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Abstract—Hand–eye calibration aims at determining the
unknown rigid transformation between the coordinate sys-
tems of a robot arm and a camera. Existing hand–eye
algorithms using closed-form solutions followed by iterative
non-linear refinement provide accurate calibration results
within a broad range of robotic applications. However, in the
context of surgical robotics hand–eye calibration is still a
challenging problem due to the required accuracy within the
millimetre range, coupled with a large displacement between
endoscopic cameras and the robot end-effector. This paper
presents a new method for hand–eye calibration based on the
adjoint transformation of twist motions that solves the
problem iteratively through alternating estimations of rota-
tion and translation. We show that this approach converges
to a solution with a higher accuracy than closed form
initializations within a broad range of synthetic and real
experiments. We also propose a stereo hand–eye formulation
that can be used in the context of both our proposed method
and previous state-of-the-art closed form solutions. Experi-
ments with real data are conducted with a stereo laparo-
scope, the KUKA robot arm manipulator, and the da Vinci
surgical robot, showing that both our new alternating
solution and the explicit representation of stereo camera
hand–eye relations contribute to a higher calibration accu-
racy.

Keywords—Calibration problem, Hand–eye relationship,

Stereoscopic camera, Surgical robot.

INTRODUCTION

Surgical procedures are increasingly minimally inva-
sive through the use of advanced instrumentation and
imaging to operate inside the body.23 Robot-assisted
minimally invasive surgery (RMIS) enables the tele-ma-
nipulation of surgical instruments with a high degree of
dexterity, motion scaling and improved ergonomics
compared tohand-held instrumentation.19 It facilitates to
the reduction of post-operative recovery times and allows
the execution of difficult micro-surgical tasks with en-
hanced stability and precision. Typically, RMIS is per-
formed by articulated instruments and under direct
observation using a stereo endoscopic camera. While the
tele-manipulation robot can provide information about
the position and movement of the distal end of the
instrument tips, this is usually subject to calibration off-
sets due to the tendon based architectures used to provide
minimally invasive access inside the anatomy. This
information can be potentially recovered from the cam-
era itself using vision but it still needs to be linked to the
robot’s kinematic coordinates.1,26 Achieving this link
requires accurate hand–eye calibration to find the rigid
transformation between the stereo camera and the robot
coordinate frames. While many algorithms exist for
solving the hand–eye problem, improved accuracy is still
a requirement that needs further attention.

There is an extensive literature on different hand–
eye calibration methods. The most common procedure
consists in acquiring a planar checker-board target
under different orientations. The camera motion is
determined from decomposing the homography that
represents the mapping for the calibration plane
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between the two image, meanwhile the robot while the
motion of the robot end-effector is obtained from the
forward kinematics of the joint parameters. Given a set
of camera motions, there are different alternatives to
solve the hand–eye problem. One possible approach is
to remove the unknown translation parameters from
the hand–eye equations and estimate the rotation
independently, while the translation is obtained in a
posterior step through linear estimation.3,4,16,24,31,35,36

An alternative approach is to jointly estimate the
rotation and translation components using a dual
quaternion parametrisation,5,7 which generally yields
more stable translation results. Both of these
approaches can be posteriorly refined with iterative
local optimization.37 The hand–eye problem can also
be solved without any calibration target using a
structure-from-motion (SfM) approach.8,9,28 However,
this usually yields less accurate results since the 3D
points in the scene are additional unknowns.

The hand–eye calibration methods mentioned above
also do not account for different robot and camera
motion uncertainties. Although these will generally
depend on the particular hardware set-up, in surgical
robotics the robot motions have consistently larger
errors than the camera motions. This is due to the fact
that nominal kinematic parameters of the da Vinci is
perturbed by stress and strain in the cables which
causes the inaccuracy in the whole kinematic chain.

Data selection also plays a vital role in the perfor-
mance of hand–eye calibration.27 In order to obtain
high accuracy, a wide range of rotational motions
should be included into the calibration, whilst min-
imising distance between optical centre of the camera
and calibration grid. Unfortunately, some of these
criteria are sometimes not feasible in practice, since the
movement of the end-effector in some robots is often
confined within some particular volume. For example,
the da Vinci surgical robot is constrained to move
around a pre-determined remote centre of motion
(RCM).

The use of stereo cameras in hand–eye calibration
can greatly improve its accuracy, since each measure-
ment establishes additional geometric constraints. Al-
though most hand–eye calibration methods are
formulated for monocular cameras, they can be di-
rectly applied to stereo vision33 by considering the two
cameras as two independent motions from a monoc-
ular camera. This, however does not exploit the addi-
tional constraints of a calibrated stereo pair. The cost
functions that explicitly models a stereo camera can be
posteriorly refined along with camera parameters after
an initial calibration with a monocular hand–eye
algorithm.15,17 Alernatively, the problem can be for-
mulated in a simpler form by obtaining only a pure
rotation motions.14 This is not suitable for surgical

robotics where the workspace is strictly limited and is
often incompatible with significant pure rotation mo-
tions.

The use of screw motion is evident in visual servoing
(vision-based control) where the robot changes pose
according to the image obtained from a mounted
camera.34 Such approach can be used to guide the
robot to change pose with respect to one or more
targeted objects without the use of any calibration.
However, because of unknown calibration parameters
(intrinsic, extrinsic and hand–eye), the algorithm can
only guide the end-effector to be within a centimetre of
a desired pose which is not sufficient for surgical pur-
poses. Plus, with known calibration parameters, the
link between robot and camera coordinate systems will
be established and consequently, the information
computed anywhere in the system can be linked to
both robot frame and camera frame.

The algorithm developed in this paper is similar to
the algorithms in our recently published works. The
work21 makes use of tracking algorithm to detect the
pose of a surgical tool and performs hand–eye cali-
bration using a surgical tool as a calibration target and
the algorithm developed later22 is focused on the data
synchronisation before performing hand–eye calibra-
tion where the capture rate and activation time of the
two sensors are different. Although the hand–eye cal-
ibration algorithm is discussed in the papers, they do
not include stereo information in the formulation
which can further improve the calibration perfor-
mance.

This paper introduces the Adjoint Transformation
Algorithm (ATA) using the hand–eye constraints in
terms of the screw motion parameters, by defining a
6� 6 adjoint transformation that maps a screw motion
from the robot end-effector to the camera coordinate
frame.30

� The advantages of using the screw motion to define
transformations is that it can handle parallel
rotation axes and recover a partial solution by
using the geometry of composite motion.2,34

� The advantage of decoupling the estimations mit-
igates the effect of noise from the translation
component in the rotation estimation, unlike the
commonly used dual quaternion method5 where
the algorithm estimates the translation and rota-
tion components simultaneously.

� Our formulation using adjoint transformation can
avoid using the noisy motions which works well
when the robot motions are less accurate than the
camera motions or the other way around.

� Furthermore, this paper also introduces a formu-
lation for the stereo hand–eye problem that is
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suitable for both initialisation and refinement,
works with any of the state-of-the-art algorithms
and does not require restricted motions.

The proposed solution is compared with other existing
hand–eye calibration algorithms in the literature that
are commonly used.5,16,36 The experiments are per-
formed with both synthetic and real data. The real data
is obtained with a stereo laparoscope attached to the
flange of the KUKA LBR IIW A 7 R800, as well as
with the da Vinci surgical robot. The code for the work
and the comparison studies are packaged in a toolbox
which is available online at https://github.com/surgica
l-vision/handeye-ata.

Notation

Vectors are represented by a lower-case letter with
an arrow, e.g.~a. Skew symmetric matrices of a vector ~a
are represented by ½~a��. Matrices are represented by a

bold capital letter, e.g. K. Rotations are either repre-
sented as a 3� 3 orthonormal matrix, e. g. R, or as a
3� 1 vector, e. g. ~r, whose direction and norm are
respectively the principal axis and the magnitude of the
rotation. Bold lower-case letters represent quaternions,
e. g. q. Multiplication between two quaternions is
written by using the . operator, e.g a:b. The inverse of a

quaternion is represented as q�1. The rigid transfor-
mation between frame i and frame j is denoted by the

4� 4 matrix jTi, i.e. calculating a point pi that is cur-
rently represented in the frame i in the frame j is simply
jTi½p; 1�T. The transformation can also be represented
in terms of a Lie algebra. The mapping between these
two representations involves using the matrix expo-
nential, i.e. expmðaÞ ¼ A, where expm represents the
matrix exponential function and a represents the cor-
responding 4� 4 Lie algebra for a rigid transformation
A.

METHODS

As seen in Fig. 1a, the hand–eye problem aims at
estimating the unknown rigid transformation camTrobot

between the camera centre of projection and the robot
end-effector in eye-to-hand configuration, i.e. the
camera is rigidly mounted in a fixed reference position.

The transformations camTgrid and baseTrobot are deter-

mined from camera calibration and robot forward
kinematics respectively. Camera calibration estimates
both the camera intrinsic parameters and the relative
pose camTgrid between the optical centre and the grid

coordinate system.25 Forward kinematics are used to

determine the pose baseTrobot of the end-effector with

respect to the robot base frame.32 For n joints
manipulator, the pose of end-effector is formulated as:

0Tn¼0T1
1T2. . .

n�1Tn ð1Þ

where jTi represents a transformation for the ith link.
The hand–eye problem is conventionally defined as the
following equation31:

AX ¼ XB ð2Þ

with X ¼cam Trobot. A and B are 4� 4 rigid transfor-
mations representing camera and robot motion
respectively, between two different calibration acqui-
sitions s and s0 (Fig. 1b), such that

A ¼ cam TgridðsÞðcamTgridðs0ÞÞ�1 ð3Þ

B ¼ robot TbaseðsÞðrobotTbaseðs0ÞÞ�1 ð4Þ

At least two motions whose rotation axes are neither
parallel nor anti-parallel are required to solve this
problem.35 With N robot-camera measurements under
different poses, Eqs. (3) and (4) can be established for
all different pairwise combinations of the N measure-

ments N
2

� �
.

Problems in Hand–Eye Calibration

Without a noise in the system, Eq. (2) can be solved
algebraically to recover the hand–eye transformation
using a classic hand–eye solver.35 However, the equa-
tion is rather sensitive to noise such that a small noise
in both robot motion and camera motion can invali-
date the equation and make solving hand–eye problem
more challenging in practice.

The noise in camera motion mostly occurs because
of the error in the extrinsic parameters estimation,
Although they are often considered negligible as the
intrinsic calibration can refine up to sub-pixel accu-
racy. On the other hand, due to geometric errors (im-
precision in manufacturing) and non-geometric errors
(backlash, elasticity, joint compliance), the transfor-

mation baseTrobot is not perfectly accurate.12 With
synthetic data (Fig. 2a) we show that even a sub-mil-
limetre error in robot translation has a noticeable im-
pact on the calibration results. In practice this effect
can be minimized with a more accurate robot cali-
bration.10

Apart from the issue of noise in the system, the
range of motion is also a challenging problem in hand–
eye calibration as well. It is proved in the literature that
the wider range of motion increases the calibration
accuracy,36 but this is not feasible in all of the robot
set-up. For example, the camera motion captured from
robot arm KUKA LBR IIWA R800 is much wider
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than the one from the da Vinci surgical robot as shown
in Figs. 3a–3d. The effect of range of motion is more
evident in the results section.

Hand–Eye Calibration with an Adjoint Transformation

The algorithm jointly applies the equation for
solving the rotation part16 and the equation from an
adjoint transformation to create a more robust con-
straint for hand–eye estimation.Similarly to most state-
of-the-art approaches, Levenberg–Marquadt is also
applied at the end of the algorithm to minimise the
calibration error.6,18

This method is similar to the camera calibration
algorithm which iteratively solves for extrinsic and
intrinsic parameters in alternate steps, followed by a
local optimisation refinement step.25

Equation (2) can be decomposed into two parts as
follows:

RARX ¼ RXRB ð5Þ

RA~tX þ~tA ¼ RX~tB þ~tX ð6Þ

where RX and ~tX are the rotation component and the
translation component of the hand–eye transformation,
respectively. Equation (5) can be represented in a
quaternion form. Let a, x and b be quaternions that
represent the rotation components of the transforma-
tions A;X and B. Thus, we have the following equation:

a:x ¼ x:b ð7Þ

Equation (7) can be rearranged into a matrix form:

a0 � b0 �ð~a� ~bÞT

~a� ~b ½~aþ ~b�� þ ða0 � b0ÞI3

" #

x ¼~0 ð8Þ

where I3 is the identity matrix of size 3� 3, a0; b0 and

~a; ~b are scalar and vector components of the quater-
nions a; b, respectively. Kða; bÞ is a 4N� 4 matrix
formed by using N motions.

Kða; bÞx ¼~0 ð9Þ

The classical solution for solving the rotation with
Eq. (9) relies on SVD decomposition.16 In order to find
the translation component, we introduce additional
constraints by formulating the hand–eye equations in
terms of an adjoint transformation. Post-multiplying

Eq. (2) by X�1 yields A ¼ XBX�1. Let a and b be
corresponding Lie algebras for rigid transformations A
and B, respectively, then by using the relationship
between these two matrices provided in the Appendix
section we can convert the hand–eye equation into:

expmðaÞ ¼ XexpmðbÞX�1 ð10Þ

Because a rigid transformation is always invertible,

XexpmðbÞX�1 ¼ expmðXbX�1Þ.30 From here, we can-

not safely assume that a ¼ XbX�1 since the exponen-
tial mapping is surjective, i.e. there can be more than
one Lie algebra matrix that maps to the rigid trans-
formation expmðaÞ. Therefore, we have to prove that
the mapping in our application is uniquely defined for

FIGURE 1. (a) Experimental set-up for the classic hand–eye problem. The camera is attached to the end-effector of the robot, in
this case, the KUKA’s flange. Hand–eye calibration is the method used determine the missing transformation camTrobot which is
defined as a pose of robot’s frame with respect to the camera’s pose. (b) The schematic showing the example of relative
transformations for the robot frame and camera frame as mathematically represented by Eqs. (3) and (4). (c) The schematic for
stereoscopic hand–eye formulation as mathematically represented by Eqs. (19) and (24). ALR is the transformation between
Fcam;LðsÞ and Fcam;Rðs0Þ, while ARL is the transformation between Fcam;RðsÞ and Fcam;Lðs0Þ.
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every possible transformation. As rigid transforma-
tions consist of 3-DOF in rotation and 3-DOF in
translation, and according to Eqs. (33–36) in the Ap-
pendix, the mapping between rotation components is
independent from the mapping of translation compo-

nents,30 therefore we can prove the uniqueness of the
rotation mapping separately.

The exponent term of the rotation matrix is un-
iquely defined when the trace of the rotation matrix is
not equal to �1, i.e. when the angle of rotation is not
�p.24 Therefore, if we avoid 180� of rotations during
the calibration procedure, we can safely assume the
uniqueness of this mapping. Note that these particular
rotations are already extremely difficult to appear in
practice, since the robot motions are constrained by
the camera field of view relative to the calibration
target. Hence,

a ¼ XbX�1 ð11Þ

½~xA�� ~vA

~0
T

0

" #

¼
RX ~tX

~0
T

1

" #
½~xB�� ~vB

~0
T

0

" #

RT
X �RT

X
~tX

~0
T

1

" #

ð12Þ

~xA

~vA

� �
¼

RX 03�3

½~tX��RX RX

� �
~xB

~vB

� �
ð13Þ

where ~xA; ~xB;~vA and ~vB are the Lie Algebra compo-
nents of the transformations. The relation between ~xA

and ~xB in the first three rows of Eq. (13) is known as
the orthogonal Procrustes Problem29 and it has already
been satisfied when solving for the rotation with
Eq. (9). The estimation of the translation component
in ATA is achieved using the relation between ~vA and
~vB (the last three rows of Eq. (13))

~vA ¼ ½~tX��RX~xB þ RX~vB ð14Þ

According to their respective documentations, the
KUKA has a repeatability of 0.1 mm and the da Vinci
positioning system is accurate within only a 5 cm cube
while the laparoscopic camera calibration can be re-
fined up to sub-pixel accuracy.11,13 This error in the
positioning system creates more than sub-pixel errors
when the grid is projected onto images as shown in
Fig. 2a. Therefore, the relative camera motion A is
more accurate than the robot motion B. Hence, from
Eq. (14), we can avoid using the rotation part of B by
substituting RX~xB with ~xA.

~vA ¼ ½~tX��~xA þ RX~vB ð15Þ

To simultaneously solve Eq. (15) with Eq. (9), we need
to transform Eq. (15) into quaternion form:

0 �ð~vA � ½~tX�~xA �~vBÞT

~vA � ½~tX�~xA �~vB ½~vA � ½~tX�~xA þ~vB��

" #

x ¼~0

ð16Þ

5 10 15 20 25 30

motion index

0

2

4

6

8

10

R
ep

ro
je

ct
io

n 
er

ro
r 

(p
ix

el
)

(a)

75 80 85 90

X

65

70

75

80

85

90

95

100

Y

(b)

85 90 95 100 105 110

X

60

65

70

75

80

Y

(c)

FIGURE 2. (a) Reprojection error when adding a small
Gaussian noise of the standard deviation 0.025 mm into the
system. (b) and (c) Examples of how the grids are projected
back to the images after adding noise; Red dots represent
ground truth and blue dots represent the re-projected grid
after adding noise.
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Therefore, the rotation component is refined using
Eqs. (9) and (16) simultaneously, and the next equation is

for estimating the translation component. Since ½~t��~xA is

equivalent to�½~xA��~t, we can arrive at the equation:

½~xA��~tX ¼ RX~vB �~vA ð17Þ

Equation (17) indicates that the translation part of
the hand–eye relationship must satisfy this system of

equations. By collecting N motions, we have 3�N
different equations. Therefore, the solution for the
translation part will satisfy Eq. (17) and at the same
time enhance the accuracy in the rotation component.
Then, the algorithm will go back to solve for the
rotation part using the refined version of the transla-
tion and continue this process until the solution con-
verges. The convergence criteria of the algorithm is

when there is less than 10�4 change in both rotation

FIGURE 3. (a) Example images of the KUKA’s pose and its corresponding image side by side. KUKA is moved to several positions
to collect images of the grid in several points of view, while the pose of the KUKA is acquired using its API. (b) Example images of
da vinci’s pose and its corresponding image side by side. (c) Camera poses with respect to the calibration grid obtained with the
KUKA robot. Images can be acquired for a wide range of camera motions, resulting in hand–eye calibrations with higher accuracy.
(d) Camera poses with respect to the calibration grid obtained with the da Vinci robot. Camera motion is constrained to a smaller
range of rotations and translations and thus hand-eyed calibration is more challenging.
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and translation components for more than 20 itera-
tions, although as with all iterative methods this can be
adjusted. According to the results displayed in Fig. 4,
the solution of ATA converges to the same result
regardless of hand–eye initialisation, which is an
important and practically valuable property of our
method.

Finally, the hand–eye transformation can be refined
further by using the Levenberg–Marquadt algorithm
to minimise the error in hand–eye equation. The
algorithm finds the Lie algebra x which has the cor-
responding rigid transformation X that optimises the
hand–eye equation. For all possible motions N, our
objective function UðxÞ can be written in Eq. (18).

UðxÞ ¼
X

N

jjðAXÞ�1
XB� I4jj2 ð18Þ

To summarise, ATA initialisation using monocular
vision is described in Algorithm 1. In the next Section,
we extend this formulation to stereo cameras.

Stereoscopic Formulation of Hand–Eye Calibration

The conventional hand–eye constraint from Eq. (2)
can be extended to stereo vision, which enhances the
calibration accuracy by introducing additional relative
motion constraints. Since we have two cameras and
they are rigidly held at the robot’s end-effector, each
robot motion B can create two sets of camera motions
in two different frames such that Eq. (2) can be formed
for left and right cameras and represented as following,

ALXL ¼ XLB ð19Þ

FIGURE 4. Comparison of convergence rates of ATA with different initialisation methods is displayed using mean of the
translation and rotation errors for improved dual quaternions (IDQ), Tsai’s linear method (TSAI) and dual quaternions (DQ). (a) The
ground truth solution is close to identity matrix. (b) The ground truth solution is far from the identity matrix.
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ARXR ¼ XRB ð20Þ

With a pre-calibrated stereo camera, the rigid
transformation between the two cameras is already
determined. Hence, the relationship between solutions
in Eqs. (19) and (20) can be written as following,

ZXL ¼ XR ð21Þ

where Z represents a rigid transformation between the
left and right camera. Therefore, we can make use of
Eq. (21) to the other three camera motions which relate
to the same hand–eye solution as shown in Eqs. (22)–
(24).

Z�1ARZXL ¼ XLB ð22Þ

ALRZXL ¼ XLB ð23Þ

Z�1ARLXL ¼ XLB ð24Þ

where ALR ¼cam;L TgridðsÞðcam;R
Tgridðs0ÞÞ�1 and

ARL ¼cam;R TgridðsÞðcam;L
Tgridðs0ÞÞ�1. The schematic of

these relationships is shown in Fig. 1c. By simultane-
ously solving Eqs. (19) and (22)–(24), it is shown in
Fig. 5 that the calibration results improve regardless of
the selection of algorithms.

As in the monocular vision case, the initial solution
can be refined with Levenberg–Marquardt by min-

imising the error in the hand–eye equation as shown in
Eq. (18) except that we have the additional motions
from stereo which remains fixed. To summarise, ATA
initialisation using stereo camera is described in
Algorithm 2.

Experimental Procedures

To generate the synthetic data for the experiments,

we generate the two constant transformations baseTgrid

and the ground truth for the hand–eye transformation
camTrobot along with random robot poses baseTrobot. The
criteria for generating data depends on the simulated
parameters in each experiment. The generated data is
in the form of 6�N matrix where N is the number of
data used in the calibration. The first three rows stand
for the translation in X, Y and Z and the last three
rows is the Rodrigues’ representation of the rotation

matrix. Once we get the transformations baseTrobot, we
then proceed to calculate camTgrid by multiplying all

these three transformation together as shown below.

camTgrid ¼cam TrobotðbaseTrobotÞ�1 baseTgrid ð25Þ

The transformations are corrupted by Gaussian noise
before they are fed into the hand–eye calibration
function. Equation (26) shows how the noise is added
to an arbitrary transformation T,

FIGURE 5. Comparison of monocular and stereoscopic camera formulation using different hand–eye calibration algorithms.
Distribution (mean, standard deviation) of the translation and rotation errors are shown in red for the monocular case and in green
for the stereoscopic case. ANOVA is applied when the noise coefficient in rotation is 0.2� and 0.4 mm in translation. (a) ATA
(p ¼ 3:99 � 10�5 for rotation, p ¼ 5:43 � 10�5 for translation), (b) improved dual quaternion (p ¼ 4:83 � 10�2 for rotation, p ¼
4:01 � 10�3 for translation), (c) Tsai (p ¼ 4:85 � 10�2 for rotation, p ¼ 1:04 � 10�2 for translation) and (d) dual quaternion
(p ¼ 3:32 � 10�4 for rotation, p ¼ 1:54 � 10�4 for translation).

ATA for Hand–Eye Calibration in Robotic Surgery 1613



Tcorrupted ¼ T
rodriguesðrrvrÞ rtvt

~01�3 1

" #

ð26Þ

where rr; rt are standard deviation of a zero-mean
Gaussian noise for rotation and translation and vr; vt
are 3� 1 rotation vector and translation vector that
are generated randomly. The tested algorithm then
estimates camTrobot and we compare the estimated
transformation with the ground truth. This process is
run for 100 times for each simulation parameter.

The translation error is computed as the norm of the
difference between ground truth and the estimated
translation. Rotation error is computed as the magni-
tude of the residual rotation between ground truth and
the estimation using Rodrigues’ formula.20 The equa-
tions for computing error in translation and rotation
are shown in Eqs. (27)–(29), respectively.

Etranslation ¼ jjt1 � t2jj ð27Þ

~dx ¼ rodriguesðR1R
�1
2 Þ ð28Þ

Erotation ¼ jj ~dxjj ð29Þ

where t1; t2 are 3� 1 vectors representing the transla-
tion components, R1;R2 are the rotation matrices of
each transformation and rodrigues is a function that
returns a 3� 1 vector describing the rotation error.

The experiments are run on a 2.6 GHz Intel Core i7-
4510U laptop and ATA takes the processor around
one second to complete the initialisation for refinement
whereas the others take less than one second to con-
verge. The number of motions does not increase
computational cost but noisy data increases the time of
convergence of both ATA alternation and Levenberg–
Marquardt refinement. However, the computational
time is not a priority of the work as the hand–eye
calibration is typically an offline procedure.

ATA is also tested with real robots to study its
robustness and accuracy in the presence of noise
sources that might not be Gaussian. The robots used in
the experiments are the KUKA LBR IIWA 7 R800
and the da Vinci Surgical Robot Standard as shown in
Figs. 3a and 3b, respectively. A zero degree endoscope
is attached to the end-effector of both robots.

Unlike in the experiment with synthetic data, the
accurate ground truth for hand–eye transformation is
not known. Therefore, we assess the performance of
algorithms by predicting the camera pose from robot-
pose as shown in Eq. (30).5 For both robots, we collect
40 measurements and randomly select a smaller num-
ber N of measurements as input to each calibration
method in a succession of calibration trials (N is run
from 3 to 13, i.e. 2 to 12 motions for successive mo-

tions). The selection of measurements is randomly re-
peated for 100 times to get meaningful results. After
calibration, the solution is then used to predict the
camera pose of unused measurements (validation set)
which is compared with the pose retrieved from
extrinsic parameters estimation to get the rotation and
translation errors. As the camera pose prediction is
similar to the estimation of the extrinsic parameters,
we can assess the performance of the calibration
algorithm in terms of re-projection errors as well. The
evaluation of each sample is then averaged across the
number of samples.

camTgridðspredictedÞ ¼ ðXBX�1ÞcamTgridðs0Þ ð30Þ

For each experiment, we also run the one-way analysis
of variance (ANOVA) on the selected raw calibration
results to test whether the difference in the compar-
isons is statistically significant, i.e. the analysis is
applied to 100� 4 raw calibration errors in translation
and rotation components for each experiment since we
aim to compare the calibration performance from 4
algorithms in 100 samples. The selection criteria for the
analysis is based on the capability of the presently
available robotic systems. We only select a case for
each experiment that features the noise level that is
close to the noise resilience of the robot and the con-
figuration the robot can achieve in order to get an
optimal calibration result.

RESULTS

Experiment with Synthetic Data

This section compares synthetic calibration results
between ATA and the algorithms in the literature. We
start by displaying the effect of the error in the robotic
positioning system and the convergence rate when
ATA is initialised with different hand–eye methods or
the identity matrix. Later we compare calibration
accuracy of the existing methods with both monocular
and stereo information.5,16,36 Finally, we compare all
algorithms with the stereo set-up. In all experimental
sections, we denote our algorithm as ‘‘ATA’’ and as
following ‘‘TSAI’’,36 ‘‘IDQ’’16 and ‘‘DQ’’.5 Since
Fig. 5 shows that the use of stereo information
increases the calibration accuracy, the results shown in
subsequent Figures are generated from the use of
stereoscopic formulation only. The result of ANOVA
on selected simulated parameter is reported in the
caption of each plot.

Giving that the p value for each test is less than 5%,
we can deduce that the difference in calibration per-
formance from each algorithm is statistically signifi-
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cant. The same technique is applied in the experiment
with real data as well.

Effect of Error in the Robotic Positioning System

To compare the effect of the inaccuracy in robot
parameters, poses of a robot are generated and cor-
rupted by 0.025 mm Gaussian noise to simulate the
robot with 0.1 mm repeatability in the positioning
system. After that, we compare the projected
checkerboard from using uncorrupted and corrupted
poses. Figure 2a shows that most of the re-projection
error are higher than 1 pixel which shows that the noise
in the robotic positioning system is higher than the
noise in the camera calibration.

Convergence Rate with Different Initialisation Methods

As ATA requires an initialisation to start the iter-
ative solver, we also conduct an experiment to show
how the error converges when different methods are
applied to compute the initial solution. We use the
outputs of the existing hand–eye methods as well as the
identity matrix to initialise the solution. We test the
algorithm in two situations: when the hand–eye matrix
is close to identity (Fig. 4a) and when it is far from
identity (Fig. 4b). The results show that the solution of
our algorithm converges regardless of the starting
point.

Inclusion of Stereo Information

Figure 5 shows the comparison between hand–eye
calibration using monocular and stereoscopic formu-
lation for increasing additive noise. They show that
with respect to the same experimental conditions, using
stereo vision provides more accurate results. Accord-
ing to Eqs. (22)–(24), one motion of stereo vision can
provide three additional motion constraints to the
hand–eye calibration and it is shown in Fig. 5b that
increasing number of motions increases the calibration
accuracy. Moreover, the figure also shows that ATA is
more robust than the other methods when the noise
coefficient is increased. This result is more evident in
Figs. 6c, 6d, and 6e.

Increasing Motion Range

It is noted in the literature regarding hand–eye cal-
ibration that a wider motion range will enhance the
robustness of the solver. In data selection for the
hand–eye problem, we should select pairs of rigid
transformations containing wide rotation and transla-
tion motions to increase accuracy of the calibration.27

It is also shown in the literature that the error in
rotation is inversely proportional to the sine value of
rotation axes of either A or B.36 Examples of wide and

short motion ranges are shown in Figs. 3c and 3d,
respectively.

The results are displayed in Fig. 6a. The range of
magnitude in translation is incremented in steps of 3
mm from 3 to 30 mm. The magnitude of rotation range
is incremented in steps of 3� between 3� and 30�. These
motion ranges are in line with the small restricted
motions that are expected from robotic surgical
instruments.

All cases are evaluated with six input motions, 0.5
mm in translation Gaussian noise and 1� in rotation
Gaussian noise in both end-effector and camera mo-
tions. Motion range has a strong impact on the per-
formance of hand–eye calibration, and this will greatly
impact the results in the experiments with real data.

Increasing Number of Motions

Figure 6b shows the calibration accuracy when the
number of motions is increased. As with the previous
experiment, we apply a constant noise of 0.5 mm in
translation and 1� in rotation both end-effector and
camera motions. Motion range in this experiment is
also kept fixed at 10 mm in translation and 10� in
rotation. It is shown in Fig. 6b that ATA outperforms
the other method for any number of motions.

Increasing Gaussian Noise

Figures 6c, 6d, and 6e display the results when
increasing zero-mean Gaussian noise is added to the
camera, the robot, and stereo information. Noise in
translation is increased in 0.2 millimetre steps from 0
millimetre to 2 millimetre, while noise in rotation is
increased in a step of 0.2� from 0 to 2�. In each sim-
ulation, 6 input motions and the same motion range as
previous experiment are used.

Cameras are often considered as noise free sensors
in the context of robotics. In spite of intrinsic cali-
bration sub-pixel errors, these are normally negligible
when compared to errors propagated through a robot
manipulator’s kinematic chain. Robot hand pose is
obtained from noisy nominal kinematic parameters
that usually do not consider stress and strain in strings
and cables in the presence of gravitational force. Fig-
ure 6c displays result when noise is added to end-ef-
fector’s movement. As expected, error increases with
noise, however, ATA’s performance degrades at a
slower rate than all the other tested algorithms.

Figure 6d shows the result when noise is added on
both camera and end-effector motions. The calibration
error with ATA increases at a slower rate than the
other approaches for both rotation and translation.

The result presented in Fig. 6e is the closest to the
scenario with real data. In the case of using stereo vi-
sion, not only the camera intrinsics and the robot
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kinematic parameters are noisy, but there is also an
error associated with the extrinsic stereo calibration.
As in the previous cases, ATA is the best performer for
an increasing noise.

Experiments with Real Data

Experiments with the KUKA LBR IIWA 7 R800

Figure 3c shows all camera poses that are used in
the validation process. The poses are collected by
moving the robot manually. We can observe that the
poses are spread diversely above the grid. This kind of

measurement increases the accuracy of the hand–eye
calibration, according to the results shown in Fig. 6a.

As it can be observed from the results in Fig. 7a,
ATA slightly outperforms existing algorithms and
achieves the smallest error in camera pose estimation.
The rotation error is below one degree and translation
error is approximately 1 millimetre. KUKA LBR
IIWA 7 R800 is well-known for its accurate position-
ing system and camera calibration is also known to
have sub-pixel re-projection error. However, a small
error in the input data can produce a significantly
higher error in the hand–eye calibration, which is in

FIGURE 6. Stereo hand–eye performance comparison with synthetic data. Distribution (mean, standard deviation) of translation
and rotation errors for ATA, improved dual quaternions (IDQ), Tsai’s linear method (TSAI) and dual quaternions (DQ): (a) Increasing
motion range (at the motion range of 30� and 30 mm, p ¼ 3:55 � 10�16 for rotation and p ¼ 1:12 � 10�18 for translation). (b)
Increasing number of motions (at the number of motions of 12, p ¼ 1:51 � 10�17 for rotation and p ¼ 5:19 � 10�7 for translation). (c)
Increasing noise in robot motion (at the noise coefficients of 0.2� and 0.4 mm, p ¼ 1:91 � 10�7 for rotation and p ¼ 2:02 � 10�5 for
translation). (d) Increasing noise in both robot and camera motion (at the noise coefficients of 0.2� and 0.4 mm, p ¼ 1:46 � 10�8 for
rotation and p ¼ 1:57 � 10�6 for translation). (e) Increasing noise in robot motion, camera motion and stereo calibration (at the
noise coefficients of 0.2� and 0.4 mm, p ¼ 6:33 � 10�10 for rotation and p ¼ 3:19 � 10�4 for translation).
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accordance with the simulation results described in
Fig. 6.

Figure 8 shows the re-projection error in pixels
when the grid in the world coordinates is projected
back to the image. The result shows that ATA has the
smallest the re-projection error among all methods.

Experiment with da Vinci Classic

Unlike the camera pose in KUKA data, the da Vinci
Classic has a rather small workspace therefore the
motion range cannot be as varied as with KUKA data
(Fig. 3d). The camera tends to stay in the insertion axis

FIGURE 7. (a) Error in translation and rotation when algorithms are tested with KUKA’s data (at the number of motions of 12,
p ¼ 2:30 � 10�3 for rotation and p ¼ 1:89 � 10�12 for translation). (b) Error in translation and rotation when algorithms are tested
with da Vinci data (at the number of motions of 12, p ¼ 9:15 � 10�14 for rotation and p ¼ 1:18 � 10�16 for translation).

FIGURE 8. Re-projection error when predicted poses are projected back to images, KUKA data (left, at the number of motions of
12, p ¼ 2:01 � 10�18) and da Vinci data (right, at the number of motions of 12, p ¼ 3:64 � 10�17).
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of the robot with limited translation and rotation
movements. This makes hand–eye calibration signifi-
cantly more challenging, as shown in Fig. 6a. More-
over, according to the literature, the da Vinci
positioning system can only be accurate within a 5-cm
cube. Therefore, the positioning system of the da Vinci
is not as precise as the KUKA when the overall motion
does not stay in that volume. As a result, DQ method
cannot achieve stable calibration results in comparison
to the other algorithms and it is then omitted in this
experiment.

The calibration results and re-projection error can
be observed in Figs. 7b and 8 which show that ATA
also outperforms the other algorithms in this experi-
ment. Similar to previous experiments, with da Vinci
data, increasing the number of motions also increases
the accuracy of hand–eye calibration, however the re-
sults converge to calibrations with higher errors than in
the KUKA experiment. The insufficiently wide motion
range is thus the bottleneck parameter in achieving
more accurate hand–eye estimations with the da Vinci
system.

DISCUSSION

In this work, we develop a hand–eye calibration
algorithm that uses constraints derived from screw
motion and stereo information to enhance the cali-
bration accuracy in surgical robots. By implementing
the constraints into the calibration, our method out-
performs any state-of-the-art hand–eye algorithm in
the surgical robot environment. Based on the results
shown in the previous section, we believe that our
developed algorithm creates an improvement in solv-
ing the calibration problem in surgical robots.

Firstly, one of the key findings of the algorithm is
that our algorithm can deal with the noise in the robot
parameters. The compositions of surgical robots usu-
ally cannot provide a sufficiently accurate data for the
RMIS applications which require a precise positioning
system. The inaccuracy in the robot parameters create
a significant drift in the re-projected image as shown in
Fig. 2 which in turn propagate the error to a hand-held
camera motion defined in the robot coordinate frame.
However, the camera motion can also be estimated
using camera calibration25 which provides more accu-
rate data for hand–eye problem. Therefore, one of the
reasons why our algorithm works better than the other
quaternion approaches is its ability to use the more
accurate pose from a camera in the translation esti-
mation instead of using the noisy orientation of the
robot pose.

The second finding of the paper is the improvement
of calibration accuracy as a result of using stereo

constraints. RMIS usually involves using stereo cam-
era in the procedure for navigation and localisation
purposes. The algorithm makes use of the pre-cali-
brated stereo camera to enhance the hand–eye cali-
bration accuracy. Our results show the clear accuracy
improvements when including more motion con-
straints into the calibration. Furthermore, the algo-
rithm is also tested with data from the surgical robots.
This ensures that the calibration algorithm can still
work well, even with the real data that contain the
inaccuracy that occurs in a surgical environment.

The main impact of this finding is a robust to noise
hand–eye calibration approach which offers a sub-
millimetre calibration accuracy. The recovered hand–
eye transformation links the information that is on the
camera-end (surgical instruments, tissues and other
structures at the surgical side) to the robot-end (kine-
matic and control). This introduces a potential of
having an accurate real-time localisation of the whole
surgical environment which in turn can be developed
to visual servoing application, dynamic virtual fixtures
and assisted instrument guidance using vision.

The only limitation of our approach is that it still
cannot deal with a small range of camera motions.
This problem has been well defined in hand–eye liter-
ature.27 It is essential to perform a wide range of
camera motions in order to obtain accurate calibra-
tions, however, in the endoscopic surgical environment
and RMIS the camera motion is confined within a
small volume around a pre-defined RCM. The results
in Fig. 7b clearly show that the calibration accuracy
deteriorates when the range of motion is smaller in
comparison with the experiment with the KUKA
(Figs. 3c and 3d). However, it is possible that the use of
a checkerboard as the calibration object restricts the
camera motion because it has to be kept in the camera
frame. Therefore, using other calibration targets may
increase flexibility21 in camera motion which will in-
crease the performance of the calibration accordingly.

To summarise, the main contributions of this paper
are an alternative solution for the hand–eye problem
and a novel stereo formulation that can work with any
existing approach within an iterative scheme. We
provide a detailed experimental evaluation and com-
parison with existing approaches showing improved
performance on both synthetic and real data. Our new
method alternates between translation and rotation
estimation until convergence using the newly devel-
oped constraints from the adjoint transformation in
the hand–eye problem. It is shown experimentally that
the algorithm converges regardless of its initialisation
and thus it can be used as a standalone method. In the
context of surgical robotics, we show that the most
challenging factor in obtaining accurate calibrations is
the limited workspace but despite this challenge our
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approach performs well. In future work, we will relax
the requirements for calibration objects in order to
introduce a possibility of having wider range of mo-
tions to increase the calibration accuracy and also
enhance the applicability of the method to a real sur-
gical procedure where bootstrapped approaches im-
pede clinical workflow. For this purpose we plan to
investigate other models of calibration objects, that
allow to establish priors on shapes in the scene and use
SfM methodologies.

APPENDIX

This section shows the formula of the mapping
betweenLie algebra and rigid transformation.LetAbe a
rigid transformationwith a correspondingLie algebra a.

A ¼ R ~t

~01�3 1

� �
¼ expmðaÞ ð31Þ

a ¼
½~x�� ~v

~01�3 0

" #

ð32Þ

Lie algebra a is always of the form as shown in the
equation above. The elements in this Lie algebra are
calculated from Eqs. (33)–(36).20

h ¼ arccos
traceðRÞ � 1

2

� �
ð33Þ

½~x�� ¼ h
2 sin h

ðR� RTÞ ð34Þ

V ¼I3 þ
1� cos h

h2
½~x�� þ h� sin h

h3
½~x�2� ð35Þ

~v ¼V�1~t ð36Þ
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