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Abstract

We analyze a model of two-attribute competition for a decision

maker who follows a non-compensatory choice procedure that only

responds to ordinal rankings along the two dimensions. The decision

maker has an outside option that functions as a default alternative. In

the absence of a dominant alternative, the decision maker may stick

to the default even if it is dominated - capturing the phenomenon of

choice procrastination in the presence of diffi cult choices. We show

that the prevalence of diffi cult-choice situations in equilibrium is re-

lated to the magnitude of the choice procrastination effect. In general,

features of the choice procedure that are typically viewed as biases

tend to “protect” the decision maker, in the sense that they encour-

age competitors to offer higher-value alternatives in equilibrium. We

discuss the potential implications of this analysis for recent discussions

of “default architecture”.
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1 Introduction

One of the biggest distinctions between economists’and psychologists’view of

decision processes is the way they regard trade-offs. The standard economic

approach assumes that the decision maker (DM henceforth) has well-defined

preferences, and in the vast majority of applications these preferences are

continuous and locally non-satiable. The economic DM is a “trade-off ma-

chine”who effortlessly weighs multiple considerations —Kreps (1988) fondly

calls him Totrep (“Trade-Off Talking Rational Economic Person”).

A viewpoint more typical of psychologists (Tversky (1972), Payne et al.

(1993), Luce et al. (1999), Anderson (2003)) is that the DM generally tries

to avoid trade-offs because of the cognitive and emotional diffi culty of per-

forming them. This motive is stronger when the DM needs to justify his

choices to other people, because decision weights are hard to account for. A

trade-off avoiding DM will employ so-called “non-compensatory”choice pro-

cedures that rely purely on the ordinal rankings over alternatives along each

dimension. And if the DM has a default option that enables him to “decide

not to decide”, he may exercise this option and thus “save the mental cost”

of actively resolving trade-offs.

This paper explores the possible implications of trade-off avoidance for

competitive interaction in market or organizational contexts. Does it lead

to non-competitive equilibrium outcomes? If so, how large is the departure

of from the rational-DM competitive benchmark? How often is the DM

called to perform trade-offs in equilibrium? What is the role of the default

specification for these questions?

To address these questions, we study a simple model in which two agents

compete in two-dimensional alternatives for a DM. We refer to these agents

as “competitors”. The alternative offered by competitor i is a pair qi =

(q1i , q
2
i ) ∈ R2+, where qki measures the alternative’s “true value”along dimen-

sion k. For instance, q1i can represent the alternative’s quality whereas q
2
i

is a decreasing function of its price. In other applications, both dimensions
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represent aspects of the alternative’s quality - e.g., a car can be characterized

by its safety and energy effi ciency. A dimension may also correspond to a

state of Nature, such that qki describes an investment project’s performance

in state k.

The DM’s choice set consists of q1 and q2 - also referred to as the “market

alternatives” - as well as an exogenous outside option q0 = (q10, q
2
0). For

most of the paper, the outside option is also the DM’s default alternative -

i.e., the one he ends up with if he fails to make an explicit/active decision.

Competitor i’s payoff is 2−q1i −q2i multiplied by the probability it is chosen by
the DM. (Note that qki thus quantifies the alternative’s value along dimension

k in terms of the competitor’s cost of providing this value.) We refer to the

probability that the DM switches away from the outside option and chooses

one of the competitors’alternatives as his “market participation rate”.

A conventionally rational DMwould be endowed with a continuous, strictly

increasing function u(q1, q2), and he would choose an alternative that maxi-

mizes u. In this case, our model would collapse into conventional, Bertrand-

like competition: in Nash equilibrium, competitors would offer alternatives

that maximize u subject to the zero-profit constraint q1 + q2 = 2 (as long as

the outside option has a suffi ciently low u value).

In contrast, the DM in our model follows a non-compensatory proba-

bilistic choice function, which is based solely (in a monotonically increasing

manner) on ordinal rankings along the two dimensions. When one alternative

dominates all others, we assume the DM chooses it with probability one. In

the absence of a dominant alternative, we say that the DM faces a “diffi cult

choice”. The DMmay resist the pressure to perform trade-offs by pretending

that it does not exist and neglecting one of the attributes, thus basing his

choice entirely on the remaining one. Alternatively, he may procrastinate

(“decide not to decide”) and thus end up with his default option - even if it

is dominated by the other available alternatives.

The latter scenario is reminiscent of the proverbial Buridan’s Ass: the
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DM finds it hard to trade-off the relative strengths and weaknesses of the

undominated alternatives; his hesitation causes him to procrastinate, and

with some probability this procrastination leaves him stuck with the default

option in the relevant time frame. “Buridanic”situations of this nature have

received considerable attention by researchers who studied empirically choice

procrastination in the presence of hard choice problems, in both experimen-

tal and “field” settings, notably retirement savings (Iyengar et al. (2004),

Madrian and Shea (2001) and Beshears et al. (2012)). At any rate, we as-

sume that the DM never chooses a dominated non-default alternative; in this

sense, our model captures default bias.

In its basic features, our model fits market environments in which firms

compete in multi-attribute products. For example, think about weighing a

car’s safety against its energy effi ciency. Even if the consumer has access to

precise data about each attribute, it may be hard for him to find the right

scale for comparison. The diffi culty is not only cognitive but also emotional,

because the consumer ultimately needs to trade off the risk of injury or death

against lower fuel costs. Similarly, when consumers choose between insurance

policies that provide different levels of coverage in different contingencies,

they have to perform complex actuarial calculations and imagine unpleasant

future events.

A different interpretation holds in organizational settings. For instance,

the DM can be a company offi cial who considers several candidates for a

construction job with several dimensions (total cost, speed of delivery, quality

of materials, etc.). The offi cial needs to justify the selection to his superiors.

When the selection is not obvious and requires the exercise of judgment, the

offi cial is more vulnerable to criticisms. It may be easier for him to justify

his choice to his superiors if he leaves out relevant dimensions, or if he opts

for the same constructor that the company has employed before.

Competitors in this model face two conflicting strategic considerations.

On one hand, there is a “competitive”motive to offer a dominant alternative
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in order to win the DM over. On the other hand, domination requires the

competitor to offer high value along both dimensions, and this is a costly

strategy; a cheaper course of action is to offer a “lopsided” location in R2+
- e.g., low q1 and high q2 - such that the chances of being dominated by

the opponent are low. The latter is an “obfuscatory”or “anti-competitive”

motive. It follows that the question of the competitiveness of the game’s

outcome is related to the question of how frequently the DM faces market

alternatives that dominate one another. In Section 3, we begin our analysis

of symmetric Nash equilibria in the game by exploring the latter question.

Suppose that the choice function has the property that the market partic-

ipation rate increases when one market alternative dominates another. This

condition tends to hold in “Buridanic”situations, where domination removes

the DM’s hesitation and thus overcomes his tendency to adhere to the de-

fault/outside option. We show that in this case, domination between market

alternatives must occur with positive probability in equilibrium. We also

prove a partial converse result. If the choice function satisfies the property

that domination between market alternatives never raises the market partic-

ipation rate, then domination can never occur in equilibrium between two

alternatives that belong to same quadrant relative to the outside option. In

particular, when the outside option is (0, 0), the DM always faces diffi cult

choices in equilibrium. The collection of results in Section 3 thus relates the

possibility of “easy choices”in equilibrium to a simple property of the DM’s

choice function.

In Section 4, we use the general results of Section 3 to get more detailed

characterizations of symmetric Nash equilibria for various natural specifica-

tions of the DM’s outside option and his choice procedure. We also use the

examples to illustrate the various interpretations of the value dimensions in

our model. A general theme that emerges from these exercises is that fea-

tures of the DM’s choice procedure that are typically viewed as “biases”tend

to “protect”him in competitive environments - in the sense that in equilib-
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rium, they lead competitors to offer alternatives with higher average value
1
2
(q1 + q2). For example, when the DM avoids trade-offs by focusing on a

random dimension, greater asymmetry of this distribution over dimensions

corresponds to a “salience bias”. Yet it also leads to a more competitive equi-

librium outcome. Likewise, when the DM is more likely to avoid trade-offs

by adhering to his default/outside option, the range of possible equilibrium

outcomes (in a class of equilibria we were able to identify) moves toward the

competitive benchmark.

Our modeling framework also enables us to study the equilibrium im-

plications of the design of default rules. Default architecture is one of the

most important policy ideas that have come out of behavioral economics (see

Thaler and Sunstein (2008)). However, to our knowledge this is the first pa-

per that analyzes the equilibrium effects of default architecture in the context

of an explicit behavioral model that generates default bias.1 The default rule

we assume for most of the paper is what the literature calls “opt in”- i.e., the

default is the outside option. In Section 5, we compare it to a rule known as

“opt out”- i.e., the DM is initially assigned to a market alternative. We re-

visit the examples of Section 4 and show that unsurprisingly, the switch from

“opt in”to “opt out”raises the market participation rate. However, it also

leads to an anti-competitive equilibrium effect, by weakening the pressure to

offer dominant alternatives. In some cases, the switch may have a negative

net effect on the DM’s welfare. We discuss the possible implications of these

results for contemporary discussions of default architecture. In particular, we

suggest that in settings like retirement saving, the success of the “soft pater-

nalism”of default architecture owes to a complementary “hard paternalism”

regulatory regime that effectively shuts down adverse equilibrium effects.

1Spiegler (2015) contains a similar exercise, in the context of a different modeling
framework. However, that paper postdated an earlier version of the present paper.
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2 The Model

Two competitors play a symmetric simultaneous-move, complete information

game. Each competitor i = 1, 2 offers an alternative characterized by a pair

(q1i , q
2
i ) ∈ R2+. For expositional simplicity, we refer to qki as the “quality”of

alternative i along dimension k. We say that q dominates r if q > r (i.e.,

qk ≥ rk for both k = 1, 2, with at least one strict inequality). The competitors

face a single DM whose choice set consists of the competitors’alternatives

(also referred to as “market alternatives”) and an exogenous outside option,

denoted 0 and represented by the quality pair (q10, q
2
0) ∈ R2+. The outside

option is also the DM’s default option (we relax this assumption in Section

5). The DM chooses according to a probabilistic choice function s, such that

si(q0, q1, q2) is the probability that the DM chooses alternative i ∈ {0, 1, 2}.
Competitors are expected-profit maximizers. Competitor i’s payoff given the

strategy profile (q1, q2) is [2− (q1i + q2i )] · si(q0, q1, q2).
We impose the following assumptions on s.

(i) Ordinality. The choice function is invariant to changes in (q0, q1, q2) that

leave the ordinal rankings along each dimension unchanged.

(ii) Competitor symmetry. The choice function is neutral to the competitors’

labels. That is, s1(q0, q, r) = s2(q0, r, q) for every r, q ∈ R2+.

(iii) Monotonicity. For any i = 0, 1, 2, the probability that alternative i is

chosen is weakly increasing in its ordinal ranking along any dimension. In

particular, if qi > qj for all j 6= i, then si(q0, q1, q2) = 1. For some results, we

will assume strict monotonicity - i.e., the probability that an undominated

alternative is chosen is strictly increasing in its ordinal position along any

dimension.

(iv) Exclusion of dominated non-default alternatives. If qi < qj for some

i ∈ {1, 2} and j ∈ {0, 1, 2}, then alternative i is chosen with zero probability.

Ordinality is the key assumption of this paper: it reflects the DM’s ex-

treme reluctance to carry out trade-offs. Competitor symmetry ensures the
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game’s symmetry. Monotonicity simply means that a higher ranking along

any dimension raises (weakly or strictly) the probability of being selected;

and when one alternative dominates all others, it is chosen with probability

one. The final property means that a market alternative is never selected

if it is dominated. Note that while the choice function s is neutral to the

competitors’ labels, it is not neutral to the distinction between the mar-

ket alternatives and the outside/default option. This enables us to capture

reference-point effects. In particular, property (iv) allows the DM to select

the outside option even when it is dominated by one of the market alterna-

tives.

The following specifications of s will appear in later sections.

Sampling a dimension. In the absence of a dominant alternative, the DM

ignores one dimension at random and selects the best alternative along the

remaining dimension (with arbitrary tie breaking). One interpretation is that

since the DM does not know how to weigh the two dimensions, he simply

neglects one of them. This choice procedure is behaviorally equivalent to the

maximization of a random utility function (u(q1, q2) = q1 with probability α

and u(q1, q2) = q2 with probability 1− α).

Choice procrastination. In the absence of a dominant alternative, the DM

chooses the outside/default option with probability λ, and follows the “sam-

pling a dimension” rule with probability 1 − λ. The interpretation is that

the DM’s hesitation over how to choose when there is no clear winner results

in choice procrastination, such that with some probability the DM will fail

to reach a decision in the relevant time frame. In that case, he will be stuck

with the outside option by default.

Because the DM’s choice function is generally not based on utility maxi-

mization, his choices do not reveal welfare in the traditional revealed-preference

sense. Therefore, welfare analysis should be carried out with caution. As a

convention, we will measure the DM’s “true”welfare according to the av-

erage quality 1
2
(q1i + q2i ) of the alternative i he ends up choosing, regardless
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of his default alternative. Although our procedural model can be linked to

some "mental cost" of making active decisions in complex choice problems

this cost is not explicit in our model. Moreover, it is far from clear how one

could incorporate such a cost in a non-trivial manner, without fundamentally

subverting our entire modeling approach. Therefore, we leave such mental

costs outside the welfare analysis. (This methodological diffi culty is familiar

in the literature - see Spiegler (2011).)

3 Equilibrium Occurrence of Easy Choices

We now turn to analysis of symmetric Nash equilibria in the game described

in Section 2. We take it for granted throughout that s satisfies properties

(i)− (iv). In order to avoid trivial equilibria, we also assume that there exist

q , r such that q1+q2 < 2, r1+r2 < 2 and s0(q0, q, r) 6= 1. That is, the outside

option and the DM’s choice function leave scope for market participation.

The analysis is based on the following key distinction regarding s: Does

domination between market alternatives lower the probability that the DM

chooses the outside option? We begin by assuming that it does not. Specifi-

cally, assume that for every q0, q, r ∈ R2+ where r > q it holds that s0(q0, q, r) ≥
s0(q0, (q

1, r2), (r1, q2)). Two examples in which this condition holds are when

the DM is unable to choose the outside option, or when the DM’s tendency to

choose the default option is independent of the ordinal ranking of the market

alternatives.

Our first result establishes that when s satisfies this property (as well as

strict monotonicity), any symmetric Nash equilibrium has the feature that

whenever the market alternatives have the same ordinal ranking w.r.t the

outside option along both dimensions (i.e., they belong to the same quadrant

relative to q0), no alternative ever dominates another.

Proposition 1 Assume s satisfies strict monotonicity, and s0(q0, q, r) ≥
s0(q0, (q

1, r2), (r1, q2)) whenever r > q. Then, in any symmetric Nash equi-
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librium, q ≯ q′ for every two realizations q, q′ of the equilibrium strategy that

belong to same quadrant relative to q0.

The key argument in the proof is that if there were two quality pairs q

and r in the support of the equilibrium strategy that dominate one another,

then deviating to (q1, r2) or (r1, q2) would be profitable (see Figure 2 in the

Appendix). Consider the effect of deviating from q to r, (q1, r2) or (r1, q2)

on a competitor’s payoff. Depending on the opponent’s strategy, all three

deviations increase demand (i.e., the probability of being chosen) as well

as the cost of provision. The model’s assumptions - and particularly the

assumption that domination does not increase participation - imply that

the increase in demand when shifting from q to r is weakly lower than the

sum of demand increases due to deviations from q to (q1, r2) and from q to

(r1, q2). At the same time, the cost increase due to shifting from q to r is

by definition equal to the sum of cost increases due to deviations from q to

(q1, r2) and from q to (r1, q2). These observations imply the net first-order

effect of shifting from q to r on a competitor’s payoff is weakly lower than

the sum of the net first-order effects of shifting from q to (q1, r2) and from

q to (r1, q2). The second-order effects, however, ensure a strict inequality:

incurring a large cost increase with high probability (when deviating from

q to r ) is less profitable than incurring two lower cost increases with lower

probability (when deviating from q to (q1, r2) or (r1, q2)). If both q and r are

in the support of the equilibrium strategy, then the total effect of shifting

from q to r on profits is zero, which implies that a shift from q to (q1, r2) or

(r1, q2) would be strictly profitable.

When q0 = (0, 0), market alternatives necessarily dominate the outside

option, and therefore the quadrant qualification in Proposition 1 can be re-

moved. This leads to the following characterization.

Proposition 2 If q0 = (0, 0), then under the conditions of Proposition 1, for

any symmetric Nash equilibrium, there exist q̄1, q̄2 > 0 such that the support
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of the equilibrium strategy is a continuous and strictly decreasing curve that

connects the points (0, q̄2) and (q̄1, 0).

What is the significance of this result? Note that one interpretation of our

model is that making diffi cult choices involves a mental cost, which the DM

could successfully avoid if he were allowed to choose by default. Proposition

2 means that whenever market alternatives dominate the outside option,

spontaneous competitive forces "conspire" to maximize this mental cost.

We now turn to the case in which the DM’s choice function satisfies

the property that the market participation rate increases when one market

alternative dominates another. We show that in this case, easy choices must

occur with positive probability in any symmetric Nash equilibrium. (For this

result, we do not need to impose strict monotonicity.)

Proposition 3 Assume s0(q0, q, r) < s0(q0, (q
1, r2), (r1, q2)) whenever q > r.

Then, in any symmetric Nash equilibrium, market alternatives dominate one

another with positive probability.

The idea of the proof is the mirror image of the key argument behind

the proof of Proposition 1. If the support of the equilibrium strategy does

not contain alternatives that dominate one another, then we can find two

quality pairs q and r in the support, such that deviating to (q1, r2) or (r1, q2)

is profitable. However, observe that Proposition 3 is not an exact converse of

Proposition 1, because the latter focuses on strictly monotone choice func-

tions and examines the possibility of easy choices only among market alter-

natives that share the same ordinal ranking relative to the outside option.

Later on we will present an example that demonstrate that the gap between

the two results is not vacuous.
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4 Applications

In this section we analyze symmetric Nash equilibria for two specifications

of s that capture different underlying choice procedures. Throughout the

section, we commit to a particular interpretation of the game and a particular

specification of q0. The DM is a procurement offi cer in a public organization.

He needs to select a provider of some service having two quality dimensions.

(A fixed budget is exclusively devoted to this service. Therefore, the service

price is not a consideration for the offi cer, as long as it is within the budget.)

The outside/default option is not to acquire the service; it is characterized

by the quality pair q0 = (0, 0).

4.1 Sampling a Dimension

Suppose that the procurement offi cer chooses according to the “sampling a

dimension”procedure described in Section 2: when one alternative dominates

all others, he selects it; otherwise, he samples dimension k with probability

αk and selects the alternative with the highest quality along that dimension

(with a symmetric tie-breaking rule). The choice function induced by this

procedure satisfies the conditions for Proposition 2.

One interpretation for the offi cer’s procedure is that he has to justify

his actions to a superior who does not know the relevant considerations for

choosing service providers but expects to hear a good reason for the offi cer’s

choice. The offi cer is not equipped with formal guidelines about how to trade-

off the two quality dimensions, and therefore he finds it easier to justify his

choices by neglecting one of the two quality dimensions. Over the long run,

he must be consistent in this selection - he cannot neglect different attributes

in different instances of this decision problem.

The parameter αk captures the salience of dimension k - a more salient

attribute is less likely to be neglected. W.l.o.g, let α1 = α ≥ 1
2
. The case of

α = 1 is simple (formally, it is a special case of Gabaix and Laibson (2006)):
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competitors offer q1 = 2 and q2 = 0 in Nash equilibrium. The reasoning is

simple: since the offi cer never considers dimension 2, competitors have no

incentive to compete in this dimension, whereas competitive pressures along

dimension 1 drive quality up in “Bertrand fashion”, such that in equilibrium

competitors earn zero profits.

The case of α ∈ [1
2
, 1) is more interesting.

Proposition 4 The game has a unique symmetric Nash equilibrium. In

particular:

(i) If α = 1
2
, competitors play q1+q2 = 1 with probability one and q1 ∼ U [0, 1].

(ii) If α ∈ (1
2
, 1), competitors mix over average quality c = 1

2
(q1+q2) according

to the cdf

G(c) =
1− α
2α− 1

[
α

1− c − 1

]
defined over the interval [1 − α, α]. The quality along each dimension is a

deterministic function of c:

q1 =
2α

2α− 1
[c− (1− α)]

q2 =
2(1− α)

2α− 1
[α− c]

Thus, when α ∈ (1
2
, 1), competitors mix over average quality c in equi-

librium. The greater the asymmetry in the dimensions’salience, the greater

the range of values that c gets in equilibrium. The expectation of c is

EG(c) = 1− α(1− α)

2α− 1
ln

(
α

1− α

)
which is strictly increasing in α in the range (1

2
, 1). In equilibrium q1 takes

values in [0, 2α], while q2 takes values in [0, 2(1 − α)]. The two components
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are linked deterministically by the linear equation

q2 = 2(1− α)− 1− α
α

q1

The α → 1
2
and α → 1 limits of this equilibrium characterization coin-

cide with our analysis for these extreme cases. In particular, when α = 1
2
,

competitors plays c = 1
2
with probability one, such that the support of the

equilibrium strategy is a downward sloping line connecting the quality pairs

(0, 1) and (1, 0).

The following corollary describes the competitors’equilibrium payoffs.

Corollary 1 The firms’payoff in symmetric equilibrium is α(1− α).

To derive this result, consider the quality pair (q1, q2) = (2α, 0), which

is an extreme point in the support of the equilibrium strategy. When a

competitor plays this alternative, the offi cer chooses it if and only if he

sampled dimension 1. Therefore, the competitor’s equilibrium payoff is

α · [1 − 1
2
(0 + 2α)] = α(1 − α). Thus, equilibrium payoffs go down and

average quality goes up when the dimensions’relative salience becomes more

asymmetric. Thus, a stronger “salience bias” leads to a more competitive

equilibrium outcome. The intuition is that when α approaches 1, the of-

ficer’s choice becomes more predictable, and this strengthens competitive

pressures among competitors. At the same time, more asymmetric salience

also implies a greater variation in quality across dimensions, in the sense that

the range of values that |q2 − q1| becomes wider as α gets closer to 1.

Comment: Rational-choice interpretation

Recall that the DM’s choice function in this example has a simple rational-

choice interpretation: with probability αk he genuinely cares about qk only.

From this perspective, it is not surprising that when discrimination is im-

possible, greater heterogeneity in DMs’preferences (captured by shifting α
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toward 1
2
) results in a less competitive equilibrium outcome. For this interpre-

tation to be valid, it is important to assume that the two quality dimensions

are intrinsically bundled together, such that competitive pressures cannot

lead to their “unbundling”. At any rate, the rational-choice interpretation

will break down in our next example.

4.2 Choice Procrastination

Now suppose that the procurement offi cer follows the “choice procrastina-

tion”procedure described in Section 3. Specifically, when there is no dom-

inant alternative, the offi cer chooses the outside/default option with proba-

bility λ ∈ (0, 1); and with the remaining probability 1− λ, he resorts to the
“sampling a dimension”rule with α = 1

2
. As in the previous sub-section, we

interpret the choice rule as the outcome of the offi cer’s need to justify his

actions to a superior. The difference is that now the offi cer has an additional

tool for avoiding trade-offs - namely, he can refrain from making an explicit

choice, which would intuitively make him less vulnerable to criticisms. Con-

sequently, the offi cer may end up with the outside/default option even though

it is a dominated alternative.

A different interpretation of the procedure does not involve the notion

of justifiability, but relies on “Buridanic”indecisiveness. The offi cer realizes

that the outside option is dominated by both market alternatives. However,

he finds it diffi cult to choose between them because doing so requires him

to perform trade-offs. When the offi cer makes an active choice, he chooses

arbitrarily between the two undominated alternatives. However, he has a

distaste for arbitrary choices, and this causes him to procrastinate, such that

he may fail to reach a decision in the relevant time frame and end up with

the dominated outside option, just like Buridan’s Ass.

The offi cer’s choice procedure in this example has the property that when

one market alternative dominates the other, it is a dominant alternative

altogether, and therefore chosen with probability one. In contrast, when
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neither market alternative dominates another, the market participation rate

is only 1 − λ. Therefore, by Proposition 3, domination must occur with

positive probability in any symmetric Nash equilibrium.

Figure 1 represents the support of a symmetric Nash equilibrium strategy

for λ = 1
2
. It consists of three 45-degree line segments. Each of these segments

is realized with probability 1
3
. The distribution over average quality is given

by some cdf over [2
5
, 4
5
], which is independent of the segment. Note that two

quality pairs in the support dominate one another if and only if they belong

to the same segment. Hence, the probability of domination is 1
3
. Therefore,

the offi cer will end up with the outside option with probability 1
2
· 2
3

= 1
3
.

(0.4,0.4)

(0.8,0.8)

(0.8,0)

(1.2,0.4)

(0.4,1.2)

(0,0.8)

(Figure 1)

We do not have a full characterization of symmetric equilibria. However,

we are able to characterize a family of equilibria of which the strategy il-

lustrated by Figure 1 is an instance. For this purpose, we introduce some

new notation. First, we represent a pure strategy (q1, q2) by the pair (p, e),

where 2p = 2 − (q1 + q2) is the profit that the quality pair generates for

the competitor conditional on being chosen, and 2e = q1 − q2 is the quality
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variation the strategy exhibits. Second, for any positive integer n, denote

σ =
1− λ

2
·
(

1− 1

n

)
The interpretation of σ is simple: it is the probability that the offi cer chooses

a “market alternative” when the probability that one market alternative

dominates another is 1
n
.

Let n ≥ 3 be an integer and let d > 0. Define s∗(n, d) to be a mixed

strategy that consists of independent randomizations over p and e, where:

(i) p is distributed according to the cdf

G(p) = (1 + σn)

(
1− dσn

p

)
defined over the interval [dσn, dσn+ d].

(ii) e is uniformly distributed over the discrete set{
d

(
k − 1

2
(n− 1)

)}
k=0,1,...n−1

The strategy illustrated in Figure 1 is thus s∗(3, 2
5
).

Proposition 5 If n ∈ [1 + 1
λ
, 1 + 3

λ
] and d = 2

λ+n(2−λ) , then s∗(n, d) is a

symmetric Nash equilibrium strategy.

Let us elaborate on the properties of this class of equilibrium strategies.

Structure of the support and domination probability. The support of the

equilibrium strategy is divided into n line segments, which are vertical in the

(p, e) representation (they have a 45◦ slope in (q1, q2) space, as in Figure 1).

Each segment corresponds to a different value of e. The distance between
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adjacent segments is d, which is also the range of values that p can get.

Therefore, two realizations (p1, e1), (p2, e2) dominate one another if and only if

e1 = e2. A larger n corresponds to an equilibrium with weaker comparability.

Participation rate. The structure of domination implies that the offi cer

switches away from the outside option with probability 1 − λ + λ · 1
n
. The

restriction on the values that n can get implies that the participation rate is

bounded from above by

(1− λ) + λ · λ

1 + λ
=

1

1 + λ

Because n only gets integer values, these upper bounds are not tight. We will

see below that the maximal participation rate overall is 1
3
(obtained when λ

is suffi ciently large).

Quality and payoff. The marginal distributions over q1 and q2 are identical,

with support [0, dn]. The upper bound of this interval is strictly above 1.

The expected equilibrium average quality is

1− dσn(1 + σn) ln

(
1 + σn

σn

)
Each competitor’s expected payoff is

2dσ(σn+ 1)

It can be verified that the expected average quality is strictly greater than
1
2
, and the payoff is lower than 1

2
. That is, expected average quality is lower

and the competitors’payoff is higher than when the offi cer has a vanishing

propensity for default bias (λ→ 0). In this sense, when the offi cer’s default

bias is stronger, the equilibrium outcome more competitive.

Limit equilibria and welfare. As λ → 0, the permissible values of n diverge,

and the collection of line segments becomes infinitely dense, approximating
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the line q1 + q2 = 1, i.e. p = 1
2
and e ∼ U

[
−1
2
, 1
2

]
. The equilibrium

participation rate thus converge to zero. On the other hand, there are two

limit equilibrium distributions when λ→ 1 (i.e., when the offi cer has extreme

propensity for default bias). In both of them, q1 + q2 = 2 with probability

one, i.e. p = 0; in one of them, n = 3, such that e is uniformly distributed

over {−1
2
, 0, 1

2
}; while in the other, n = 4, such that e is uniformly distributed

over {−3
5
,−1

5
, 1
5
, 3
5
}. Thus, the participation rate in this class of equilibria

cannot exceed 1
3
. As usual, define the offi cer’s welfare as the average quality

he ends up getting. Then, his equilibrium welfare in the λ → 0 limit is 1
2
.

His maximal equilibrium welfare in the λ→ 1 limit is 1
3
(because this is the

maximal probability with which he switches away from the outside option,

and then he enjoys an average quality of 1).

What is the broad intuition behind the relatively low upper bound (1
3
)

on the equilibrium probability of domination (in the class of equilibria we

have isolated)? When λ is low, competitors have an incentive to lower the

domination probability. They can do so by introducing large quality variation

across attributes. On the other hand, when λ is high, competitors have

an incentive to induce a high degree of comparability in order to attract

the offi cer away from the outside option. However, comparability in this

model is established by domination; and since the quality variation e can

take values in a wide range, a competitor has to offer high quality along

both dimensions in order to attain a substantial probability of domination.

Thus, attaining domination is quite costly for the competitor (in terms of

his payoff conditional on being chosen), and this restraints the incentive to

increase comparability.

The class of equilibria under consideration turns out to be fully charac-

terized by two properties that can be distilled from the above description. A

mixed strategy s satisfies independence if it induces statistically independent

distributions over p and e. We say that s satisfies constant comparability if

Pr{(p1, e1) dominates (p2, e2) | (p1, p2)} is the same for almost all (p1, p2),
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where (p1, e1) and (p2, e2) are two independent draws from s.

Proposition 6 If a symmetric Nash equilibrium strategy satisfies indepen-

dence and constant comparability, it must take the form s∗(n, d), where n ∈
[1 + 1

λ
, 1 + 3

λ
] and d = 2

λ+n(2−λ) .

The independence and constant-comparability properties are of interest be-

cause they provide a link to other models of competition under limited com-

parability. In Varian (1980), the fraction of consumers who make price com-

parisons is assumed to be an exogenous constant. In Piccione and Spiegler

(2012), independence and constant comparability are logically linked by an

underlying property of the comparability structure.

5 Default Architecture

So far, we have identified the outside option as a default alternative, such

that if the DM does not make an active or explicit decision, he ends up with

the outside option. In this section we relax this assumption and allow mar-

ket alternatives to function as default options. We have two interpretations

in mind. First, the competitive interaction may be recurrent (albeit with

myopic agents, shutting down repeated-game effects), such that the DM al-

ready selected one of the competitors in a previous round. This competitor

naturally serves as a default option in the current situation. Second, the

default specification may be the result of deliberate “default architecture”,

as advocated by Thaler and Sunstein (2008). A regulator can assign the DM

to a market alternative, such that the DM can switch away from it only if

he explicitly requests so. The rationale for such an intervention is that it

is likely to increase the market participation rate in the presence of default

bias. However, this rationale does not take into account the competitors’

equilibrium response to the intervention, which in turn relies on the psy-

chology that generates default bias in first place. We will show that once
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equilibrium effects are taken into account, this type of default architecture

can have a negative effect on the DM’s welfare.

In general, when we relax the automatic identification of the outside op-

tion with the default, the DM’s choice function s should be allowed to dis-

criminate between choice problems in which the outside option is also the

default and choice problems in which the default and outside options di-

verge. The general analysis of Section 3 becomes somewhat more complex

as a result. In particular, it now makes sense to assume that a dominated

market alternative is chosen with positive probability when it is the default

- a situation that was ruled out before. However, when the outside option

is (0, 0) - as in the examples of the previous section and the present one -

the analysis is unchanged, and our general results continue to hold. The

remainder of this section is devoted to examples.

5.1 Price-Quality Competition

Suppose that the DM is a consumer who chooses whether to enter a market

for some product. The competitors are firms that sell this product. The two

considerations are the price and quality of any given alternative: q1 represents

quality, denoted q, whereas 2−q2 is the price, denoted p. Thus, firm i’s payoff

conditional on being chosen is pi − qi. The outside option is represented by
the pair q0 = (0, 2). The interpretation is that the consumer has no external

substitute for the traded product, such that he experiences zero quality and

pays a zero price if he stays out. Note that the zero lower bound on q2

translates into an upper bound of 2 on p. We define the consumer’s “true

welfare” from the alternative (p, q) to be (1 + g)qi − pi, where g > 0 is a

constant that captures the gains from trade in this market.

The consumer follows the choice procedure of Section 4.2: if one alterna-

tive dominates all others, he chooses it; otherwise, he adheres to the default

option with probability λ, and with the remaining probability 1−λ he chooses
according to a randomly selected dimension (we assume that the two dimen-
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sions are equally likely to be sampled, and that ties with the outside option

are resolved in its favor). Sampling dimensions has a natural interpretation

in this context: either the consumer stops thinking about prices and chases

quality, or he only thinks about prices, in which case he will choose not to

participate in the market (unless a firm offers a negative price, an event that

will not occur in equilibrium).

Let us consider two default rules. The first, known as “opt in”, is what

we have assumed so far - namely, the default is the outside option. The

second, known as “opt out”, is that the default option is a market alternative.

To maintain the game’s symmetry, we assume in this case that the DM is

equally likely to be assigned to the two firms. In this context, “opt in”can be

interpreted as a rule that outlaws automatic renewal of contracts: unless the

consumer actively selects his old provider or switches to a different one, he

ends up without a contract. In the same vein, “opt out”fits an environment

in which all consumers have an existing provider, and the consumer’s contract

is renewed automatically unless he actively switches. We study symmetric

Nash equilibrium under both default rules.

“Opt in”

Equilibrium analysis in this case is very simple. A firm can make non-negative

profits only if it charges a non-negative price. Therefore, if the consumer

samples the price dimension, he will always choose the outside option; the

firm can be chosen only if the consumer samples the quality dimension. This

means that firms effectively engage in Bertrand competition over quality

(except that the sum of their market shares is equal to the probability that

the consumer samples the quality dimension). Therefore, in symmetric Nash

equilibrium firms choose (p, q) = (2, 2) and earn zero profits. The consumer

enters the market with probability 1
2
(1−λ), and therefore his true welfare in

equilibrium is g(1− λ).

“Opt out”

Equilibrium analysis in this case is a bit more involved. As before, a firm can
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dominate the outside option only if it charges a non-positive price. Because

the firm can ensure positive profits, it follows that domination will never

occur with positive probability in equilibrium. Moreover, because the out-

side option will always outperform the market alternatives along the price

dimension, firms have no incentive to charge a price below the maximum of

2. Therefore, in Nash equilibrium firms will play p = 2 with probability one.

The only question is how they will randomize over quality.

Proposition 7 Under the “opt out”default rule, there is a unique symmet-
ric Nash equilibrium. Firms play p = 2 with probability one, and randomize

over q according to the continuous, strictly increasing cdf

F (q) =
λ

1− λ ·
q

2− q

over the interval

[0, 2(1− λ)]

Each firm earns a profit of λ.

The equilibrium structure is a variant on Varian (1980). Firms compete

along the quality dimension alone. When qi < qj, firm i’s alternative is

dominated, and therefore chosen only because of default bias, hence the size

of its clientele is 1
2
λ. If a firm offers a quality arbitrarily close to q = 0, then

it will earn a payoffof (2−0) · 1
2
λ = λ. The realization q = 0 is in the support

of the equilibrium strategy. When a firm offers higher quality, it increases

its clientele because it becomes undominated with higher probability and

therefore attracts clientele from the other firm with positive probability.

We are now able to compute the implications of the switch from “opt

in” to “opt out” for consumer welfare. Under “opt out”, the consumer’s

equilibrium participation rate is 1− 1
2
(1−λ) = 1

2
(1 +λ) for every realization

of the firms’strategies (ignoring the zero-probability event that q1 = q2). If
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firms chose quality competitively, they would offer q = p = 2 and earn zero

profits, such that the consumer’s utility conditional on entering would be

2g. Because each firm earns a profit of λ in equilibrium, the consumer’s net

equilibrium welfare is

1

2
(1 + λ) · 2g − 2λ = g + λg − 2λ

This quantity can be negative, such that the consumer is worse offon average

relative to the outside option.

We saw earlier that the consumer’s equilibrium welfare under “opt in”is

g(1− λ). It follows that the switch from “opt in”to “opt out”increases the

consumer’s net equilibrium welfare if and only if g > 1. Thus, as long as the

gain from trade is not too large, the switch harms the consumer. The reason

is that the “opt in”rule encourages firms to choose quality competitively. In

contrast, the “opt out” rule increases their effective market power because

they enjoy monopoly power over consumers who are initially assigned to them

and succumb to the Buridanic fallacy. As a result, the equilibrium effect of

the switch from “opt in” to “opt out” is that firms offer lower quality on

average. When the gross gains from trade are not too large, the equilibrium

effect more than offsets the benefit from higher market participation.

5.2 Revisiting the “Procurement Offi cer”Example

Recall the example of Section 4.2, and modify the default rule into “opt out”

- that is, one of the two service providers is pre-specified (with probability 1
2
)

as a default option for the procurement offi cer. Because the outside option is

always dominated by the two market alternatives, the offi cer will never opt

out - he will either cling to the default provider or switch to another. This

means that when neither market alternative dominates the other, the offi cer

chooses each of them with probability 1
2
, such that this example is reduced

to the model of Section 4.1 with α = 1
2
. The analysis of default architecture
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thus becomes a comparison of equilibria in Sections 4.1 and 4.2.

Let us use the average quality of the offi cer’s selected alternative as a

measure of his true welfare. In the unique symmetric equilibrium of Section

4.1, both competitors offer an average quality of 1 with probability one, and

the offi cer chooses one of them. Therefore, his equilibrium welfare is 1. In

contrast, in Section 4.2 we saw that there are multiple equilibria, and we

were able to characterize a certain class of equilibria that are parameterized

by the constant n (the number of parallel 45-degree segments that constitute

the support of the equilibrium strategy). In such an equilibrium, the offi cer’s

welfare is given by the market participation rate minus industry profits (be-

cause if firms offered only zero-profit quality pairs, the offi cer’s payoff from

entering the market would be equal to 1) :

1− λ+
λ

n
− 2dσ(σn+ 1) =

(1− λ)n2 + λn+ 1

(2− λ)n2 + λn

Maximal consumer welfare (attained at the minimal permissible n for any

given λ) is in the interval (1
3
, 1
2
) and decreasing in λ almost everywhere.

Thus, given the set of equilibria we have focused on under “opt in”, this

default regime is inferior to “opt out” in terms of the offi cer’s welfare: the

increase in the participation rate thanks to the switch from “opt in”to “opt

out”outweighs the decrease in the quality of alternatives that competitors

offer in equilibrium. The two forces were also at play in the example of

Section 5.1, but their net effect was different. We conclude that while the

adverse equilibrium effect of the switch from “opt in”to “opt out”is robust,

whether it outweighs the beneficial effect on “market participation”depends

on the specifics of the model.

5.3 Discussion

The observation that people tend to choose by default in diffi cult choice situ-

ations implies that “default architecture”can have dramatic implications for
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eventual choice patterns. This has led researchers (e.g. Thaler and Sunstein

(2008), Beshears et al. (2012)) to advocate switching from “opt in”default

regimes to “opt-out”or “no default”(i.e. active choice) rules, in settings such

as retirement savings by employees. It should be emphasized that in these

settings, funds do not compete spontaneously and directly over employees;

instead, contracts are mediated by employers. In other words, these markets

are regulated de facto, except that the regulator is not the government but

the employer.

The modeling exercise in this paper helps clarifying the respective roles of

this de-facto regulation and default architecture in such settings, and specu-

lating about the equilibrium effects of redesigning defaults if employers ceased

to mediate the interaction between funds and savers, and spontaneous and

direct competition among funds over savers were the norm. What would be

the consequences of default architecture in this case? Our analysis suggests

that a shift from “opt in” to “opt out”or “no default”would indeed raise

the overall level of participation in retirement saving programs; however, at

the same time it would raise the management fees that funds charge. The

magnitude of this effect will be large if the population of savers is relatively

“indecisive”. The intuition is that the opt-out rule gives funds greater ef-

fective market power; because they benefit from default bias, they have a

stronger incentive to induce it by creating diffi cult choices for savers.

A broad lesson from our exercise is that when we wish to analyze reg-

ulatory interventions that address consumer decision errors, it is important

to have an explicit procedural model of consumer choice, which provides a

concrete “story”behind the consumers’errors, and enables us to speculate

about the market equilibrium’s response to the intervention. For further

exploration of this theme, see Spiegler (2015,2017).
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6 Concluding Remarks

This paper explored the theoretical implications of trade-off avoidance for

competitive behavior in the simplest possible environment, in which two

agents compete in two-dimensional objects for a single DM, such that if the

DM were conventionally rational the interaction would collapse to standard

Bertrand competition. We assumed instead that the DM follows a (proba-

bilistic) non-compensatory choice procedure, which may exhibit default bias

(in the sense that the DM may choose a dominated default alternative in

diffi cult choice situations). We saw that trade-off avoidance leads to non-

competitive equilibrium outcomes.

In applications, the departure from the competitive benchmark was larger

when the DM’s default bias was weaker and when his procedure tended to

treat the two dimensions more symmetrically. Thus, aspects of the choice

procedure that are intuitively viewed as biases (a tendency to choose the

default even when there is no good reason for doing so, asymmetric salience

of dimensions) end up “protecting”the DM, in the sense that they encourage

more competitive equilibrium behavior by market agents. By the same token,

regulatory interventions that attempt to overcome these biases may have

counterproductive equilibrium effects.

More than two dimensions

We can extend the model to n dimensions such that each competitor i =

1, 2 offers an alternative characterized by a vector qi ∈ Rn+. Competitor i’s
payoff given the strategy profile (q1, q2) is (n−

∑n
k=1 q

k
i ) · si(q0, q1, q2). While

thorough generalization of our analysis is outside the scope of this paper,

the following is an example of how one of the main results can be extended.

Consider the “sampling a dimension” procedure where in the absence of

a dominant alternative, the DM focuses on one dimension at random and

selects the best alternative along this dimension (with arbitrary tie breaking).

Then, it can be shown that in any symmetric Nash equilibrium, q ≯ q′ for
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every two realizations q, q′ of the equilibrium strategy that belong to same

hyperoctant relative to q0. The proof, which extends the arguments in the

proof of Proposition 1, is available upon request.

Related Literature

This paper is the first to analyze competition for “trade-off averse”DMs who

follow an entirely non-compensatory choice procedure. In an independent

paper, Papi (2014b) analyzes a model in which consumers are limited in the

number of attributes they can trade off. When market products contain

more attributes, consumers focus on a subset which is a function of firms’

marketing strategies. Thus, one key difference between the two works is that

in our model, consumer choice is entirely based on ordinal rankings, whereas

in Papi’s model, consumers maximize a continuous utility function over a

restricted set of attributes. Papi (2014a) axiomatizes a choice procedure

that mixes compensatory and non-compensatory elements, and applies it

to a Stackelberg model. In his model, the DM uses a non-compensatory

procedure only to shrink the choice set into a small “consideration set”, to

which he applies a well-defined utility function. Bachi (2014) studies uni-

dimensional price competition when consumers are unable to perceive small

price differences.

The choice theory literature has studied models with a non-compensatory

component. Rubinstein (1988) analyzed a choice procedure related to ours,

where the DM regards one alternative in R2 as dominating another if it
is “approximately the same” along one dimension and significantly better

along the other. Mariotti and Manzini (2007) axiomatized a “sequentially

rationalizable”choice procedure that employs a succession of binary relations

to eliminate alternatives from the choice set.

Choice models in which the DM tends to stick to a status-quo / de-

fault alternative when facing “too little dominance” have been studied by

Masatlioglu and Ok (2005,2014) and Teper and Riella (2014), among others

—extending a tradition of multi-utility representations of incomplete prefer-
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ences due to Bewley (1986) and Ok (2002). A key feature in Masatlioglu and

Ok’s axiomatizations is that they examine choice problems with and without

a default; this mirrors the distinction between the “opt in”and “no default”

regimes in our model. Dean (2008) conducted an experimental test of axioms

that characterize various families of models of decision avoidance. Finally,

the randomness in our DM’s response to “hard choices”(which results from

the “decisiveness” typology) links it to recent models of stochastic choice,

where randomness derives from new primitives (e.g., consideration sets in

Manzini and Mariotti (2014)), unlike conventional random-utility models.

Another strand in the literature (reviewed in Farrell and Klemperer (2007))

studies multi-period models in which the DM may stick an already-chosen

alternative in subsequent periods due to costly switching. Ericson (2016)

extends it to study the welfare implications of various default regimes when

DMs do not know their exact future switching costs, under both monopoly

and competitive equilibrium settings. Carroll et al. (2009) analyze a non-

equilibrium model in which the DM exhibits a default bias due to quasi-

hyperbolic preferences in the context of retirement savings plans.

The market interpretation of our model links it to the “behavioral indus-

trial organization”literature (see Spiegler (2011) for a textbook treatment).

Within this literature, two papers are most closely related. Gabaix and Laib-

son (2006) analyze a model in which two firms compete in price pairs, where

a fraction of consumers are unaware of dimension 2, and thus choose purely

on the basis of price rankings along dimension 1, while the remaining con-

sumers are conventionally rational and choose the firm with the lowest true

price. Consumers have an outside option, the value of which is correlated

with their type (the interpretation is that more sophisticated consumers are

more likely to find a good outside option). Indeed, the “no default”version

of our model can be interpreted in terms of unawareness: the DM focuses

on one dimension because he is unaware of the other. An aspect of Gabaix

and Laibson (2006) which is not dealt with in this paper is the endogeneity
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of attribute salience due to firms’disclosure decisions.

Spiegler (2006) analyzes a model in which n firms choose price cdf s over

(−∞, 1]. A firm’s profit conditional on being chosen is the expected price ac-

cording to its own cdf. The consumer chooses by taking a sample point from

each of the cdf s and selecting the cheapest firm in his sample. As Spiegler

(2006) notes, this can be viewed as a reduced form of a model in which firms

choose infinite-dimensional price vectors and the consumer chooses according

to the price ranking in a randomly selected dimension. This interpretation

forms a clear link with the present model, and suggests an interesting gen-

eralization of our model to the case of n firms and K dimensions, in which

consumers choose according to some probabilistic aggregation of the ordinal

rankings along each dimension. From this perspective, Spiegler (2006) as-

sumes a specific aggregation rule —random dictatorship —and takes the limit

K →∞.2

Piccione and Spiegler (2012) present an alternative approach to modeling

market competition under limited comparability. A market alternative con-

sists of a “real price”and a “price format”, and consumers can make a price

comparison if and only if the two firms’price formats are comparable, accord-

ing to some exogenous comparability structure. Carlin (2009) and Chioveanu

and Zhou (2013) study special cases of this limited comparability formalism

and extend them to the many-firms case. All these papers can be viewed as

extensions of Varian (1980), who studied price competition when an exoge-

nous fraction of the consumer population does not make comparisons. The

new models essentially endogenize this parameter as a consequence of the

firms equilibrium obfuscation tactics. Piccione and Spiegler (2012) assume

that consumers have no outside option. Following the example of the present

paper, Spiegler (2015) extends the Piccione-Spiegler model to incorporate an

outside option, and performs a rudimentary comparison between the “opt

2From a technical point of view, this general problem has affi nities with the majority
auction games studied by Szentes and Rosenthal (2003).
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in”and “opt out”default rules.

Finally, the role of attribute salience was studied by Koszegi and Szeidl

(2013) and Bordalo et al. (2013a). These papers model salience as a sys-

tematic distortion of decision weights, while the present paper captures the

salience of an attribute by the probability it is considered by a trade-offavoid-

ing DM. Bordalo et al. (2013b) and Spiegler (2013) analyze market models

in which consumers’decision weights are endogenously determined by firms’

pricing and marketing equilibrium strategies.

References

[1] Anderson, C. J. (2003): “The Psychology of Doing Nothing: Forms of

Decision Avoidance Result from Reason and Emotion,” Psychological

Bulletin 129, 139-167.

[2] Bachi, B. (2016): "Competition with price similarities," Economic The-

ory Bulletin, 277-290.

[3] Beshears, J., J. J.Choi, D. Laibson and B.C. Madrian (2013): “Simpli-

fication and Saving,”Journal of Economic Behavior & Organization 95,

130-145.

[4] Bewley, T. (1986) Knightian Uncertainty Theory: Part I, Cowles Foun-

dation Discussion Paper No. 807.

[5] Bordalo, P., N. Gennaioli and A. Shleifer (2013): “Salience and Asset

Prices,”American Economic Review Papers and Proceedings 103, 623-

628.

[6] Bordalo, P., N. Gennaioli and A. Shleifer (2013): “Salience and Con-

sumer Choice,”Journal of Political Economy 121, 803-843.

31



[7] Carroll, G. D., J. J. Choi, D. Laibson, B. C. Madrian, and A. Metrick.

(2009):. "Optimal Defaults and Active Decisions," Quarterly Journal of

Economics 124,1639-1674.

[8] Carlin, B. I. (2009): “Strategic Price Complexity in Retail Financial

Markets,”Journal of Financial Economics 91, 278-287.

[9] Chioveanu, I. and J. Zhou, (2013): “Price Competition with Consumer

Confusion,”Management Science 59, 2450—2469.

[10] Dean, M. (2008): “Status Quo Bias in Large and Small Choice Sets”,

Mimeo, NYU.

[11] Ericson, K. M. (2016): "When Consumers Do Not Make an Active De-

cision: Dynamic Default Rules and their Equilibrium Effects", Mimeo,

Boston University.

[12] Farrell, J. and P. Klemperer (2007): "Coordination and lock-in: Compe-

tition with switching costs and network effects," Handbook of industrial

organization 3, 1967-2072.

[13] Gabaix, X. and D. Laibson (2006): “Shrouded Attributes, Consumer

Myopia, and Information Suppression in Competitive Markets,”Quar-

terly Journal of Economics, 121, 505—540.

[14] Iyengar, S. S., G. Huberman, and W. Jiang. (2004): “How Much Choice

is Too Much: Determinants of Individual Contributions in 401K Re-

tirement Plans.” In Pension Design and Structure: New Lessons from

Behavioral Finance, ed. O. S. Mitchell and S. Utkus, 83-95. Oxford:

Oxford University Press.
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Appendix: Proofs
Proposition 1
First, note that competitors must earn strictly positive profits in Nash equi-

librium, because each competitor can secure a strictly positive profit by play-

ing a mixed strategy with full support over {q |
∑2

k=1 q
k ≤ 2}. Let us now

introduce some useful notation. A symmetric mixed strategy equilibrium is

a probability measure µ over the set {q ∈ R2+ |
∑2

k=1 q
k ≤ 2}. Let F k denote

the marginal cdf over qk induced by µ. That is,

F k(qk) =

∫
q−k

∫
rk≤qk

dµ.

Let F k− be the left limit of F k, i.e. F k− (x) = limy→x− F
k(y). Finally, in what

follows, O denotes some quadrant w.r.t q0, which is closed from below in both

dimensions. Note that at most three quadrants are relevant: competitors will

never play q < q0 in equilibrium (the reason is that by assumption, a market

alternative that is dominated by q0 is never chosen, and therefore generates

zero profits).

Fix the outside option q0 ∈ R2 and let us first establish that µ is contin-
uous, that is, F k− ≡ F k, k = 1, 2 . Assume, in contradiction, that w.l.o.g F 1

contains an atom on some q1. Consider the lowest q2 such that (q1, q2) is in

Supp(µ). If
∑2

k=1 q
k = 2, then competitors make zero profits in equilibrium,

a contradiction. If
∑2

k=1 q
k < 2, a conventional “undercutting”argument ap-

plies: if a competitor deviates to (q1+ ε, q2), where ε > 0 is arbitrarily small,

then by strict monotonicity the increase in the competitor’s probability of

being chosen outweighs his loss in profit conditional on being chosen.

Next, we show that if F k contains a "hole", then it is an interval
[
ak, qk0

]
,

for k = 1, 2. Assume the contrary. W.l.o.g, let [a1, b1] be an interval such

that F 1 (q1) = c for any q1 ∈ [a1, b1], F 1 (b1 + ε) > c for some arbitrary small

ε, and both a1 and b1 + ε have the same ordinal position relative to q10. Let

(b1, q2) ∈ Supp(µ). If a competitor deviates to (b1 − δ, q2) where δ > 0 is
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small, the competitor’s probability of being chosen does not change, but his

profit conditional on being chosen increases, hence the deviation is profitable.

Let q, r ∈ Supp(µ) ∩ O for some quadrant O, such that r > q. Denote

qr = (q1, r2), rq = (r1, q2). We will show that a deviation to qr or rq is

profitable. Denote a competitor’s payoff conditional on being chosen when

playing w by P (w). Observe that P (q) + P (r) = P (rq) + P (qr).

Assume the opponent plays some t ∈ Supp(µ) (not necessarily in O).

Because µ is continuous, tk /∈
{
qk, rk, qk0

}
with probability one, for both

k = 1, 2. The ordinal position of t relative to the four points q, r, qr, rq can

be divided into three cases, denoted I, II and III, and described by Figure

2:

III

II

II

IIII

I I

II

rq

qr r

q

(Figure 2)

In case I, t does not lie between the four points along any dimension. In

this case, all four points generate the same probability of being chosen when

played against t. In case II, t lies between the four points in exactly one

dimension. In this case, the two points that lie on the same side of t along

that dimension generate the same probability of being chosen when played

against t. In case III, t lies between the four points along both dimensions -

i.e., it is in co{q, r, rq, rq}. In this case, the four points may generate different
probabilities of being chosen when played against t.

For each w ∈ {q, r, qr, rq}, denote sw = s1 (q0, w, t). Let us now consider

a competitor’s expected payoff from playing w against t, according to the
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three cases.

Case I. As we saw, sw = sw′ for all w,w′ ∈ {q, r, qr, rq}. Clearly, this implies

sqP (q) + srP (r) = srqP (rq) + sqrP (qr)

Case II. W.l.o.g, assume sq = sqr and srq = sr. Note that sq < sr and

P (q) > P (qr), which implies

sqP (q) + srP (r) = sqP (q) + sr (P (rq) + P (qr)− P (q))

= (sq − sr) (P (q)− P (qr)) + sqP (qr) + srP (rq)

< sqP (qr) + srP (rq) = srqP (rq) + sqrP (qr)

Case III. Here, t is in the convex hull of {q, r, qr, rq}. By the assumption

that domination of one market alternative by another does not increase the

market participation rate, sq+sr ≤ sqr+srq. By strict monotonicity sq < srq

and sq < sqr. Since P (rq) > P (r) and P (qr) > P (r) we have

sqP (q) + srP (r) = sq (P (qr) + P (rq)− P (r)) + srP (r)

= sq (P (qr)− P (r)) + sq (P (rq)− P (r)) + (sq + sr)P (r)

< sqr (P (qr)− P (r)) + srq (P (rq)− P (r)) + (sqr + srq)P (r)

= sqrP (qr) + srqP (rq)

Note that case I cannot occur with probability one - otherwise, q would

yield a higher payoffthan r. Thus, by integrating over all possible t according

to µ, we can conclude that the sum of the payoffs at q and r is lower than

the sum of the payoffs at qr and rq. Therefore, at least one of the points qr

and rq are profitable deviations, a contradiction.

Proposition 2
Let µ be a symmetric equilibrium strategy. Because q0 = (0, 0), market
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alternatives necessarily belong to same quadrant relative to q0. Therefore,

Proposition 1 implies that the probability that two draws from µ dominate

one another is zero. The claim then immediately follows from the continuity

and “no holes”properties derived in the proof of Proposition 1.

Proposition 3
Assume in contradiction that there exists a symmetric Nash equilibrium in

which domination of one market alternative by another occurs with zero

probability.

Let us first establish that µ is continuous. First, suppose µ contains an

atom at some q. Then, by the assumption that domination of one market

alternative by another increases the market participation rate, a deviation

to q + (ε, ε) for some arbitrarily small ε > 0 is profitable. Second, suppose

that µ contains a singular atom - w.l.o.g, F 1 has an atom on some q1 and yet

there is no q2 such that µ contains an atom on (q1, q2). This possibility is

inconsistent with the assumption that domination of one market alternative

by another occurs with zero probability in equilibrium, a contradiction. It

follows that F 1 and F 2 are continuous.

Let O be some quadrant relative to q0 such that Supp(µ)∩O 6= ∅, and let
q, r ∈ Supp(µ) ∩ O. As in the proof of Proposition 1, denote qr = (q1, r2),

rq = (r1, q2). By the preceding step, we can assume w.l.o.g q1 < r1, q2 > r2,

such that [q1, r1] ⊂ Supp(F 1) and [r2, q2] ⊂ Supp(F 2). Furthermore, any

realization t of the opponent’s strategy must fall into one of the following

three regions: (i) t ∈ co{q, r, qr, rq}; (ii) t1 < q1 and t2 > q2; (iii) t1 > r1

and t2 < r2. Note that if t is in regions (ii) or (iii), then each of the

four points q, r, qr, rq generates the same probability of being chosen against

t. Accordingly, let A denote the probability that competitor j is chosen

conditional on the event that qi ∈ {q, r, qr, rq} and qj /∈ co{q, r, qr, rq}.
Denote α = s1(q0, qr, rq), β = s1(q0, r, q), γ = s2(q0, r, q), ε = α − β − γ.
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Note that by assumption, ε > 0. The payoff from the strategy q is

[
2− (q1 + q2)

]
·
[
A+ γ

(
F 1
(
r1
)
− F 1

(
q1
))]

and the payoff from r is

[
2− (r1 + r2)

]
·
[
A+ β

(
F 1
(
r1
)
− F 1

(
q1
))]

Because q, r ∈ Supp(µ), these payoffs are identical.

If a competitor deviates to qr, his payoff will be

[
2− (q1 + r2)

]
· [A]

On the other hand, if the competitor deviates to rq, his payoff will be

[
2− (r1 + q2)

]
·
[
A+ α

(
F 1(r1)− F 1(q1)

)]
For µ to be an equilibrium, both expressions must be weakly below the payoff

at q. Denote B = F 1 (r1) − F 1 (q1). Then, the payoffs at the four points q,

r, qr and rq can be written as follows:

π (q) =
[
2− (q1 + q2)

]
· [A+ γB]

π (r) =
[
2− (r1 + r2)

]
· [A+ βB]

π (qr) =
[
2− (q1 + r2)

]
· [A]

π (rq) =
[
2− (r1 + q2)

]
· [A+ (β + γ − δ + ε)B]

It follows that

π(p) + π(q)− π (qr)− π (rq) (1)

= B
[(

2−
(
r1 + q2

))
(γ + β − α) + γ

(
r1 − q1

)
+ β

(
q2 − r2

)]
Note that B > 0. If q and r are suffi ciently close, expression (1) is strictly
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negative, which means that the deviation to rq or qr is profitable, a contra-

diction.

Proposition 4
By Proposition 2, we can describe the support of µ by a continuous and

strictly decreasing function g : [0, q̄1] → [0, q̄2], where for each q1 in the

support of F 1, g (q1) is the unique q2 for which (q1, q2) is in the support of

µ. Therefore,

F 2
(
g
(
q1
))

= 1− F 1
(
q1
)

(2)

for every q1 ∈ [0, q̄1]. Since F 1 and F 2 are strictly increasing, they are

differentiable almost everywhere, such that the slope of g is

g′ = − dF (q1) /dq1

dF 2 (q2) /dq2
(3)

for almost every (q1, q2) along the graph of g.

Let us now write down an individual competitor’s payoff function when

the opponent plays µ:

π
(
q1, q2

)
=
[
2− q1 − q2

] [
α1F 1(q1) + α2F 2(q2)

]
In equilibrium, first-order conditions must hold. Thus, for both k = 1, 2, the

equation

[α1F 1(q1) + α2F 2(q2)] = αk · dF
k(qk)

dqk
· (2− q1 − q2) (4)

must hold almost everywhere along the graph of g. The L.H.S of the equa-

tions for k = 1 and k = 2 are identical, and so we obtain

dF 1 (q1) /dq1

dF 2 (q2) /dq2
=
α2

α1
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By (3), we conclude that

g′
(
q1
)

= −α
2

α1

almost everywhere along the graph of g. Therefore, we can write g as follows:

g(q1) = q̄2 − α2

α1
q1 (5)

Let us now distinguish between two cases.

(i) α1 = 1
2
. Then, g′ = −1. This means that q̄1 = q̄2 = q1 + q2 = c for every

(q1, q2) in the support of µ, where c is some constant we need to derive. In

other words, the support of µ is a straight line that connects the points (0, c)

and (c, 0). Plug (2) into (4) and obtain the simplified equation

1 =
dF k

(
qk
)

dqk
· (2− q1 − q2)

Because q1 + q2 = c throughout the support of µ, dF k
(
qk
)
/dqk is constant

as well:
dF k

(
qk
)

dqk
=

1

2− c

But this also means that qk is distributed uniformly over [0, c]. Therefore,

c = 1, which pins down the characterization.

(ii) α1 ∈ (1
2
, 1). The two extreme points in the support, (0, q̄2) and (q̄1, 0),

must both generate the equilibrium payoff:

α1 · (2− q̄1) = α2 · (2− q̄2) = π (6)

The two points are also linked by (5), if we plug g(q̄1) = 0. Combining these

two equations, we obtain a solution for q̄1, q̄2 and for the equilibrium payoff

π. Moreover, according to (5), every realization of total cost q1 + q2 in this

interval is associated with a unique (q1, q2), as given in the statement of the

proposition. Let us derive F 1. Since every (q1, q2) in the support of µ must
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be a best-reply, we must have that for every q1 ∈ [0, q̄1]:

[
2− q1 + g(q1)

]
·
[
α1F 1

(
q1
)

+ α2F 2
(
g(q1

)
)
]

= π (7)

Since every q1 is associated with a unique average quality c(q1) = 1
2
[q1+g (q1)]

that increases with q1, F 1(q1) = G(c(q1)), where G is the induced cdf over

c. Plugging (2) and (5) into (7), we obtain an explicit expression for F 1 over

[0, q̄1], and hence also for G:

G(c) =
1

2α− 1

[
π

1− c − (1− α)

]
Because c = 1

2
(q1 + q2), By (5) and (6), q̄1 = 2α and q̄2 = 2(1−α), such that

the equilibrium payoff is π = α(1 − α). This pins down G and g, hence the

values that c can get, as well as the values of (q1, q2) as a function of c.

The last step (for both cases) is checking that there are no profitable

deviations. It suffi ces to consider deviations to pure strategies (q1, q2) ∈
[0, q̄1]× [0, q̄2]. It is easy to verify that given the explicit expressions for F 1

and F 2, the payoff function

π
(
q1, q2

)
=
[
2− q1 − q2

] [
α1F 1(q1) + α2F 2(q2)

]
is decreasing (increasing) in both arguments when (q1, q2) is above (below)

the graph of g, hence the maximal payoff is obtained at the points along g.

Proposition 5
Let n ∈ [1 + 1

λ
, 1 + 3

λ
] and d = 2

λ+n(2−λ) . The strategy s
∗(n, d) induces a

marginal distribution over qk, with support [0, q̄k] where q̄k = nd, k = 1, 2.

It is easy to verify that each point on the support of s∗(n, d) yields the same

payoff. Clearly, when we look for profitable deviations from s∗(n, d), we need

only look for pure strategies (q1, q2) ∈ [0, q̄1] × [0, q̄2]. From now on, we

adhere to the (p, e) representation of strategies. We index the n values that
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e by k = 0, 1, ..., n − 1. Let l = dσn and h = d (σn+ 1) denote the lowest

and highest values in the support of the marginal distribution over p. Define

Lk = {(p, e) | p ∈ [l, h] and e = ek}. That is, Lk is one of the n line segments
that constitute the support of s∗(n, d), which is associated with ek. There

are three cases to consider.

Case 1 : Deviation to (p, e) where p ≥ h.

For any p ≥ h, it suffi ces to look for the most profitable deviation (p, e). The

fact that e is uniformly distributed over evenly spaced values independently

of p, and that d = h − l and d = ek − ek−1, the total length of the
{
Lk
}

segments that (p, e) is dominated by is independent of e. Moreover, the

number of segments that partially dominate (p, e) is at most 2. Because of the

concavity of G, it is more profitable to be partially dominated by one segment

(the dominating prices on that segment being [l, l + x+ y] for some x and

y) than being partially dominated by two segments (where the dominating

prices are [l, l + x] and [l, l + y]). This implies that for a given p the most

profitable emaximizes the number of line segments Lk that entirely dominate

(p, e). Therefore, in the sequel we restrict attention w.l.o.g to e = 1− p, i.e.,
to (0, q), where q < 1− h, in the (q1, q2) representation.

Consider a deviation to p = h + (m+ x) d
2
, m = 0, 1, .., n − 2, x ∈ [0, 1].

The payoff is(
h+ (m+ x)

d

2

)
1− λ

2

(
1− 1

n
(1 +m+G (l + dx))

)
Note that for x = 0, the payoff at m = 0 (which corresponds to no

deviation) is higher than at m = 1 if and only if n ≤ 1 + 3
λ
. Second, if this is

the case, then the payoff continues to decrease for any m > 1 (n ≤ 1 + 3
λ
is

a suffi cient condition for the derivative of the payoff w.r.t m is negative for

m > 1 and x = 0).

Moreover, the derivative of the payoff function w.r.t x (for a given m)

is increasing. Thus, for each m, the maximal payoff is achieved at x ∈
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{0, 1}.This, together with the previous result, imply that deviations to p ≥ h

are unprofitable if and only if n ≤ 1 + 3
λ

Case 2 : Deviation to (p, e) where p ≤ l.

By the same argument as in Case 1, the most profitable deviation for a given

p ≤ l is to e that maximizes the number of entire segments Lk which are

dominated by (p, e). Therefore, in the sequel we restrict attention w.l.o.g to

e = (l + e0)− p, i.e., to (q̄1, q), where q > 1− l, in the (q1, q2) representation.

Consider a deviation to p = l− (m+ x) d
2
, m = 1, .., n− 2, x ∈ [0, 1]. The

payoff is:(
l − (m+ x)

d

2

)(
1− λ

2
+

1 + λ

2

1

n
(1 +m+ (1−G (h− dx)))

)
Note that the payoff at m = 0 (corresponding to no deviation) is higher

than at m = 1 if and only if n ≤ 1 + 3−λ
(1−λ)λ . Second, if this is the case, then

the payoff continues to decrease for any m > 1. Note that n ≤ 1 + 3
λ
implies

n ≤ 1 + 3−λ
(1−λ)λ .

The derivative of this function w.r.t x implies the following: (i) it is

increasing in x for m ≤ σn− 1; (ii) it is negative for m > σn− 1. Thus, it is

enough to check for deviation to x = 0 and m ≤ σn− 1, and by the previous

result, these deviation are unprofitable for n ≤ 1 + 3
λ
.

Case 3 : Deviation to (p, e) where l ≤ p ≤ h.

Fix p ∈ [l, h]. Because any (p, e) where p is in this interval is comparable

to points in at most 2 segments, and because all segments have the same

probability distribution, it is enough to check for deviations from (p, e0) to

(p, e0 + x), where x ∈
(
0, d

2

)
. Thus, (p, e0 + x) is comparable only to points

on L0 and L1. Consider these three cases:

(i) p + x ≤ h and p − x ≥ l. In this case (p, e0 + x) is not dominating, nor

being dominated by, any point in L1. As x increases, (p, e0 + x) is dominated
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by less points on L0 but also dominates less. The competitor’s net gain of

market share is

1

n

1− λ
2

[G(p)−G(p− x)]− 1

n

1 + λ

2
[G(p+ x)−G(p)]

Substituting G, we obtain the following condition for the deviation’s prof-

itability:

p+ x

p− x >
1 + λ

1− λ

It is easy to verify that the L.H.S is maximized at p = l + d
2
and x = d

2
, and

the inequality is satisfies iff n < 1 + 1
λ
.

(ii) p + x > h. In this case (p, e0 + x) is dominated by some prices in L0

and in L1,but not dominating any point. Because the total length of the

segments of L0 and L1 that dominate (p, e0 + x) is constant for any such x,

the concavity of G implies that it is more profitable to be dominated by L0

alone than by both. That is, this deviation is strictly less profitable than the

deviation to (p, e0 + h− p) which is covered in case (i).

(iii) p − x < l. In this case (p, e0 + x) is dominating some prices in L0 and

in L1, but not being dominated by any point. Because the total length of

segments of L0 and L1 that (p, e0 + x) dominates is constant for any such

x, the concavity of G implies that it is more profitable to dominated L0

alone. That is, this deviation is strictly less profitable than the deviation to

(p, e0 + p− l), which is covered in case (i) as well.

Proposition 6
Consider a symmetric Nash equilibrium strategy µ that satisfies indepen-

dence and constant comparability. The feature that the induced marginal

distribution over qk has no atoms and no holes carries over to the present

setting. From now on, we adhere to the (p, e) representation of pure strate-

gies. The proof proceeds stepwise.
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Step 1: The marginal distribution over p is atomless.
Proof : Assume the contrary —i.e., that some price p is realized with posi-
tive probability. Then, with positive probability p1 = p2 = p. In this case,

(p1, e1) and (p2, e2) necessarily do not dominate one another. Thus, condi-

tional on p1 = p2 = p, the probability of domination is zero. By constant

comparability, the probability of domination must be zero in equilibrium, in

contradiction to Proposition 3.

The following two steps state properties that hold for almost all pairs

of realizations of a symmetric equilibrium strategy. For expositional conve-

nience, we state and prove the claims with slight imprecision, as if they hold

for all realizations.

Step 2: If (p′, e′) is dominated by (p, e), then (p′′, e′) is dominated by (p, e)

for every p′′ ∈ (p, p′).

Proof : Let p′ > p′′ > p be three prices in the support of the marginal

distribution over p. By definition, if (p′′, e′) is dominated by (p, e), then (p′, e′)

is dominated by (p, e) as well. Now, calculate the probability of domination

conditional on (p1, p2) = (p′, p), by integrating over all possible values of

e1, e2, and do the same for (p1, p2) = (p′′, p). By independence, e1 and e2 are

i.i.d. Therefore, if (contrary to the claim) there is positive probability that

(p′, e′) is dominated by (p, e) yet (p′′, e′) is not dominated by (p, e), we will

get a violation of constant comparability, because the domination probability

conditional on (p′, p) will be strictly higher than the domination probability

conditional on (p′′, p).

Step 3: For every (p, e) and (p′, e′) in the support of µ with e 6= e′, |e′ − e| ≥
|p′ − p|.
Proof : Assume the contrary, i.e., |e− e′| < h−l for e, e′ in the support of the
marginal obfuscation distribution (where h and l are as defined in the proof

of Proposition 5). By Step 1, we can find a price p ∈ (l, h) in the support

of the marginal distribution over p, such that p − l < |e− e′|. This means
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that (h, e) will be dominated by (l, e′) and yet (p, e) will not be dominated

by (l.e′), contradicting Step 2.

Step 4: The marginal equilibrium distribution over e is uniform with support
{e0, ..., en−1}, where ek+1−ek = h− l for every k = 0, ..., n−2, and h+en−1 =

h− e0 = 1.

Proof : Step 3 immediately implies that the gap between two adjacent real-
izations e < e′ cannot be less than h− l. Assume the gap is strictly greater
than h− l. Then, a competitor can profitably deviate from (h, e) to (h, e+δ),

where δ > 0 is arbitrarily small. The reason is that since the distribution

over p is atomless, it assigns positive probability to prices arbitrarily close to

h. Thus, by switching to (h, e + δ), the competitor reduces the probability

of being dominated by strategies (p, e) for p < h, without affecting the prob-

ability of being dominated by strategies (p, e′′), e′′ 6= e. Since the marginal

distributions over qk have no holes, h+en−1 = h+e0 = 1. Finally, the reason

that the distribution is uniform is as follows. In equilibrium, competitors

are indifferent among all (h, ek). By construction, the payoff from (h, ek) is

h · 1−λ
2
·(1−Pr(ek)), because (h, ek) is dominated by (p, e) if and only if p < h

and e = ek.

Step 5: h = 1− n−1
2

(h− l), l = 1− n+1
2

(h− l).
Proof : Recall that h + en−1 = h − e0 = 1. Therefore, e0 = −en−1. Since
values of e are evenly spaced by intervals of length h− l, it follows that the
distribution of e is symmetric around zero, such that en−1 = n−1

2
(h− l), and

the result follows.

To complete the proof, we add the equation that the profits at l and h

coincide:

h · 1− λ
2
· (1− 1

n
) = l ·

[
1− λ

2
+ (1− 1− λ

2
) · 1

n

]
This equation, coupled with Step 5, gives us the solutions to h and l, as well
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as the equilibrium profit, as a well-defined function of n. We can retrieve the

marginal distribution G over p from the following equation:

σ(2σn+ 2)

2σn+ n+ 1
= p·

[
1− λ

2
·
(

1− 1

n
+

1

n
(1−G(p))

)
+ (1− 1− λ

2
) · 1

n
· (1−G(p)

]
Since this equation holds for every p in the support of G, the support of

G cannot have holes inside [l, h], for otherwise there would be an atom,

contradicting Step 1.

Thus, any symmetric equilibrium strategy takes the form s∗(n, d) where

d = h− l. As for the bounds on n, it is easy to verify that if n > 1+ 3
λ
then a

deviation to (p, e) where p = h+ d
2
and e = 1−p is profitable and if n < 1+ 1

λ

then a deviation to (p, e) where p = l + d
2
and e = e0 + d

2
is profitable.

Proposition 7
First, observe that each firm can secure a strictly positive profit - e.g., by

mixing uniformly over {(q1, q2)|q1 + q2 ≤ 2}. Therefore, firms must earn
strictly positive profits in symmetric Nash equilibrium. Now, if a firm offers

a price-quality price (p, q), it will dominate the outside option only if p ≤ 0, in

which case it would earn non-positive profits. It follows that in equilibrium,

firms will never offer alternatives that dominate the outside option. As a

result, a firm will never offer a dominant option. Therefore, the consumer

chooses a non-default firm if and only if it outperforms all other alternatives

along the dimension he sampled. We have established that no firm will ever

outperform the outside option along the price dimension. It follows that

p = 2 for every (p, q) in the support of the firms’equilibrium strategy - if

(p, q) is in the support for some p < 2, the firm can deviate to (2, q) and get

the same clientele -size.

We have thus concluded that in equilibrium, firms play p = 2 and random-

ize over q according to some cdf F . By standard arguments in the tradition

of Varian (1980), the support of F must be an interval [0, q̄]. When a firm

plays (2, 0), it is chosen only when the consumer was initially assigned to it
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and exhibits default bias. It follows that firms’equilibrium payoff is 2 · 1
2
λ.

When a firm plays (2, q), q ∈ [0, q̄], its payoff is

(2− q)
(

(1− λ) · 1

2
F (q) + λ · 1

2

)
= λ

which immediately gives the solution.
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