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Abstract 

 

Background/Aims: To describe the design and baseline characteristics of patients 

enrolled in the multicenter, prospective natural history study of Stargardt disease type 4 

(STGD4). 

Methods: Fifteen eligible patients aged six years and older at baseline, harbouring 

disease-causing variants in the PROM1 gene and with specified ocular lesions, were 

enrolled. They were examined at baseline using a standard protocol, with six monthly 

follow-up visits for a two-year period including best-corrected ETDRS visual acuity (VA), 

spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence 

(FAF), mesopic and scotopic microperimetry (MP). Areas of definitely decreased FAF 

(DDAF) and questionably decreased FAF (QDAF) were outlined and quantified on FAF 

images. 

Results: Amongst the 15 patients (29 eyes) that were enrolled at five centers in the 

United States and Europe, 10 eyes (34.5%) had areas of DDAF with an average lesion 

area of 3.2 mm2 ± 3.5 mm2 (range 0.36 – 10.39 mm2) at baseline. The mean retinal 

sensitivity of the posterior pole derived from mesopic MP was 8.8 ± 5.8 dB. 

Conclusions: Data on disease progression in PROM1-related retinopathy from this study 

will contribute to the characterization of the natural history of disease and the 

exploration of the utility of several modalities to track progression and therefore to 

potentially be used in future interventional clinical trials. 

  



 

Introduction 

Prominin 1 (PROM1; also known as CD133 and AC133) [1,2]  encodes a 5–

transmembrane domain protein containing two large, highly glycosylated extracellular 

loops and a cytoplasmic tail. It was first identified as a human stem cell–specific marker, 

but over the last decade its crucial role during the formation and organization of disks 

within the outer segment (OS) of photoreceptors has been recognized [2]. Recently, a 

new cytoplasmic role of PROM1 in RPE function has also been described - in regulating 

autophagosome maturation and trafficking [3]. 

Mutations in PROM1 may show extraocular manifestations in addition to retinal 

dystrophy such as steroid-resistant asthma, microscopic hematuria, recurrent renal 

infection and renal scarring [4]. There is a heterogeneity in both the inheritance pattern 

and clinical phenotype, with both autosomal dominant forms of PROM1-related 

retinopathy (principally p.(R373C)) [5], and autosomal-recessive forms reported [6]. 

Both autosomal dominant and recessive sequence variants have been associated with a 

wide range of clinical phenotypes (often with a bull’s-eye maculopathy appearance), 

including isolated macular dystrophy, cone dystrophy, cone-rod dystrophy and rod-cone 

dystrophy [5]. 

 

At present, there are no treatments available, however several therapeutic options for 

inherited retinal dystrophies are in preclinical or early clinical development phases 

[7,8]. The preparation for future therapeutic approaches and designing appropriate 

clinical trials must include an understanding of the disease itself, its variability, its 

progression and its correlation with visual loss [9,10]. Moreover, clinical trials that aim 

to slow progression and/or to restore vision require validated outcome measures to 

prove treatment efficacy. Such an endeavor has been undertaken for ABCA4-related 



 

retinopathy in the “Natural History of the Progression of Atrophy Secondary to Stargardt 

Disease (ProgStar)“ studies; these consist of a retrospective chart review (ProgStar-1), a 

prospective cohort study (ProgStar-2) and an ancillary study evaluating scotopic 

microperimetry (scotopic assessment of rod function in Stargardt disease SMART) 

[9,11]. In keeping with these studies, the “Natural History of the Progression of Atrophy 

Secondary to Stargardt Disease type 4 (STGD4): A Prospective Longitudinal 

Observational Study of Stargardt Disease type 4,  PROM1- Related Dystrophy“  

(ProgStar- 4 Study) has been launched in order to determine the natural history of 

PROM1-related retinopathy. Herein we describe the study design and baseline 

characteristics of enrolled patients. 

 

2. PATIENTS AND METHODS 

 

Study design & eligibility criteria 

The ProgStar-4 study is a longitudinal cohort study consisting of five standardized study 

visits (one baseline and four follow-up visits every six months for 24 months). The time 

window for each visit was limited to ± 5 weeks.  These include a clinical examination 

with refraction and best-corrected visual acuity testing, psychophysical examination by 

mesopic and scotopic microperimetry, and retinal imaging by fundus autofluorescence 

(FAF) and spectral-domain optical coherence tomography (SD-OCT).  

Inclusion criteria were the following: (1) At least one well-demarcated area of atrophy 

in the designated study eye. The lesion size should not exceed the area to be tracked in 

the SD-OCT mode (20 x 20 degrees); (2) disease-causing variant(s) in the PROM1 gene;  

(3) the primary study eye must have clear ocular media and adequate pupillary dilation 

to permit good quality FAF and SD-OCT imaging in the opinion of the investigator; (4) be 



 

able to cooperate in performing the examinations; (5) willingness to undergo ocular 

examinations once every 6 months for up to 24 months; (6) minimum age of six years at 

baseline visit; and (7) both eyes could be included if inclusion criteria were fulfilled for 

both eyes. 

 

Exclusion criteria were the following: (1) Ocular disease, such as choroidal 

neovascularization, glaucoma and diabetic retinopathy, in either eye that may confound 

assessment of the retina morphologically and functionally; (2) intraocular surgery in the 

primary study eye within 90 days prior to baseline visit; (3) current or previous 

participation in an interventional study to treat STGD4 such as gene therapy or stem cell 

therapy. Current participation in a drug trial or previous participation in a drug trial 

within six months before enrollment. The use of oral supplements of vitamins and 

minerals were permitted; (4) the site Principal Investigator may declare any patient at 

their site ineligible to participate in the study for a sound medical reason prior to the 

patient’s enrollment into the study; (5) any systemic disease with a limited survival 

prognosis (e.g. cancer, severe/unstable cardiovascular disease); (6) any condition that 

would make adherence to the examination interfere with the patient attending their 

regular follow-up visits schedule of once every 6 months for up to 24 months difficult or 

unlikely, e.g. personality disorder, use of major tranquilizers such as Haldol or 

Phenothiazine, chronic alcoholism, Alzheimer’s Disease or drug abuse; (7) evidence of 

significant uncontrolled concomitant diseases such as cardiovascular, neurological, 

pulmonary, renal, hepatic, endocrine or gastro-intestinal disorders.  

However, there were no restrictions for visual acuity in order to be eligible for the 

ProgStar-4 study. 



 

The primary objective was to assess the yearly rate of progression of STGD4 using the 

growth of atrophic lesions as measured by FAF imaging. The secondary objectives were 

(1) to assess the yearly rate of progression of STGD4 using SD-OCT to measure the rates 

of retinal thinning and loss of photoreceptors; (2) to assess the yearly rate of loss of 

retinal sensitivity as measured by mesopic and scotopic MP; (3) to assess the yearly rate 

of best-corrected visual acuity changes; (4) to correlate the presence and progression of 

morphological abnormalities in FAF and SD-OCT with visual function as measured by 

MP and visual acuity (VA); and (5) to perform exploratory analysis of factors associated 

with progression, such as e.g. the patient’s smoking history. 

 

Ethics 

The study was conducted according to the ICH GCP Guidelines, the applicable regulatory 

requirements, the current Declaration of Helsinki and in compliance with HIPAA. Ethics 

committee approval was granted by the Institutional Review Board, Johns Hopkins 

University School of Medicine, Baltimore, U.S.A., and the local ethics committees of all 

participating sites.  The study has been registered at www.clinicaltrials.gov (Identifier 

NCT02410122). All patients gave written informed consent prior to enrollment in the 

study. 

 

Structural and functional retinal data 

The detailed standardized protocols for FAF, SD-OCT, and mesopic and scotopic 

microperimetry are provided in the supplemental material. Key points are outlined in 

the following sections. 

 

Tools for image acquisition and microperimetry (mesopic and scotopic) 

http://www.clinicaltrials.gov/


 

Heidelberg Engineering® provided a custom FAF acquisition software that was 

formalized and deployed for exclusive use in the prospective ProgStar study [9,12]. This 

software can be applied on the manufacturer’s commercially available confocal scanning 

laser ophthalmoscope (cSLO) models, such as the Heidelberg Retina Angiograph 2 

(HRA2) or Heidelberg SpectralisTM and allows a laser-intensity reduction to 25%, 50% 

or 75% of the original laser power. The ProgStar-4 FAF acquisition protocol followed 

the previously published prospective ProgStar-study protocol by implementing the 

concept of short-wavelength reduced-illuminance autofluorescence imaging (SW-RAFI) 

in ABCA4-associated retinal dystrophies as described by Cideciyan et al [13]. 

Nidek® (Padova, Italy) provided the software tool “Fovea on OCT”, allowing the 

execution of MP where the stimuli pattern is automatically centered on the anatomical 

fovea of a patient, after the fovea has been located using a Spectralis SD-OCT (see 

supplemental material) [9]. The pattern for macular sensitivity testing was performed in 

68 test locations in a customized Humphrey 10-2 pattern with white Goldmann III 

stimuli of 200 msec duration on a white monochromatic background and a 4-2 strategy. 

Both aforementioned custom software tools were provided by Heidelberg Engineering® 

and Nidek® respectively to the participating study sites for the exclusive use in patients 

participating in the context of the ProgStar and ProgStar-4 studies [9]. 

 

Study organization 

The overview of the organizational structure of the ProgStar-4 study is provided in 

figure 1. All study staff members are listed in supplemental material. Overall 

responsibility for the ProgStar-4 study is incumbent on the study chair. The DCC also 

monitored adherence to protocol and procedures, and was responsible for data 

analyses. It also supervises data quality apart from image quality and grading, as this 



 

was the purpose of the reading center (Wilmer Imaging Reading Center, RC). ). As the 

study protocols of the ProgStar-4 study significantly overlap with the previous 

published prospective ProgStar-2 study in ABCA4-related disease, clinical center staff 

certified for case report form completion and visual acuity measurement according to 

the “Early Treatment Diabetic Retinopathy Study“ (ETDRS) protocols and charts used in 

ProgStar-2 were not required to obtain additional certification for ProgStar-4 [14].  

However, a passing score (80% or higher) on a ProgStar-4 study knowledge assessment 

exam was required for all study coordinators. Equally, the RC grandfathered 

certifications for clinical center staff on the acquisition of FAF, SD-OCT images and MP. 

Only one site (University of Bonn, Germany)  did not participate in the prospective 

ABCA4-retinopathy study and both the clinical center and clinical center staff  were 

certified as previously described [9]. The RC had the responsibility for grading SD-OCT, 

FAF and MP, thereby assuring data quality in grading. 

 

Clinical centers 

Patients were recruited at five centers in the United States, United Kingdom, and 

Germany. A custom-built database in REDCap (http://www.project-

redcap.org/cite.php) served at a central database in which all data were entered and 

checked for completeness and consistency by the DCC. Investigators at each clinical 

center identified potential study patients from their own patient populations, referral 

from other ophthalmologists or by self-referral. Participation was open to all interested 

patients and made public using an openly accessible internet webpage 

(http://progstar.org/progstar-home/progstar-4/).  

 

Quality assurance and methods to minimize bias 

http://www.project-redcap.org/cite.php
http://www.project-redcap.org/cite.php


 

Each site principal investigator (PI)  confirmed the eligibility of patients. Data collection 

and procedures for all investigations were standardized and outlined in the study 

Manual of Procedures (MOP). All staff involved in performing study procedures were 

trained and certified prior to the start of the study. Image quality and completeness was 

assessed by the RC, and photographers at the centers were informed in case of poor 

quality or missing images. Image graders were not masked to the sequence of visits and 

to the patient. Images were reviewed by two RC-certified graders independently, and an 

adjudication process was applied in discordant cases with final determination by a RC 

investigator (MIA). After processing and analyzing at the RC, all data derived from 

grading were transferred from the RC to the DCC using the REDCap system. Case report 

forms were stored at each site. 

 

Grading of atrophic lesions on fundus autofluorescence 

Previously established grading protocols were applied for grading of atrophic lesions on 

FAF images using a semi-automated software tool (Heidelberg Engineering® 

RegionFinder) [9,12,15]. Areas of decreased autofluorescence (DAF) were quantified in 

three distinct types with the level of darkness being used to define an area of DAF 

qualitatively being  “definite “or “questionable“. Reference points were  

the optic nerve head (ONH) for “100% level of darkness”, while the retinal background 

autofluorescence seen in the periphery in less affected retinal areas, served as the 

reference for normal autofluorescence. Areas with level of darkness close to 100% (at 

least 90%) in reference to the ONH or blood vessels were defined as “definitely 

decreased autofluorescence” (DDAF).  Such lesions were well-demarked by nature of 

contrast differences with surrounding areas, though sometimes ill-organized (see figure 



 

2). Areas with darkness levels ranging between 50% and 90% darkness were defined as 

“questionably decreased” AF (QDAF).  

Further grading included contiguity of DDAF lesions (unifocal/multifocal) and 

 qualitative grading parameters: presence/absence of an edge of increased 

autofluorescence and presence/absence of fleck-like lesions. The background 

autofluorescence was graded as homogeneous or heterogeneous as previously 

described [9]. The autofluorescence of the foveal center (when regarded as a point) was 

determined as normal, DDAF, QDAF or increased autofluorescence. 

 

 

Grading of microperimetric assessments 

Mesopic microperimetry was performed under dim room light conditions, and scotopic 

microperimetry under completely dark conditions after at least 30 minutes dark 

adaption. The sensitivity in each of the 68 (mesopic microperimetry) and 40 (scotopic 

microperimetry) retinal locations was determined by iteratively adjusting the light 

intensity until the dimmest visible stimulus was found. A scale of 0 dB to 20 dB served to 

determine the sensitivity for each test location. The term “deep scotoma” was defined 

for test locations with 0 dB (i.e., retinal locations where only the brightest stimulus was 

detected or no stimulus at all was detected), and the term “relative scotoma” for test 

locations with more than 0 dB but less than 12 dB [16]. Mean sensitivity across all tested 

locations, and the number of absolute and relative scotomas were calculated. 

Fixation results were obtained during microperimetric macular sensitivity testing 

(dynamic testing) by tracking the patient’s retina and generating of a scatter plot of all 

fixation locations [17]. Fixation stability was quantified as a continuous variable, the 



 

bivariate contour ellipse area (BCEA):  global BCEA for one, two, and three standard 

deviations was calculated using the following equation: 

 

BCEA = 2k π σH σV (1 - ρ2) ½. 

 

σH and σV  are the standard deviations of horizontal and vertical eye movements, ρ is the 

Pearson product-moment correlation coefficient of fixation positions in the horizontal 

and the vertical meridian, k is a constant dependent on the chosen probability area 

which is given by the equation: 

P= 1 – e-k 

P is the probability area and e is the base of the natural logarithm. P is the chosen 

probability for the SD that the BCEA is based on and the 

equation is solved for k [16-18]: 

k = -ln (1 – P) 

 

Spectral-domain optical coherence tomography 

Patients were tracked with 20° x 20° cube comprising SD-OCT scans. Single B-scans 

were semi-automatically graded using the Heidelberg Spectralis V version 6.3.4. The 

following layers were segmented and analyzed: retinal nerve fiber layer (RNFL), 

ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer 

plexiform layer (OPL), outer nuclear layer (ONL), external limiting membrane (ELM), 

inner segments/outer segments (IS/OS), retinal pigment epithelium (RPE), Bruch’s 

membrane (BM) and choriocapillaris (CC); choroidal stroma was assessed by analysis of 

enhanced depth imaging (EDI). Segmentation errors were manually corrected.[19] 

Results from SD-OCT grading will be reported separately; for the purpose of this 



 

manuscript, values of the central subfield derived from clinical report forms (CRF) are 

provided. 

 

 

Clinical and demographic factors 

Data sets include demographic information, presence of mutations in PROM1, and best-

corrected visual acuity assessed according to the “Early Treatment Diabetic Retinopathy 

Study“ (ETDRS) charts and protocols.[14] Data from biomicroscopy of the anterior 

segment including the status of the lens (presence of lens opacities or cataracts), as 

graded according to the Age-related Eye Disease Study (AREDS) cataract grading 

scheme [20], and from dilated fundus examination were also recorded. Smoking history 

and concomitant diseases were recorded, with emphasis on those related to ciliopathies; 

these were assessed using a custom-built questionnaire that specifically included 

questions regarding hearing problems, use of hearing aids, recurrent sinusitis, and 

kidney disorders. 

A full-field electroretinogram (ffERG) according to ISCEV standards [21] was performed 

once at the baseline visit or the results were submitted if performed within five years of 

the baseline visit. Color fundus photos could be obtained at the discretion of the site-PI 

and sent to the RC. 

 

Statistical analysis 

VA measures were converted to LogMAR scale. Visual acuity was then divided into 

categories of visual impairment as proposed by the World Health Organization (WHO) 

[22,23]: (i) BCVA better than or equal to 20/25 (LogMAR≤ 0.1) (i.e. no visual 

impairment [VI]); (ii) worse than 20/25 to 20/70 (LogMAR 0.1-0.54) (i.e. mild VI); (iii) 



 

worse than 20/70 to 20/200 (LogMAR 0.54-1.0) (i.e. moderate VI); (iv) worse than 

20/200 to 20/400 (LogMAR 1.0-1.3) (i.e. severe VI); and (v) worse than 20/400 

(LogMAR>1.3)  (i.e. blindness) [22]. 

Descriptive statistics are shown for characteristics at patient and eye level; the mean 

(standard deviation) median and range for continuous variables and proportions for 

categorical variables are used.  To describe the correlation between total area of DAF 

and number of absolute scotomas, the Spearman correlation coefficient is presented. All 

analyses were conducted in SAS 9.4,  

 

 

Results 

Demographic characteristics 

 A total of 29 eyes (15 patients) were enrolled in the ProgStar-4 study between 

December 2nd, 2014 and May 6th, 2015 at five clinical centers: six at Moorfields Eye 

Hospital, London, three at Retinafoundation of the Southwest, Dallas and Department of 

Ophthalmology, University of Bonn, respectively, two at the Department of 

Ophthalmology, Eberhard-Karls University Hospital Tübingen, and one at the Wilmer 

Eye Hospital, Johns Hopkins University, Baltimore. All had disease-causing mutations in 

the PROM1 gene and were white; demographic data are summarized in table 1.  

Mean BCVA at baseline was 52.6 (± 26.1 sd, range 0-91) ETDRS letter score (LogMar 

0.65 ± 0.52, range -0.12 – 1.66); 15 eyes (51.7%) had no or mild visual impairment 

(BCVA 20/70  or better (LogMar <0.54)), six eyes (20.7%) had moderate (worse than 

20/70 to 20/200 (LogMAR 0.54-1.0)), six eyes (20.7%) had severe (worse than 20/200 

to 20/400 (LogMAR 1.0-1.3)) visual impairment, and two eyes (6.9%) were legally blind 

(worse than 20/400 (LogMAR>1.3)). 



 

On clinical fundus examination, six eyes (20.7%) showed pallor of the optic nerve and 

seven eyes (24.1%) showed vascular attenuation. In 27 eyes (93.1%) RPE-atrophy was 

present on clinical exam, and RPE pigmentation abnormalities in 19 eyes (65.5%); fleck-

like lesions were described in eight eyes (27.6%), in two eyes (6.9%) also beyond the 

vascular arcades. Genetic data of enrolled patients are presented in table 2. 

 

Baseline characteristics in fundus autofluorescence, microperimetry and spectral-

domain optical coherence tomography 

At baseline, 29 eyes had FAF images graded. Ten eyes (34.5%) showed areas of DDAF, 

out of which 3 were unifocal and 7 multifocal. Mean lesion size of DDAF was 3.2 mm2 (± 

3.5 mm2, range 0.36 – 10.39 mm2; figure 2, table 3). 

A signal of increased autofluorescence was present in 17/29 (58.6%) of these eyes.  All 

29 eligible eyes had QDAF lesions. When regarded as a point, the foveal center was 

normal in 8/29 (27.6%) eyes, had increased FAF signal in 4/29 (13.8%) eyes, 13/29 

(44.8%) with QDAF and 4/29 (13.8%) with DDAF. 

Results derived from both photopic and scotopic microperimetric exams (figure 3) are 

also summarized in table 3. There was a positive correlation between areas of total area 

of DAF and absolute scotoma (Spearman Correlation coefficient ρ=0.61, p=0.02). 

Spectral-domain optical coherence tomography imaging showed a mean retinal 

thickness of the central subfield (1000 microns diameter) of 196 microns which is 

significantly below the normal mean of 283 +/-27 microns [24]. 

 

Discussion 

Natural history studies such as herein for PROM1-related retinopathy have also been 

undertaken in the ProgStar study of ABCA4-related disease [9]. While there is a major 



 

overlap of the study design, there exists several differences: first, the inclusion criteria 

were broadened for the ProgStar-4 study after a survey to identify potential study 

patients, and hence the definition of the atrophic lesion size of the study eye(s) was 

confined by the possibility to track disease progression using 20 x 20 degree SD-OCT 

scans rather than by a definite size threshold; secondly, there was no threshold for 

minimal visual acuity; thirdly, the manual of procedures, especially for the acquisition of 

FAF images was amended; for the purpose of the ProgStar study in ABCA4-related 

disease, the concept of short-wavelength reduced autofluorescence imaging (SW-RAFI) 

as proposed by Cideciyan et al was implemented [9]. This approach is based on the 

potential light-toxicity, especially in ABCA4-related disease due to accumulation of A2-

dihydropyridine-ethanolamine (A2E) as one of the major components of lipofuscin and 

may lead to acceleration of disease progression [13]. Indeed, ABCA4-related STGD1 

shows elevated levels of lipofuscin-related autofluorescence intensity,[25] and this 

facilitates the use of SW-RAFI leading to comparable grading results with conventional 

FAF imaging [12]. Because photoreceptor cell degeneration of PROM1-knockout mice 

was shown to be light-dependent based on histologic and functional examinations [26], 

we adopted this concept also for the ProgStar-4 study. However, we realized that a 

reduction of the laser power in PROM1-related disease may result in underexposed 

images and therefore the acquisition of an image with 25% LP appeared not to be 

optimal for the ProgStar-4 study. 

The patients enrolled into the Prog-Star-4 study comprise a wide spectrum of PROM1-

related maculopathy both anatomically (as determined by changes in FAF and SD-OCT) 

and functionally (as determined by changes in mesopic/scotopic microperimetry and 

ffERG). The study will permit a determination of structure-function correlations and 

longitudinal changes and deepen the understanding for the natural progression of 



 

STGD4. This is the first step towards possible therapies for PROM1-related 

maculopathies: As an example, administration of Fenretinide, which lowers the level of 

the toxic lipofuscin, has been shown to slow down the degeneration of photoreceptor 

cells in Prom1-/--knockout mice [26]. Other strategies such as reduction of oxidative 

stress [27] to slow down progression as well as restoration of sight by using 

optogenetics, stem cells or retinal prosthesis offer alternatives for future therapies [7]. 
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Figure legends: 
 
 
Figure 1: Organizational structure of the ProgStar-4 study group. 
 
 
Figure 2:  Fundus autofluorescence images were graded for background changes and 
atrophic lesions (definitely decreased autofluorescence (DDAF) and questionably 
decreased autofluorescence (QDAF) 1A and 1C). RegionFinderTM software tool was then 
used to determine each individual lesion’s size (Figure 1B and D): the example shows an 
area of QDAF with a normal-appearing foveal center and two adjoining areas of DDAF. 
Example of QDAF in figure 1C: manual restrictions were applied to allow correct lesion 
demarcation. In this case QDAF measured 6.797 mm2. Nonconfluent lesions were seen 
as in figure 2D: the subfoveal QDAF measured 7.210 mm2 and all lesions summed up to 
7.331 mm2.  
 
 
Figure 3: 
Microperimetric macular threshold testing was performed under both photopic (Figure 
2A, left) and scotopic (Figure 2B, right) conditions. Threshold was determined for 68 
(photopic) and 40 (scotopic) retinal loci, respectively. Individual thresholds were color-
coded (green = normal retina; yellow = relative scotoma; red open squares = absolute 
scotoma). Fixation was recorded (turquois dots) and fixation stability was quantified as 
a continuous variable, the bivariate contour ellipse area (BCEA). 
 
 


