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SUMMARY

The Davis–Kahan theorem is used in the analysis of many statistical procedures to bound
the distance between subspaces spanned by population eigenvectors and their sample versions. 10

It relies on an eigenvalue separation condition between certain relevant population and sample
eigenvalues. We present a variant of this result that depends only on a population eigenvalue
separation condition, making it more natural and convenient for direct application in statistical
contexts, and provide an improvement in many cases to the usual bound in the statistical litera-
ture. We also give an extension to situations where the matrices under study may be asymmetric 15

or even non-square, and where interest is in the distance between subspaces spanned by corre-
sponding singular vectors.

Some key words: Davis–Kahan theorem; Eigendecomposition; Matrix perturbation; Singular value decomposition.

1. INTRODUCTION

Many statistical procedures rely on the eigendecomposition of a matrix. Examples include 20

principal components analysis and its cousin sparse principal components analysis (Zou et al.,
2006), factor analysis, high-dimensional covariance matrix estimation (Fan et al., 2013) and
spectral clustering for community detection with network data (Donath and Hoffman, 1973). In
these and most other related statistical applications, the matrix involved is real and symmetric,
e.g. a covariance or correlation matrix, or a graph Laplacian or adjacency matrix in the case of 25

spectral clustering.
In the theoretical analysis of such methods, it is frequently desirable to be able to argue that if a

sample version of this matrix is close to its population counterpart, and provided certain relevant
eigenvalues are well-separated in a sense to be made precise below, then a population eigenvec-
tor should be well approximated by a corresponding sample eigenvector. A quantitative version 30

of such a result is provided by the Davis–Kahan sin θ theorem (Davis and Kahan, 1970). This
is a deep theorem from operator theory, involving operators acting on Hilbert spaces, though as
remarked by Stewart and Sun (1990), its ‘content more than justifies its impenetrability’. In sta-
tistical applications, we typically do not require this full generality; in Theorem 1 below, we state
a version in a form typically used in the statistical literature (e.g. von Luxburg, 2007; Rohe et al., 35

2011). Since the theorem allows for the possibility that more than one eigenvector is of interest,
we need to define a notion of distance between subspaces spanned by two sets of vectors. This
can be done through the idea of principal angles: if V, V̂ ∈ Rp×d both have orthonormal columns,
then the vector of d principal angles between their column spaces is (cos−1 σ1, . . . , cos−1 σd)>,
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where σ1 ≥ · · · ≥ σd are the singular values of V̂ >V . Thus, principal angles between subspaces40

can be considered as a natural generalization of the acute angle between two vectors. We let
Θ(V̂ , V ) denote the d× d diagonal matrix whose jth diagonal entry is the jth principal angle,
and let sin Θ(V̂ , V ) be defined entrywise. A convenient way to measure the distance between
the column spaces of V and V̂ is via ‖ sin Θ(V̂ , V )‖F, where ‖ · ‖F denotes the Frobenius norm
of a matrix.45

THEOREM 1 (DAVIS–KAHAN sin θ THEOREM). Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigen-
values λ1 ≥ · · · ≥ λp and λ̂1 ≥ · · · ≥ λ̂p respectively. Fix 1 ≤ r ≤ s ≤ p, let d = s− r + 1,
and let V = (vr, vr+1, . . . , vs) ∈ Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthonormal
columns satisfying Σvj = λjvj and Σ̂v̂j = λ̂j v̂j for j = r, r + 1, . . . , s. Write δ = inf{|λ̂− λ| :
λ ∈ [λs, λr], λ̂ ∈ (−∞, λ̂s+1] ∪ [λ̂r−1,∞)}, where we define λ̂0 = −∞ and λ̂p+1 =∞, and as-50

sume that δ > 0. Then

‖ sin Θ(V̂ , V )‖F ≤
‖Σ̂− Σ‖F

δ
. (1)

Theorem 1 is an immediate consequence of Theorem V.3.6 of Stewart and Sun (1990). De-
spite the attractions of this bound, an obvious difficulty for statisticians is that we may have
δ = 0 for a particular realization of Σ̂, even when the population eigenvalues are well-separated.
As a toy example to illustrate this point, suppose that Σ = diag(50, 40, 30, 20, 10) and Σ̂ =55

diag(54, 37, 32, 23, 21). If we are interested in the eigenspaces spanned by the eigenvectors cor-
responding to the second, third and fourth largest eigenvalues, so r = 2 and s = 4, then Theo-
rem 1 above cannot be applied, because δ = 0.

Ignoring this issue for the moment, we remark that both occurrences of the Frobenius norm
in (1) can be replaced with the operator norm ‖ · ‖op, or any other orthogonally invariant norm.60

Frequently in applications, we have r = s = j, say, in which case we can conclude that

sin Θ(v̂j , vj) ≤
‖Σ̂− Σ‖op

min(|λ̂j−1 − λj |, |λ̂j+1 − λj |)
.

Since we may reverse the sign of v̂j if necessary, there is a choice of orientation of v̂j for which
v̂>j vj ≥ 0. For this choice, we can also deduce that ‖v̂j − vj‖ ≤ 21/2 sin Θ(v̂j , vj), where ‖ · ‖
denotes the Euclidean norm.

Theorem 1 is typically used to show that v̂j is close to vj as follows: first, we argue that65

Σ̂ is close to Σ. This is often straightforward; for instance, when Σ is a population covari-
ance matrix, it may be that Σ̂ is just an empirical average of independent and identically dis-
tributed random matrices; cf. Section 3. Then we argue, e.g. using Weyl’s inequality (Weyl,
1912; Stewart and Sun, 1990), that with high probability, |λ̂j−1 − λj | ≥ (λj−1 − λj)/2 and
|λ̂j+1 − λj | ≥ (λj − λj+1)/2, so on these events ‖v̂j − vj‖ is small provided we are also willing70

to assume an eigenvalue separation, or eigen-gap, condition on the population eigenvalues.
The main contribution of this paper, in Theorem 2 in Section 2 below, is to give a variant of

the Davis–Kahan sin θ theorem that has two advantages for statisticians. First, the only eigen-gap
condition is on the population eigenvalues, in contrast to the definition of δ in Theorem 1 above.
Similarly, only population eigenvalues appear in the denominator of the bounds. This means75

there is no need for the statistician to worry about the event where |λ̂j−1 − λj | or |λ̂j+1 − λj | is
small. Second, we show that the expression ‖Σ̂− Σ‖F appearing in the numerator of the bound
in (1) can be replaced with min(d1/2‖Σ̂− Σ‖op, ‖Σ̂− Σ‖F). In Section 3, we give applications
where our result could be used to allow authors to assume more natural conditions or to simplify
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proofs, and also give a detailed example to illustrate the potential improvements of our bounds. 80

The recent result of Vu et al. (2013, Corollary 3.1) has some overlap with our Theorem 2. We
discuss the differences between our work and theirs shortly after the statement of Theorem 2.

Singular value decomposition, which may be regarded as a generalization of eigendecom-
position, but which exists even when a matrix is not square, also plays an important role in
many modern algorithms in statistics and machine learning. Examples include matrix comple- 85

tion (Candès and Recht, 2009), robust principal components analysis (Candès et al., 2009) and
motion analysis (Kukush et al., 2002), among many others. Wedin (1972) provided the analogue
of the Davis–Kahan sin θ theorem for such general real matrices, working with singular vectors
rather than eigenvectors, but with conditions and bounds that mix sample and population singular
values. In Section 4, we extend the results of Section 2 to such settings; again our results depend 90

only on a condition on the population singular values. Proofs are deferred to the Appendix.

2. MAIN RESULTS

THEOREM 2. Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues λ1 ≥ · · · ≥ λp and λ̂1 ≥
· · · ≥ λ̂p respectively. Fix 1 ≤ r ≤ s ≤ p and assume that min(λr−1 − λr, λs − λs+1) > 0,
where we define λ0 =∞ and λp+1 = −∞. Let d = s− r + 1, and let V = (vr, vr+1, . . . , vs) ∈ 95

Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthonormal columns satisfying Σvj = λjvj and
Σ̂v̂j = λ̂j v̂j for j = r, r + 1, . . . , s. Then

‖ sin Θ(V̂ , V )‖F ≤
2 min(d1/2‖Σ̂− Σ‖op, ‖Σ̂− Σ‖F)

min(λr−1 − λr, λs − λs+1)
. (2)

Moreover, there exists an orthogonal matrix Ô ∈ Rd×d such that

‖V̂ Ô − V ‖F ≤
23/2 min(d1/2‖Σ̂− Σ‖op, ‖Σ̂− Σ‖F)

min(λr−1 − λr, λs − λs+1)
. (3)

As mentioned briefly in the introduction, apart from the fact that we only impose a population
eigen-gap condition, the main difference between this result and that given in Theorem 1 is in 100

the min(d1/2‖Σ̂− Σ‖op, ‖Σ̂− Σ‖F) term in the numerator of the bounds. In fact, the original
statement of the Davis–Kahan sin θ theorem has a numerator of ‖V Λ− Σ̂V ‖F in our notation,
where Λ = diag(λr, λr+1, . . . , λs). However, in order to apply that theorem in practice, statis-
ticians have bounded this expression by ‖Σ̂− Σ‖F, yielding the bound in Theorem 1. When p
is large, though, one would often anticipate that ‖Σ̂− Σ‖op, which is the `∞ norm of the vector 105

of eigenvalues of Σ̂− Σ, may well be much smaller than ‖Σ̂− Σ‖F, which is the `2 norm of
this vector of eigenvalues. Thus when d� p, as will often be the case in practice, the minimum
in the numerator may well be attained by the first term. It is immediately apparent from (A3)
and (A4) in our proof that the smaller numerator ‖V̂ Λ− ΣV̂ ‖F could also be used in our bound
for ‖ sin Θ(V̂ , V )‖F in Theorem 2, while 21/2‖V̂ Λ− ΣV̂ ‖F could be used in our bound for 110

‖V̂ Ô − V ‖F. Our reason for presenting the weaker bound in Theorem 2 is to aid direct applica-
bility; see Section 3 for examples.

As mentioned in the introduction, Vu et al. (2013, Corollary 3.1) is similar in spirit to Theo-
rem 2 above, and only involves a population eigen-gap condition, but there are some important
differences. First, their result focuses on the eigenvectors corresponding to the top d eigenval- 115

ues, whereas ours applies to any set of d eigenvectors corresponding to a block of d consecutive
eigenvalues, as in the original Davis–Kahan theorem. Their proof, which uses quite different
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techniques from ours, does not appear to generalize immediately to this setting. Second, Corol-
lary 3.1 of Vu et al. (2013) does not include the d1/2‖Σ̂− Σ‖op term in the numerator of the
bound. As discussed in the previous paragraph, it is this term that would typically be expected to120

attain the minimum in (2), especially in high-dimensional contexts. We also provide Theorem 3
to generalize the result to asymmetric or non-square matrices.

The constants presented in Theorem 2 are sharp, as the following example illustrates. Fix
d ∈ {1, . . . , bp/2c} and let Σ = diag(λ1, . . . , λp), where λ1 = · · · = λp−2d = 5, λp−2d+1 =

· · · = λp−d = 3 and λp−d+1 = · · · = λp = 1. Suppose that Σ̂ is also diagonal, with first p− 2d125

diagonal entries equal to 5, next d diagonal entries equal to 2, and last d diagonal entries equal to
2 + ε, for some ε ∈ (0, 3). If we are interested in the middle block of eigenvectors corresponding
to those with corresponding eigenvalue 3 in Σ, then for every orthogonal matrix Ô ∈ Rd×d,

‖V̂ Ô − V ‖F = 21/2‖ sin Θ(V̂ , V )‖F = (2d)1/2 ≤ (2d)1/2(1 + ε)

=
23/2d1/2‖Σ̂− Σ‖op

min(λp−2d − λp−2d+1, λp−d − λp−d+1)
.130

In this example, the column spaces of V and V̂ were orthogonal. However, even when these
column spaces are close, our bound (2) is tight up to a factor of 2, while our bound (3) is tight up
to a factor of 23/2. To see this, suppose that Σ = diag(3, 1) while Σ̂ = V̂ diag(3, 1)V̂ >, where

V̂ =

(
(1− ε2)1/2 −ε

ε (1− ε2)1/2

)
for some ε > 0. If v = (1, 0)> and v̂ =

(
(1− ε2)1/2,−ε

)> denote the top eigenvectors of Σ and
Σ̂ respectively, then135

sin Θ(v̂, v) = ε, ‖v̂ − v‖2 = 2− 2(1− ε2)1/2, 2‖Σ̂− Σ‖op
3− 1

= 2ε.

Another theorem in Davis and Kahan (1970), the so-called sin 2θ theorem, provides a bound
for ‖ sin 2Θ(V̂ , V )‖F assuming only a population eigen-gap condition. In the case d = 1, this
quantity can be related to the square of the length of the difference between the sample and
population eigenvectors v̂ and v as follows:

sin2 2Θ(v̂, v) = (2v̂>v)2{1− (v̂>v)2} =
1

4
‖v̂ − v‖2(2− ‖v̂ − v‖2)(4− ‖v̂ − v‖2). (4)

Equation (4) reveals, however, that ‖ sin 2Θ(V̂ , V )‖F is unlikely to be of immediate interest140

to statisticians, and we are not aware of applications of the Davis–Kahan sin 2θ theorem in
statistics. No general bound for ‖ sin Θ(V̂ , V )‖F or ‖V̂ Ô − V ‖F can be derived from the Davis–
Kahan sin 2θ theorem since we would require further information such as v̂>v ≥ 1/21/2 when
d = 1, which would typically be unavailable. The utility of our bound comes from the fact that
it provides direct control of the main quantities of interest to statisticians.145

Many if not most applications of this result will only need s = r, i.e. d = 1. In that case, the
statement simplifies a little; for ease of reference, we state it as a corollary:

COROLLARY 1. Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues λ1 ≥ · · · ≥ λp and λ̂1 ≥
· · · ≥ λ̂p respectively. Fix j ∈ {1, . . . , p}, and assume that min(λj−1 − λj , λj − λj+1) > 0,
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where we define λ0 =∞ and λp+1 = −∞. If v, v̂ ∈ Rp satisfy Σv = λjv and Σ̂v̂ = λ̂j v̂, then 150

sin Θ(v̂, v) ≤ 2‖Σ̂− Σ‖op
min(λj−1 − λj , λj − λj+1)

.

Moreover, if v̂>v ≥ 0, then

‖v̂ − v‖ ≤ 23/2‖Σ̂− Σ‖op
min(λj−1 − λj , λj − λj+1)

.

3. APPLICATIONS IN STATISTICAL CONTEXTS

In the introduction, we explained how the fact that our variant of the Davis–Kahan sin θ theo-
rem only relies on a population eigen-gap condition can be used to simplify many arguments in
the statistical literature. These include the work of Fan et al. (2013) on large covariance matrix 155

estimation problems, Cai et al. (2013) on sparse principal component estimation, and an unpub-
lished 2013 technical report by J. Fan and X. Han on estimating the false discovery proportion in
large-scale multiple testing with highly correlated test statistics. Although our notation suggests
that we have covariance matrix estimation in mind, we emphasize that the real, symmetric ma-
trices in Theorem 2 are arbitrary, and could be for example inverse covariance matrices, or graph 160

Laplacians as in the work of von Luxburg (2007) and Rohe et al. (2011) on spectral clustering in
community detection with network data.

We now give some simple examples to illustrate the improvements afforded by our bound in
Theorem 2. Consider the spiked covariance model in whichX1, . . . , Xn are independent random
vectors having the Np(0,Σ) distribution, where Σ = (Σjk) is a diagonal matrix with Σjj = 165

1 + θ for some θ > 0 for 1 ≤ j ≤ d and Σjj = 1 for d+ 1 ≤ j ≤ p. Let Σ̂ = n−1
∑n

i=1XiX
>
i

denote the sample covariance matrix, and let V and V̂ denote the matrices whose columns are
unit-length eigenvectors corresponding to the d largest eigenvalues of Σ and Σ̂ respectively.
Fixing n = 1000, p = 200, d = 10 and θ = 1, we found that our bound (2) from Theorem 2 was
an improvement over that from (1) in every one of 100 independent data sets drawn from this 170

model. In fact no bound could be obtained from Theorem 1 for 25 realizations because δ defined
in that result was zero. The median value of ‖ sin Θ(V̂ , V )‖F was 1·80, while the median values
of the right-hand sides of (2) and (1) were 7·30 and 376 respectively. Some insight into the
reasons for this marked improvement can be gained by considering an asymptotic regime in
which p/n→ γ ∈ (0, 1) as n→∞ and d and θ are considered fixed. Then, in the notation of 175

Theorem 1,

δ = max(λd − λ̂d+1, 0)→ max(θ − 2γ1/2 − γ, 0),

almost surely, where the limit follows from Baik and Silverstein (2006, Theorem 1.1). On the
other hand, the denominator of the right-hand side of (2) in Theorem 2 is θ, which may be much
larger than max(θ − 2γ1/2 − γ, 0). For the numerator, in this example, it can be shown that

E(‖Σ̂− Σ‖2F) =
p(p+ 2)

n
+

2d(p+ 2)

n
θ +

d(d+ 2)

n
θ2 ≥ p2

n
.

Moreover, by Theorem 1.1(b) of Baik, Ben Arous and Péché (2005) and a uniform integrability 180

argument,

E(‖Σ̂− Σ‖2op) ≤ E{(λ̂1 − 1)2} →
{
θ +

(1 + θ)γ

θ

}2

.



6 Y. YU, T. WANG AND R. J. SAMWORTH

We therefore expect the minimum in the numerator of (2) to be attained by the term d1/2‖Σ̂−
Σ‖op in this example.

To illustrate our bound in a high-dimensional context, consider the data generating mecha-
nism in our previous example. Given an even integer k ∈ {1, . . . , p}, let Σ̂ = Σ̂k be the tapering185

estimator for high-dimensional sparse covariance matrices introduced by Cai et al. (2010). In
other words, Σ̂ is the Hadamard product of the sample covariance matrix and a weight matrix
W = (wij) ∈ Rp×p, where

wij =


1, |i− j| ≤ k/2,
2− 2|i−j|

k , k/2 < |i− j| < k,
0, otherwise.

To compare the bounds provided by Theorems 1 and 2, we drew 100 data sets from this model
for each of the settings n ∈ {1000, 2000}, p ∈ {2000, 4000}, d = 10, θ = 1 and k = 20. The190

bound (2) improved on that in (1) for every realisation in each setting; the medians of these
bounds are presented in Table 1.

Table 1. Median values of the bounds obtained from (1) and (2)

n p RHS1 RHS2 n p RHS1 RHS2

1000 2000 12·1 2·65 1000 4000 17·3 2·69
2000 2000 7·20 1·92 2000 4000 10·2 1·90

RHS1, the bound obtained from (1); RHS2, the bound obtained from (2).

4. EXTENSION TO GENERAL REAL MATRICES

We now describe how the results of Section 2 can be extended to situations where the ma-
trices under study may not be symmetric and may not even be square, and where interest is in195

controlling the principal angles between corresponding singular vectors.

THEOREM 3. Suppose thatA, Â ∈ Rp×q have singular values σ1 ≥ · · · ≥ σmin(p,q) and σ̂1 ≥
· · · ≥ σ̂min(p,q) respectively. Fix 1 ≤ r ≤ s ≤ rank(A) and assume that min(σ2r−1 − σ2r , σ2s −
σ2s+1) > 0, where we define σ20 =∞ and σ2rank(A)+1 = −∞. Let d = s− r + 1, and let V =

(vr, vr+1, . . . , vs) ∈ Rq×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rq×d have orthonormal columns sat-200

isfying Avj = σjuj and Âv̂j = σ̂j ûj for j = r, r + 1, . . . , s. Then

‖ sin Θ(V̂ , V )‖F ≤
2(2σ1 + ‖Â−A‖op) min(d1/2‖Â−A‖op, ‖Â−A‖F)

min(σ2r−1 − σ2r , σ2s − σ2s+1)
.

Moreover, there exists an orthogonal matrix Ô ∈ Rd×d such that

‖V̂ Ô − V ‖F ≤
23/2(2σ1 + ‖Â−A‖op) min(d1/2‖Â−A‖op, ‖Â−A‖F)

min(σ2r−1 − σ2r , σ2s − σ2s+1)
.

Theorem 3 gives bounds on the proximity of the right singular vectors of Σ and Σ̂. Identical
bounds also hold if V and V̂ are replaced with the matrices of left singular vectors U and Û ,
where U = (ur, ur+1, . . . , us) ∈ Rp×d and Û = (ûr, ûr+1, . . . , ûs) ∈ Rp×d have orthonormal205

columns satisfying A>uj = σjvj and Â>ûj = σ̂j v̂j for j = r, r + 1, . . . , s.
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As mentioned in the introduction, Theorem 3 can be viewed as a variant of the generalized
sin θ theorem of Wedin (1972). Similar to the situation for symmetric matrices, there are many
places in the statistical literature where Wedin’s result has been used, but where we argue that
Theorem 3 above would be a more natural result to which to appeal. Examples include the papers 210

of Van Huffel and Vandewalle (1989) on the accuracy of least squares techniques, Anandkumar
et al. (2014) on tensor decompositions for learning latent variable models, Shabalin and Nobel
(2013) on recovering a low rank matrix from a noisy version and Sun and Zhang (2012) on
matrix completion.
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APPENDIX 220

We first state an elementary lemma that will be useful in several places.

LEMMA A1. Let A ∈ Rm×n, and let U ∈ Rm×p and W ∈ Rn×q both have orthonormal rows. Then

‖U>AW‖F = ‖A‖F.

If instead U ∈ Rm×p and W ∈ Rn×q both have orthonormal columns, then

‖U>AW‖F ≤ ‖A‖F.

Proof. For the first claim,

‖U>AW‖2F = tr(U>AWW>A>U) = tr(AA>UU>) = tr(AA>) = ‖A‖2F.

For the second part, find a matrix U1 ∈ Rm×(m−p) such that
(
U U1

)
is orthogonal, and a matrix W1 ∈ 225

Rn×(n−q) such that
(
W W1

)
is orthogonal. Then

‖A‖F =

∥∥∥∥∥
(
U>

U>1

)
A
(
W W1

)∥∥∥∥∥
F

≥

∥∥∥∥∥
(
U>

U>1

)
AW

∥∥∥∥∥
F

≥ ‖U>AW‖F.

Proof of Theorem 2. Let Λ = diag(λr, λr+1, . . . , λs) and Λ̂ = diag(λ̂r, λ̂r+1, . . . , λ̂s). Then

0 = Σ̂V̂ − V̂ Λ̂ = ΣV̂ − V̂ Λ + (Σ̂− Σ)V̂ − V̂ (Λ̂− Λ).

Hence

‖V̂ Λ− ΣV̂ ‖F ≤ ‖(Σ̂− Σ)V̂ ‖F + ‖V̂ (Λ̂− Λ)‖F
≤ d1/2‖Σ̂− Σ‖op + ‖Λ̂− Λ‖F ≤ 2d1/2‖Σ̂− Σ‖op, (A1) 230

where we have used Lemma 1 in the second inequality and Weyl’s inequality (e.g. Stewart and Sun, 1990,
Corollary IV.4.9) for the final bound. Alternatively, we can argue that

‖V̂ Λ− ΣV̂ ‖F ≤ ‖(Σ̂− Σ)V̂ ‖F + ‖V̂ (Λ̂− Λ)‖F
≤ ‖Σ̂− Σ‖F + ‖Λ̂− Λ‖F ≤ 2‖Σ̂− Σ‖F, (A2)

where the second inequality follows from two applications of Lemma 1, and the final inequality follows 235

from the Wielandt–Hoffman theorem (e.g. Wilkinson, 1965, pp. 104–8).
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Let Λ1 = diag(λ1, . . . , λr−1, λs+1, . . . , λp), and let V1 be a p× (p− d) matrix such that P =
(
V V1

)
is orthogonal and such that

P>ΣP =

(
Λ 0
0 Λ1

)
.

Then

‖V̂ Λ− ΣV̂ ‖F = ‖V V >V̂ Λ + V1V
>
1 V̂ Λ− V ΛV >V̂ − V1Λ1V

>
1 V̂ ‖F240

≥ ‖V1V >1 V̂ Λ− V1Λ1V
>
1 V̂ ‖F ≥ ‖V >1 V̂ Λ− Λ1V

>
1 V̂ ‖F, (A3)

where the first inequality follows because V >V1 = 0, and the second from another application of
Lemma 1. For real matrices A and B, we write A⊗B for their Kronecker product (e.g. Stewart and Sun,
1990, p. 30) and vec(A) for the vectorization of A, i.e. the vector formed by stacking its columns. We
recall the standard identity vec(ABC) = (C> ⊗A)vec(B), which holds whenever the dimensions of the245

matrices are such that the matrix multiplication is well-defined. We also write Im for the m-dimensional
identity matrix. Then

‖V >1 V̂ Λ− Λ1V
>
1 V̂ ‖F = ‖(Λ⊗ Ip−d − Id ⊗ Λ1)vec(V >1 V̂ )‖

≥ min(λr−1 − λr, λs − λs+1)‖vec(V >1 V̂ )‖
= min(λr−1 − λr, λs − λs+1)‖ sin Θ(V̂ , V )‖F, (A4)250

since

‖vec(V >1 V̂ )‖2 = tr(V̂ >V1V
>
1 V̂ ) = tr

{
(Ip − V V >)V̂ V̂ >

}
= d− ‖V̂ >V ‖2F
= ‖ sin Θ(V̂ , V )‖2F.

We deduce from (A4), (A3), (A2) and (A1) that

‖ sin Θ(V̂ , V )‖F ≤
‖V >1 V̂ Λ− Λ1V

>
1 V̂ ‖F

min(λr−1 − λr, λs − λs+1)
≤ 2 min(d1/2‖Σ̂− Σ‖op, ‖Σ̂− Σ‖F)

min(λr−1 − λr, λs − λs+1)
,

as required.255

For the second conclusion, by a singular value decomposition, we can find orthogonal matrices
Ô1, Ô2 ∈ Rd×d such that Ô>1 V̂

>V Ô2 = diag(cos θ1, . . . , cos θd), where θ1, . . . , θd are the principal an-
gles between the column spaces of V and V̂ . Setting Ô = Ô1Ô

>
2 , we have

‖V̂ Ô − V ‖2F = tr
{

(V̂ Ô − V )>(V̂ Ô − V )
}

= 2d− 2tr(Ô2Ô
>
1 V̂
>V )

= 2d− 2

d∑
j=1

cos θj ≤ 2d− 2

d∑
j=1

cos2 θj = 2‖ sin Θ(V̂ , V )‖2F. (A5)260

The result now follows from our first conclusion. �

Proof of Theorem 3. The matrices A>A, Â>Â ∈ Rq×q are symmetric, with eigenvalues σ2
1 ≥ · · · ≥

σ2
q and σ̂2

1 ≥ · · · ≥ σ̂2
q respectively. Moreover, we have A>Avj = σ2

j vj and Â>Âv̂j = σ̂2
j v̂j for j =

r, r + 1, . . . , s. We deduce from Theorem 2 that

‖ sin Θ(V̂ , V )‖F ≤
2 min(d1/2‖Â>Â−A>A‖op, ‖Â>Â−A>A‖F)

min(σ2
r−1 − σ2

r , σ
2
s − σ2

s+1)
. (A6)

Now, by the submultiplicity of the operator norm,265

‖Â>Â−A>A‖op = ‖(Â−A)>Â+A>(Â−A)‖op ≤ (‖Â‖op + ‖A‖op)‖Â−A‖op
≤ (2σ1 + ‖Â−A‖op)‖Â−A‖op. (A7)
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On the other hand,

‖Â>Â−A>A‖F = ‖(Â−A)>Â+A>(Â−A)‖F
≤ ‖(Â> ⊗ Iq)vec

(
(Â−A)>

)
‖+ ‖(Ip ⊗A>)vec(Â−A)‖ 270

≤ (‖Â> ⊗ Iq‖op + ‖Ip ⊗A>‖op)‖Â−A‖F
≤ (2σ1 + ‖Â−A‖op)‖Â−A‖F. (A8)

We deduce from (A6), (A7) and (A8) that

‖ sin Θ(V̂ , V )‖F ≤
2(2σ1 + ‖Â−A‖op) min(d1/2‖Â−A‖op, ‖Â−A‖F)

min(σ2
r−1 − σ2

r , σ
2
s − σ2

s+1)
.

The bound for ‖V̂ Ô − V ‖F now follows immediately from this and (A5). �
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