR: f(z) w Ωγ

m(z) where Ωm(z) is the mass density parameter function at a
given redshift z, the growth index γ ' 0.55 for a standard cosmology (Peebles,
1980; Lahav et al., 1991; Linder, 2005).

The best-fit parameter values obtained are in agreement for b1 and σ8 with
those from the BOSS analysis (Gil-Marín et al., 2015). For PNG our constraints
show that it is not possible to detect non Gaussianities parametrised by an
fNL < 100 − 200 with the auto-correlation function. However the potential of
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Figure 2.4: Joint data vector [〈δ2(R)〉, 〈δ3(R)〉]. Constraints on the model pa-
rameters (b1, σ8, fNL) from the statistics measured measured from DR11 BOSS
CMASS NGC sample. The vertical dashed lines show the 1D 68% confidence
intervals; the precise values of intervals are reported on top of each 1D marginal
posterior distribution together with the mode of the distribution.

these statistics could improve in future surveys like DESI, Euclid and PFS for
which a much larger volume will be available, reducing the influence of cosmic
variance especially at large scales. Our constraints on fNL are similar to the ones
derived by measuring the moments of the density field on simulations by Mao
(2014).

2.11 Chapter recap

In this Chapter we derived analytic expressions for the skewness quantity and its
constituents, the 2pt and 3pt autocorrelation functions. Terms including PNG
were also computed and their magnitude has been shown in Figure 2.1. We
measured the 2pt and 3pt auto-correlation functions with the intent of detecting
BAO (Eisenstein et al., 2005) as forecasted by Juszkiewicz (2013). Unfortunately
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cosmic variance dominates the signal at the relevant scales. Therefore it seems
that in order to detect BAO the full 3pt correlation function must be used, as
done by Slepian et al. (2017b).

We then used the measurements of the 2pt and 3pt auto-correlation function
to constrain the combination of cosmological parameters (b1, σ8, fNL). The 1 and
2D posterior distributions obtained are shown in Figure 2.4.

72



Appendix

2.A Transfer function from the matter power
spectrum

In order to obtain the transfer function T(k) from the matter power spectrum
Pm(k) we start from the Poisson Equation (2.55):

∇2φl.t.(~x, a) = 3
2

ΩmH
2
0

a
δ(~x, a) (2.101)

Substituting into the last expression Equation (2.52) in order to pass to the
primordial perturbation field φprim and switching to Fourier space we get:

−k2 9
10
D+

a
T(k)φprim

k = 3
2

ΩmH0

a
δk (2.102)

which squared gives:
9
25 k

4D2
+T(k)2Pφ(k) = (ΩmH0)2 Pm(k) (2.103)

Knowing that the primordial power spectrum can be defined as Pφ = A k(ns−1)

where A = const is a normalization constant, the previous expression becomes:
9
25D

2
+T(k)2 A k(3+ns) = (ΩmH0)2 Pm(k)

A T(k)2 = 25
9

(ΩmH0)2

D2
+

k−(3+ns)Pm(k) (2.104)

Since we are only interested in the k’s dependence of the transfer function, it is
possible to define a second normalization constant:

B = A
[

5
3

ΩmH0

D+

]−2

(2.105)

Therefore:

T(k) =
√
k−(3+ns)Pm(k)

B (2.106)

In order to fix B in the code, it has been imposed in the last expression T(k) = 1
for the lowest k in the data-vector, since it corresponds to the largest scales
available.
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“I have passed through fire and deep water, since we parted. I have forgotten
much that I thought I knew, and learned again much that I had forgotten.”

- J.R.R. Tolkien, The Lord of the Rings

3 | Maximal compression of the
redshift space galaxy
power spectrum and bispec-
trum

3.1 Abstract

We explore two methods of compressing the redshift space galaxy power spectrum
and bispectrum with respect to a chosen set of cosmological parameters. Both
methods involve reducing the dimension of the original data-vector ( e.g. 1000
elements ) to the number of cosmological parameters considered ( e.g. seven
) using the MOPED algorithm. In the first case, we run MCMC sampling on
the compressed data-vector in order to recover the one-dimensional (1D) and
two-dimensional (2D) posterior distributions. The second option, approximately
2000 times faster, works by orthogonalising the parameter space through diag-
onalisation of the Fisher information matrix before the compression, obtaining
the posterior distributions without the need of MCMC sampling. Using these
methods for future spectroscopic redshift surveys like DESI, EUCLID and PFS
would drastically reduce the number of simulations needed to compute accurate
covariance matrices with minimal loss of constraining power. We consider a red-
shift bin of a DESI-like experiment. Using the power spectrum combined with
the bispectrum as a data-vector, both compression methods on average recover
the 68% credible regions to within 0.7% and 2% of those resulting from stan-
dard MCMC sampling respectively. These confidence intervals are also smaller
than the ones obtained using only the power spectrum by (81%, 80%, 82%) re-
spectively for the bias parameter b1, the growth rate f and the scalar amplitude
parameter As.
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3.2 Introduction

In recent years the number of available large data sets to be used for cosmological
analysis has drastically increased (PLANCK, 1 Ade et al., 2014 ; Sloan Digital
Sky Survey 2, Eisenstein et al., 2011; DES, The Dark Energy Survey Collabora-
tion, 2005 3) and will do even more so in the near future (DESI4, Levi et al., 2013;
EUCLID 5, Laureijs et al., 2011; PFS 6, Takada et al., 2014). Improving current
analysis techniques to extract as much information as possible from these cata-
logues has become highly relevant. Up to now most work has been done using
two points statistics (2pt) like the two points correlation function or its Fourier
transform, the power spectrum. However, gravity increases the level of non-
linearity in the matter distribution field, creating non-Gaussian features which
are not constrained by the sole use of 2pt statistics. Higher-order statistics like
the three points (3pt) correlation function or its Fourier transform, the bispec-
trum, have already been studied in the past in order to capture the non-Gaussian
part of the statistical information contained in the large scale structure galaxy
field. The first measurements of the 3pt correlation function and the bispec-
trum on a galaxy catalogue were performed by Peebles and Groth (1975), Groth
and Peebles (1977) and Fry and Seldner (1982). Fry (1984) studied the relation
between the cosmological and bias parameters, modelling the relation between
luminous and dark matter, which affects the amplitude and the shape of the
bispectrum. Integrated 3pt statistics like the skewness were introduced in order
to reduce the complexity and number of modelling parameters (Peebles, 1980;
Fry and Scherrer, 1994; Bernardeau, 1994; Juszkiewicz, 2013). The modelling of
redshift-space distortions into the 3pt statistics was later introduced and studied
by Matarrese et al. (1997), Verde et al. (1998), Heavens et al. (1998), Scocci-
marro et al. (1998), Scoccimarro (2000). Different 3pt statistics have also been
proposed as useful tools to quantify deviations from GR (Borisov and Jain, 2009;
Bernardeau and Brax, 2011) and to measure primordial non-Gaussianities (Fry
and Scherrer, 1994; Gangui et al., 1994; Verde et al., 2000; Liguori et al., 2010;
Tellarini et al., 2016). In the last twenty years, these statistics have received in-
creasing attention especially for the benefit of lifting degeneracies present in 2pt
statistics between cosmological and nuisance parameters in datasets produced by
spectroscopic redshift surveys like BOSS. The most recent measurement on this

1http://sci.esa.int/planck/
2http://www.sdss3.org/surveys/boss.php
3https://www.darkenergysurvey.org
4http://desi.lbl.gov
5http://sci.esa.int/euclid/
6http://pfs.ipmu.jp
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dataset for the bispectrum was made by Gil-Marín et al. (2017) and for the 3pt
correlation function by Slepian et al. (2015).

When studying the power spectrum and the bispectrum, it is necessary to
subdivide the range of possible k-vectors in Fourier space into bins. By doing
this, one defines the number of possible elements for both the power spectrum
and bispectrum data-vectors. While in Fourier space the number of possible
elements for the power spectrum data-vector is the same as the number of bins,
for the bispectrum it corresponds to the number of triangles that can be formed
by triplets of the available k-vectors (less than ∼ n3

bins). This difference becomes
even larger when redshift-space distortions (Kaiser, 1987), described in section
3.3.2, are included in the analysis. In addition, as explained in Appendix 3.A, not
only the modulus of the three k-vectors but also the orientation of the triangle
with respect to the line of sight becomes relevant. Consequently, a fine binning
in k-space corresponds to a very large number of possible triangles. While for the
power spectrum in redshift space there are ∼ n2

bins possible data-vector elements,
for the bispectrum there are slightly less than ∼ n5

bins possible triplets since the
vectors need to satisfy the triangle condition.

The problem is that when doing parameter estimation using a data-vector for
a given statistic, the corresponding covariance matrix is needed. This can either
be computed analytically, which requires the evaluation of several multidimen-
sional integral expressions, or it can be estimated from simulations. However, in
order to obtain a precise and accurate estimate of the covariance using numer-
ical simulations, the number of realisations must be larger than the number of
elements of the data-vector (Hartlap et al., 2007; Taylor and Joachimi, 2014).
Therefore, numerically estimating the covariance matrix of a 3pt statistic from
simulations could become very expensive in terms of simulations required to pre-
dict it accurately. Indeed, one usually sacrifices the stronger constraining power
achievable by considering a larger number of triangle configurations for a more
accurate estimate of the covariance matrix obtained using only a subset of all the
possible triangles. Compressing the original data-vector is an efficient method
to avoid losing access to part of the constraining power contained in the 3pt
statistics. Alternatives to the full bispectrum have been proposed in the last few
years. For example Schmittfull et al. (2015) substituted to the tree level matter
bispectrum, functions of the cross-power spectrum between δ2(x) and δ. The
performances of some of them, including the modal decomposition proposed by
Schmittfull et al. (2013), have been recently studied by Byun et al. (2017). We
will compare their results with ours in the conclusions.

Therefore one can reduce the original number of data-vector elements either
by performing a selection of triangles based on some criteria or by compressing

76



3.2. Introduction

the data-vector. This paper is about this second option, where we present two
variations of the method presented in Heavens et al. (2000) and named MOPED,
which achieves maximal compression of the original data-vector by extending to
the multiple parameters case the algorithm introduced in Tegmark et al. (1997).
The underlying principle is to assign a vector, such that the weights are propor-
tional to the sensitivity of each element to the variation of a model parameter.
When the covariance matrix can be assumed to be parameter independent, the
dimension of the compressed data-vector corresponds to the number of consid-
ered model parameters.

We use this prescription in two ways to do parameter inference, which are
summarised in Figure 3.1. In our first method, we run an MCMC sampling for
the compressed data-vector (hereafter MCMC + MP). This has the immediate
and appealing benefit for a cosmological survey of requiring fewer simulations
to estimate precisely the covariance matrix in the case of a long data-vector
like the bispectrum (with & 103 triangles) to just 1 data-vector element for
each cosmological parameter. Indeed, in order to have a reliable estimate of
the covariance matrix, one needs a significantly larger number of mocks than
of data-vector elements. For example, in the DR12 BOSS paper studying the
bispectrum (Gil-Marín et al., 2017), the number of triangles used was limited to
825 out of the 6391 possible ones, since only 2048 mocks were available (Kitaura
et al., 2016).

In our second method, before compressing, we orthogonalise the parameter
space by diagonalising the Fisher information matrix (principal component anal-
ysis, hereafter PCA + MP). This enables sampling from 1D posterior distribu-
tions of the new set of parameters, to recover the full multi-dimensional posterior
distribution for the original physical set of parameters without the need of an
MCMC sampling. This proves to be ∼ 103 times faster than an MCMC run, in
particular because the linear matter power spectrum needs to be recomputed far
fewer times.

In addition to being competitive with the standard likelihood approach, this
method could be also very useful for future cosmological surveys in order to test
and forecast the constraining power of the expected data set for several different
combinations of cosmological and nuisance (e.g. bias) parameters. We apply
our analysis to the redshift space galaxy bispectrum and to the joint data-vector
formed by the galaxy power spectrum and bispectrum.

The paper is structured as follows: section 3.3 describes the basis of per-
turbation theory upon which the data-vector estimators and covariance matrix
terms are computed. In section 3.4 we present the covariance terms. Section 3.5
contains the specifics of the analysis performed. In section 3.6 the compression
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3.2. Introduction

Figure 3.1: Diagram highlighting the two compression methods presented in
this work, including the respective advantages with respect to the uncompressed
data-vector.
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formalism is presented. In section 3.7 we present the results of applying the
MCMC + MP method. Section 3.8 describes the performance of the PCA + MP
compression in obtaining constraints on the cosmological parameters. In section
3.9 we comment on the added value given by jointly using the power spectrum
to the bispectrum. We conclude in section 3.10. All detailed derivations are
deferred to the appendices 3.A (estimator definition), 3.B (covariance matrix
terms), 3.C (compressed covariance formalism), 3.D (weights orthogonalisation).

3.3 Perturbation theory with redshift-space dis-
tortions

3.3.1 Bias model

Since luminous objects like galaxies are not exact tracers of the underlying dark
matter distribution, it is necessary to model their relationship. This is commonly
referred to as ‘galaxy biasing’; the relationship could be linear/non-linear, de-
terministic/stochastic, local/non-local, and a function of scale and cosmic time.
Understanding biasing is important in its own right as a probe of galaxy for-
mation and evolution. Galaxy biasing was recognised when it was noticed that
different populations of galaxies (e.g. spirals, ellipticals) have different clustering
strengths.

A physical mechanism for galaxy biasing was suggested by Kaiser (1984b)
and developed by Bardeen et al. (1986b), namely that galaxies would tend to
form in peaks in the matter density distribution thus being more clustered than
the underlying matter distribution. In this model, more massive (and thus rarer)
tracers are naturally more highly biased. Biasing can be non-linear (McDonald
and Roy, 2009b) and stochastic (Dekel and Lahav, 1999b). Galaxy biasing also
evolves with redshift (Clerkin et al., 2015 and references therein), being larger at
higher redshift. It is also scale dependent at small physical scales where the non-
linear effects of galaxy formation are important, although there is almost no scale
dependence above 20−40 Mpc h−1 (Manera and Gaztañaga, 2011; Crocce et al.,
2015). Another popular approach, known as the Halo Model, is to parametrise
the relationship between galaxies and the dark matter distribution by assuming
that all galaxies reside in dark matter haloes or sub-haloes, discussed e.g. in
Tinker, 2010 and references therein. We note that biasing and the relationship
between galaxies and haloes can also be constrained through combinations of
various observables, e.g. galaxy positions and weak gravitational lensing.
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3.3. Perturbation theory with redshift-space distortions

Here we adopt a biasing model which is a Taylor expansion of the galaxy
density fluctuations δg in terms of the matter fluctuations δm (Fry and Gaztanaga,
1993):

δg =
∞∑
i=0

bi
i! δ

n.l.
i,m. (3.1)

where δn.l.
i,m is the non-linear matter density fluctuation.

In this work, only the first two terms of the above expansion are considered,
b1 and b2. The above bias model considers only the local relationship between
δg and δm; non-local bias terms may be included in a more accurate modelling
(Chan et al., 2012; Baldauf et al., 2012; Bel et al., 2015).

3.3.2 Redshift space formalism

The conversion of the galaxy redshifts from surveys like BOSS or DESI to proper
distances is a cosmological model-dependent operation. In addition, the local
gravitational field influences the peculiar velocities of galaxies producing redshift-
space distortions (Kaiser, 1987) which affect the observed redshift. Heavens
et al. (1998) have shown how to express the Fourier transform of the redshift
space galaxy overdensity fluctuation, measured in cosmological surveys, δs

g (k) in
relation to the real space linear matter fluctuation δm (k)

δs
g [k] = F(1)

s [k] δm (k)

+ 1
(2π)3

∫
d3k1d

3k2 δD (k − k2 − k1)

× F(2)
s [k1,k2] δm (k1) δm (k2)

+ 1
(2π)6

∫
d3k1d

3k2d
3k3 δD (k − k3 − k2 − k1)

× F(3)
s [k1,k2,k3] δm (k1) δm (k2) δm (k2) , (3.2)

where the redshift-space distortion kernels F(1,2,3)
s are given in the Section 1.5.

In this work all k-vectors are described in terms of their components parallel
k‖ and perperdicular k⊥ to the line of sight. We define µ = k

‖
i /ki. The galaxy

redshift space power spectrum is defined as

〈δs
g (k1) δs

g (k2)〉 = (2π)3 Ps
g (k1) δD (k1 + k2) . (3.3)

Substituting Equation 3.2 into Equation 3.3 and applying Wick’s theorem as-
suming that the initial perturbations are Gaussian the power spectrum is given
by:
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Ps
g (k) ≡ Ps,(1)

g + Ps,(2)
g + Ps,(3)

g

=
(
b1 + fµ2

)2
Pm (k)

+ 2
∫ d3q

(2π)3 Pm (q) Pm (|k − q|)
(
F(2)

s [q,k − q]
)2

+ 6
(
b1 + fµ2

)
Pm(k)

∫ d3q

(2π)3 Pm (q) F(3)
s [q,−q,k] , (3.4)

where the growth rate is defined and parametrised as f(z) ≡ d lnD/d ln a w

Ωγ
m(z) where Ωm(z) is the mass density parameter function at a given redshift z,

the growth index γ ' 0.55 for a standard cosmology (Peebles, 1980; Lahav et al.,
1991; Linder, 2005), D(a) is the growing mode of the amplitude fluctuation, and
scale factor a = (1 + z)−1 . Pm(k) is the linear matter power spectrum defined
analogously to Equation 3.3. In this work when considering the power spectrum
data-vector we stop at tree level using only Ps

g = Ps,(1)
g . This choice is consistent

with previous analyses (Scoccimarro et al., 1999; Sefusatti et al., 2006; Song,
Yong-Seon and Taruya, Atsushi and Oka, Akira, 2015; Gagrani and Samushia,
2017). The error arising from excluding the 1loop terms (Jain and Bertschinger,
1994; Bernardeau et al., 2002; Taruya et al., 2008; Lazanu et al., 2016) is less
than 10% up to kmax = 0.2hMpc−1 increasing to 30% for kmax = 0.3hMpc−1. An
accurate modelling of the redshift space galaxy power spectrum was introduced
by Taruya et al. (2010). This translates approximately into an error on the
diagonal of the power spectrum covariance matrix computed in section 3.4.1 of
∼ 1% up to kmax = 0.2hMpc−1 and ∼ 9% for kmax = 0.3hMpc−1 when including
cosmic variance terms. For brevity, sometimes we write Ps

g

(
k⊥i , k

‖
i

)
≡ Ps

g (ki),
keeping in mind that the galaxy power spectrum depends on the parallel and
perpendicular components of the wave-vector. Therefore Ps

g will not depend on
the second order bias parameter b2.

Analogously, the bispectrum is defined as (Fry, 1984):

〈δs
g (k1) δs

g (k2) δs
g (k3)〉 = (2π)3 Bs

g (k1,k2,k3)

× δD (k1 + k2 + k3) . (3.5)

The relation to the linear matter density power spectrum is at first order:

Bs
g (k1,k2,k3) = 2Pm (k1) Pm (k2) F(1)

s [k1] F(1)
s [k2] F(2)

s [k1,k2]

+ two cyclic terms. (3.6)
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For the redshift space galaxy bispectrum, the most recent and accurate models
(up to the mild non-linear regime) were introduced by Hashimoto et al. (2017)
and Bertacca et al. (2017).

3.4 Covariance

In this section we summarise the covariance terms at tree level for the power
spectrum and the bispectrum, including also the cross covariance between the
two. Here are written only the final analytical expressions, while we show the
full derivations in Appendix 3.B.

3.4.1 CPP : power spectrum covariance matrix

The power spectrum covariance matrix is given by two terms,

CPs
g = CPP

P + CPP
T , (3.7)

where CPP
P is proportional to the square of the power spectrum and CPP

T is pro-
portional to the trispectrum. The first term is given by:

CPP
P

(
k̄1; k̄3

)
= 1
V 2

s V
c

1 V
c

3

4∏
i=0

∫
dV c

i δD (k1 + k2) δD (k3 + k4)

× 〈δs
g (k1) δs

g (k3)〉〈δs
g (k2) δs

g (k4)〉 + 1p.

≈ 2π
Vsk̄⊥1 ∆k2

DP
1234 Ps

g

(
k̄1
)2

= 4π
Vsk̄⊥1 ∆k2

δK
13 Ps

g

(
k̄1
)2
, (3.8)

where the integrals are over a cylindrical shell V c
i centered at each k̄i with integral

limits on: k̄‖i − ∆k‖/2 ≤ k
‖
i ≤ k̄

‖
i + ∆k‖/2, k̄⊥i − ∆k⊥/2 ≤ k⊥i ≤ k̄⊥i + ∆k⊥/2

and 0 ≤ φ ≤ 2π. From the definition of the power spectrum estimator given in
Appendix 3.A, the cylindrical bins for k2 and k4 are centered respectively on k̄1

and k̄3. When a Dirac delta δD (ki + kj) is used to simplify one of the integrals
over the cylindrical shells, it produces a Kronecker delta δK

ij which is equal to one
and not to zero only when k‖i = k

‖
j and k⊥i = k⊥j .

We have defined a combination of Kronecker deltas DP
1234 = δK

13δ
K
24 + δK

14δ
K
23 in

order to take into account the additional permutation, which, given the initial
Dirac deltas conditions, reduces to DP

1234 = 2× δK
13. Vs is the survey volume. The

second term in Equation 3.7 is proportional to the trispectrum and is given by

CPP
T

(
k̄1; k̄3

)
≈ 1

2π Vs

∫ 2π

0
dφ13 Ts

g

(
k̄⊥1 , k̄

‖
1, k̄
⊥
3 , k̄

‖
3, φ13

)
. (3.9)
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where φ13 is the difference between the azimuthal angles of k̄1 and k̄3. The full
expanded expression is written in Appendix 3.B, while the trispectrum definition
is in Appendix 3.A.

3.4.2 CBB: bispectrum covariance matrix

For the bispectrum covariance matrix, at leading order, only the diagonal term
proportional to the product of three power spectra is required:

CBB
P

(
k̄1, k̄2, k̄3; k̄4, k̄5, k̄6

)
= (2π)5∆k‖3
Vs k̄⊥1 k̄

⊥
2 k̄
⊥
3 ∆k6

Λ−1
123

×D123456

3∏
i=1

Ps
g

(
k̄i
)
. (3.10)

where Λ is a function defined in Appendix 3.A which is related to the fraction of
wave-vector triplets allowed by the triangle condition such that the bispectrum
estimator 3.28 is unbiased. D123456 is a shorthand notation for the sum of all
the possible permutations of pairings of k-vectors between the first and second
triplets, encoded in Kronecker deltas, e.g. δK

14 δ
K
25 δ

K
36. This is the symmetry

factor which is equal respectively to 1, 2 and 6 in the case of scalene, isosceles
and equilateral triangles. Full computations can be found in Appendix 3.B.

3.4.3 CBP: cross-variance matrix

The cross-variance term is also given by the sum of two parts. The first part is
proportional to the product between the power spectrum and bispectrum. The
second part is proportional to the tetraspectrum

CBP = CBP
m1 + CBP

Te . (3.11)

The expression of the first term as derived in Appendix 3.B is:

CBP
m1

(
k̄1; k̄3, k̄4, k̄5

)
= 2× (2π)2

Vs V c
1

Λ−1
345

(
δK

13 + δK
14 + δK

15

)
× Ps

g

(
k̄1
)

Bs
g

(
k̄3, k̄4, k̄5

)
, (3.12)

Where the semicolon separates the wave vector relative to the power spectrum
from the ones of the bispectrum.

The last non-vanishing term is the one proportional to the tetraspectrum Ts
e,g

given by the connected part of the five-points correlator
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CBP
Te

(
k̄1; k̄3, k̄4, k̄5

)
= (2π)2∆k‖5

Vs
Λ−1

345
∏

i=1,3,4,5

∫ dV c
i

V c
i

× δD (k3 + k4 + k5) Ts
e,g (k1,k3,k4,k5) . (3.13)

The definition and analytical expression for the tetraspectrum are in Appendix
3.A. In the Appendix it is shown that at leading order the tetraspectrum is
proportional to the fourth power of the linear matter power spectrum. Being
this one order higher than all the terms considered in the paper, CBP

Te has not
been included in the numerical computations.

All the terms rederived above agree with the ones derived in the literature
when considering redshift-space distortions (Sefusatti et al., 2006; Scoccimarro
et al., 1998).

3.4.4 Shot noise contribution

All terms of the covariance matrix have been corrected in order to account for
the shot noise, which is given by the average number density of galaxies. In our
analysis we consider a DESI-like ELGs sample with n̄g ≈ 1.175× 10−3h3Mpc−3

and a survey volume Vs ≈ 12.3h−3Gpc3 (Levi et al., 2013; Song, Yong-Seon and
Taruya, Atsushi and Oka, Akira, 2015; DESI Collaborationand others, 2016).
The only correction corresponds to substituting the galaxy power spectrum with:

Ps
g (k) −→ Ps

g (k) + 1
n̄g
. (3.14)

We made the assumption that the shot noise is well approximated by a Gaussian
distribution (which is reasonable if the galaxy number density is fairly high).
In that case only second moments exist, and thus contributions appear only in
the 2pt correlators, and those yield power spectrum contributions to the cosmic
variance. If the noise were Poisson-distributed, the corrected expressions would
become much more complicated (Matarrese et al., 1997).

3.5 Analysis setup

In this section we describe the pipeline and codes for the compression and the
MCMC analyses. We compressed the power spectrum and the bispectrum with
respect to the set of parameters: {b1, b2, f, Ωm, Ωb, As, ns} where the first two
are galaxy bias parameters, f is the linear growth rate, Ωm and Ωb are the density
parameters of total matter and baryonic matter, As is the scalar amplitude of
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the primordial perturbations and ns is the scalar spectral index. For both cases
the fiducial cosmology was fixed to b1 = 1.90, b2 = 0.20, f = Ωm(z = 0.81)0.55,
Ωm(z = 0) = 0.307, Ωb(z = 0) = 0.0482 and As = 2.9 × 10−9 similar to the one
used in Kitaura et al. (2016) and close to the one reported in the PLANCK 15
results (Ade et al., 2016). The redshift used is that of the effective redshift-bin
(0.6 < z < 1.0) of a ELG sample of a DESI-like survey with zeff = 0.81.

The k-range chosen is 0.01 < k < 0.2 Mpc−1 h, 12 bins for both parallel
(linear binning) and perpendincular (logarithmic binning) to the line of sight
components. We have adopted a logarithmic binning for the perpendicular com-
ponents of the wave-vectors in order to better capture the different features at
different scales. A linear binnings has been used for parallel to the line of sight.
For the perpendicular component, ∆ log10 k

⊥ = 0.11827 while for the parallel
one ∆k‖ = 0.0182 Mpc−1 h. With these settings, the resulting number of con-
figurations satisfying the triangle condition is Ntr = 1333 for the bispectrum
and Npairs = 132 combinations of parallel and perpendicular components for the
power spectrum .

The triangle configurations for the bispectrum are generated by a five dimen-
sional loop choosing first the three perpendicular components of the sides of the
triangle and secondly two of the parallel ones. The third parallel component is
chosen such that the final triangle satisfies the triangle condition. All sides and
projections must be in the range given above.

For the MCMC sampling we have used 64 samplers together with the same
number of Xeon E5-2650 processors connected through MPI (Gabriel et al.,
2004), each with 2000 burn-in steps followed by 10000 steps for the actual
posterior sampling. The Python package Emcee was used as MCMC sampler
(Foreman-Mackey et al., 2013). Uninformative flat priors have been used both
in the compression code and MCMC sampler. We employed the CAMB code
(Lewis et al., 2000) in order to generate the linear matter power spectrum for
different cosmological parameters.

3.6 Compression Formalism

3.6.1 Fisher information matrix

The log-likelihood L for a Gaussian probability distribution relative to an n-
dimensional data-vector x, can be written as

−2L = n ln 2π + ln detCov + (x − 〈x〉)ᵀCov−1 (x − 〈x〉) , (3.15)
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where Cov = 〈(x − 〈x〉) (x − 〈x〉)ᵀ〉 is the covariance matrix and 〈x〉 is the
mean of the data-vector. From this quantity the Fisher information matrix can
be defined as

Fij = −
〈

∂2L
∂θi∂θj

〉∣∣∣∣∣
θML

≡ −〈L,ij〉, (3.16)

which is a measure of the curvature around the maximum likelihood point θML =
(θ1
ML, θ

2
ML, ....θ

m
ML) where the θ’s are the m model parameters and the comma

notation indicates the derivatives with respect to them. In the case of a Gaussian
likelihood, the Fisher matrix can be expressed as

Fij = 1
2Tr

[
AiAj + Cov−1Mij

]
, (3.17)

where the matrices Ai and Mij are defined as Ai ≡ Cov−1Cov,i and Mij ≡
〈x〉,i〈x〉ᵀ,j + 〈x〉ᵀ,i〈x〉,j.

The diagonal entries of the Fisher matrix are related to the minimum error
attainable in estimating a parameter θi. In particular, in the case of single pa-
rameter estimation the minimum attainable error is ∆θmin

i = 1/(Fii)
1
2 . When

more than one parameter is considered, the full Fisher matrix is needed to com-
pute the minimum marginalised error for each parameter, which is given by
∆θmin

i = (F−1
ii ) 1

2 . The target of the compression is to obtain a new data vec-
tor such that for each parameter θi, ∆θmin

i is minimised. In other words, the
compression algorithm will be obtained by maximising Fii for each parameter θi.

3.6.2 Compression Algorithm

A general linear transformation of the data-vector x with a transformation ma-
trix B is given by

y = Bx. (3.18)

The mean and the covariance matrix for y become respectively 〈y〉 = B〈x〉 and
Covy = BᵀCovxB. In the case in which only one of the linear combinations
of the data is considered, B has only one row, B = bᵀ. Therefore the diagonal
entries of the Fisher matrix are given by:

Fii = 1
2

(
bᵀCov,i b
bᵀCov b

)2

+ (bᵀ 〈x〉,i)2

(bᵀCov b) , (3.19)
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Figure 3.2: Bispectrum case: 1D and 2D posterior distributions for the MCMC
sampling done using the full data-vector (blue) and the compressed data-vector
obtained through the MP compression (orange). The contours correspond to the
68% and 95% confidence intervals. We see that there is no substantial loss of
information despite the presence of strong degeneracies between the parameters;
this is quantified in Figure 3.7 and Table 3.1 . The 2D posterior distributions have
been smoothed using the Gaussian kernel density estimation package provided
by Scipy.
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Figure 3.3: Joint data-vector
[
Ps

g,Bs
g

]
posteriors: the colours for the 1D and

2D posterior distributions are: the full data-vector (blue), the compressed data-
vector (orange) and the uncompressed power spectrum plus the compressed bis-
pectrum (purple). The contours correspond to the 68% and 95% confidence
intervals. There is no substantial loss of information due to compression, which
again is quantified in Figure 3.7 and Table 3.1
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where again the comma notation followed by the index i stands for the derivative
with respect to the model parameter θi. As explained by Heavens et al. (2000),
who also derive weights based on minimizing the Fisher matrix diagonal elements,
it is a very complex problem to find an analytical solution for b from the full
Equation 3.19. Only by ignoring then the first term of Equation 3.19 it is possible
to find an analytic solution for b. This implies assuming that the derivatives
of the covariance matrix with respect to model parameters are neglible when
compared to the data vector ones. Recently Heavens et al., 2017 presented a
method to relax this approximation.

For both the power spectrum and bispectrum we numerically checked that it
is reasonable to assume it to be valid, by taking the ratio between the diagonal
elements of Cov,i/

√
Cov with 〈x〉,i (corresponding to the ratio of the first and

second term in Equation 3.19, respectively). This ratio for the bispectrum case
results to be on average ≤ 10% for the considered parameters. There are peaks
for few triangle configurations (≤ 10 for more than a thousand triangles) for
which the ratio is around 70− 80% while the minima are around 2%.

By maximising Fii as described in Tegmark et al. (1997) using a Lagrange
multiplier, it follows that the compressed data-vector is given by a scalar

yi = 〈x〉ᵀ,iCov−1 x ≡ bᵀi x, (3.20)

where we have defined the weighting vector bi = Cov−1〈x〉,i.
For the compression it is acceptable to use an analytic approximation of the

covariance matrix (in our case as it is described in section 3.4), as any systematic
error in the covariance would mostly degrade the compression; it would not
bias the parameter inference. The compression enables then to use an accurate
simulated covariance for the actual inference. This has the advantage of being
able to compute weights for a data vector with an arbitrary large dimension (e.g.
number of triangles). The Fisher matrix diagonal element can be rewritten as

Fii = 〈x〉ᵀ,iCov−1〈x〉,i. (3.21)

In order to apply the MP compression method, one needs to choose a fiducial set
of parameters at which to compute (analytically or numerically) the derivatives of
the mean. In our case the fiducial values are reported in section 3.5. We compute
the numerical derivatives using the five point method for the first derivative in
one dimension (Abramowitz, 1974).
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Figure 3.4: Logarithm of the absolute value of the weights for all the triangle
configurations used in the bispectrum data-vector. Each row corresponds to
the weights for the bispectrum Bs

g with respect to a specific linear combination
θPCA of the original cosmological parameters obtained by diagonalising the Fisher
information matrix. The discontinuities observed reflect the five loops used to
produce the set of triangles. From left to right the average size of the sides of the
triangles increases, from the smallest triangle up to the largest. The amplitude
of the weights slightly depends on the size of the triangle (increasing from left
to right). The fluctuations are far more influenced by the shape and orientation
of the triangles (which can be seen within each loop).
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Figure 3.5: Comparison between the MCMC-derived posteriors and the ones
obtained using only the compression. The 1D and 2D posterior distributions
are relative to the data-vector Bs

g, for the three different cases: MCMC (blue),
MP + ORT compression (red), PCA + MP compression (green). The contours
correspond to the 68% and 95% confidence intervals (Figure 3.7 and Table 3.1 for
numerical values). The method MP + ORT proposed by Zablocki and Dodelson
(2016), fails to recover accurate 2D posterior distributions. Therefore taking the
outer product of 1D posteriors distributions for the data-vector, compressed by
using an orthogonolised set of weights, does not recover the multidimensional
posterior beside its 1D marginalisations.
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3.6. Compression Formalism

Figure 3.6: 1D and 2D posterior distributions using as data-vector
[
Ps

g,Bs
g

]
,

for the three different cases: MCMC (blue), MP + ORT compression (red),
PCA + MP compression (green). The contours correspond to the 68% and 95%
confidence intervals(Figure 3.7 and Table 3.1 for numerical values). The MP +
ORT method fails to reproduce the correct contours, both 1D and 2D, since for
the used value of kmax it fails to work, producing an unphysical secondary peak
for the parameter As. On the contrary the PCA + MP method recovers with
very good agreement the MCMC contours.
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3.8. Posterior distributions directly from compressed data-vectors

3.7 MCMC of Compressed data-vectors

In this section we compare the results obtained by running the MCMC algo-
rithm for both uncompressed and compressed data-vectors. The goal is to check
whether it would be possible to substitute the original data-vector for its com-
pressed version. Even if this would not bring any relevant advantage in terms of
speed when computing the data-vector from the theoretical model, in the case
of a real cosmological survey, it will be much easier and less expensive in terms
of required simulations / mock catalogues to estimate the covariance matrix of
the compressed data-vector rather than the full data-vector. Moreover, in the
case of the bispectrum, a much larger number of triangles could be used for the
original data-vector, allowing more information to be captured, since the dimen-
sion of the compressed covariance matrix would be reduced to the number of
parameters considered in the analysis. In order to use the compression, it is
necessary to convert the covariance matrix for the full data-vector to the one for
the compressed data-vector. This is shown in Appendix 3.C.

In this paper, we consider two cases for the data-vector: the galaxy bispec-
trum Bs

g and the joint data-vector
[
Ps

g,Bs
g

]
. For the latter, we include two further

cases depending on whether or not we compress the power spectrum Ps
g.

Figure 3.2 shows the 1D and 2D marginalised posterior distributions when
only the bispectrum data-vector is considered. For the considered set of parame-
ters there is no substantial loss of information when the compressed data-vector
is used, even if some degeneracies are present. In this case, the compressed
vector has seven elements instead of the ∼ 1000 triangles for the uncompressed
bispectrum. The 1D and 2D posteriors have been smoothed using a Gaussian
kernel density estimation procedure, for clearer visualisation. Figure 3.3 shows
the 1D and 2D marginalised posterior distributions when we consider both the
power spectrum and the bispectrum. As can be seen, there is no qualitative
or quantitative difference on the posterior distributions between compressing or
not compressing the power spectrum together with the bispectrum. The precise
numbers can be found in the summarising Table 3.1.

3.8 Posterior distributions directly from com-
pressed data-vectors

It is possible to compute the 1D likelihood for each linear combination yθi of the
original data-vector obtained compressing with respect to the parameter θi as
done in Zablocki and Dodelson (2016):
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3.8. Posterior distributions directly from compressed data-vectors

Figure 3.7: Ratio (first panel) and relative difference (second panel) between the
68% confidence intervals of the 1D marginalised posteriors for all the cosmological
parameters obtained using either the compression plus the MCMC sampling
(MCMC + MP, orangle triangles) or just the compression (PCA + MP, green
hexagons) with the ones obtained running the MCMC on the full data-vector.
The black lines in all plots represent the reference values given by running a
MCMC sampling using the full data-vector. The ratios ∆θ/∆θMC give an idea
of how much the 68% confidence intervals obtained through compression differ
from the one given when using the full data-vector. The relative difference (∆θ−
∆θMC)/θ is helpful since it scales the difference between the compressed and full
data-vector results with respect to the value of the chosen parameters. The first
column shows the results when just the bispectrum Bs

g is considered, where the
largest discrepancy happens for the parameters most degenerate between each
others (b1, f , As). Using the MCMC + MP method on the bispectrum proves
to be with negligible loss of information. In the second column the ratios and
relative differences in the case of the joint data-vector

[
Ps

g + Bs
g

]
are shown. In

all the subplots, the horizontal lines show the averages of the ratios and relative
diferrences of the same colour. For

[
Ps

g + Bs
g

]
the compression is optimal, both

using MCMC + MP and PCA + MP. Compressing or not the power spectrum
together with the bispectrum seems to produce no relevant statistical difference.
The bottom right subplot b2 appears to be the parameters whose divergence from
the MCMC result is greater with respect to its fiducial value.
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3.8. Posterior distributions directly from compressed data-vectors

lnL = −(yθi − ȳθi)2

2σ2
〈yθi 〉

with σ2
〈yθi 〉

=
nx∑
j=1

b2
j Covjj, (3.22)

where ȳθi ≡ 〈ȳθi〉 is the mean of the compressed linear combination. Nevertheless,
these 1D likelihoods would not be realistic since they are obtained using the
compressed data-scalar yθi by varying only one parameter at a time. In reality
yθi is sensitive to all the other parameters.

In order to account for this fact, we transform the set of yθi scalars in such a
way that, at linear order, they are sensitive only to the parameter with respect
to which the original data-vector was compressed. One method to do so is to or-
thogonalise the parameter space by diagonalising the Fisher Information matrix.
This has the advantage of obtaining realistic multidimensional posteriors directly
from the 1D posteriors of the new set of model parameters (linear combinations
of the original, physical parameters).

For comparison we include another method presented in Zablocki and Dodel-
son (2016) which consists of orthogonalising the weights in such a way that the
Fisher matrix for the compressed data-vector would become diagonal; we call this
weights-orthogonalisation and it is described in Appendix 3.D. The idea behind
these two slightly different orthogonalisation approaches is the same, namely
to diagonalise the Fisher Information matrix. The difference is that while the
diagonalisation in the first method is the starting point independently from com-
pressing (or not compressing) the data-vector later, in the second method the
diagonalisation is a consequence of the procedure used.

Both methods are approximations at linear level. Therefore as anticipated
earlier they both fail (even if at different levels as it is shown later) when non-
linear degeneracies are present. For example, cases where the 2D-posterior dis-
tribution of a pair of parameters can no longer be approximated by an ellipse
but has instead a ‘banana’-shape. This break-down of the above procedures is in
agreement with the fact that the compression method relies on the assumption
that the multidimensional posteriors are Gaussian.

3.8.1 Parameter space orthogonalisation - PCA

As anticipated above, the compression returns only 1D posterior distributions for
each one of the parameters. Therefore an additional step is required in order to be
able to assume that these distributions correspond to 1D marginalisations from
the original multidimensional distribution. This is because the MP compression
with respect one model parameter returns a linear combination of the original
data vector which is still sensitive to the variation of the other model parameters.
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3.8. Posterior distributions directly from compressed data-vectors

Zablocki and Dodelson (2016) obtained marginalised 1D posterior distributions
by orthogonalising the weighting vectors for all the model parameters through a
Gram-Schmidt like procedure described in Appendix 3.D. We label this method
as MP + ORT.

In order to test whether the compression results match the ones obtained
running a MCMC sampling algorithm, we also compare the 2D posterior distri-
butions for different pairs of parameters. In the case of MP + ORT the only
possibility to reconstruct the multidimensional posterior is to take the outer
product of the 1D marginalised posteriors. However doing so would be mislead-
ing: it would return ellipses with axes oriented at different angles to the ones
given by the MCMC sampling as it can be seen in Figures 3.5 and 3.6 looking
at the difference between the 2D red (MP + ORT) and blue (MCMC) contours.
These axes orientation reflects the different degree of degeneracy between the
parameters.

Therefore in order to avoid this difference, instead of orthogonalising the
weights we perform a principal component analysis (PCA) transformation of
our parameter space before applying the MP compression. This is done by
diagonalising the Fisher information matrix using the eigenvalue decompositions

Fθphys. = P FθPCA Pᵀ where θPCA = Pᵀ θphys., (3.23)

where P is the linear transformation matrix. After having diagonalised the Fisher
matrix we compress the data-vector with respect to this new set of parameters
θPCA. The weights obtained doing so are displayed in Figure 3.4 for the case of
the bispectrum as data-vector. The effect of a PCA decomposition is to rotate the
parameter space to the axes corresponding to the degeneracies between the origi-
nal set of parameters. Therefore taking the outer product of the 1D posteriors of
the parameters θPCA in order to get the multidimensional posterior distribution
should return with good approximation the one sampled by the MCMC code.
Once the multidimensional posterior has been reconstructed by taking the outer
product of the 1D posterior distributions for the θPCA set of parameters, this can
be randomly sampled in terms of the physical parameters θphys. using the rota-
tion matrix P in order to get the 1D and 2D marginalised posterior distributions
for the θphys. parameters. The results for the PCA + MP method just described
can be seen looking at the green (PCA + MP) and blue (MCMC) 2D contours
still in Figures 3.5 and 3.6. The PCA + MP method recovers tilted ellipses in
good agreement with the MCMC ones. On the contrary the method MP + ORT
proposed by Zablocki and Dodelson (2016), fails to recover accurate 2D posterior
distributions. Therefore taking the outer product of 1D posteriors distributions
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3.8. Posterior distributions directly from compressed data-vectors

for the data-vector, compressed by using an orthogonolised set of weights, cannot
recover the multidimensional posterior beside its 1D marginalisations unless the
physical parameters are completely uncorrelated.

3.8.2 Comparison with MCMC sampling

Figure 3.7 shows the ratio and relative difference of the 68% confidence intervals
of the 1D marginalised posteriors between the compression methods MCMC +
MP and PCA + MP and the standard MCMC sampling. In the bispectrum
case, while MCMC + MP tends to underestimate the 68% confidence intervals
obtained by the MCMC, PCA + MP tends to overestimate them by approxi-
mately the same amount (∼ 2.5%). For the joint data-vector, MCMC + MP
returns equivalent confidence intervals to the MCMC’s ones while PCA + MP
overestimates them in average by ∼ 2.5% (first panel) but still less than ∼ 1%
in terms of relative difference (second panel). We consider the averages of these
ratios since at the same time the compression methods overestimate the 68%
confidence intervals for some parameters while underestimating them for others.
In terms of the individual parameters 68% confidence intervals, PCA + MP di-
verges at most from the MCMC’s ones respectively by ∼ 7% and ∼ 6% in the
case of the bispectrum and the joint data-vector. MCMC + MP diverges at
most respectively by ∼ 6% and ∼ 4% in the case of the bispectrum and the joint
data-vector.

Both in the case of the bispectrum and in the case of the joint data-vector[
Ps

g,Bs
g

]
the compression for both MCMC + MP (Figures 3.2 and 3.3 ) and PCA

+ MP (Figures 3.5 and 3.6 ) methods well matches the 1-2D contours derived
from the MCMC sampling. This shows that in the bispectrum case there is no
relevant difference between MCMC + MP and PCA + MP methods while there
is a very small one in the case of the joint data-vector.

In the bispectrum case (Figure 3.5) when the 2D posterior distributions are
considered, only the contours derived by orthogonalising the parameter space
before the compression (PCA + MP) have elliptical shapes with the right incli-
nation. In the case of the joint data-vector instead (Figure 3.6), the MP method
alone fails to recover even the 1D posterior for the parameter As, producing an
unphysical secondary peak, while using PCA + MP returns 1D and 2D contours
equivalent to the MCMC’s ones. This shows that the orthogonalisation of the
parameter space (PCA step) performs better than the weights orthogonalisation
for combinations of parameters presenting strong non-linear degeneracies. As
described in the following subsection, the compression methods PCA + MP and
MP + ORT break down when the kmax used drops below a certain threshold
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3.8. Posterior distributions directly from compressed data-vectors

value. For the MP + ORT method this is ∼ 0.2 Mpc−1h as shown in Figure 3.6,
while for PCA + MP the threshold value is lower. Applying the compression up
to those mildly non-linear scales on real data like the BOSS DR12 requires to
modify the model in order to take into account non-local bias terms. However
this would not require the introduction of additional bias parameters. This is
because assuming that even if the galaxy bias is non-local in Eulerian space, it
is in Lagrangian space, and hence the additional non-local bias terms can be
related at first order to the linear bias b1 as done in Gil-Marín et al. (2015).

The parameter set used in our analyis has been chosen to have strong degen-
eracies in order to test the applicabilty of the MCMC + MP and PCA + MP
methods. When working with real data the parameter set is usually designed to
be less degenerate, for example considering only σ8 instead of Ωm and As or also
combining σ8 with b1, b2 and f .

In absence of non-linear (banana shape) degeneracies, the compression PCA
+MP can be a valid and much faster substitute to the standard MCMC sampling
since it returns realistic multidimensional posterior distributions. In particular,
compression could be used to accurately forecast the constraints for different sets
of parameters. It would also be possible to qualitatively study the degeneracies
present in each set.

Running both compression algorithms (MP or PCA) takes approximately 20
minutes for seven parameters, with the time depending on the number of intervals
for each parameter range and therefore how many times the linear matter power
spectrum is computed. As a rough estimate, if we consider 100 intervals for each
of the seven parameter ranges, Pm will be recomputed 300 times (no need to
recompute the matter power spectrum when varying only one of the parameters
b1, b2, f or As). For a standard MCMC with 64 samplers and 104 steps instead of
300 times Pm needs to be recomputed 64×104 times. Therefore the compression
is more than ∼ 2100 times faster than the MCMC.

The compression PCA + MP is also much less demanding in terms of com-
puting resources. It can be run in few minutes on a laptop with a single Intel i7
processor while for the MCMC we have used 64 threads working in parallel on
64 Xeon E5-2650 processors connected using MPI for ∼ 72 hours.

3.8.3 Limitations of the compression

Unfortunately the orthogonalisation prescriptions do not work when "strong"
non-linear degeneracies are present in the parameter space and the Fisher matrix
can no longer be diagonalised in practice. This happens because the multidimen-
sional posterior distribution can no longer be approximated by a multi-variate
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3.8. Posterior distributions directly from compressed data-vectors

Figure 3.8: Forecasted posteriors for the redshift bin of a DESI-like survey for
what concerns the combined two and three points statistics. 1D and 2D contours
are derived from MCMC sampling using for the three data-vectors: Ps

g (grey),
Bs

g (blue) and
[
Ps

g + Bs
g

]
(red). Combining two and three points statistics al-

lows to drastically reduce and break the degeneracies in the parameter space,
in particular the ones between b1, As and b2. This improvement obtained using
the joint data-vector is therefore particularly evident for all these amplitude-like
parameters (Table 3.1). In particular it’s qualitatively evident from this plot
the benefit of adding the bispectrum to the power spectrum. It is important to
notice that for the adopted model the galaxy power spectrum does not depend
on the parameter b2. Even with one parameter less to constrain than the bis-
pectrum, as expected, the MCMC for the galaxy power spectrum alone does not
well converge for most of the degenerate parameters.
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3.8. Posterior distributions directly from compressed data-vectors

Gaussian distribution. In our work, this happens when kmax is lowered, reducing
the information accessible through the power spectrum and the bispectrum.

This failure of the method manifests itself with the appearence of unphysical
secondary peaks in the posterior distributions. For example, when the MCMC (or
MCMC + MP) returns 2D posterior contours with degeneracies that are banana-
shaped, like in the case of the joint data-vector

[
Ps

g,Bs
g

]
for the parameters

(b1, b2, f, σ8), the compression alone (MP + ORT or PCA + MP) fails to recover
the 1D and 2D posteriors. In these cases both the MP + ORT and PCA + MP
produce unphysical secondary peaks in the posterior distribution. However, as
shown in Figure 3.6 PCA + MP still works considering only larger scales (kmax

lower), where standard perturbation theory gives more accurate predictions, than
when using only the MP + ORT method.

In the case of the bispectrum the breakdown of the PCA + MP method
happens for kmax < 0.18 Mpc−1h while for the joint data-vector

[
Ps

g,Bs
g

]
for

kmax < 0.17 Mpc−1h. A potential solution to this limitation could be the ap-
plication of the Gaussianisation method proposed by Schuhmann et al. (2016)
which we plan to include in a future work. This failure also happens when Vs

or ng are one order of magnitude smaller. However, these scenarios are below
the specifications of current and future cosmological surveys. Another solutions
is to consider less parameters by either fixing to a fiducial value one or more of
the most degenerate ones or by rewriting them in terms of combinations which
absorb the degeneracies (e.g. fσ8). It is important to note that in this paper we
have on purpose considered an extreme case of degenerate parameter space in
order to test the method applicability. In a realistic case a much less degenerate
parameter space is usually considered when analysing data. In the considered
parameter space the main cause of parameters degeneracy is due to having both
As, Ωm and f instead of using only σ8 and f . It is then reasonable to assume that
the method would still work when a more complex biasing model is considered
by adding a further bias parameter b3 or the tidal bias bs2 , provided that As and
Ωm are substituted with σ8. A more accurate biasing model would be needed in
an application to real data in order to describe the bias non local nature observed
in simulations (Sheth et al., 2013; Modi et al., 2017).
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3.9 Joint data-vector added value

In both cases presented in this paper, either running an MCMC sampling on
the compressed data-vector or doing the parameter estimation directly from the
compression (MCMC + MP or PCA + MP), the added value of combining the
power spectrum with the bispectrum is qualitatively (Figure 3.8) and quantita-
tively (Figure 3.7 and Table 3.1) evident. This improvement obtained using the
joint data-vector is particularly relevant for all the degenerate amplitude-like pa-
rameters: b1, b2, f and As. For the redshift bin of a DESI-like survey considered
in our analysis, the improvement for the above mentioned parameters obtained
using the joint data-vector with respect using only the bispectrum is respectively
of 52%, 22%, 22% and 37% (using PCA + MP). The improvement with respect
to the power spectrum alone is even greater, in particular: 81%, 80% and 82%
for b1, f and As.

Comparing our results to Sefusatti et al. (2006) and in particular their Table
8 for kmax = 0.2Mpc−1h, it is possible to see a similar effect due to including
the bispectrum in the analysis together with the power spectrum. The similarity
consists in the fact that the parameters that more benefit from this addition are
the bias ones (b1, b2) and the amplitude ones (As, σ8). The greater improve-
ment that we find for certain parameters by adding the bispectrum to the power
spectrum with respect to Sefusatti et al. can be explained by the fact that we
consider redshift space distortions, which are encoded in the growth rate param-
eter f . This increases the degeneracies already present between b1, b2, σ8, As

and Ωm. Therefore the added value of the bispectrum in lifting the degeneracies
increases.Together with this, in Sefusatti et al.’s paper the covariance matrix of
the bispectrum includes also off-diagonal terms, which decrease the constrain-
ing power of the bispectrum since these terms describe the correlation between
different triangle configurations.

For what concerns the most recent bispectrum measurements from BOSS
DR12 data by Gil-Marín et al. (2017), it is important to point out that the data
vector considered is given by the power spectrum monopole and quadrupoles to-
gether with the bispectrum monopole. Using the bispectrum monopole implies
washing out some of its information when integrating over the azimuthal and
polar angles. This could explain the lower impact of the bispectrum monopole
with respect to the power spectrum monopole and quadrupole in constraining
the parameters. Moreover in this case the covariance matrix used to do param-
eter inference is estimated from galaxy mocks, therefore it includes not only off
diagonal terms describing the correlation between different triangles, but also
the noise due to the fact that it is an estimated quantity.
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3.10. Conclusions

Finally in the recent paper by Byun et al. (2017) similar improvement to
ours have been obtained in parameter constraints (Table 3), in particular for
what concerns b1 and σ8 (proxy for As).

The efficiency of the compression PCA + MP also drastically improves if
ones considers the joint data-vector

[
Ps

g,Bs
g

]
as can be seen in Figures 3.3 and

3.6. Indeed, the combination of power spectrum and bispectrum reduces the
degeneracies between the considered parameters and the results obtained by
running approximately 20 minutes long compression-pipeline almost perfectly
match the ones given by a three days of MCMC sampling run in parallel on 64
processors (right panel Figure 3.7).

As is well known in the literature, the degeneracy between the bias parameters
(in particular at the linear order b1) with the amplitude of the dark matter
perturbations σ8 or the primordial perturbations scalar amplitude As cannot be
broken using only the power spectrum. These degeneracies are even larger when
redshift-space distortions are considered. On the other hand, the bispectrum
alone can (in theory) lift these degeneracies, even if it requires including the
quadratic bias parameter b2. In any case being a 3pt statistic,it is more difficult to
measure and analyse from real surveys than 2pt statistics. Therefore combining
power spectrum and bispectrum is of fundamental importance in order to obtain
the best possible constraints, especially in light of the large data sets that are
going to become available in the near future (DESI, Euclid, PFS, etc.).

3.10 Conclusions

In this paper we have shown that it is possible to compress the information about
cosmological parameters contained in the galaxy power spectrum and bispectrum
and to extract this information in an efficient way. In particular we have shown:

• Compressing the data-vector using the MOPED algorithm before running
an MCMC sampling gives negligible loss of information in terms of param-
eters constraints (Figures 3.2, 3.3, 3.7). In particular running an MCMC
sampling on the compressed data-vector (MCMC + MP) returns 68% con-
fidence intervals less than 1% larger in terms of relative difference than
the MCMC’s ones. This happens in both the cases of the bispectrum and
power spectrum plus bispectrum ( Bs

g and
[
Ps

g,Bs
g

]
). For real surveys this

would allow us to drastically reduce the number of simulations needed to
numerically estimate the covariance matrix. This is because the dimension
of the compressed covariace matrix corresponds to the number of model
parameters, not the number of the original data-vector elements.
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• Orthogonalising the parameter space through the diagonalisation of the
Fisher matrix before applying the compression (PCA + MP), proves to
be competitive with the MCMC sampling with minimal loss of constrain-
ing power (Figures 3.5 and 3.6). PCA + MP returns for both Bs

g and[
Ps

g,Bs
g

]
68% confidence intervals less than 1% different in terms of rela-

tive difference from the ones obtained running the MCMC sampling for
the full data-vectors. This method cannot be applied when the parame-
ter space presents non-linear degeneracies, since a multidimensional Gaus-
sian posterior distribution is no longer a valid approximation. Using the
joint data-vector

[
Ps

g,Bs
g

]
lowers the minimum kmax necessary for the only-

compression method (PCA + MP) to work to kmax ' 0.17 Mpc−1h (while
in case of just the bispectrum this threshold is kmax ' 0.18 Mpc−1h). These
values have been obtained considering the redshift bin of a DESI-like sur-
vey. Moreover these values can be further lowered if the parameter space
we considered is reduced to a less degenerate one, for example (b1,b2,f , σ8).

• Byun et al. (2017) reduced the covariance matrix dimension without sig-
nificant loss of information by using a proxy that aggregates the matter
bispectrum over a subset of Fourier configurations. In particular they ob-
tained their best results in terms of constraints on ΛCDM parameters from
combining the power spectrum with the modal decomposition of the bispec-
trum (Fergusson et al., 2012; Regan et al., 2012). Their results demonstrate
that the modal bispectrum performs as well as the Fourier bispectrum, even
with considerably fewer modes ( 10 ) than Fourier configurations ( 95 ).

The main difference with the approach presented in this work is that we use
the original full galaxy bispectrum data-vector in order to compress it. This
does not have any limitations in terms of original size of the bispectrum
data-vector. Therefore it allows us to access the full information content
achievable through the bispectrum. Moreover the number of elements of
the compressed data-vector in our case is independent of the number of
elements of the original data-vector. In our case we considered ∼ 1000
triangle configurations and 7 parameters which gives a compression of at
least two orders of magnitude. In Byun et al. (2017) it is left for future work
to check whether the achieved compression of the bispectrum data vector
by an order of magnitude would improve if more triangle configurations are
taken into consideration.

• As already quantified using real data-sets like BOSS (Gil-Marín et al.,
2017), the use of the joint data-vector

[
Ps

g,Bs
g

]
significantly increases the
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constraining power on the cosmological parameters compared to using only
the power spectrum or bispectrum individually. In the case of an ELGs
sample for a DESI-like survey the improvement obtaining by combining
power spectrum and bispectrum is quantified and can be visualised in the
second panel of Figure 3.7 and the second and third rows of Table 3.1. The
constraints obtained considering power spectrum and bispectrum together
are up to 52% smaller than the constraints obtained using only the bispec-
trum. The difference is even greater with respect to the power spectrum
alone. Together with lifting the degeneracies between amplitude-like pa-
rameters as it can be seen in Figure 3.8, the 68% confidence intervals of the
marginalised 1D posteriors for the joint data-vector are up to ∼ 5 times
smaller than the power spectrum ones.

• Using the compression PCA + MP as analysis method is much faster than
MCMC and less computationally demanding (few minutes on a single pro-
cessor compared to days using several processors working in parallel). Since
it is relatively easy to implement, it can be used to "sample" different sets
of parameters and obtain reliable constraints for a given model without
having to wait days for each one of them as in the case of the MCMC.

• The pre-compression PCA transformation allows us to better capture the
nature of the degeneracies between the chosen parameters, returning realis-
tic multidimensional posterior distributions that follow closely the MCMC
ones. Also in the case of "strong" degeneracies, orthogonalising the param-
eter space before compressing returns contours qualitatively more realistic
and closer to the MCMC than orthogonalising the weights after compress-
ing.

Future work will include the study of how the compression method applied
here is affected by the choice of the set of considered parameters. Finally we
would like to test the methods presented here using BOSS data or simulations
for the upcoming DESI, EUCLID and PFS surveys. Using MCMC + MP or
PCA + MP compression methods has the potential of becoming a standard fast
and reliable approach to adopt when dealing with large data-vector as in the case
of higher-order statistics.
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Appendix

3.A Estimators definition and unbiasedness check

In this appendix we present the definition of the power spectrum and the bispec-
trum estimators, as well as the definition of the trispectrum and the tetraspec-
trum, which are necessary for the computation of the full covariance matrix for
the joint data-vector

[
Ps

g,Bs
g

]
.

Including the effect of redshift-space distortions in our analysis requires en-
larging the number of parameters needed to describe a particular configuration
of the bispectrum. In this case, it is possible to see that, considering the dis-
tant observer approximation, which consists in assuming that all the line of sight
vectors paired to each wave-vector are parallel between each others, the natural
symmetry to exploit is the cylindrical one. In other words, what characterises the
redshift effect on the bispectrum are the parallel to the line of sight components
of the wave-vectors, from now on labeled as k‖. Therefore the natural set of co-
ordinates to describe each wave-vector is the cylindrical one:

(
k‖, k⊥, φ

)
where

k⊥ and φ describe the component of the wave-vector laying on the perpendicular
plane to the line of sight. Hence, for what concerns the bispectrum in redshift-
space, from the original 9 degrees of freedom, 3 are canceled by translational
invariance given by the closed triangle condition δD (k1 + k2 + k3).

Moreover, from the chosen coordinates above it is possible to see that there
is a further symmetry which is the rotation along the line of sight of a particular
triangle of wave-vectors. Different configurations given simply by rotating the
same triangle around the line of sight give the same value for the bispectrum.
The coordinate φ describes these rotations and expresses this symmetry. As
a consequence of the symmetries mentioned, we are left with five remaining
degrees of freedom, describing all possible configurations, which are given by:
{k⊥1 , k⊥2 , k⊥3 , k

‖
1, k
‖
2}, from which we can derive all the other quantities (e.g. k‖3 =

−k‖1 − k
‖
2). It is necessary then to define a new type of bin for our estimator:

a cylindrical anulii defined by φ ∈ [0, 2π], k̄⊥ ∈
[
k̄⊥ −∆k⊥/2, k̄⊥ + ∆k⊥/2

]
and k̄‖ ∈

[
k̄‖ −∆k‖/2, k̄‖ + ∆k‖/2

]
. For thin anulii the surface area is given
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3.A. Estimators definition and unbiasedness check

by Ac = 2π∆k k̄⊥ and hence the volume is given by V c = 2π∆k2 k̄⊥. The 3D
Dirac’s delta can be decomposed as

δD (k1 + k2 + k3) = δD
(
k
‖
1 + k

‖
2 + k

‖
3

)
δD
(
k⊥1 + k⊥2 + k⊥3

)
. (3.24)

3.A.1 Power spectrum

A standard way to define an estimator for the power spectrum is the following
(Peebles, 1980):

P̂s
g

(
k̄1
)

= 1
Vs

∫
V c

1

dV c
1

V c
1

∫
V c

1

dV c
2 δD (k1 + k2) δs

g (k1) δs
g (k2) , (3.25)

where Vs is the survey volume. Notice that both cylindrical bins are centered on
k̄1 and therefore by definition k̄1 = −k̄2. We specify that the power spectrum
for the redshift galaxy field depends on the wave-vector, precisely on its perpen-
dicular and parallel components to the line of sight, and not on its modulus.
Following the definition given in Equation 3.25, it is straight forward to check
whether the estimator is unbiased; one only needs to take the average

〈P̂s
g

(
k̄1
)
〉 = 1

Vs

∫
V c(k1)

dV c
1

V c(k1)

∫
V c(k1)

dV c
2 δD (k1 + k2) 〈δs

g (k1) δs
g (k2)〉

= 1
Vs

∫
V c(k1)

dV c
1

V c(k1)

∫
V c(k1)

dV c
2 δD (k1 + k2)2 (2π)3 Ps

g(k1)

=
∫
V c(k1)

dV c
1

V c(k1)

∫
V c(k1)

dV c
2 δD (k1 + k2) Ps

g(k1) =
∫
V c(k1)

dV c
1

V c(k1) Ps
g(k1)

=
∫ k̄⊥

1 + ∆k
2

k̄⊥
1 −

∆k
2

∫ k̄
‖
i + ∆k

2

k̄
‖
1−

∆k
2

dk⊥i dk
‖
i k
⊥
i

k̄⊥i ∆k2
Ps

g(k1) ≈ Ps
g(k̄1). (3.26)

where the standard expression for the galaxy power spectrum at leading order is
given by

Ps
g(k1) = Pm(k1) F(1)

s (k1)2 . (3.27)

3.A.2 Bispectrum estimator

Proceeding now as shown in Joachimi et al. (2009), we define the following esti-
mator for the bispectrum

B̂s
g

(
k̄⊥1 , k̄

⊥
2 , k̄

⊥
3 , k̄

‖
1, k̄
‖
2

)
=

= (2π)2∆k‖3
V

Λ−1
(
k̄⊥1 , k̄

⊥
2 , k̄

⊥
3 , k̄

‖
1, k̄
‖
2

) 3∏
i=1

∫
V c
i

dV c
i

V c
i

δD (k1 + k2 + k3) δs
g (k1) δs

g (k2) δs
g (k3) ,

(3.28)
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3.A. Estimators definition and unbiasedness check

where Λ is a function related to the fraction of wave-vectors triplets allowed by
the triangle condition and defined such that the bispectrum estimator 3.28 is
unbiased, which can be checked by taking the average of the estimator, which
also it is reported in the appendix. The expression for Λ is

Λ
(
k⊥1 , k

⊥
2 , k

⊥
3

)
= 2π

∫ ∞
0

dr⊥r⊥
3∏
i=1

J0
(
k⊥i r

⊥
)

= 4
2
√

2k⊥1
2
k⊥2

2 + 2k⊥1
2
k⊥3

2 + 2k⊥2
2
k⊥3

2 − k⊥1
4 − k⊥2

4 − k⊥3
4
, (3.29)

if |k⊥1 − k⊥2 | < k⊥3 < k⊥1 + k⊥2 or 0 otherwise. J0 is the zero-th order spherical
Bessel function. It is also possible to check that for the bispectrum the estimator
is unbiased

〈B̂s
g

(
k̄⊥1 , k̄

⊥
2 , k̄

⊥
3 , k̄

‖
1, k̄
‖
2

)
〉 =

= (2π)2∆k‖3
Vs

Λ−1
(
k̄⊥1 , k̄

⊥
2 , k̄

⊥
3 , k̄

‖
1, k̄
‖
2

)
×
∫
V c

1

∫
V c

2

∫
V c

3

(2π)3 (δD (k1 + k2 + k3))2 Bs
g

(
k⊥1 , k

⊥
2 , k

⊥
3 , k

‖
1, k
‖
2

)
= (2π)2∆k‖3Λ−1

123

∫
V c

1

∫
V c

2

∫
V c

3

δD (k1 + k2 + k3) Bs
g,123, (3.30)

where a shorthand notation for the bispectrum has been introduced and where
we have used the approximation δ2

D ' Vs/(2π)3δD from Joachimi et al. (2009).
Since the bispectrum is invariant under rotation around the line of sight, we
integrate now the angular part, namely over φ

∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ 2π

0
dφ3 δD

(
k⊥1 + k⊥2 + k⊥3

)
=
∫
dφ1dφ2dφ3

∫ d2r⊥

(2π)2 e
(k⊥

1 +k⊥
2 +k⊥

3 )r⊥

=
∫ d2r⊥

(2π)2

∫ 2π

0
dφ1 e

ik⊥
1 r

⊥ cos(φ1−φr)

×
∫ 2π

0
dφ2e

ik⊥
2 r

⊥ cos(φ2−φr)
∫ 2π

0
dφ3e

ik⊥
3 r

⊥ cos(φ3−φr)

=
∫ d2r⊥

(2π)2 (2π)3 J0(k⊥1 r⊥)J0(k⊥2 r⊥)J0(k⊥3 r⊥)

= (2π)2
∫ ∞

0
dr⊥ r⊥

3∏
i=1

J0(k⊥i r⊥) = 2πΛ(k⊥1 , k⊥2 , k⊥3 ), (3.31)

from which it is possible to see that in this case Λ depends only on the perpen-
dicular components of the wave-vectors. This agrees with the fact that on the
orthogonal plane the wave-vectors components must form a closed triangle. In
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3.A. Estimators definition and unbiasedness check

one of the steps above we used the argument that integrating a trigonometric
function over an interval of 2π gives the same result no matter what are the ex-
trema of integration as long as the interval is of 2π. For completeness the Bessel
functions of order 0 are defined as

J0(x) =
∫ 2π

0

dφ

2π e
ix cosφ. (3.32)

Then, inserting the expression for Λ 3.31 into 3.30 it is possible to verify that
our estimator is unbiased

〈B̂s
g,123〉 = (2π)2∆k‖3Λ−1

123

3∏
i=1

∫
V c
i

d2k⊥i dk
‖
i

2πk̄⊥i ∆k2
δD (k1 + k2 + k3) Bs

g

(
k⊥1 , k

⊥
2 , k

⊥
3 , k

‖
1, k
‖
2

)

= (2π)2∆k‖3Λ−1
123

3∏
i=1

∫ k̄⊥
i + ∆k

2

k̄⊥
i −

∆k
2

∫ k̄
‖
i + ∆k

2

k̄
‖
i−

∆k
2

dk⊥i dk
‖
i k
⊥
i

2πk̄⊥i ∆k2
, 2πΛ123 δD

(
k
‖
1 + k

‖
2 + k

‖
3

)
Bs

g,123

≈ δK
123Bs

g

(
k̄⊥1 , k̄

⊥
2 , k̄

⊥
3 , k̄

‖
1, k̄
‖
2

)
, (3.33)

where δK is a Kronecker delta. In the last step the thin-shell approximation has
been used in order to bring out the bispectrum from the integrals. The standard
expression for the galaxy bispectrum is given by

Bs
g(k1,k2,k3) = 2 Pm(k1) Pm(k2) F(1)

s (k1) F(1)
s (k2) F(2)

s [k1,k2] + 2 p. .

(3.34)

3.A.3 Trispectrum definition

The trispectrum is defined as

〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)〉c = (2π)3 δD (k1 + k2 + k3 + k4) Ts
g (k1,k2,k3,k4) ,

(3.35)

where the subscript "c" indicates that trispectrum is the connected part of the
four points correlation function. Therefore the leading order terms are of two
types: Ts (2)

g and Ts (3)
g respectively characterised by the RSD perturbation kernels

F(2)
s and F(3)

s . Starting from the first one we have that:
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(2π)3δD (k1 + k2 + k3 + k4) Ts (2)
g (k1,k2,k3,k4) =

= 〈F(1)
s [k1] F(1)

s [k2] δk1δk2

1
(2π)3

∫
d3kad

3kb δD (ka + kb − k3) F(2)
s [ka,kb] δkaδkb

×
∫
d3kcd

3kd δD (kc + kd − k4) F(2)
s [kc,kd] δkcδkd〉 + 5 p.

= 1
(2π)6 F(1)

s [k1] F(1)
s [k2]

∫
d3kad

3kb δD (ka + kb − k3) F(2)
s [ka,kb]

×
∫
d3kcd

3kd δD (kc + kd − k4) F(2)
s [kc,kd] 〈δk1δk2δkaδkbδkcδkd〉 + 5 p.. (3.36)

From the last line of the previous expression it follows that, when Wick’s theorem
is applied, there are three different ways to pair the wave-vectors.

Ts (2)
g


Ts (2a)

g ⇔ 〈δk1δk2〉〈δkaδkc〉〈δkbδkd〉 × 2 (sym.)
Ts (2b)

g ⇔ 〈δk1δka〉〈δk2δkc〉〈δkbδkd〉 × 4 (sym.)
Ts (2c)

g ⇔ 〈δk1δkc〉〈δk2δka〉〈δkbδkd〉 × 4 (sym.)

The first term represents a non connected 1-loop correction to the power spec-
trum covariance matrix (Fry, 1984; Mohammed et al., 2017). For completeness,
we just show below that the simplified expression makes explicit the fact that it
is an unconnected term of the full 4-points correlator

(2π)3δD (k1 + k2 + k3 + k4) Ts (2a)
g (k1,k2,k3,k4) =

= 2
(2π)6 F(1)

s [k1] F(1)
s [k2]

∫
d3kad

3kbd
3kcd

3kdδD (ka + kb − k3) δD (kc + kd − k4)

× F(2)
s [ka,kb] F(2)

s [kc,kd] (2π)9 δD (k1 + k2) δD (ka + kc) δD (kb + kd) Pm
k1Pm

kaP
m
kb

+ 5 p.

= 2(2π)3δD (k1 + k2) Ps
g (k1)

∫
d3kad

3kb F(2)
s [ka,kb] F(2)

s [−ka,−kb]

× δD (ka + kb − k3) δD (k3 + k4) Pm
kaP

m
kb

+ 5 p.

= 2(2π)3δD (k1 + k2) δD (k3 + k4) Ps
g (k1)

∫
d3ka F(2)

s [ka,k3 − ka]2 Pm
kaP

m
|k3−ka| + 5 p.

= 2(2π)3δD (k1 + k2 + k3 + k4) δD (k3 + k4) Ps
g (k1)

×
∫
d3ka F(2)

s [ka,k3 − ka]2 Pm
kaP

m
|k3−ka| + 5 p.. (3.37)

We then look at the first connected tree level term Tg (2b)
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(2π)3δD (k1 + k2 + k3 + k4) Ts (2b)
g (k1,k2,k3,k4) =

= 4
(2π)6 F(1)

s [k1] F(1)
s [k2]

∫
d3kad

3kbd
3kcd

3kdδD (ka + kb − k3) δD (kc + kd − k4)

× F(2)
s [ka,kb] F(2)

s [kc,kd] (2π)9 δD (k1 + ka) δD (k2 + kc) δD (kb + kd) Pm
k1Pm

kaP
m
kb

+ 5 p.

= 4× (2π)3 F(1)
s [k1]F(1)

s [k2]Pm
k1Pm

k2

∫
d3kbd

3kd δD (kb − k1 − k3) δD (kd − k2 − k4)

× F(2)
s [−k1,k1 + k3] F(2)

s [−k2,k2 + k4] Pm
kb
δD (kb + kd) + 5 p.

= 4× (2π)3 F(1)
s [k1]F(1)

s [k2]F(2)
s [−k1,k1 + k3] F(2)

s [−k2,−k1 − k3]

× δD (k1 + k2 + k3 + k4) Pm
k1Pm

k2Pm
|k1+k3|, + 5 p.. (3.38)

from which it is possible to directly write the third term which result to be
exactly the same

(2π)3δD (k1 + k2 + k3 + k4) Ts (2c)
g (k1,k2,k3,k4) =

= 4× (2π)3 F(1)
s [k1]F(1)

s [k2]F(2)
s [−k2,k2 + k3] F(2)

s [−k1,−k2 − k3]

× δD (k1 + k2 + k3 + k4) Pm
k1Pm

k2Pm
|k2+k3| + 5 p.. (3.39)

Finally it is possible to consider the last term Tg (3)
s

(2π)3δD (k1 + k2 + k3 + k4) Ts (3)
g (k1,k2,k3,k4) =

= 〈F(1)
s [k1] F(1)

s [k2] F(1)
s [k3] δk1δk2δk3

× 1
(2π)6

∫
d3kad

3kbd
3kc δD (ka + kb + kc − k4) F(3)

s [ka,kb,kc] δkaδkbδkc〉 + 3 p.

= 1
(2π)6 F(1)

s [k1] F(1)
s [k2] F(1)

s [k3]
∫
d3kad

3kbd
3kc δD (ka + kb + kc − k4) F(3)

s [ka,kb,kc]

× 〈δk1δk2δk3δkaδkbδkc〉 + 3 p.. (3.40)

Like we did before, we apply now the Wick’s theorem. In this case there are two
different ways to pair the wave-vectors.

Ts (3)
g

Ts (3a)
g ⇔ (〈δk1δk2〉〈δk3δka〉〈δkbδkc〉+ 2 p.)× 3 (sym.)

Ts (3b)
g ⇔ 〈δk1δka〉〈δk2δkb〉〈δk3δkc〉 × 6 (sym.)

The first option represents again a non connected 1-loop correction to the power
spectrum covariance matrix.
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(2π)3δD (k1 + k2 + k3 + k4) Ts (3a)
g (k1,k2,k3,k4) =

= 3
(2π)6 F(1)

s [k1] F(1)
s [k2] F(1)

s [k2]
∫
d3kad

3kbd
3kcδD (ka + kb + kc − k4) F(3)

s [ka,kb,kc]

× (2π)9 δD (k1 + k2) δD (k3 + ka) δD (kb + kc) Pm
k1Pm

k3Pm
kb

+ 2 p.

= 3× (2π)3 Ps
g (k1) F(1)

s [k3] Pm
k3δD (k1 + k2)

∫
d3kad

3kbd
3kcδD (ka + kb + kc − k4)

× F(3)
s [ka,kb,kc] δD (k3 + ka) δD (kb + kc) Pm

kb
+ 2 p.

= 3× (2π)3 Ps
g (k1) F(1)

s [k3] Pm
k3δD (k1 + k2)

∫
d3kbd

3kcδD (kb + kc − k3 − k4)

× F(3)
s [−k3,kb,kc] δD (kb + kc) Pm

kb
+ 2 p.

= 3× (2π)3 Ps
g (k1) F(1)

s [k3] Pm
k3δD (k1 + k2) δD (k3 + k4)

×
∫
d3kb F(3)

s [−k3,kb,−kb] Pm
kb

+ 2 p.

= 3× (2π)3 Ps
g (k1) F(1)

s [k3] Pm
k3δD (k1 + k2 + k3 + k4) δD (k3 + k4)

×
∫
d3kb F(3)

s [−k3,kb,−kb] Pm
kb

+ 2 p.. (3.41)

From the last line it is clear that this is also an un-connencted term. The second
term gives the tree level contribution

(2π)3δD (k1 + k2 + k3 + k4) Ts (3b)
g (k1,k2,k3,k4) =

= 6
(2π)6 F(1)

s [k1] F(1)
s [k2] F(1)

s [k2]
∫
d3kad

3kbd
3kcδD (ka + kb + kc − k4) F(3)

s [ka,kb,kc]

× (2π)9 δD (k1 + ka) δD (k2 + kb) δD (k3 + kc) Pm
k1Pm

k2Pm
k3 + 3 p.

= 6× (2π)3 F(1)
s [k1] F(1)

s [k2] F(1)
s [k3] δD (k1 + k2 + k3 + k4)

× F(3)
s [−k1,−k2,−k3] Pm

k1Pm
k2Pm

k3 + 3 p.. (3.42)

Therefore the full trispectrum at tree level is given by

Ts
g = Ts (2b)

g + Ts (2c)
g + Ts (3b)

g . (3.43)

3.A.4 Tetraspectrum definition

The tetraspectrum is defined as

〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)δs
g(k5)〉c =

= (2π)3 δD (k1 + k2 + k3 + k4 + k5) Ts
e,g (k1,k2,k3,k4,k5) , (3.44)

where the subscript "c" stands for the connected part of the five points correlation
function in Fourier space.
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Drawing the diagrams as shown in Fry (1984), it is possible to see that the
leading term of the connected part has order O (δ8

m). There are two possible ways
through which O (δ8

m) can be reached, either by having F(2)
s

3 or F(2)
s F(3)

s terms:

(2π)3 δD (k1 + k2 + k3 + k4 + k5) Ts
e,g (k1,k2,k3,k4,k5) =

= 1
(2π)9 F(1)

s [k1] F(1)
s [k2]

∫
dk3

adk
3
b δD (ka + kb − k3) F(2)

s [ka,kb]

×
∫
dk3

cdk
3
d δD (kc + kd − k4) F(2)

s [kc,kd]

×
∫
dk3

edk
3
f δD (ke + kf − k5) F(2)

s [ke,kf ] 〈δ1δ2δaδbδcδdδeδf〉 + 59 p.

+ 1
(2π)9 F(1)

s [k1] F(1)
s [k2] F(1)

s [k3]
∫
dk3

adk
3
b δD (ka + kb − k4) F(2)

s [ka,kb]

×
∫
dk3

cdk
3
ddk

3
e δD (kc + kd + ke − k5) F(3)

s [kc,kd,ke] 〈δ1δ2δ3δaδbδcδdδe〉 + 19 p..
(3.45)

Starting from the first term that appears in the above expansion:

(2π)3 δD (k1 + k2 + k3 + k4 + k5) Ts(a)
e,g (k1,k2,k3,k4,k5) =

= 1
(2π)9 F(1)

s [k1] F(1)
s [k2]

∫
dk3

adk
3
bdk

3
cdk

3
ddk

3
edk

3
f δD (ka + kb − k3) δD (kc + kd − k4)

× δD (ke + kf − k5) F(2)
s [ka,kb] F(2)

s [kc,kd] F(2)
s [ke,kf ] 〈δ1δ2δaδbδcδdδeδf〉 + 59 p.

= 8 (2π)3F(1)
s [k1] F(1)

s [k2]
∫
dk3

adk
3
bdk

3
cdk

3
ddk

3
edk

3
f δD (ka + kb − k3)

× δD (kc + kd − k4) δD (ke + kf − k5) δD (k1 + kf ) δD (k2 + ka) δD (kb + kc) δD (kd + ke)

× F(2)
s [ka,kb] F(2)

s [kc,kd] F(2)
s [ke,kf ] Pm (k1) Pm (k2) Pm (kb) Pm (kc) + 359 p.

= 8 (2π)3F(1)
s [k1] F(1)

s [k2]
∫
dk3

bdk
3
d δD (−k2 + kb − k3) δD (−kb + kd − k4)

× δD (−kd − k1 − k5) F(2)
s [−k2,kb] F(2)

s [−kb,kd] F(2)
s [−kd,−k1]

× Pm (k1) Pm (k2) Pm (kb) Pm (kb) + 359 p.

= (2π)3δD (k1 + k2 + k3 + k4 + k5) 8 F(1)
s [k1] F(1)

s [k2] F(2)
s [−k2,k2 + k3]

× F(2)
s [−k2 − k3,−k1 − k5] F(2)

s [k1 + k5,−k1]

× Pm (k1) Pm (k2) Pm (|k2 + k3|) Pm (|k2 + k3|) + 359 p.. (3.46)

where the factor of 8 comes from permutations which do not influence the re-
lations between the starting five wave vectors. On the contrary for each the
original 60 permutations, there are 6 for which the relation between the initial
wave vectors varies. Considering now the second term:

113



3.A. Estimators definition and unbiasedness check

(2π)3 δD (k1 + k2 + k3 + k4 + k5) Ts(b)
e,g (k1,k2,k3,k4,k5) =

= 1
(2π)9 F(1)

s [k1] F(1)
s [k2] F(1)

s [k3]
∫
dk3

adk
3
bdk

3
cdk

3
ddk

3
e δD (ka + kb − k4)

× δD (kc + kd + ke − k5) F(2)
s [ka,kb] F(3)

s [kc,kd,ke] 〈δ1δ2δ3δaδbδcδdδe〉 + 19 p.

= 6 (2π)3F(1)
s [k1] F(1)

s [k2] F(1)
s [k3]

∫
dk3

adk
3
bdk

3
cdk

3
ddk

3
e δD (ka + kb − k4)

× δD (kc + kd + ke − k5) δD (k1 + ke) δD (k2 + kd) δD (k3 + kb) δD (ka + kc)

× F(2)
s [ka,kb] F(3)

s [kc,kd,ke] Pm (k1) Pm (k2) Pm (k3) Pm (ka) + 119 p.

= 6 (2π)3F(1)
s [k1] F(1)

s [k2] F(1)
s [k3]

∫
dk3

a δD (ka − k3 − k4) δD (−ka − k2 − k1 − k5)

× F(2)
s [ka,−k3] F(3)

s [−ka,−k2,−k1] Pm (k1) Pm (k2) Pm (k3) Pm (ka) + 119 p.

= (2π)3δD (k1 + k2 + k3 + k4 + k5) 6 F(1)
s [k1] F(1)

s [k2] F(1)
s [k3] F(2)

s [k3 + k4,−k3]

× F(3)
s [−k3 − k4,−k2,−k1] Pm (k1) Pm (k2) Pm (k3) Pm (|k3 + k4|) + 119 p..

(3.47)

where the factor of 6 comes from permutations which do not influence the re-
lations between the starting five wave vectors. On the contrary for each the
original 19 permutations, there are 6 for which the relation between the initial
wave vectors varies. From the above expressions of both Ts(a)

e,g and Ts(b)
e,g it is pos-

sible to see that at leading order the tetraspectrum has order O (δ8
m). In other

words it is proportional to the fourth power of the linear matter power spectrum.

3.A.5 Unconnected part of the five points correlation func-
tion

If one looks at the unconnected part of the five point correlation function, the
leading term has order O (δ6

m). Below are derived the analytical expression for
this unconnected part.

Us
5p,g (k1,k2,k3,k4,k5) =

= 1
(2π)3

4∏
i=1

F(1)
s [ki]

∫
dk3

adk
3
b δD (ka + kb − k5) F(2)

s [ka,kb] 〈δ1δ2δ3δ4δaδb〉 + 5 p..

(3.48)

Using Wick’s theorem the six-points correlator can be approximated using in to
products of two points correlators. For example, for the first permutation one
obtains
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〈δ1δ2δ3δ4δaδb〉 = 2× 〈δ1δa〉〈δ2δb〉〈δ3δ4〉 ↔ U1
5p

+ 2× 〈δ1δa〉〈δ3δb〉〈δ2δ4〉 ↔ U2
5p

+ 2× 〈δ1δa〉〈δ4δb〉〈δ2δ3〉 ↔ U3
5p

+ 2× 〈δ2δa〉〈δ3δb〉〈δ1δ4〉 ↔ U4
5p

+ 2× 〈δ2δa〉〈δ4δb〉〈δ1δ3〉 ↔ U5
5p

+ 2× 〈δ3δa〉〈δ4δb〉〈δ1δ2〉 ↔ U6
5p. (3.49)

Since all these terms are similar to each other, we compute below only the first
one of them as an example on how to derive the others.

(2π)3 δD (k1 + k2 + k3 + k4 + k5) U1
5p =

= 2
2(π)3

4∏
i=1

F(1)
s (ki)

∫
dk3

adk
3
b δD (ka + kb − k5) F(2)

s [ka,kb] (2π)9

× δD (k1 + ka) δD (k2 + kb) δD (k3 + k4) Pm (k1) Pm (k2) Pm (k3)

= 2× (2π)6F(1)
s [k1] F(1)

s [k2] F(1)
s [k3] F(1)

s [k4] F(2)
s [k1,k2] δD (k3 + k4)

× δD (k1 + k2 + k5) Pm (k1) Pm (k2) Pm (k3)

= 2× (2π)6F(1)
s [k1] F(1)

s [k2] F(1)
s [k3] F(1)

s [k4] F(2)
s [k1,k2] δK

125 δD (k3 + k4)

× δD (k1 + k2 + k3 + k4 + k5) Pm (k1) Pm (k2) Pm (k3) , (3.50)

where it is important to note that, in the last line, when substituting the Dirac’s
delta for the sum of three wave-vectors with the sum of all five of them, a
Kronecker’s delta must be added to keep track of the original relation between
the three k’s. From the last line one can immediately write another one of the
six terms

(2π)3 δD (k1 + k2 + k3 + k4 + k5) U5
5p (k1,k2,k3,k4,k5) =

= 2(2π)6F(1)
s [k1] F(1)

s [k2] F(1)
s [k3] F(1)

s [k4] F(2)
s [k2,k4]

× δK
245 δD (k1 + k3) δD (k1 + k2 + k3 + k4 + k5) Pm (k2) Pm (k4) Pm (k3) . (3.51)

Therefore, it is possible to write down the complete expression that takes into
account all the permutations and terms as follows

Us
5p,g (k1,k2,k3,k4,k5) = ∑5

i=1 Us
5p,g

(
δ

(2)
i

)
where Us

5p,g

(
δ

(2)
i

)
= U1

5p + U2
5p + U3

5p + U4
5p + U5

5p + U6
5p. (3.52)

The argument δ(2)
i identifies which wave-vectors corresponds to the second order

perturbation expansion for each term.
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3.B Covariance terms derivation

In this Appendix we present the derivation of the covariance terms, starting from
the power spectrum one. Theoretically one could compute all the terms up to
any arbitrary order in perturbation theory. However in this work we limit our
computations to all the terms proportional to O (δ6

m). For consistency all the
higher order terms (e.g O (δ8

m)) will be ignored. Of course the more higher order
terms are included in the analysis, the better is the approximation used for the
analytical covariance matrix.

3.B.1 Covariance term: CPP

As stated in the main text, the covariance matrix element can be computed as

CPs
g ≡ Cov

[
Ps

g

(
k̄1
)
,Ps

g

(
k̄3
)]

=
〈(

P̂s
g,1 − 〈P̂s

g,1〉
)〉〈(

P̂s
g,3 − 〈P̂s

g,3〉
)〉

= 〈P̂s
g,1P̂s

g,3〉 − P̂s
g,1P̂s

g,3. (3.53)

The computation of the covariance matrix involves a four points correlator of δs
g

that can be expanded into its connected parts

〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)〉 = 〈δs
g(k1)δs

g(k2)〉c〈δs
g(k3)δs

g(k4)〉c + 2 perms.

+ 〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)〉c. (3.54)

In this work, the following short hand for the integrals will be also adopted

∫
V c
k̄i

dφidk
⊥
i dk

‖
i k
⊥
i

2πk̄⊥i ∆k2
≡
∫
i
. (3.55)

3.B.1.1 CPP
P term:

Starting from the first term CPP
P in the particular case in which the pairs are

made of identical wave vectors (in this case, from the power spectrum estimator
definition: k1 = k2 and k3 = k4 ) we have that

CPP
P

(
k̄1; k̄3

)
= 1
V 2

s V
c

1 V
c

3

4∏
i=0

∫
dV c

i δD (k1 + k2) δD (k3 + k4)

× 〈δs
g (k1) δs

g (k2)〉〈δs
g (k3) δs

g (k4)〉, (3.56)

it is straightforward to see that this terms cancels the second term of Equation
3.53. Considering now the other two possibilities for CPP

P
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CPP
P

(
k̄1; k̄3

)
=

= 1
V 2

s V
c

1 V
c

3

4∏
i=0

∫
dV c

i δD (k1 + k2) δD (k3 + k4) 〈δs
g (k1) δs

g (k3)〉〈δs
g (k2) δs

g (k4)〉 + 1p.

= (2π)6

V 2
s V

c
1 V

c
3

4∏
i=0

∫
dV c

i δD (k1 + k2) δD (k3 + k4) δD (k1 + k3)

× δD (k2 + k4) Ps
g (k1) Ps

g (k2) + 1p.

= (2π)6

V 2
s V

c
1 V

c
2

(
δK

13δ
K
24 + δK

14δ
K
23

) ∫
dV c

1

∫
dV c

2 δD (k1 + k2)2 Ps
g (k1) Ps

g (k2)

= (2π)3

Vs V c
1 V

c
2

DP
1234

∫
dV c

1

∫
dV c

2 δD (k1 + k2) Ps
g (k1) Ps

g (k2)

= (2π)3

Vs V c
1

DP
1234

∫ k̄⊥
1 + ∆k

2

k̄⊥
1 −

∆k
2

∫ k̄
‖
1+ ∆k

2

k̄
‖
1−

∆k
2

dk⊥1 dk
‖
1 k
⊥
1

k̄⊥1 ∆k2
Ps

g (k1)2

≈ (2π)2

Vsk̄⊥1 ∆k2
DP

1234 Ps
g

(
k̄1
)2

= 2× (2π)2

Vsk̄⊥1 ∆k2
δK

13 Ps
g

(
k̄1
)2
, (3.57)

where DP
1234 = δK

13δ
K
24 + δK

14δ
K
23 has been defined in order to take in account the

additional permutation from the initial Dirac’s deltas conditions, which now re-
duces to DP

1234 = 2 × δK
13. If, when obtaining an expression for the trispectrum,

one considers also one-loop corrections, in addition to this Gaussian term on the
diagonal of the power spectrum covariance matrix, one should add the uncon-
nected terms encountered in Appendix 3.A, Ts (2a)

g and Ts (3a)
g . This has been

recently well described in Mohammed et al. (2017). As stated in Sec. 3.3.2
the error made with this tree level approximation for the diagonal term 3.57 is
around ∼ 1% for kmax = 0.2 Mpc−1h and up to ∼ 9% for kmax = 0.3 Mpc−1h

(Taruya et al., 2008).

3.B.1.2 CPP
T term:

Proceeding in the same way it is possible to compute as well the other term of
the cross-correlation matrix, the one containing the trispectrum contribution.
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CPP
T

(
k̄1; k̄3

)
= 1
V 2

s V
c

1 V
c

3

4∏
i=0

∫
dV c

i δD (k1 + k2) δD (k3 + k4)

× 〈δs
g (k1) δs

g (k3) δs
g (k2) δs

g (k4)〉

= (2π)3

V 2
s V

c
1 V

c
3

4∏
i=0

∫
dV c

i δD (k1 + k2) δD (k3 + k4) δD (k1 + k2 + k3 + k4)

× Ts
g (k1,k2,k3,k4)

= (2π)3

V 2
s V

c
1 V

c
3
δK

34

∫
dV c

1 dV
c

2 dV
c

3 δD (k1 + k2)2 Ts
g (k1,k2,k3,−k3)

= 1
Vs V c

1 V
c

3
δK

34

∫
dV c

1 dV
c

2 dV
c

3 δD (k1 + k2) Ts
g (k1,k2,k3,−k3)

= 1
Vs
δK

12δ
K
34

∫ dV c
1

V c
1

∫ dV c
3

V c
3

Ts
g (k1,−k1,k3,−k3)

≈ 1
2π Vs

∫
dφ13 Ts

g

(
k̄⊥1 , k̄

‖
1, k̄
⊥
3 , k̄

‖
3, φ

−
13

)
. (3.58)

Following what was done in Pielorz et al. (2010), i.e, substituting in here the pre-
viously derived expression for the trispectrum, this expression can be "simplified"
at tree level to

CPP
T

(
k̄1; k̄3

)
≈ 1

2π Vs

∫
dφ13 Ts

g

(
k̄⊥1 , k̄

‖
1, k̄
⊥
3 , k̄

‖
3, φ13

)
= 1

2π Vs

∫
dφ13

{
4 Ps

g(k1)2
[
F(2)

s [k1,−k+]2 Pm(k+) + F(2)
s [k1,k−]2 Pm(k−)

]

+ 4 Ps
g(k3)2

[
F(2)

s [k3,−k+]2 Pm(k+) + F(2)
s [k3,−k−]2 Pm(k−)

]
+ 8 Ps

g(k1)Ps
g(k3)

×
[
F(2)

s [k1,−k+] F(2)
s [k3,−k+] Pm(k+) + F(2)

s [k1,k−] F(2)
s [k3,−k−] Pm(k−)

]

+ 12Ps
g(k1)Ps

g(k3)
[
Ps

g(k1)F(3)
s [k1,−k1,k3] + Ps

g(k3)F(3)
s [k1,k3,−k3]

]}
,

(3.59)

where k+ = k1+k3 and k− = k3−k1 and Pm is the linear matter power spectrum
and φ13 is the difference between the two azimuthal angles of the two wave-
vectors. Therefore this is the only term that requires an integration since this
angular dependence defines the relation between the two wave-vectors involved.

3.B.2 Covariance term: CBB

By definition, the covariance matrix element can be computed as
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CBs
g ≡ Cov

[
Bs

g

(
k̄⊥1 , k̄

⊥
2 , k̄

⊥
3 , k̄

‖
1, k̄
‖
2

)
,Bs

g

(
k̄⊥4 , k̄

⊥
5 , k̄

⊥
6 , k̄

‖
4, k̄
‖
5

)]
=
〈(

B̂s
g,123 − 〈B̂s

g,123〉
)〉〈(

B̂s
g,456 − 〈B̂s

g,456〉
)〉

= 〈B̂s
g,123B̂s

g,456〉 − B̂s
g,123B̂s

g,456. (3.60)

The six points correlation function can be decomposed into all the possible com-
binations of connected parts

〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)δs
g(k5)δs

g(k6)〉 =

= 〈δs
g(k1)δs

g(k2)〉c〈δs
g(k3)δs

g(k4)〉c〈δs
g(k5)δs

g(k6)〉c + 14 perms.

+ 〈δs
g(k1)δs

g(k2)δs
g(k3)〉c〈δs

g(k4)δs
g(k5)δs

g(k6)〉c + 9 perms.

+ 〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)〉c〈δs
g(k5)δs

g(k6)〉c + 14 perms.

+ 〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)δs
g(k5)δs

g(k6)〉c. (3.61)

Below we present the full derivation of the of the bispectrum Covariance matrix
to leading order in Gaussian terms

CBB
(
k̄1, k̄2, k̄3; k̄4, k̄5, k̄6

)
=

= (2π)4∆k‖3∆k‖6
V 2

s
Λ−1

123 Λ−1
456

6∏
i=1

∫
i

dV c
i

V c
i

F(1)
s,i δD (k1 + k2 + k3) δD (k4 + k5 + k6)

× 〈δm(k1)δm(k4)〉〈δm(k2)δm(k5)〉〈δm(k3)δm(k6)〉 + 5 p.

= (2π)13∆k‖3
2

V 2
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(3.62)

where D123456 has been used as a shorthand notation for all the possible permu-
tations allowed by the fact that only pairs formed by wave-vectors from different
triplets survive, which are in total 6. For all the other steps we have used rela-
tions described previously. Finally, defining a bin average by using the thin shell
approximation, it is possible to write down the final result
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CBB = (2π)5∆k‖3
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3.B.3 Cross - variance term: CBP

The cross-correlation part of the covariance matrix of the joint data-vector
[
Ps

g,Bs
g

]
can be computed as

CBP ≡ Cov
[
Ps

g

(
k̄1
)
,Bs

g

(
k̄3, k̄4, k̄5

)]
= 〈P̂s

g,1B̂s
g,345〉 − P̂s

g,1B̂s
g,345. (3.64)

The computation of the covariance matrix involves a five points correlator of δs
g

that can be expanded in its connected parts

〈δs
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g(k5)〉c + 2 p.
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g(k5)〉c

+ 〈δs
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g(k4)δs
g(k5)〉unc.

= CBP
m0 + CBP

m1 + CBP
m2 + CBP

Te + CBP
U5p . (3.65)

In the case of the five points correlation function it has to be included also the
unconnected part in the expansion. This is because while for an even number
2n the leading term of unconnected part of the 2n-points correlation function is
proportional to the product of n power spectra, for an odd number m this is no
longer the case. As shown in last subsection of Appendix 3.A, the unconnected
part of the 5-points correlation function has a leading term proportional to the
product of three power spectra. Therefore in this case the unconnected part
needs to be considered since it has the same order of the other leading terms
of the above expansion. From the last equation, it is possible to immediately
that CBP

m0 cancels out with the last term o Equation 3.64 and that CBP
m2 = 0

because the Dirac’s deltas combination leads to terms having δD (k5) = 0.

3.B.3.1 CBP
m1 term:

Starting from the first term written previously, below we report the full derivation
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Note that only three of the six permutations are different terms, since the other
three are just obtained by switching k1 with k2 which does not change the final
result. Therefore the final expression for this term can be written as

CBP
m1 = 2× (2π)3

Vs V c
2

(
δK
−13 + δK

−14 + δK
−15

)
Ps

g

(
k̄1
)

Bs
g

(
k̄3, k̄4, k̄5

)
. (3.67)

Note that the argument of the power spectrum depend on the wave-vector se-
lected by the Kronecker Delta.

3.B.3.2 CBP
Te term:

The other contribution at tree level to the connected five points correlator re-
sulting in the cross covariance term between power spectrum and bispectrum is
the one proportional to the tetraspectrum defined before, we get
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Since the leading order of the tetraspectrum is higher than the one considered
in this work, the above covariance term has not been included in the numerical
computation. For what concerns the unconnected part of the five point correla-
tion function described in the end of Appendix 3.A, it represents loop correction
to the standard power spectrum times bispectrum cross covariance CBP

m1 . Coher-
ently with what done in the same case for the trispectrum it has also not been
included in the numerical computations.

3.C Compressed covariance matrix

We run the MCMC not on the original data-vector, e.g. Bs
g or

[
Ps

g + Bs
g

]
but on

their compressed version obtained through MOPED weighting. Given a set of
parameters {θ1, . . . θm}, a data-vector x = {x1, . . . xn} with mean 〈x〉 the set of
weights with respect to each parameter θi is given by

bi = Cov−1〈x〉,i, (3.69)

where Cov(x) is the covariance matrix relative to the data-vector x. Assuming
the covariance matrix to be approximately independent of the cosmology, then
for each considered parameter the original data-vector is compressed to a single
scalar

yθi = bi · x. (3.70)

Therefore stacking all the weighting vectors as rows of an m × n matrix B the
new m-dimensional data-vector will be
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y = Bx. (3.71)

For what concerns the covariance matrix for the new data-vector, it will be
related to the original one by

Covy,ij = Cov [yi, yj] = Cov
[∑n

k b
k
i xk ,

∑n
j b

l
jxl
]

= ∑n
k

∑n
j b

k
i b
l
jCov [xk, xl]

= bᵀi ·Covx · bj, (3.72)

Therefore when running the MCMC using y as data-vector the natural logarithm
of likelihood will be proportional to

logL ∝ −1
2 (y − yfid.)ᵀCov−1

y (y − yfid.) . (3.73)

Where yfid. is the compressed data-vector obtained using the fiducial values of
the cosmological parameters. In our case of interest this will be applied to Bs

g and[
Ps

g,Bs
g

]
. An additional option consists in leaving Ps

g uncompressed, compressing
only the bispectrum. In that case the cross-variance term would be given by

CovPyBij = Cov
[
Ps

g(ki), yj
]

= Cov
[
Ps

g(ki),Bs
g

]
· bj. (3.74)

Putting everything together the full covariance matrix is

Cov =
[
CovPP CovPyB
CovPyB CovyByB

]
, (3.75)

where CovyByB is the covariance matrix for the compressed data-vector derived
in Equation 3.72 in the case of x being the Bispectrum.

3.D Weights orthogonalisation

As stated in Zablocki and Dodelson (2016) each compressed data set yi contains
all the information regarding the parameter θi but at the same time it will have
some sensitivity to the other parameters. It is possible to remove this sensitivity
by marginalising at linear level over these other parameters. This is done by
orthogonalising the weighting vectors for all the individual parameters. If the
model is parametrised by m parameters θi, compressing with respect to all these

123



3.D. Weights orthogonalisation

will return m different linear combinations yi (or in other words m weighting
vectors). Therefore it is possible to define another set of new scalars y′i given by
a linear combination of the original ones, for example:

y′1 = c1y1 + c2y2 + ... + cmym, (3.76)

with the constants ci such that y′1 contains all the information regarding θ1 while
at the same time removing all the sensitivity with respect to the other parameters
at linear level. This means that when taking the derivative with respect to the
second parameter θ2 we are looking for c coefficients such that:

dy′1
dθ2

= c1
dy1

dθ2
+ c2

dy2

dθ2
+ ...+ cm

dym
dθ2

= c1
∑
j

bj1
dxj
dθ2

+ c2
∑
j

bj2
dxj
dθ2

+ ...+ cm
∑
j

bjm
dxj
dθ2

= c1F12 + c2F22 + ...+ cmFm2 = 0, (3.77)

where for the Fisher information matrix elements it has been used Equation 3.21
together with the expression for the weights bi = Cov−1〈x〉,i . Imposing this
for the derivative with respect to all the m − 1 parameters beside θ1 it gives
the following matrix problem to be solved in order to get the m− 1 coefficients
needed to compute y′1:



F22 F23 . . . F2m
F32 F33 . . . F3m
. . . .
. . . .
. . . .

Fm2 Fm3 . . . Fmm





c2
c3
.
.
.
cm


=



−F12
−F13
.
.
.

−F1m


. (3.78)

Solving this equation returns m−1 unique constants for the ci with i > 1. c1 can
be set equal to one. Once the c’s are known, y′1 can be obtained using Equation
3.76, which corresponds to defining the new weighting vector for the parameter
θ1:

b′1 = b1 + c2b2 + ...+ cmbm, (3.79)

where b′1 is the orthogonalised weighting vector for θ1. The same procedure
can be repeated for all the other parameters and relative weighting vectors. In
general, for the mode with i = α, the coefficients are determined by the general
equation:
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∑
j

F′α,ijcj = −Fαi, (3.80)

where F′α is the Fisher matrix with row and column α removed.
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“May your beer be laid under an enchantment of surpassing excellence for seven
years!”

- J.R.R. Tolkien, The Lord of the Rings

4 | Enhancing BOSS bispectrum
cosmological constraints
with maximal compression

4.1 Abstract

We apply two compression methods to the galaxy power spectrum monopole,
quadrupole and bispectrummonopole measurements from the BOSS DR12 CMASS
sample. Both methods reduce the dimension of the original data-vector to
the number of cosmological parameters considered, using the MOPED algo-
rithm with an analytic covariance model. In the first case, we infer the pos-
terior through MCMC sampling from the likelihood of the compressed data-
vector (MC-MP). The second, faster option, works by first Gaussianising and
then orthogonalising the parameter space before the compression; in this op-
tion (G-PCA) we only need to run a low-resolution preliminary MCMC sample
for the Gaussianization to compute our posterior. Both compression methods
accurately reproduce the posterior distributions obtained by standard MCMC
sampling on the CMASS dataset for a k-space range of 0.03 − 0.12h/Mpc.
The compression enables us to increase the number of bispectrum measure-
ments by a factor of ∼ 23 over the standard binning (from 116 to 2734 tri-
angles used), which is otherwise limited by the number of mock catalogues avail-
able. This reduces the 68% credible intervals for the parameters (b1, b2, f, σ8) by
(−24.8%,−52.8%,−26.4%,−21%), respectively. The best-fit values we obtain
are (b1 = 2.31 ± 0.17, b2 = 0.77 ± 0.19, f(zCMASS) = 0.67 ± 0.06, σ8(zCMASS) =
0.51 ± 0.03). Using these methods for future redshift surveys like DESI, Euclid
and PFS will drastically reduce the number of simulations needed to compute ac-
curate covariance matrices and will facilitate tighter constraints on cosmological
parameters.
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4.2 Introduction

Large datasets have recently become available from current cosmological surveys
(Planck, 1 Ade et al., 2014 ; Sloan Digital Sky Survey 2, Eisenstein et al., 2011;
KiDS de Jong et al., 2013a; DES, Dark Energy Survey Collaboration et al., 2016
3) and even larger ones will be provided in future by DESI4, Levi et al. (2013);
Euclid 5, Laureijs et al. (2011); PFS 6, Takada et al. (2014) and the LSST7,
LSST Science Collaboration et al. (2009). In order to exploit their full potential,
is desirable to go beyond standard two-points statistics (2pt).

Three-points statistcs (3pt) are a complementary probe that is possible to
investigate both in configuration and Fourier space and have been used exten-
sively in galaxy clustering analyses (Groth and Peebles, 1977, Fry, 1984, Fry and
Gaztanaga, 1993, Frieman and Gaztanaga, 1994, Matarrese et al., 1997, Verde
et al., 1998, Heavens et al., 1998, Scoccimarro et al., 1998, Scoccimarro, 2000,
Sefusatti et al., 2006). Deviations from General Relativity (Borisov and Jain,
2009; Bernardeau and Brax, 2011; Gil-Marín et al., 2011) and primordial non-
Gaussianities (Fry and Scherrer, 1994; Gangui et al., 1994; Verde et al., 2000;
Liguori et al., 2010; Tellarini et al., 2016) have been investigated using 3pt statis-
tics. Their potential in lifting degeneracies present at 2pt level has been shown
by the most recent measurement on the BOSS dataset, for the bispectrum by
Gil-Marín (2017) and for the 3pt correlation function by Slepian et al. (2017a).
Baryonic acoustic oscillations (BAO) have also been measured using the 3pt cor-
relation function by Slepian et al. (2017b) and detected using the bispectrum by
Pearson and Samushia (2017).

Recently, 3pt statistics have been studied in the case of 21cm emission lines by
Hoffmann et al. (2018). For what concerns weak lensing, its effect on 3pt galaxy
clustering have been studied by Schmidt et al. (2008). Moreover the weak lensing
bispectrum has been object of several studies in recent years (Takada and Jain,
2004; Joachimi et al., 2009; Kayo, I. and Takada, M. and Jain, B., 2013; Kayo and
Takada, 2013). The skewness of mass aperture statistic was considered by Jarvis
et al. (2004) while the 3pt correlation function of cosmic shear was analysed by
Schneider et al. (2005); Kilbinger and Schneider (2005). higher-order statistics
like the bispectrum via gravitational lensing have been investigated also by Simon
(2013); Fu et al. (2014); Simon et al. (2015); Pyne et al. (2017).

1http://sci.esa.int/planck/
2http://www.sdss3.org/surveys/boss.php
3https://www.darkenergysurvey.org
4http://desi.lbl.gov
5http://sci.esa.int/euclid/
6http://pfs.ipmu.jp
7https://www.lsst.org/
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4.2. Introduction

Besides being computationally more expensive than 2pt statistics, 3pt statis-
tics present the drawback to be described by very large data-vectors, which in
turn require a high number of simulations to accurately estimate their covariance
matrix (Hartlap et al., 2007). In Gualdi et al. (2018b), Chapter 3 from now on, we
presented two methods to compress the redshift-space galaxy bispectrum, namely
MC-MP (Markov chain Monte Carlo sampling + MOPED compression) and
PCA + MP (principal component analysis transformation + MOPED compres-
sion). MOPED is the method presented in Heavens et al. (2000), which achieves
maximal compression of the original data-vector by extending to the multiple
parameters case the algorithm introduced in Tegmark et al. (1997). MC-MP
consists in sampling via MCMC the compressed data-vector’s likelihood. PCA
+ MP reconstructs the multidimensional physical posterior distribution from the
1D posterior of orthogonalised parameters obtained by diagonalising the Fisher
information matrix. Improvements of the MOPED algorithm were introduced
recently by Heavens et al. (2017); Alsing and Wandelt (2018); Alsing et al. (2018)
also with the target of data compression.

In this work we apply our compression methods to both the power spectrum
monopole/quadrupole and to the bispectrum monopole measurements from the
CMASS sample of BOSS DR12. While the MC-MP is more flexible than the PCA
+ MP method since doesn’t require the multidimensional Gaussian posterior
assumption, the PCA + MP is much faster in terms of computational time and
requires far fewer computational resources (it can be run on standard laptop). We
compare both methods and test their convergence in terms of deriving equivalent
posterior distributions.

In order to make the PCA + MP method applicable also to parameter spaces
with strong degeneracies, for which the posterior Gaussianity approximation is
no longer valid, we introduce a pre-Gaussianisation step based on the algorithm
developed by Schuhmann et al. (2016).

We measure the bispectrum monopole using the same code used for the BOSS
DR12 analysis done by Gil-Marín (2017). We vary the size of the triangle vectors
by changing the bin size ∆k for k, which returns different number of triangu-
lar shapes given the minimum and maximum scales. For the same number of
triangles the compression returns posterior distributions slightly larger than the
MCMC counterparts. However, when compressing a much larger number of tri-
angles (which cannot be done for the MCMC on the full data-vector because
of the limited number of mocks available constraint), the posterior distribution
becomes more Gaussian and narrow. It eventually returns tighter constraints
than the ones obtained by the standard analysis.
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In Sec. 4.3 we describe the data set and the galaxy mocks used to estimate
the covariance matrix together with the settings of our analysis. In Sec. 4.4
we present the analytical model used for the data-vector considered and the
analytical expression of the covariance matrix used to derive the weights for the
compression. In Sec. 4.5 we recap the compression methods applied including
the Gaussianisation extension for the original PCA + MP method. We report
the performance of the compression methods compared to the MCMC sampling
for the cases in which it is possible to run it on the full data-vector in Sec. 4.6.
We describe the gain in parameter constraints as a function of the number of
triangle configurations used in the bispectrum monopole data-vector component
in Sec. 4.7. We test the flexibility and accuracy of the compression methods
presented in Sec. 4.8. Finally we conclude summarising our results in Sec. 4.9.
In Appendix 4.A we report the full derivation of all the analytic expressions used
in the analysis. In Appendix 4.B additional validation tests are presented.

4.3 Data, mocks and analysis

4.3.1 DR12 BOSS data and mocks catalogues

In this paper we use the CMASS galaxy sample (0.43 ≤ z ≤ 0.70) of the Baryon
Oscillation Spectroscopic Survey (BOSS Dawson et al., 2013) which is part of the
Sloan Digital Sky Survey III (Eisenstein et al., 2011). In the final data release
DR12 the CMASS sample contains the spectroscopic redshift of 777202 galaxies
(see Gil-Marín 2017 and Alam, 2017 for more details).

In order to accurately numerically estimate the covariance matrix it is neces-
sary to employ a large suite of mock galaxy catalogues. These are different real-
izations of the same region of the Universe based on methods such as second-order
Lagrangian perturbation theory (2LPT Scoccimarro and Sheth 2002; Manera
et al. 2013) or augmented Lagrangian perturbation theory (ALPT) as described
in Kitaura and Heß (2013). By measuring the data-vector of interest on each one
of these catalogues we can numerically estimate the covariance matrix which will
be used in the likelihood evaluation. In this work we use subsets of the 2048 re-
alisations of the MultiDark Patchy BOSS DR12 mocks by Kitaura et al. (2016).
This set of mocks has been run using the underlying cosmology: ΩΛ = 0.693,
Ωm(z = 0) = 0.307, Ωb(z = 0) = 0.048, σ8(z = 0) = 0.829, ns = 0.96, h0 = 0.678.

4.3.2 Analysis settings

For the power spectrum monopole and quadrupole the bin size was fixed to ∆k =
0.01h/Mpc. We measured the bispectrum monopole from both data and mocks
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using different multiples of the fundamental frequency defined as k3
f = (2π)3

Vs
where

Vs is the survey volume which in this case was the cubic box volume Vs = L3
b =

(3500 Mpc/h)3 used to analyse the galaxy mocks. In particular, the considered
bin sizes for the bispectrum are ∆k = (6, 5, 4, 2) × kf respectively, corresponding
to 116, 195, 404 and 2734 triangles used between 0.03 < ki [h/Mpc] < 0.12.
The largest bin size ∆k = 6 × kf corresponds to the one used in the BOSS
collaboration analysis done by Gil-Marín (2017). For the k-range considered in
the BOSS analysis the ∆k6 (∆k = 6 × kf ) binning case corresponded to 825
fundamental triangle configurations while ∆k2 would have corresponded to more
than ∼ 7000 triangles.

In all the parameter estimation analyses that we are going to perform, we use
the covariance matrix derived from the galaxy catalogues described above (see
Sec. 4.3.1). In particular, we use 1400 mocks to estimate the covariance matrix
when running the MCMC sampling on the full data-vector. We use 700 when
the analysis is performed using the compressed data-vector.

The largest scales considered in this work are kmin = 0.03h/Mpc for both
power spectrum monopole and quadrupole and kmin = 0.02h/Mpc for the bis-
pectrum monopole. The smallest scales considered are kmax = 0.09h/Mpc and
kmax = 0.12h/Mpc for power spectrum (monopole and quadrupole) and bispec-
trum monopole respectively. The lower kmax used for the power spectrum is due
to the fact that we did not include 1-loop corrections for it, hence we consider
only scales belonging to the quasi-linear regime. We chose a higher kmax for the
bispectrum since we implemented the effective model developed by Gil-Marín
et al. (2014) which works up to non-linear scales.

The fiducial cosmology chosen for the analysis corresponds to a flat-ΛCDM
model close to the one reported in Planck Collaboration et al. (2016a). In partic-
ular, we set Ωm(z = 0) = 0.31, Ωb(z = 0) = 0.049, As = 2.21×10−9, ns = 0.9624,
h0 = 0.6711. In order to compute the covariance terms and the derivatives of
the model necessary for the compression, we fix the fiducial value of the galaxy
bias model parameters, the growth rate and the amplitude of dark matter fluc-
tuations to the ones obtained by running a preliminary low-resolution MCMC
(b1 = 2.5478, b2 = 1.2127, f = 0.7202, σ8 = 0.4722). The Finger-of-God param-
eters for both power spectrum and bispectrum σB

FoG and σP
FoG have been set to

zero after checking that for the range of scales considered (quasi-linear regime)
they were compatible with zero. In Section 4.8 we check that the choice of fidu-
cial parameters used to compute the derivatives of the mean of the data-vector
and the analytical covariance matrix does not significantly influence the results
of the compression.
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4.4 Data-vector and covariance matrix

In order to measure the power spectrum and bispectrum from the data and the
mocks catalogues we use the estimators described in Gil-Marín et al. (2016a,b).
These are based on the weighted field of density fluctuations (Feldman et al.,
1994):

Fλ(r) = wFKP(r)
I

1/2
λ

[wc(r)n(r)− αnsyn(r)], (4.1)

where wc is the weight taking into account all the measurement systematics
(redshift failure, fiber collision, target density variations), wFKP (Feldman, Kaiser
and Peacock) ensures the condition of minimum variance, n is the observed
number density of galaxies, nsyn is the number density of objects in a synthetic
catalogue and Iλ is the normalisation of the amplitude of the observed power (λ =
2, 3 for power spectrum and bispectrum, respectively). α is the ratio between
weighted number of observed galaxies over the weighted number of objects in the
synthetic catalogues.

4.4.1 Power spectrum monopole and quadrupole

The redshift-space galaxy power spectrum model adopted in this work is a linear
one including redshift-space distortions (RSD) plus a damping function taking
into account the Finger-of-God (FoG) effect:

Ps
g (k, µ) = DP

FoG

(
k, µ, σP

FoG[z]
)

Zs
1 (k)2 Plin.

m (k) , (4.2)

where k is the module of the wave vector k and µ is the cosine of the angle between
the wave vector and the line of sight. The standard redshift-space distortion
kernels Zs

i are reported in the Appendix of Gil-Marín et al. (2014) together with
the FoG damping function expression. σP

FoG[z] is the FoG free parameter for
the power spectrum. For the range of scales considered in this work the linear
RSD model has been proved to be a good approximation (Taruya et al., 2010).
The redshift-space galaxy power spectrum can be expanded in terms of Legendre
polynomials using its dependence on µ:

Ps
g (k, µ) =

∞∑
`=0

P(`)
g (k)L` (µ) , (4.3)

where L` (µ) is the `-order Legendre polynomial. Almost all the signal is con-
tained in the first two even multipoles, the monopole and the quadrupole (` =
0, 2). These can be found by inverting the above expression:
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4.4. Data-vector and covariance matrix

P(`)
g (k) = 2`+ 1

2

∫ +1

−1
dµPs

g (k, µ)L` (µ) . (4.4)

4.4.2 Analytical expression for P(0,2)
g covariance matrices

Defining an estimator as in Appendix 4.A.1, it is possible to derive the expres-
sion for the Gaussian term of the power spectrum monopole and quadrupole
covariance matrices (Appendix 4.A.2):

CP(`)
g P(`)

g
G (k1; k2) =

(
2`+ 1

2

)2 2δK
12

Np (k1) P(`)
g (k1)2 , (4.5)

where δK
12 is the Kronecker delta between k1 and k2, while Np(k1) is the number

of pairs of grid points inside the estimator integration volume in Fourier space
Vk = 4πk2∆k (Scoccimarro et al., 1998) and it is proportional to an effective
survey volume Ve. The Ve normalisation is used to obtain a closer match between
the analytic and mocks covariance matrices. Please refer to Equations 4.18 and
4.27 for more details. We set the cross covariance between power spectrum
monopole and quadrupole to zero.

4.4.3 Bispectrum monopole

For the redshift-space galaxy bispectrum we adopt the effective model presented
in Gil-Marín et al. (2014), which modifies the redshift-space distortion kernels
derived from perturbations theory in order to better fit the data at non-linear
scales (see the Appendix of the paper above for the full expressions). The tree
level has also been corrected to take into account the Finger-of-God damping
effect:

Bs
g (k1,k2,k3) = DB

FoG

(
k1,k2,k3, σ

B
FoG[z]

)
×
[
Zs

1 (k1) Zs
1 (k2) Zs

2,eff. [k1,k2] Plin.
m (k1) Plin.

m (k2) + cyc.
]
, (4.6)

where σB
FoG[z] is the FoG free parameter for the bispectrum. The monopole of

the bispectrum corresponds to the average of all the possible orientations of a
determinate triangle with respect to the line of sight. It can therefore be obtained
by integrating over two angular coordinates:

B(0)
g (k1, k2, k3) = 1

4

∫ 1

−1
dµ1

∫ 1

−1
dµ2 Bs

g (k1,k2,k3)

= 1
4π

∫ 1

−1
dµ1

∫ 2π

0
dφBs

g (k1,k2,k3) , (4.7)
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where µi is the cosine of the angle between the ki vector and the line of sight.
The angle φ is defined as µ2 ≡ µ1x12 −

√
1− µ2

1

√
1− x2

12 cosφ and where x12 is
the cosine of the angle between k1 and k2. More details are given in Appendix
4.A.

4.4.4 Analytical expression for B(0)
g covariance matrix

In order to apply the compression methods presented in Chapter 3 we need an
analytical expression for the bispectrum monopole covariance matrix. This al-
lows us to compress a data-vector with an arbitrarily large number of triangle
configurations, which on the contrary wouldn’t be possible using a covariance
matrix estimated from the galaxy mock catalogues. That is because in order
to obtain an accurate numerical estimate of the covariance matrix, the num-
ber of simulations used must be much greater than the data-vector’s dimension
(Hartlap et al., 2007; Percival et al., 2014). As it has been shown in Chapter
3, compressing the power spectrum together with the bispectrum, or leaving it
uncompressed, does not make any substantial difference in terms of recovered
parameter constraints. However, it makes a huge difference in terms of com-
plexity of the covariance matrix that one has to model analytically in order to
compress the data-vector. Compressing the power spectrum as well (monopole
and quadrupole) also requires modelling their covariance matrices together with
the cross-covariance with the bispectrum monopole. Leaving them uncompressed
just requires to model the bispectrum monopole covariance matrix. The expres-
sion for the Gaussian term of CB0

gB0
g is derived in Appendix 4.A.3 and reads:

CB0
gB0

g
G (k1, k2, k3; k4, k5, k6) = D123456

16π2
Ve

Nt (k1, k2, k3)P(0)
g (k1) P(0)

g (k2) P(0)
g (k3) ,

(4.8)

where D123456 stands for all the possible permutations for which each side of the
first triangle is equal to a side of the second one; it has the values (6, 2, 1) respec-
tively for equilateral, isosceles and scalene triangles. Nt (k1, k2, k3) is the number
of independent triplets of grid points in the integration volume in Fourier space
Vk123 ' 8π2k1k2k3∆k1∆k2∆k3 . For the values of the effective survey volume and
the average galaxy density number used in computing the analytical covariance
matrix, we adopt the values Ve = 2.43 × 109 Mpc3 and n̄g = 1.14 × 10−4Mpc−3

used by Slepian et al. (2017a) for both power spectrum monopole/quadrupole
and bispectrum monopole analytical covariance matrices. In practice we use the
analytic expression of the covariance matrix only to determine the weights for
the compression. Since all the terms considered scale as V −1

e the effective volume
acts only as a scaling factor not affecting the compression performance.
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4.4. Data-vector and covariance matrix

In order to describe the correlation between different triangles in our ana-
lytical model of the covariance matrix, we include also a non-Gaussian term of
the bispectrum monopole covariance matrix. In the expansion of the bispectrum
covariance matrix presented in the Appendix of Chapter 3, for the bispectrum
monopole this corresponds to a term proportional to the product of two bispectra
monopoles as shown in Appendix 4.A.4:

CB0
gB0

g
NG (k1, k2, k3; k4, k5, k6) = δK

34
16π2

k3
f

4πk2
3∆k3

B(0)
g (k1, k2, k3) B(0)

g (k3, k5, k6)

+ 8 perm. (4.9)

It is important to include a term modelling the correlation between different
triangles since the number of possible configurations increases very quickly as the
bin size decreases. We do not include a corresponding non-Gaussian term into the
power spectrum monopole and quadrupole covariances, since the number of data
points considered is relatively low, thus the separation between the k modules
values is more than sufficient to assume that the correlation between two different
modes ki and kj is negligible with respect to their variance (approximated by the
Gaussian term on the diagonal of the covariance matrix).

4.4.5 Analytical expression for
[
P(0,2)

g ,B(0)
g

]
cross-covariance

matrix

Finally we also model the cross-covariance between power spectrum multipoles
and bispectrum monopole as described in Appendix 4.A.5:

CP(`)
g B0

g (k1; k2, k3, k4) = 1
2π

(
2`+ 1

2

)
δK

12
Np (k2)P(`)

g (k2) B(0)
g (k2, k3, k4)

+ 2 perm.. (4.10)

As done in Chapter 3, we made the assumption that the shot noise is well ap-
proximated by a Gaussian distribution (which is reasonable if the galaxy number
density is fairly high). Therefore, we just modify the galaxy power spectrum ex-
pressions by adding a n̄−1

g term. We did not take into account the effect of the
survey geometry in the theoretical covariance matrix expression, which would
affect the large scales inducing an extra correlation among the modes. We leave
the inclusion of this correction for future work. Please refer to Howlett and
Percival (2017) for a more detailed study on how to include this effect in the
covariance matrix.
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4.5 Compression methods

In Chapter 3 we presented two compression methods and applied them to the
galaxy bispectrum and power spectrum: MC-MP and PCA + MP. Both methods
rely on the MOPED method presented in Heavens et al. (2000), which achieves
maximal compression of the original data-vector by extending to the multiple
parameters case the algorithm introduced in Tegmark et al. (1997). Using this
MP compression it is possible to shrink an arbitrarily large data-vector x to a
compressed one y having dimension equal to the number of model parameters
considered preserving Fisher information. This is obtained by deriving a set of
weights for the full data-vector for each model parameter. Taking the scalar
product between the weighting vectors and the original full data-vector x gives
the elements yi of the compressed data-vector. Here we report only the main
equations, please refer to Chapter 3 for more details. The weighting vector for
each parameter θi is given by:

b = Cov−1
x 〈x〉,i , (4.11)

where Cov−1 is the inverse of the original full data-vector covariance matrix and
〈x〉,i is the derivative with respect to the model parameter θi of the mean of the
modelled data-vector x, computed at a fiducial parameter vector θfid. . In our
case the fiducial values are reported in Section 4.3.2. Therefore, the elements of
the compressed data-vector y are given by:

yi = 〈x〉ᵀ,iCov−1
x x ≡ bᵀ x. (4.12)

In the MC-MP method a MCMC sampling algorithm using y as data-vector is
ran after compression. An estimate of the compressed covariance matrix from
the mock catalogues can be obtained as shown in the Appendix of Chapter 3:

Covy,ij = Cov [yi, yj] = bᵀi ·Covx · bj , (4.13)

where Covx is the original covariance matrix.

4.5.1 PCA + MP

As described in Chapter 3, instead of orthogonalising the weights as in Zablocki
and Dodelson (2016), we perform a principal component analysis (PCA) trans-
formation of our parameter space before applying the MP compression. This is
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Figure 4.1: Joint data-vector
[
P(0)

g ,P(2)
g ,B(0)

g

]
posteriors: MC-MP four-parameter

case.
a) the violin plots show for two test cases (∆k6 and ∆k5 binning) the compari-
son between the 1D posterior densities obtained via MCMC and MC-MP for all
parameters. The vertical lines represent the 25%, 50% and 75% quartiles. All
distributions have been centered by subtracting the mean value obtained from
the MCMC analysis and they have been normalised by dividing by the maxi-
mum difference between the parameter value of each sample and the mean of
the distribution. Even if the 1D distributions are not Gaussian, the agreement
between MCMC and MC-MP results is qualitatively good. For a quantitative
comparison see Table 4.1 and additionally Figure 4.B.1 and 4.B.2 in Appendix
4.B.
b) the 2D 68% and 95% credible regions are shown in order to highlight the
improved constraints obtained by employing a higher number of triangles in the
data-vector thanks to the compression with respect to the standard MCMC for
the full data vector. In particular, the grey contours correspond to the standard
binning ∆k6 used to run the MCMC for the full data-vector. The orange and
green contours correspond to the distributions for the compressed data-vector
for the binnings ∆k5 and ∆k4 (which corresponds to Ntriangles = 195, 404). See
also Table 4.2.
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Figure 4.2: Joint data-vector
[
P(0)

g ,P(2)
g ,B(0)

g

]
posteriors: G-PCA four-parameters

case. Same as Figure 4.1 but for the G-PCA method.

done by diagonalising the Fisher information matrix using the eigenvalue decom-
position

Fθphys. = P FθPCA Pᵀ where θPCA = Pᵀ θphys., (4.14)

and P is the linear transformation matrix. After having diagonalised the Fisher
matrix we compress the data-vector with respect to this new set of parameters
θPCA. The effect of a PCA decomposition is to rotate the parameter space to the
axes corresponding to the degeneracies between the original set of parameters.
Therefore, taking the outer product of the 1D posteriors of the parameters θPCA

in order to get the multidimensional posterior distribution should return a good
approximation to the one sampled by the MCMC code.

Since the θPCA are uncorrelated, one can randomly sample the 1D posteriors
and then rotate the resulting parameter vector using P back into the physical
space. Doing this avoids the use of the MCMC sampling altogether.

As shown in Chapter 3, this works only for those parameter sets which have a
sufficiently low degree of degeneracy such that the approximation of Gaussianity
for the multidimensional posterior can be assumed to be valid (no or very weak
"banana-shaped" contours). Since this is not always the case, as for our choice
of parameters, an additional Gaussianisation pre-step is required.
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4.5.2 Gaussianisation pre-step

In Chapter 3 the PCA + MP method assumed that it was possible to rotate
through a linear transformation the physical parameter space into a new one
where the new parameters are orthogonal/uncorrelated between each other. In
order to be able to deal with distributions containing non-linear degeneracies (e.g.
"banana-shaped" contours), we add a pre-Gaussianisation transformation of the
parameter space using the procedure described in Schuhmann et al. (2016). In
their work they introduced an extension of the Box-Cox transformations, which
are functions of two parameters (a, λ):

θ̃i = BC(a,λ)(θi) =

λ−1[(θi + a)λ − 1] (λ 6= 0)
log(θi + a) (λ = 0)

(4.15)

where θ̃i is the transformed i-th model parameter while θi is the original i-th
model parameter. Their method was labelled Arcsinh-Box-Cox transformation
(ABC). For each of the model parameters, a set of three ABC transformation
parameters (a, λ, t) are computed by the algorithm which are then used in the
following way:

θiGauss. = ABC(θiphys.) =


t−1 sinh[t BC(a,λ)(θiphys.)] (t > 0)
BC(a,λ)(θiphys.) (t = 0)
t−1arcsinh[t BC(a,λ)(θiphys.)] (t < 0)

(4.16)

where θiGauss. is the Gaussianised i-th model parameter while θiphys. is the original
i-th physical model parameter. We then relabel this compression as G-PCA.
In order to obtain the transformation parameters of the Gaussianising trans-
formations it is necessary to run a preliminary MCMC sampling using the full
data-vector. What we want to prove is that once the transformation parameters
have been obtained for the standard number of triangles corresponding to the
∆k6 binning case, these are valid also for a higher number of triangle configura-
tions included in the bispectrum.

4.5.3 Analytical covariance matrix: usage

In the following analysis, we are going to use two different options for the an-
alytical covariance matrices. For the MC-MP method we compress only the
bispectrum monopole part of the data-vector. To derive the weights in Equation
4.11 we use the analytical covariance matrix of the bispectrum monopole given
by the sum of the Gaussian term in Equation 4.8 and the non-Gaussian one
given in Equation 4.9. For the G-PCA method the full data-vector needs to be

138



4.6. Recover MCMC-derived posterior distribution

compressed since the computation of the 1D posteriors of the θPCA parameters
requires each data vector element to be sensitive to the variation of just one
θPCA parameter, as explained in Chapter 3. Therefore, for the power spectrum
monopole/quadrupole we use Equation 4.5 as our analytical covariance matrix;
similarly for the bispectrum monopole we use Equation 4.8 for the covariance
matrix (the same as the one we used for the MC-MP case), and finally, we use
Equation 4.10 for our cross-covariance matrix.

4.6 Recover MCMC-derived posterior distribu-
tion

For MCMC sampling we use emcee8 (Foreman-Mackey et al., 2013). All the
likelihoods have been corrected as suggested by Sellentin and Heavens (2016) in
order to take into account the bias induced by estimating the inverse of the real
covariance matrix from a limited number of mocks. In order to check whether
our analytical estimate of the covariance matrix is good enough to be used for
deriving the weights as explained in Sec. 4.5, we compare to the full MCMC 1D
posterior distributions in the left panels of Figures 4.1 and 4.2 with results from
the MCMC+ MC-MP and G-PCA methods, respectively.

The violin plots include the standard binning case ∆k6 (116 triangles) and
the ∆k5 case (195 triangles). For these two cases we compare the MCMC (grey
and purple) with the compression results (cyan and orange). From each point
we subtract the mean of the model parameters obtained using the MCMC. This
makes it easier to check that the shift in the mean of the compression results
with respect to the MCMC ones is small when compared to the size of the
inner quartiles of the distribution. This concept is also quantified in the bottom
half of Table 4.1, which shows the shifts in the mean values is relative to the
1D 68% credible intervals. In the top half of Table 4.1 we report the precise
values of both the means and the 68% credible intervals for all model parameters.
Additionally, Figure 4.B.1 in Appendix 4.B shows the comparison between the 2D
MCMC posterior distributions and the MC-MP and G-PCA ones for both ∆k6

and ∆k5 cases. We conclude that even if a small part of the constraining power
is lost (see the ∆k6 columns in Table 4.2 for details), both compression methods
return posterior distributions which well agree with the MCMC distribution for
all model parameters under consideration.

8 We use 192 walkers, 1100 burn-in steps and 1700 steps. For the low-resolution MCMC we
use half of the previous quantities.
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4.6. Recover MCMC-derived posterior distribution
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4.7. Information content and number of triangles

4.7 Information content and number of trian-
gles

The right panels of Figures 4.1 and 4.2 show how using a larger number of
triangles tightens the posterior contours of the four model parameters considered.
At the same time, the maxima of the 2D posterior distributions converge to the
same values for each compression method as the number of triangles is increased.

Note that the shift in the posterior distribution between binning cases is
not an artifact of the compression: it is also present when when we fit using
the standard MCMC method. This can be seen when comparing the location
and shape of the 2D contour regions in Figures 4.B.1 and 4.B.2 in Appendix
4.B for the ∆k6 and ∆k5 binning cases. Quantitatively it can be observed by
comparing means and standard deviations in Table 4.1. Thus, both compression
algorithms reproduce posterior distributions very similar to the ones derived via
MCMC sampling for the relevant binning cases ∆k6 and ∆k5. The observed
shift between binning cases is due to the strong degeneracy between the model
parameters. In particular the shift happens along the degeneration direction of
b1, b2 and f with σ8. It may have a statistical origin. Further checks on this effect
may be performed using the galaxy mocks, for example by fitting several different
realizations for both the ∆k6 and ∆k5 binning cases using the G-PCA method
(which would be much faster than doing parameter estimation via MCMC or
MC-MP). We reserve to do these tests in future work. The main result of this
Chapter 3s that the variance of the parameters is reduced when the number of
triangles used increases.

For future surveys the compression can be then used for the main analysis
and also to find out the minimum number of triangle configurations for a given
k-range needed to fully capture the non-Gaussian information contained in 3pt
statistics like the bispectrum. The later will indicate how many mock cata-
logues/simulations are required in order to accurately estimate the covariance
matrix. In our analysis the saturation seems to be reached already for the ∆k4

binning case (404 triangles).
For what concerns ∆k2, the smallest k-bin size considered (2734 triangles),

Tables 4.1 and 4.2 show that the ∆k2 posterior distribution is very similar to the
∆k4 case.

The trend in the information content in terms of the 1D 68% credible in-
tervals as a function of the triangle number used is shown in the left panel
of Figure 4.3, and the improvement quantified in Table 4.2. From Figure 4.3
it appears that the parameters constraints improvement as a function of the
number of triangles reaches the saturation already for the ∆k4 case. In terms
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Figure 4.3: a) the 1D 68% credible intervals as a function of the number of tri-
angles used in the bispectrum monopole data-vector. Continuous lines represent
the MC-MP results while the dashed ones are given by the G-PCA compression
method.
b) the compression results for the MC-MP and G-PCA cases when the fidu-
cial parameter set used to compute the analytical covariance matrix and the
derivatives of the mean are shifted by ±1σ credible intervals. The violin plots
show, for the test case of the ∆k6-binning, the comparison between the 1D pos-
terior distributions for all parameters, using shifts by +1σ (red/grey) and −1σ
(blue/pink) for the MC-MP / G-PCA methods. The vertical lines represent the
25%, 50% and 75% quartiles. All distributions are mean-subtracted using the
fiducial parameter set for the compression, and they have been normalised by the
maximum difference between the parameter value of each sample and the mean
of the distribution. Even if the 1D distributions are not Gaussian, the effect of
compressing with respect a shifted cosmology is qualitatively negligible for the
MC-MP method while it affects the G-PCA performance more. Nevertheless, the
modifications to the fiducial parameter sets are substantial (∼ 10 − 40% vara-
tions) given the broad posteriors due to the strong degeneracy in the parameter
set.
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4.8. Consistency check

Figure 4.4: Reduced χ2 and p-values for the best-fit models obtained using the
MCMC, MC-MP and G-PCA compression methods. The k-binnings shown are
respectively the standard ∆k6 (navy), an intermediate size ∆k4 (green) and the
smallest one ∆k2 (pink for MC-MP and red for G-PCA) corresponding to the
highest number of triangle used in the bispectrum monopole. The two upper
panels are for the power spectrum monopole (left) and quadrupole (right) while
the bottom panel refers to the bispectrummonopole. The lower part of each panel
shows the relative difference between the data measurements and the different
models. Even if for example b1 and σ8 values are shifted between the cases of
∆k6 and ∆k2, the strong degeneracy has the result of making the two models
practically identical.

of percentages of the original 1D 68% credible intervals obtained running an
MCMC on the full data-vector for the parameters (b1, b2, f, σ8) in the BOSS
∆k6 case, the ∆k2 MC-MP and G-PCA analyses obtain tighter constraints by
(−35%,−45.3%,−22.6%,−22.6%) and (−24.8%,−52.8%,−26.4%,−21%), respec-
tively. These optimal constraints as obtained by the compression methods are
also shown in summary Figure 4.5.

4.8 Consistency check

In order to test the validity of our analysis, we compute the reduced χ2 and
corresponding p-value for each set of parameters obtained using either the MCMC
sampling or the compression methods. For all parameter vectors (compressed
and uncompressed) this has been done using the data-vector corresponding to
the standard ∆k6 binning. The results can be seen in Figure 4.4. This test proves
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4.8. Consistency check

that the shift observed in the parameters as the number of triangle configurations
is increased is simply due to the strong degeneracy present between b1, b2, f and
σ8. Indeed both the reduced χ2 and p-values show that all these models fit the
data very well. In Figure 4.4 we did not show the lines and statistics for the
∆k5 cases just for the sake of clarity and because the results are equivalent to
those of the other binnings. From the same figure it can also be noticed that the
tightest errorbars are those from the power spectrum case.

To demonstrate the flexibility of the compression methods we check their
performance when the fiducial parameter set is shifted by ±1σ credible intervals
in the ∆k6 case. The effect of this is shown in the right panel of Figure 4.3. For
this plot, we centre each 1D distribution by subtracting the mean obtained by
running the compression pipelines using the fiducial parameters values. In this
way it is possible to observe by how much the posterior distributions derived via
MC-MP or G-PCA shift as a function of the chosen fiducial parameter set. In
Appendix 4.B the precise numbers are reported in Table 4.B.1.

MC-MP appears to be more stable than the G-PCA when the fiducial pa-
rameter set is shifted. The explanation of this could be the fact that G-PCA
involves several transformations of the parameter space, including a diagonali-
sation of the Fisher information matrix which is computed from the analytical
model of the covariance matrix.

Nevertheless, it should be noted that we are testing the performances of the
compression in a regime of strong degeneracy of the parameter space and there-
fore shifting the fiducial parameter set by ±1σ credible intervals actually means
increasing/reducing the individual values by ∼ 10 − 40% (second panel Table
4.1). Therefore, running a preliminary low-resolution MCMC sampling on the
full data-vector (which can be shorter than the one that will be later compressed,
as we have done in our analysis) is an efficient solution to determining a reason-
able fiducial model for deriving the compression.

4.8.1 Comparison with BOSS DR12 bias constraints

BOSS galaxy sample results from the bispectrum are reported by Gil-Marín
(2017) [in Table 3 at p. 18] from the same CMASS sample data set, at the
same redshift, for the following parameter combinations: b1σ8 = 1.2479±0.0072,
b2σ8 = 0.641± 0.066 and fσ8 = 0.432± 0.0189. If we recast our results obtained
using the MCMC for the ∆k6 case in terms of the same parameter combinations
these are: b1σ8 = 1.203± 0.008, b2σ8 = 0.557± 0.140 and fσ8 = 0.339± 0.019.

9we compare our results with the BOSS analysis standard deviation values obtained con-
sidering only the statistical contributions and not the systematics ones.
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4.8. Consistency check

In the BOSS analysis a larger range of scales has been considered. In par-
ticular, BOSS analysis goes up to k ∼ 0.2h/Mpc for both power spectrum
monopole/quadrupole and bispectrummonopole while we stop at k ∼ 0.09h/Mpc
and k ∼ 0.12h/Mpc, respectively. This could explain the larger value we obtained
for b2σ8. A more complex model for the power spectrum was used in the BOSS
analysis, including loop corrections beyond the tree level approximation. More-
over the BOSS analysis also modelled the effect of the survey window function
for both power spectrum and bispectrum.

As we saw from Figure 4.4, the power spectrum monopole is the most con-
straining part of the full data-vector, having errorbars of less than 5%. Therefore
the tree-level expression for the power spectrum severely limits the possibility of
using the power spectrum measurements to reduce the degeneracy between the
model parameters since it is inadequate to model quasi-non-linear and non-linear
scales. This could explain the high values obtained for the bias parameters b1,
b2 and the growth rate f together with the low value for σ8 with respect to
the BOSS analysis results. The additional one-loop corrections for the power
spectrum would have indeed supplied additional amplitude which instead, by
including only the tree-level term, needs to be achieved by having higher values
of b1 and f .

Moreover, in the BOSS analysis the FoG parameters σB
FoG and σP

FoG were left
free to vary in order to better model the non-linear regime and were detected
with high significance (σB

FoG = 7.54 ± 0.70 and σP
FoG = 3.50 ± 0.14). The BOSS

model also included a noise-amplitude parameter Anoise which modelled diver-
gence from Poissonian shot noise. In our model we had included Anoise initially,
however we set it to zero after having checked that, if let free to vary, its posterior
distribution was compatible with zero. These differences in the modelling and
scales considered could explain the discrepancy in the best-fitting parameters.
For more details see Appendix 4.B and in particular Figure 4.B.3.

4.8.2 Difference in time and computer resources needed

There is no significant difference between MCMC and MC-MP in terms of time
taken for the pipeline to run or computing resources needed. For the parameter
set (b1, b2, f, σ8) the running time varied between 20 minutes for 116 triangles to
∼ 10 hours for 2734 triangles on 14 2.2 GHz Intel i7 cores. G-PCA proved to
be faster when many triangle configurations are used. Considering ∼ 30 minutes
for the preliminary MCMC with 116 triangles and ∼ 2 hours for the Gaussiani-
sation part, it took between ∼5 minutes (116 triangles) and ∼ 30 minutes (2734
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4.9. Conclusions

triangles) using only one 2.2 GHz Intel i7 core for the compression plus poste-
rior evaluation to run. Therefore, by running once the preliminary MCMC and
Gaussianisation algorithm, we were able to run the PCA part for all the binning
cases considered in less than in total ∼ 3 hours wall-clock time.

We used CAMB (Lewis et al., 2000) to compute the linear matter power
spectrum. The time difference between MCMC/MC-MP and G-PCA would have
been much more significant in the case of a parameter set for which the linear
matter power spectrum needs to be recomputed for every model realisation.

4.9 Conclusions

In this paper we have shown the results of applying both compression methods
for the galaxy redshift-space bispectrum, presented in Chapter 3, to the mea-
surements from the SDSS-III BOSS DR12 CMASS sample (Gil-Marín, 2017).
We considered as original data-vector the combination of the power spectrum
monopole and quadrupole with the bispectrum monopole, which are obtained by
averaging over the angles describing the orientation with respect to the line of
sight. The first method called MC-MP consists of running an MCMC sampling
on the compressed data-vector obtained by taking the scalar product between the
original data-vector and a set of weights derived as first shown by Tegmark et al.
(1997). The second method, which we denoted as G-PCA, is the modification
of the PCA + MP method presented in Chapter 3 obtained by adding a Gaus-
sianisation transformation of the parameter set (Schuhmann et al., 2016) before
rotating it using a principal component analysis transformation (PCA) followed
by the MP compression. By transforming the physical parameter space into an
orthogonal one it is possible to just randomly sample 1D posterior distributions,
avoid altogether the need of running a MCMC routine.

In order to derive the posterior distributions for the set of parameter consid-
ered, the galaxy bias parameters b1 and b2, the growth rate f and the normali-
sation of the dark matter perturbations amplitude σ8, we numerically estimated
the covariance matrix using 1400 and 700 galaxy mocks catalogues for the full
data-vector and compressed data-vector cases, respectively.

The following points represent the main conclusions of our analysis:

• In order to obtain the weights for the compression methods we derived
an analytic approximation of the leading terms of the covariance matrix
relative to the considered data-vector. The final expressions of these com-
putations are reported in Sec. 4.4 while the full derivations are shown in
Appendix 4.A.
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Figure 4.5: MCMC vs. MC-MP vs. G-PCA. 2-D 68% and 95% credible contours
are shown respectively for the ∆k6 MCMC (grey), ∆k2 MC-MP (blue) and ∆k2
G-PCA (red) cases. It is possible to observe the substantial improvement in
parameter constraints through applying either compression method to a data-
vector containing approximately ∼ 23 times more triangles than the one used
for the MCMC sampling case. The agreement between the MC-MP and G-PCA
posterior distributions is remarkable. Using more triangles helps with lifting
the strong degeneracy between the model parameters, as can be seen from the
shrinkage of the 2-D contours along the degeneracy directions.
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4.9. Conclusions

• In Sec. 4.6 we have shown that both compression methods recover the
posterior distributions obtained via MCMC using the full data-vector with
little loss of information (∼ 4% and ∼ 13% larger 68% credible intervals
than the MCMC ones in average for MC-MP and G-PCA, respectively).
More importantly, even if slightly broader, the posterior distributions re-
covered through compression have the same shape and modes as the MCMC
counterparts.

• Adding a pre-Gaussianisation step removes the PCA + MP limitation
linked to a strongly degenerate parameter space described in Chapter 3.
It is however necessary to run a preliminary MCMC in order to derive the
Gaussianisation transformation parameters. Nevertheless, once these pa-
rameters have been derived for a number of triangles case for which it is
possible to run an MCMC on the full data-vector, they can then be used
to compress a data-vector with an arbitrary number of triangles.

• In Sec. 4.7 we show the main result of this work, namely the substantial
improvement in parameter constraints obtained by compressing a much
larger number of triangles with respect to standard MCMC data-vector.
For the uncompressed data-vector the number of triangles is limited by the
number of mock catalogues available to estimate the covariance matrix. For
both compression methods and for any number of triangle configuration
considered, the dimension of the compressed data-vector is always equal to
the number of model parameters constrained.

For the highest number of triangles considered, this leads to an improve-
ment in terms of the 68% 1D credible intervals by (−37%,−46%,−27%,−23%)
and (−25%,−53%,−26%,−21%) for the MC-MP and G-PCA methods,
respectively.

• By way of summary, in Figure 4.5 we show the results for both MC-MP
and G-PCA methods using 2734 triangles and for the MCMC on the un-
compressed data-vector containing 116 triangles. The two compression
methods agree well and produce substantially tighter and less degenerate
constraints. Furthermore the G-PCA approach allowed for a computational
speed up, requiring only approximately a third of the time taken by the
MCMC and MC-MP methods, including also the low-resolution MCMC
necessary for the Gaussianisation transformation. Considering only the
PCA part, the speed up factor rises to ∼ 20− 100 times depending on the
parameter set considered.
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4.9. Conclusions

• Finally we would like to point out that the compressing methods used
in this work represents a straightforward approach to include higher-order
statistics like the trispectrum or the tetraspectrum in the analysis of current
and future data sets. This is due to the fact that the number of elements of
the data-vector, after the maximal compression, corresponds exactly to the
number of model parameters. Both MC-MP and G-PCA have the potential
to fully exploit the constraining power of higher-order statistics applied to
data-sets from future surveys like DESI, EUCLID and PFS.
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Appendix

4.A Estimators and covariance terms

4.A.1 Power spectrum monopole/quadrupole and bispec-
trum monopole estimators

The analytical model for the redshift-space galaxy power spectrum monopole
and quadrupole is given by equation 4.4.
It is therefore natural to define the estimator as:

P̂(`)
g (k) =

(
2`+ 1

2

)
1

(2π)3Np(k)

∫
Vp

∫
Vq
d3pd3q L` (µ) δD (q + p) δs

g (q) δs
g (p) ,

(4.17)

where Vp,q are the spherical shell volumes characterised by k − ∆k/2 ≤ q, p ≤
k + ∆k/2. µ is the cosine of the angle with respect to the line of sight of the
q wave vector and L` (µ) is the Legendre polynomial of order `. δD is the 3-D
Dirac delta. Np is the number of grid point pairs in the integration volume in
Fourier space and can be computed as:

Np(k) = Vk
k3
f

= k−3
f

∫
Vp

∫
Vq
d3pd3qδD (q + p) ' 4πk2∆k

k3
f

, (4.18)

where Vk ' 4πk2∆k is the spherical integration shell defined by k − ∆k/2 ≤
q, p ≤ k + ∆k/2 as defined in Scoccimarro et al. (1998). kf is the fundamental

frequency defined in terms of the survey volume Ve as k3
f = (2π)3

Ve
. We check

that the estimator defined in Equation 4.17 is unbiased:
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〈P̂(`)
g (k)〉 =

(
2`+ 1

2

)
1

(2π)3Np(k)

∫
Vp

∫
Vq
d3pd3q L` (µ) δD (q + p) 〈δs

g (q) δs
g (p)〉

=
(

2`+ 1
2

)
1

(2π)3Np(k)

∫
Vp

∫
Vq
d3pd3q L` (µ) δD (q + p)2 (2π)3Ps

g(p)

=
(

2`+ 1
2

)
1

(2π)3Np(k)

∫
Vp

∫
Vq
d3pd3q L` (µ) δD (q + p)Ve Ps

g(p)

=
(

2`+ 1
2

)
1

VeVk

∫
Vp

∫
Vq
d3pd3q L` (µ) δD (q + p)Ve Ps

g(p)

=
(

2`+ 1
2

)
1
Vk

∫
Vp

∫
Vq
d3pd3q L` (µ) δD (q + p) Ps

g(p)

≈
(

2`+ 1
2

)∫ +1

−1
dµPs

g (k, µ)L` (µ) , (4.19)

where we used the approximation made in Joachimi et al. (2009) that δ2
D ≈

Ve

(2π)3 δD = k−3
f δD. In the last step it has been made the common approximation

that p and q are very close to k in module for thin enough shells (small ∆k). The
standard definition of the redshift galaxy power spectrum has also been used:

〈δs
g (q) δs

g (p)〉 = (2π)3δD (q + p) Ps
g(p). (4.20)

The redshift space galaxy bispectrum is defined as:

〈δs
g (q1) δs

g (q2) δs
g (q3)〉 = (2π)3δD (q1 + q2 + q3) Bs

g(q1, q2, q3). (4.21)

The analytical expression for the bispectrum monopole model was given in Equa-
tion 4.7.
Analogously to the power spectrum multipoles, the estimator for the bispectrum
monopole can be defined as:

B̂(0)
g (k1, k2, k3) = 1

4π
Ve(2π)−6

Nt(k1, k2, k3)

3∏
i=1

∫
Vqi

d3qi δD (q1 + q2 + q3) δs
g (q1) δs

g (q2) δs
g (q3) .

(4.22)

where Nt(k1, k2, k3) is the number of independent grid points triplets inside the
integration volume in Fourier space. As shown in the weak lensing 2D case by
Kayo, I. and Takada, M. and Jain, B. (2013), this is computed as:

Nt(k1, k2, k3) = Vk123

k6
f

= k−6
f

∫
Vq1

∫
Vq2

∫
Vq3

d3q1d
3q2d

3q3 δD (q1 + q2 + q3)

' 8π2k1k2k3∆k1∆k2∆k3

k6
f

. (4.23)
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4.A. Estimators and covariance terms

Figure 4.A.1: Computation of the integration volume in Fourier space in the
case of the bispectrum monopole. Once the side k1 of the triangle is fixed, the
other two sides are free to vary in the intersection given by two sphere of radius
k2 −∆k2/2 ≤ r2 ≤ k2 + ∆k2/2 and k3 −∆k3/2 ≤ r3 ≤ k3 + ∆k3/2 respectively.
In the Figure above the 2D projection of the annuli of thickness ∆k2 (blue) and
∆k2 (red) are shown. The angle φ correspond to the angle φ12 in the text.
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4.A. Estimators and covariance terms

It is important to notice that the result of the above integral must be symmetric
in the k-vectors arguments. Therefore, the best way to derive the integral results
is through geometrical considerations. Starting from q1, this can be chosen in
a spherical shell with volume Vk1 ' 4πk2

1∆k. Once q1 is fixed, considering the
plane in which both q2 and q3 lie, they must connect to each other inside the 2D
intersection formed by the two annuli defined by k2 −∆k2/2 ≤ q2 ≤ k2 + ∆k2/2
and k3 − ∆k3/2 ≤ q3 ≤ k3 + ∆k3/2. This has approximately an area equal to
Ak23 ' k2∆φ12∆k2. From Figure 4.A.1 it is possible to see that ∆φ12 is defined
by varying k3 by ∆k3. φ12 can be obtained from:

cosφ12 = k2
1 + k2

2 − k2
3

2k1k2
, (4.24)

and therefore ∆φ12 can be found differentiating with respect to k3:

d cosφ12

dk3
= −dφ12

dk3
sinφ12 = − k3

k1k2
=⇒ ∆φ12 = ∆k3k3

k1k2
(sinφ12)−1 .(4.25)

Finally the volume of the intersection between k2 and k3 is obtained by rotating
the area just found around the axis defined by k1:

Vk23 = 2πAk23 (k2 sinφ12) , (4.26)

which allows to compute Vk123 = Vk1Vk23 in Equation 4.23.

4.A.2 Power spectrum monopole and quadrupole covari-
ance matrix: Gaussian term

Following the Appendix of Gualdi et al. (2018b) we can check that also the
bispectrum monopole estimator defined in Equation 4.22 is unbiased. Moreover
it is possible to compute the Gaussian term of the covariance for the power
spectrum monopole and quadrupole as follows:
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CP(`)
g P(`)

g
G (k1; k2) =

=
(

2`+ 1
2

)2 (2π)−6

Np (k1)Np (k2)

∫
Vq1

∫
Vq2

∫
Vp1

∫
Vp2

d3q1d
3q2d

3p1d
3p2L` (µ1)L` (µ2)

× δD (q1 + p1) δD (q2 + p2) 2(2π)6δD (q1 + q2) δD (p1 + p2) Ps
g (q1) Ps

g (p2)

=
(

2`+ 1
2

)2 2
Np (k1)Np (k2)

∫
Vq1

∫
Vq2

d3q1d
3q2L` (µ1)L` (µ2)

× δD (q1 + q2)2 Ps
g (q1) Ps

g (q2)

=
(

2`+ 1
2

)2 2k−3
f

Np (k1)Np (k2)

∫
Vq1

∫
Vq2

d3q1d
3q2L` (µ1)L` (µ2)

× δD (q1 + q2) Ps
g (q1) Ps

g (q2)

≈
(

2`+ 1
2

)2 2k−3
f

Np (k1)Np (k2) P(`)
g (k1) P(`)

g (k2)
∫
Vq1

∫
Vq2

d3q1d
3q2δD (q1 + q2)

=
(

2`+ 1
2

)2 2δK
12

Np (k1) P(`)
g (k1)2 , (4.27)

where again we used the approximation made in Joachimi et al. (2009) that
δ2

D ≈
Ve

(2π)3 δD = k−3
f δD. δK

12 is the Kronecker delta indicating that the vector q1

and q2 are identical (in the second step trivial δK have been omitted in order to
avoid making the notation heavier by adding also the wave-vector letter). In the
last steps we made the approximation that the power spectrum monopole and
quadrupoles do not vary significantly when integrated over the the bin in Fourier
space.

4.A.3 Bispectrum monopole covariance matrix: Gaussian
term

Analogously to the above we now compute the diagonal term of the bispectrum
monopole covariance matrix:
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CB0
gB0

g
G (k1, k2, k3; k4, k5, k6) =

= 1
16π2

(2πkf )−6

Nt (k1, k2, k3)Nt (k4, k5, k6)

6∏
i=1

∫
Vqi

d3qiδD (q1 + q2 + q3) δD (q4 + q5 + q6)

× (2π)9δD (q1 + q4) δD (q2 + q5) δD (q3 + q6) Ps
g (q1) Ps

g (p2) Ps
g (q3) + 5 perm.

= D123456

16π2
(2π)3k−6

f

Nt (k1, k2, k3)2

3∏
i=1

∫
Vqi

d3qiδD (q1 + q2 + q3)2 Ps
g (q1) Ps

g (p2) Ps
g (q3)

= D123456

16π2
Vek

−6
f

Nt (k1, k2, k3)2

3∏
i=1

∫
Vqi

d3qiδD (q1 + q2 + q3) Ps
g (q1) Ps

g (p2) Ps
g (q3)

≈ D123456

16π2
Vek

−6
f

Nt (k1, k2, k3)2 P(0)
g (k1) P(0)

g (k2) P(0)
g (k3)

3∏
i=1

∫
Vqi

d3qiδD (q1 + q2 + q3)

= D123456

16π2
Ve

Nt (k1, k2, k3)P(0)
g (k1) P(0)

g (k2) P(0)
g (k3) , (4.28)

where D123456 stands for all the possible permutations and has values 6, 2, 1 re-
spectively for equilateral, isosceles and scalene triangles. Again it has been as-
sumed that the power spectrum monopole does not vary significantly inside the
integration volume.

4.A.4 Bispectrum monopole covariance matrix:
non-Gaussian term

In this work we use only one of the non-Gaussian terms of the bispectrum
monopole covariance matrix. This is because we just need to model the co-
variance matrix analytically in order to derive the weights for the compression.
This additional term allows to better capture the correlation between different
triangles. We leave to future work the analytic computation of the remaining
terms (one proportional to the product between trispectrum and power spectrum
and the other given by the pentaspectrum).
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CB0
gB0

g
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3∆k3
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g (k3, k5, k6) + 8 perm., (4.29)

where the usual approximations have been used together with Equation 4.26
which in the last step has been used to simplify the integration over the volume
in Fourier space once one of the k-vectors is fixed.

4.A.5 Cross-covariance term

For what concerns the cross-covariance term between power spectrum (monopole
and quadrupole) and bispectrum monopole we use only the first leading term in
our model:
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where once more we have used the same approximation of the power spectrum
multipoles and bispectrum monopole not varying significantly inside the integra-
tion volume.
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4.B. Validation tests

4.B Validation tests

In Table 4.B.1 we report the results obtained compressing the bispectrum with
respect to the shifted fiducial parameter sets. This is to test whether the perfor-
mance of the compression is affected by the choice of fiducial set of parameter
values. In particular, we consider two cases by varying the fiducial cosmology by
adding/subtracting 1σ 1D credible intervals (derived from the MCMC) to all the
parameters. The table quantifies that the shifts in the means of the 1D posterior
distributions produced by considering a non-optimal fiducial cosmology are small
compared to the 1σ 1D credible intervals of the MCMC results.

In Figures 4.B.1 and 4.B.2 the 1 and 2-D posterior distributions obtained via
MCMC/MC-MP/G-PCA for the test cases relative to the ∆k6 and ∆k5 binning
cases are shown. MC-MP recovers with very good approximation the 1 and 2-D
posterior distributions derived by the MCMC. G-PCA shows a slightly greater
loss of information for the ∆k6 case. However this is noticeably closer to the
MCMC/MC-MP result when the number of triangles used is increased (∆k5

case).
In Figure 4.B.3 we compare the best-fit model obtained by varying four pa-

rameters (b1, b2, f, σ8) with the best-fit model corresponding to a fit done via
standard MCMC sampling with only three parameters varied, (b1, b2, f), with
σ8 = σfid.

8 . For the three parameter case we find running the MCMC: b1 =
1.98± 0.01, b2 = 0.39± 0.06, f(zCMASS) = 0.52± 0.03 with σfid.

8 (zCMASS) = 0.61.
Thereby we show that the discrepancy between the results of this paper and

the ones presented in the BOSS collaboration analysis Gil-Marín (2017) is only
due to the different range of scales considered. Indeed, by limiting our analysis to
a smaller range of scales in k-space, the degeneracy between the amplitude-like
parameters b1 and σ8 is much stronger. That is visible in Figure 4.B.3, where the
models given by sets of parameters with very different b1, b2 and σ8 parameters
produce very similar predictions of the signals all with good χ2

red. and p-values.

159



4.B. Validation tests

0.6
1.2
1.8
2.4

b 2

0.4
5

0.6
0

0.7
5

0.9
0

1.0
5

f

2.0 2.4 2.8 3.2

b1

0.3
2

0.4
0

0.4
8

0.5
6

0.6
4

8

0.6 1.2 1.8 2.4

b2

0.4
5

0.6
0

0.7
5

0.9
0

1.0
5

f
0.3

2
0.4

0
0.4

8
0.5

6
0.6

4

8

MCMC k6
MC-MP k6

(a) MC-MP

0.6
1.2
1.8
2.4

b 2

0.4
50.6
00.7
50.9
01.0
5

f

2.0 2.4 2.8 3.2

b1

0.3
20.4
00.4
80.5
60.6
4

8

0.6 1.2 1.8 2.4

b2
0.4

5
0.6

0
0.7

5
0.9

0
1.0

5

f
0.3

2
0.4

0
0.4

8
0.5

6
0.6

4

8

MCMC k6
G-PCA k6

(b) G-PCA

Figure 4.B.1: Joint data-vector
[
P(0)

g ,P(2)
g ,B(0)

g

]
posteriors: MC-MP and G-PCA

four-parameter ∆k6 case.
a) 2-D 68% and 95% credible regions are shown in order to compare the MC-MP
(cyan) performance to the one of the standard MCMC (grey) for the full data
vector. The difference between MC-MP and MCMC contours is quantified in
Table 4.1.
b) The same as a) but for the G-PCA method.
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Figure 4.B.2: Joint data-vector
[
P(0)

g ,P(2)
g ,B(0)

g

]
posteriors: MC-MP and G-PCA

four-parameter ∆k5 case.
Both a) and b) are the same as for Figure 4.B.1 for the ∆k5 case.
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Table 4.B.1: Four parameter-case, checking consistency for shifted fiducial cos-
mology.
Upper half: Mean values of the posterior distributions and 68% credible inter-
vals for the MCMC and the MC-MP / G-PCA compression methods. We report
the values for the ∆k6 binning case for both compression methods in three cases
consisting in using for the compression: the fiducial cosmology, the fiducial cos-
mology shifted by +1σ and the fiducial cosmology shifted by −1σ.
Lower half: In the compression columns we report the relative difference be-
tween the posterior modes obtained via MCMC and the ones obtained via com-
pression (MC-MP or G-PCA). In the MCMC columns the relative size of the
68% credible intervals obtained via MCMC sampling is shown. By comparing
the MCMC columns to the compression ones, it is clear that the difference be-
tween the mean parameter values obtained via MCMC and the ones obtained via
compression (MC-MP or G-PCA) are evidently within the 68% credible intervals
given by the MCMC on the full data-vector.

∆k6 ∆k6 + 1σ ∆k6 − 1σ
MCMC MC-MP G-PCA MC-MP G-PCA MC-MP G-PCA

b1 2.41 ± 0.22 2.41 ± 0.23 2.49 ± 0.27 2.47 ± 0.23 2.41 ± 0.12 2.54 ± 0.24 2.34 ± 0.37
b2 1.00 ± 0.40 1.04 ± 0.42 1.08 ± 0.47 1.04 ± 0.40 1.29 ± 0.25 1.03 ± 0.44 0.93 ± 0.67
f 0.69 ± 0.08 0.72 ± 0.09 0.72 ± 0.09 0.70 ± 0.08 0.69 ± 0.05 0.72 ± 0.09 0.68 ± 0.12
σ8 0.50 ± 0.04 0.48 ± 0.05 0.48 ± 0.05 0.49 ± 0.04 0.49 ± 0.03 0.46 ± 0.05 0.50 ± 0.07

∆θmc

θmc [%] θcomp. − θmc

θmc [%] θcomp. − θmc

θmc [%] θcomp. − θmc

θmc [%]

b1 9.2 -0.3 3.3 2.15 -0.26 8.57 0.31
b2 40.3 3.5 7.5 3.47 28.68 25.29 13.26
f 12.1 4.4 4.4 0.84 0.51 6.96 0.26
σ8 8.5 -5.1 -5.5 -3.25 -2.91 -8.94 -1.39
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Figure 4.B.3: Reduced χ2 and p-values for the best-fit parameters obtained using
the MCMC/MC-MP methods with varying σ8 and for the MCMC leaving σ8 =
σfid.

8 fixed . The k-binnings shown for the four parameter case (b1, b2, f, σ8) are
respectively the standard ∆k6 (navy) for the MCMC and the ∆k2 (pink) for
the MC+MP. The line corresponding to the fit obtained by letting free to vary
only the parameters (b1, b2, f) is shown in green. The two upper panels are for
the power spectrum monopole (left) and quadrupole (right) while the bottom
panel refers to the bispectrum monopole. The lower part of each panel shows
the relative difference between the data measurements and the different models.
Even if for example b1 and σ8 values are shifted in the cases of ∆k6 and ∆k2, this
is due to the strong degeneracy between them and both models are practically
identical to the one given by the three parameters fit (b2, b2, f) with σ8 = σfid.

8 .
The only way to converge to the results obtained by the BOSS collaboration is to
consider a larger range of scales (as they have done) for both power spectrum and
bispectrum which however involves a more complex modelling of the data-vector.
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“Don’t adventures ever have an end? I suppose not.
Someone else always has to carry on the story.”

- J.R.R. Tolkien, The Fellowship of the Ring

5 | Conclusions and future work

In this thesis we have studied different techniques to compress 3pt statistics in
order to efficiently extract cosmological information once applied to data sets
from current and future surveys. In particular, we considered two 3pt statistics:
the 3pt auto-correlation function (and its ratio with the square of the variance,
the skewness), and the redshift space galaxy bispectrum. Below are summarised
the main results of each chapter included in this thesis, together with the pos-
sible extensions that could be investigated in the future. Finally, an alternative
method to compress 3pt statistics is introduced.

5.1 Chapter 2: skewness and 3pt auto-correlation
function

In the first part of Chapter 2, we have shown the analytic derivation of the
3pt auto-correlation function and of the skewness quantity. Primordial non-
Gaussianity contributions were also taken into consideration by computing the
relative additional terms up to linear order in fNL. The main original results of
this part are given by the fNL terms in Equation 2.68 and Equations 2.76, 2.77.
The magnitude of their contribution to the standard Gaussian terms is shown in
Figure 2.1.

In the second part, we described the measurement of the 2pt and 3pt auto-
correlation functions on DR11 SDSS BOSS CMASS NGC sample. The motivat-
ing idea was to find out whether it was possible to detect the BAO feature in
the skewness. Unfortunately, compared to the cosmic variance contribution, this
statistic signal was too low to observe the BAO feature which is visible in the
theoretical prediction. Therefore, since the skewness or, more simply, the com-
bination of 2pt and 3pt auto-correlation functions allows to lift the degeneracy
between the linear galaxy bias and the "amplitude-like" cosmological parame-
ters (for example σ8 and fNL), we focused on constraining the parameter set
(b1, σ8, fNL). The 1 and 2D posterior distributions derived via MCMC sampling
are shown in Figure 2.4.
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Auto-correlation functions represent an alternative to the standard correla-
tion functions used in Cosmology. The advantage of these integrated quantities
can be seen in the 3pt case. Where the 3pt correlation function requires three
different coordinates for each data vector element (e.g. the three sides of a tri-
angle), the skewness needs only one (the radius of the window function). This
allows one to compress the data-vector dimension, which can then be used for
parameter inference together with far fewer simulations (needed to compute the
covariance matrix) than the ones needed for a much longer data-vector (as in the
3pt correlation function case).

However, integration of the statistics also implies the loss of at least part
of the information and hence reduces the performance in term of parameter
constraints.

5.1.1 Chapter 2: future work

In the near future, DESI will produce a huge data set including the redshift
and angular position of more than 30 million objects between galaxies and
quasars. DESI will map their positions in a volume more than 10 times big-
ger than that covered by BOSS. It will then be interesting to use the 2pt and 3pt
auto-correlation functions as complementary probes to the standard correlation
functions. Auto-correlation function can also to provide consistency checks for
the standard correlation functions results. With a much larger volume and far
more objects, the limit imposed by cosmic variance should be pushed towards
larger scales, while the signal to noise ratio will also increase at small scales.
The measurement of the 2pt and, in particular, the 3pt auto-correlation func-
tion on DESI data could for example produce interesting results on primordial
non-Gaussianity, constraining the fNL parameter at late times, perhaps, at the
level of CMB measurements.

For that purpose, the current pipeline for the measurement of 2pt and 3pt
auto-correlation functions will need to be improved in order to take care of the
predicted systematic errors such as finite survey volume.

5.2 Chapter 3: maximal compression of the red-
shift space galaxy power spectrum and bis-
pectrum

In Chapter 3 we presented the work published in Gualdi et al. (2018b) regarding
the compression of the redshift space galaxy power spectrum and bispectrum.
The two methods presented are based on the MOPED algorithm. The first
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method consists of running a MCMC sampler with the compressed data vector
(MCMC-MP). In the second method, before the compression, there is an orthog-
onalisation of the parameter space step, using a PCA transformation (PCA +
MP). In this way it is possible to randomly sample the 1D posterior distributions
of the orthogonalised parameters in order to reconstruct the multidimensional
posterior distribution of the physical parameters.

In order apply both methods we derived an expression for the covariance ma-
trix of the joint data-vector

[
Ps

g,Bs
g

]
. The expressions describing all the different

terms of the covariance matrix are given in Equations 3.8, 3.10 and 3.12.
We proved that both compression methods recover with minimal loss of in-

formation the 1 and 2D posterior distributions obtained via MCMC sampling
using the uncompressed data-vector (Figures 3.3 and 3.6). Moreover we forecast
the added value, in terms of tighter constraints and lifted degeneracies between
parameters, given by including the bispectrum in the analysis with respect to
just using the power spectrum.

5.2.1 Chapter 3: future work

In order to fully exploit the information contained in the spectroscopic data sets
that surveys like DESI and PFS will produce in the near future, the use of higher-
order statistics will be indispensable. The extremely large dimension that the
data-vectors of higher-order statistics can easily reach, is the main obstacle limit-
ing their employment. Therefore, the compression methods presented here have
the potential to solve the problem. Future work would then consist of extending
our modelling of the covariance matrix in order to be able to better describe
the data-vector self-correlation properties also at non-linear scales. Indeed, at
those scales, loop corrections and higher-order terms become non-negligible in
the perturbation theory derivation of the covariance matrix expressions.

An immediate extension would also be the development of the formalism
necessary to apply the compression to 3pt correlation function in real space.

Galaxy clustering is just one of the several probes in which correlation func-
tions and their Fourier transforms are used to constrain cosmological parame-
ters. In the present and even more in the near future, large data sets will also
be available for weak lensing studies (DES, LSST, Euclid, HSC). Therefore both
compression methods could be applied to 3pt statics for the convergence and
shear fields if the necessary analytical formalism is developed.

The bispectrum of 21 cm emission lines or the Ly-α forest also represent
promising applications of the compression methods.
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5.3. Chapter 4: Enhancing BOSS bispectrum

5.3 Chapter 4: enhancing BOSS bispectrum cos-
mological constraints with maximal com-
pression

Chapter 4 is based on the application of the compression methods presented
in Chapter 3 (MCMC + MP relabelled as MC-MP) on the power spectrum
monopole, quadrupole and the bispectrum monopole measurements from the
DR12 BOSS CMASS NGC and SGC data samples (Gil-Marín, 2017).

The idea behind this project was to test the effect of using, thanks to the
compression, many more triangle configurations in the bispectrum part of the
data-vector. We showed that more triangle configurations improve the overall
parameter constraints (tighter 1 and 2D posterior distributions, precise numbers
in Table 4.2). From Figure 4.5 one can see that tighter posterior distributions
also imply their shape being much closer to a multivariate Gaussian function’s
one.

In order to apply the compression methods, it was necessary to derive ana-
lytically new expressions for the covariance matrix of the

[
P(0)

g ,P(2)
g ,B(0)

g

]
joint

data-vector. These expressions are given in Eqs. 4.5, 4.8, 4.9 and 4.10.
As described in Chapter 3, the PCA + MP method suffered limitations linked

to strongly degenerate parameter spaces. For this reason it was added a pre-
Gaussianisation step (Schuhmann et al., 2016) before the PCA transformation.
The method was hence relabelled G-PCA.

Another important aspect of both MC-MP and G-PCA compression meth-
ods is that an extension for higher-order statistics such as the trispectrum and
tetraspectrum, is straightforward. It is only necessary to derive the correspond-
ing analytic expressions for the relative covariance matrices. This would enable
the use of these higher-order statistics, which up to now has been considered
to be prohibitive due to the very large dimension of the data-vectors describing
them.

5.3.1 Chapter 4: future work

In the analysis presented in Chapter 4, we used used a k-range more conservative
than the one adopted in the BOSS analysis (Gil-Marín, 2017). In order to extend
the analysis to non-linear scales it is necessary to improve the model of the data-
vector, in particular by adding loop-corrections to the power spectrum monopole
and quadrupole.

By evaluating the likelihood using a covariance matrix estimate from the
galaxy mocks, both compression methods have been shown to work and have
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improved constraints obtain through the standard MCMC. We then wish to
apply this analysis pipeline to future data-sets (e.g. DESI).

As discussed in Section 5.2.1, an immediate extension is the application of
the MC-MP and G-PCA method to higher-order statistics measurements for
different cosmological observables (e.g. weak-lensing, 21 cm emission lines, Ly-α
forest).

5.4 Geometrical compression

The alternative compression method for 3pt statistics, labelled Geometrical Com-
pression (MC-GC), is based on exploiting the sensitivity of the geometrical prop-
erties of 3pt statistics data-vector elements (functions of triangle characteristics).
In other words, the data-vector element coordinates (for example the modulus
of the three sides of a triangle) are converted into new parameters characterising
the triangle configuration in question (for example the area of the triangle).

As in the MC-MP case, we run an MCMC sampling on the compressed data-
vector to derive the 1 and 2D posterior distributions of the model parameters
taken into consideration.

We consider the particular case of the bispectrum in order to compare the
MC-GC results to the methods presented in Chapter 3 and 4.

5.4.1 New triangles parametrisation

We want to regroup the bispectrum data-vector elements in bins defined by
different parameters describing the triangle configurations. The idea underlying
this procedure is that similar triangular shapes will result in similar bispectrum
values. This is because the perturbation kernels depend in particular on the
cosine of the angles between the sides of the triangle. The hypothesis is also that
the new bins will be less correlated between each other, since similar triangular
configurations will contribute to the same new data-vector element.

Given the three triangle sides (k1, k2, k3) normally characterising an element
of the redshift space galaxy bispectrum monopole data-vector, we define three
new variables. The first is the square root of the area of the triangle, which we
label ℵ ("aleph"). It can be computed using Heron’s formula:

A =
√
s(s− k1)(s− k2)(s− k3) =⇒ ℵ =

√
A, (5.1)

where s = 1
2(k1 +k2 +k3) is the semi-perimeter of the triangle. The ℵ parameter

keeps track of the scales probed by the triangle configuration.
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The second variable which we use to characterise a triangle is the cosine of
the largest angle, k = cos θmax (pronounced "daleth"). This choice allows one to
describe whether the triangle is acute or obtuse. If cos(π/3) = 1/2 < k < 1 the
triangle is acute. In this case either the three sides are all approximately the
same or two of them are larger than a third one. If −1 < k < 0 the triangle is
obtuse. The triangle could then have either a side much larger than the other
two (the one opposite to θmax) or two sides of similar length with a third smaller
one. In order to distinguish between the pairs of possibilities above described,
as a third variable we consider the ratio between the cosines of the intermediate
and smallest angles, ג = cos θint/ cos θmin (pronounced "gimel"). All the cosines
can be computed using the cosine rule for a triangle

k2
l = k2

m + k2
n − 2kmkn cos θmn. (5.2)

Therefore each triangle configuration can be described as a function of the three
variables (ℵ,k, (ג and the same is true for each bispectrum monopole data-vector
element

B(0)
g (k1, k2, k3) =⇒ B(0)

g (ℵ,k, (ג . (5.3)

Once the coordinate conversion has been done for all the triangle configurations,
the binning for the new coordinates can be defined by finding the minimum
and maximum values for the new parameters (ℵ,k, .(ג Given a choice for the
number of bins for each new coordinate (nℵ, nk, nג), the potential dimension of
the new data vector is nℵ×nk×nג. However, as is the case when using the three
sides (k1, k2, k3) to describe the triangle, several combinations of (ℵ,k, (ג actually
do not satisfy the triangle inequalities, and therefore no triplet (k1, k2, k3) will
contribute to that particular bin. Moreover even if a particular combination
of (ℵ,k, i(ג does represent a triangle configuration, it is not certain that the
triangles bin defined by (ℵ,k, i(ג will contain modes since the original number of
triangles in (k1, k2, k3) coordinates was finite. The new data vector g is obtained
by averaging over all the bispectra in the non-empty triangle sets defined by
different combinations of the coordinates (ℵ,k, :(ג

gi(ℵi,ki, (iג = 1
N tr.
i

Ntr.
i∑

j : (kj1,k
j
2,k

j
3)∈(ℵi,ki,גi)

B(0)
g (kj1, kj2, kj3) (5.4)

where each new data vector element has been normalised by dividing by the
number of triangles belonging to the same set defined by a particular combination
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of (ℵ,k, .(ג N tr.
i is the number of triangle configurations belonging to the original

data-vector that fall into the new bin defined by the i-th combination of the new
parameters (ℵ,k, .(ג

5.4.2 Number of bins: optimal choice

For the construction of the new data-vector it is necessary to define how many
bins will be used to divide the range of each parameter. In order to optimise the
choice of these three numbers, (nℵ, nk, nג) we suggest the following procedure.
The idea is to "sample" the sensitivity of the new data-vector to the considered
model parameters for the different choices of (nℵ, nk, nג). The most straightfor-
ward way to do so is to consider the derivatives of the data-vector model with
respect to the parameters. These can be computed assuming a fiducial cosmology
which in our case was described in Sec 4.3.2.

In order to transform the derivatives of the standard bispectrum monopole
data-vector into the derivatives of the new one, it is sufficient to apply the same
algorithm used to convert the bispectrum into g, because the transformation is
linear. At this point we have a list of g,i = ∂g/∂θi for all the elements of the
model parameter vector θ. The target is to combine these vectors into a unique
number expressing the sensitivity of the new data-vector g for a determinate
choice of (nℵ, nk, nג). We call Ng the dimension of the new data-vector g and
Nθ the number of model parameters. Ng is of course a function of the number of
bins of the new coordinates, Ng(nℵ, nk, nג). For each of the model parameter θi
and for a particular choice of the number of bins (nℵ, nk, nג)j we derive a single
number defined as

Sij =
Ng(nℵ,nk,nג)j∑

k=0

1
N tr.
k

∣∣∣∣∣∂gk∂θi

∣∣∣∣∣. (5.5)

Sij is a proxy for the sensitivity of the new data-vector g defined for a particular
choice of number of bins (nℵ, nk, nג)j with respect to variations of the model
parameter θi. Notice that each term of the sum, before being added, is nor-
malised by the number of triangles regrouped in the new bin defined by a set of
coordinates (ℵ,k, .k(ג

The next step consists of combining these proxies for all the model parame-
ters. This in order to obtain a single number describing the overall sensitivity of g
for a determinate choice of (nℵ, nk, nג)j. We then normalise each i-th Sij dividing
by the maximum value of Sij for all the possible (nℵ, nk, nג)j combinations
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sij = Sij
max [Sij]∀j

, (5.6)

so that for all θi then 0 < sij ≤ 1. Finally all the Nθ sij for each (nℵ, nk, nג)j
combination can be merged into a unique number by doing

s̄j =
Nθ∑
i=0

sij. (5.7)

We consider s̄j as the proxy encoding the overall sensitivity, with respect to the
model parameters variation of the new data-vector g, defined by a particular
choice of the triplet (nℵ, nk, nג)j. Since we may want to limit the dimension of g
in the algorithm, we included a condition setting s̄j = 0 when Ng(nℵ, nk, nג)j ≥
Nmax
g . The standard BOSS analysis bispectrum data-vector, limited to the range

of scales that we consider, has 116 triangles (∆k6 binning case defined in Section
4.3.2). We use the measurements done for the ∆k2 binning case corresponding
to 2734 triangles for the bispectrum monopole.

We set Nmax
g = 240, s̄j has been computed for all the (nℵ, nk, nג)j combina-

tions with 10 ≤ nℵ, nk, nג ≤ 35. With these settings we obtained the highest
value for s̄j in the case of (nℵ = 24, nk = 11, nג = 29) corresponding to a
dimension Ng(24, 11, 29) = 239.

5.4.3 MC-GC vs. MCMC vs. MC-MP vs. G-PCA

We can compare the results obtained via MC-GC (∆k2 case) in terms of 1 and
2D the posterior distributions obtained via the standard MCMC sampling (∆k6

case), MC-MP (∆k2 case) and G-PCA (∆k2 case). The comparison is shown
in Figure 5.1. MC-GC produces a posterior distribution very close to the ones
given by MC-MP and G-PCA methods. The agreement is remarkable, especially
considering that these compression methods are fairly independent between each-
other (they have in common only the use of the data-vector derivatives). The
precise values of the 1D 68% confidence intervals and of the means of the distri-
bution are reported in Tables 5.1 and 5.2.

The advantage of the MC-GC technique is that it does not require an analyt-
ical modelling of the covariance matrix, even if the compression is not as strong
as in the MC-MP or G-PCA cases.

Nevertheless, it is not straightforward the application to higher-order statis-
tics like 4pt or 5pt correlation functions. In terms of resources and computing
time required, these are approximately the same as for the MC-MP method
(Section 4.8.2).
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Table 5.1: Four-parameter case, best-fit parameters. Mean values of the posterior
distributions and 68% credible intervals for the MCMC and the MC-MP / G-
PCA / MC-GC compression methods. The largest k-binning, ∆k6, the size
used in the BOSS analysis, corresponds to the lowest number of triangles (116)
and we show the best-fit parameters obtained via MCMC sampling. For the
thinnest binning ∆k2, corresponding to the highest number of triangles (2734),
we compare the three compression methods. The observed shift in the mean
values as a function of the number of considered triangles is due to the strong
degeneracy present between the model parameters.

∆k6 ∆k2

MCMC MC-MP G-PCA MC-GC
b1 2.41± 0.22 2.33± 0.14 2.31± 0.17 2.25± 0.14
b2 1.00± 0.40 0.72± 0.22 0.77± 0.19 0.68± 0.22
f 0.69± 0.08 0.63± 0.06 0.67± 0.06 0.61± 0.06
σ8 0.50± 0.04 0.53± 0.03 0.51± 0.03 0.53± 0.03

Table 5.2: Four-parameter case, constraints improvement. Below are shown the
relative variations in percentage of the size of the 68% credible intervals for the
∆k2 k-binning case. MC-GC obtains very similar improvements, in terms of
tighter parameter constraints, to the ones obtained via MC-MP and G-PCA.

∆k6 ∆k2

∆θmc
∆k6

∆θcomp. −∆θmc
∆k6

∆θmc
∆k6

[%]

MCMC MC-MP G-PCA MC-GC
∆b1 0.22 -37.1 -24.8 -36.8
∆b2 0.40 -46.1 -52.8 -45.0
∆f 0.08 -27.8 -26.4 -28.7
∆σ8 0.04 -22.8 -21.0 -22.8〈∆θcomp. −∆θmc

∆k6

∆θmc
∆k6

[%]
〉

-33.5 -31.3 -33.3
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Figure 5.1: MCMC vs. MC-MP vs. G-PCA vs. MC-GC. 2-D 68% and 95%
credible contours are shown respectively for the ∆k6 MCMC (grey), ∆k2 MC-
MP (blue), ∆k2 G-PCA (red) and ∆k2 MC-GC (yellow) cases. The agreement
between the MC-MP, G-PCA and MC-GC posterior distributions is remarkable.
Without the need of an analytical modelling of the covariance matrix, MC-GC
recovers the same posterior distributions derived using MC-MP and G-PCA.

We hope that MC-GC will become, for the future data-sets, the standard
procedure to study the bispectra and 3pt functions of the cosmological fields of
interest. In the future it would be interesting to find out whether it is possi-
ble to reduce the number of parameters characterising each data-vector element
using MC-GC, without losing constraining power. This would be very impor-
tant for example in the case of the redshift space galaxy bispectrum, where each
configuration is described by five parameters, as seen in Chapter 3.
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“Well, here at last, dear friends, on the shores of the Sea comes the
end of our fellowship in Middle-earth. Go in peace! I will not say:
do not weep; for not all tears are an evil.”

- J.R.R. Tolkien, The Return of the King
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“And the ship went out into the High Sea and passed into the West,
until at last on a night of rain Frodo smelled a sweet fragrance on the
air and heard the sound of singing that came over the water. And
then it seemed to him that as in his dream in the house of Bombadil,
the grey rain-curtain turned all to silver glass and was rolled back,
and he beheld white shores and beyond them a far green country
under a swift sunrise.”

— J.R.R. Tolkien, The Return of the King


	Introduction
	Cosmology
	Friedmann equation and cosmological evolution
	Inflation
	Cosmic Microwave Background
	Dark matter
	Dark energy
	Cosmological probes
	Best-fit cosmology

	Perturbation theory
	Static Universe
	Expanding Universe

	Statistics of the density field
	From primordial to late-time matter power spectrum
	Three-point statistics

	Galaxy bias
	Redshift-space distortions
	Data and simulations
	SDSS-III BOSS
	Galaxy mocks


	Skewness: 3pt auto-correlation function
	Second-order perturbation theory
	Skewness derivation
	Skewness for a TEXT and TEXT Universe
	Primordial non-Gaussianity contribution
	Three-point contribution
	Two-point contribution

	TEXT from data
	BOSS DR11 data and mocks
	Statistical estimators

	Treatment of noise sources
	Redshift-space distortions effect
	RSD-corrected expressions for TEXT and TEXT
	RSD-corrected expressions for TEXT and TEXT: TEXT terms
	Model parameters constraints from the joint data-vector TEXT
	Chapter recap

	Appendices
	Transfer function from the matter power spectrum

	Maximal compression of the  redshift space galaxy power spectrum and bispectrum
	Abstract
	Introduction
	Perturbation theory with redshift-space distortions
	Bias model
	Redshift space formalism

	Covariance
	TEXT : power spectrum covariance matrix
	TEXT: bispectrum covariance matrix
	TEXT: cross-variance matrix
	Shot noise contribution

	Analysis setup
	Compression Formalism
	Fisher information matrix
	Compression Algorithm

	MCMC of Compressed data-vectors
	Posterior distributions directly from compressed data-vectors
	Parameter space orthogonalisation - PCA
	Comparison with MCMC sampling
	Limitations of the compression

	Joint data-vector added value
	Conclusions

	Appendices
	Estimators definition and unbiasedness check
	Power spectrum
	Bispectrum estimator
	Trispectrum definition
	Tetraspectrum definition
	Unconnected part of the five points correlation function

	Covariance terms derivation
	Covariance term: TEXT
	TEXT term:
	TEXT term:

	Covariance term: TEXT
	Cross - variance term: TEXT
	TEXT term:
	TEXT term:


	Compressed covariance matrix
	Weights orthogonalisation

	Enhancing BOSS bispectrum cosmological constraints with maximal compression
	Abstract
	Introduction
	Data, mocks and analysis
	DR12 BOSS data and mocks catalogues
	Analysis settings

	Data-vector and covariance matrix
	Power spectrum monopole and quadrupole
	Analytical expression for TEXT covariance matrices
	Bispectrum monopole
	Analytical expression for TEXT covariance matrix
	Analytical expression for TEXT cross-covariance matrix

	Compression methods
	PCA + MP
	Gaussianisation pre-step
	Analytical covariance matrix: usage

	Recover MCMC-derived posterior distribution
	Information content and number of triangles
	Consistency check
	Comparison with BOSS DR12 bias constraints
	Difference in time and computer resources needed

	Conclusions

	Appendices
	Estimators and covariance terms
	Power spectrum monopole/quadrupole and bispectrum monopole estimators
	Power spectrum monopole and quadrupole covariance matrix: Gaussian term
	Bispectrum monopole covariance matrix: Gaussian term
	Bispectrum monopole covariance matrix:  non-Gaussian term
	Cross-covariance term

	Validation tests

	Conclusions and future work
	Chapter 2: skewness and 3pt auto-correlation function
	Chapter 2: future work

	Chapter 3: maximal compression
	Chapter 3: future work

	Chapter 4: Enhancing BOSS bispectrum
	Chapter 4: future work

	Geometrical compression
	New triangles parametrisation
	Number of bins: optimal choice
	MC-GC vs. MCMC vs. MC-MP vs. G-PCA


	Bibliography

