
THE JACQUET-LANGLANDS CORRESPONDENCE FOR OVERCONVERGENT HILBERT
MODULAR FORMS

CHRISTOPHER BIRKBECK

Abstract. We use results by Chenevier to interpolate the classical Jacquet-Langlands correspondence for Hilbert modular
forms, which gives us an extension of Chenevier’s results to totally real fields. From this we obtain an isomorphisms between
eigenvarieties attached Hilbert modular forms and those attached to modular forms on a totally definite quaternion algebra
over a totally real field of even degree.
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Introduction

Eigenvarieties are rigid analytic spaces which parametrize systems of hecke eigenvalues of finite slope eigenforms,
for this reason they are the subject of much work in number theory. They were first introduced by Colem–Mazur in
[1313] and Buzzard in [99] and since then many constructions have appeared due to many authors. In particular, we can
now construct eigenvarieties associated to any reductive group and one can ask to what extent can we use Langlands
functoriality to find maps between different eigenvarieties. Take for example the Jacquet-Langlands correspondence,
which tells us (roughly) that the classical spaces of quaternionic modular forms SDk (N) of weight k and level N
on a quaternion algebra D of discriminant d are isomorphic as Hecke modules to the spaces Sd-new

k (Nd) of d-new
modular forms for GL2. One can then ask if this extends to families of modular forms, i.e., if we can use this to
relate the eigenvariety XD coming from these quaternionic modular forms, to the eigenvariety XGL2

coming from
the usual spaces of modular forms. Over Q, this was answered by Chenevier in [1111], who showed that there is a
closed immersion XD ↪→XGL2

which interpolates the classical Jacquet-Langlands correspondenceaa. This result is
an instance of what is now called p-adic Langlands functoriality. Other examples of this can be found in work of
Hansen [1616], Ludwig [2222], and Newton [2323].

Going back to the result of Chenevier, if one picks D/Q to be a totally definite quaternion algebra, then the
spaces of overconvergent quaternionic modular forms are very easy to define and work with since there is much
simpler geometry involved. This means that if one is interested in studying or computing the action of the Up
operator on the space of overconvergent modular forms, then it is possible to reduce to computing this on spaces of
overconvergent quaternionic modular forms. Our goal here is to extend the results by Chenevier to a totally real
field F . In particular, we have the following theorem.

Theorem 1. Let D/F be a totally definite quaternion algebra of discriminant d defined over a totally real field F .
Let p be a rational (unramified) prime and n an integral ideal of F such that p - nd and (n, d) = 1. Let X red

D (np)
be the nilreduction (see 2.3.42.3.4) of the eigenvariety of level np attached to quaternionic modular forms on D. Similarly,
let X red

GL2
(ndp) denote nilreduction of the eigenvariety associated to cuspidal Hilbert modular forms of level ndp (with

aIn general Chenevier proves that one gets a isomorphism onto the d-new ‘part’ of the eigenvariety.
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the associated moduli problem for this level being representable) as constructed in [22]. Then there is a closed immersion
ιD : X red

D (np) ↪→ X red
GL2

(ndp) which interpolates the classical Jacquet-Langlands correspondence. Moreover, when
[F : Q] is even, one can choose D with d = 1 so that the above is an isomorphism between the corresponding eigenvarieties.

Alongside this we also prove following:

Theorem 2. The eigenvarieties XD(np) and XGL2
(np) as above are reduced, meaing that X red

∗ (np) ∼= X∗(np) for
∗ ∈ {D,GL2}.

To prove the above results, we first recall the construction of the relevant eigenvarieties, making small modifications
so that we can apply Chenevier’s Interpolation theorem. In the Hilbert case, we construct the spaces of overconvergent
cuspidal Hilbert modular forms following [22] and then use Buzzard’s eigenmachine to construct the relevant
eigenvariety for which we can apply the Interpolation theorem. In the quaternionic case we construct the spaces of
overconvergent quaternionic modular forms following [99], but modifying the weight space so that it is equidimensional
of dimension [F : Q] + 1 so that it matches with the weight space on the Hilbert eigenvariety.

The importance of the above theorems, is that it allows us to study the geometry of the Hilbert eigenvariety by
studying the quaternionic eigenvariety which has a more combinatorial nature. Similar ideas have been used in
[2020, 2828, 2121] to understand the geometry of eigenvarieties attached to modular forms over Q. Furthermore, the above
theorem is one of the key ingredients in [55], where it is used to compute slopes of Hilbert modular forms, which in
turn gives insights into the geometry of the relevant eigenvarieties.

Moreover, by working with totally real fields of even degree we obtain isomorphisms between the relevant
eigenvarieties and not just closed immersion, which is a stronger result than what is available over Q. In practice,
this means that, in this case, we can study the full (cuspidal) Hilbert eigenvariety by using the quaternionic one.

Acknowledgements. The author would like to thank his supervisor Lassina Dembélé for his support and guidance.
He would also like to thank Fabrizio Andreatta, David Hansen for useful comments and clarifications. This work is
part of the authors thesis, so he wishes to thank the examiners Kevin Buzzard and David Loeffler for their careful
reading and suggestions. Finally, he would like to thank the referee for the very useful feedback.bb

1. Notation

Notation 1.1.1. (1) Let F be a totally real field of degree g, and fix a rational prime p which is unramified with
the exception of Sections 3 and 4 where it may be ramified unless otherwise stated.

(2) Let D be a quaternion algebra over F with a fixed maximal order OD and let GD = ResF/Q(D×) (we will
sometimes abuse notation and denote this simply by D). When D = M2(F ) we denote this simply as G. We
fix an isomorphism OD ⊗OF

Op ∼= M2(Op), which induces an isomorphism Dp := D ⊗F Fp ∼= M2(Fp).
Lastly, let T denote a fixed maximal torus of GD and T = ResOF /Z Gm.

(3) Let OF denote the ring of integers of F and let dF denote the different ideal of F . For each finite place v
of F let Fv denote the completion of F with respect to v and Ov the ring of integers of Fv. For an integral
ideal n, let Fn =

∏
v|n Fv and similarly let On =

∏
v|nOv. In particular, if we have pOF =

∏f
i=1 pi, then let

Op = ⊕iOpi
= OF ⊗ Zp.

(4) Let Σ to be the set of all places of F , Σp be the set of all finite places above p and Σ∞ ⊂ Σ the set of all
infinite places of F .

(5) Let Q denote the algebraic closure of Q inside C and we fix an algebraic closure Qp of Qp. Furthermore,
we fix embeddings inc : Q → C and incp : Q → Qp, which allow us to think of the elements of Q as both
complex and p-adic numbers.

(6) Let πp denote the uniformisers of Fp and π ∈ Op be the element whose p component of Op is πp. By abuse
of notation we also let π denote the ideal of OF which is the product of all the primes ideals above p, i.e., the
radical of pOF .

(7) For each v ∈ Σ∞, we have a field embedding ιv of F into C given by v. This map extends to a map Fp → Qp
and then factors through the projection Fp → Fp for some p above p. This then gives a natural surjection
Σ∞ → Σp where v 7→ pv. For each prime ideal pj ∈ Σp let Σpj

be the set of v ∈ Σ∞ factoring through the
projection Fp → Fpj .

bThis work was partially supported by an EPSRC DTG at Warwick University and a EPSRC Doctoral Prize Fellowship at University College
London, EP/N509577/1.
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(8) Let L be a complete extension of Qp, which contains the compositum of the images of F under ι ◦ ιv, for
v ∈ Σ∞ where ι : C ∼→ Qp such that ι ◦ inc = incp.

2. Eigenvarieties and the Interpolation Theorem

We begin by briefly reviewing the construction of eigenvarieties and Chenevier’s Interpolation Theorem. More
details on general constructions can be found in many places, for example [1313, 1111, 99, 1616].

2.1. The weight space. The weight space is a rigid analytic variety that allows us to make precise the idea of
modular forms ‘living’ in p-adic families. Following [55], we begin with the classical definition of a weight of a Hilbert
modular form.

Definition 2.1.1. Let n ∈ ZΣ∞
≥0 and v ∈ ZΣ∞ such that n+ 2v = (r, . . . , r) for some r ∈ Z and set k = n+ 2 and

w = v + n + 1. By abuse of notation we denote (r, . . . , r) by r for r ∈ Z. Note that all the entries of k will have
the same parity and k = 2w − r. We call the pair (k, r) ∈ ZΣ∞

≥2 × Z a classical algebraic weight. Note that given k
(with all entries paritious and greater than 2) and r we can recover n, v, w. In what follows we will move between
both descriptions when convenient. We will call (k, r, n, v, w) satisfying the above a weight tuple.

A weight is called arithmetic or classical if it is the product of an algebraic character (k, r) and a finite character
ψ, which we denote by (κψ, r).

Definition 2.1.2. Let T = ResOF /Z Gm. We define WG to be the rigid analytic space over L associated to the
completed group algebra OLJT(Zp) × Z×p K. We call WG the weight space for G. Moreover, one has a universal
character

[−] : T(Zp)× Z×p −→ OLJT(Zp)× Z×p K×.

It follows from the above that WG(Cp) = Homcts(T(Zp)× Z×p ,C×p ). Moreover, we note that T(Zp)× Z×p ∼=
H × Zg+1

p , where H is the torsion subgroup of T(Zp)× Z×p . From this it follows that

WG ∼= H∨ ×B(1, 1)g+1 ∼=
⊔

χ∈H∨
Wχ

as rigid spaces, where H∨ is the character group of H and B(1, 1) is the open ball of radius 1 around 1. It is clear
from this that WG is equidimensional of dimension g + 1.

Notation 2.1.3. Elements of WG(Cp) will be given by v : T(Zp)→ C×p and r : Z×p → C×p . Setting n = −2v + r
and κ = n + 2, we will denote these weights as (κ, r) and call (κ, r, n, v, w) a weight tuple if κ, r, n, v, w satisfy
the same relations as in 2.1.12.1.1. More generally, if U is an affinoid with a morphism of rigid spaces U → WG, then
we will denote by (κU, rU) the restriction of the universal character to U.

Definition 2.1.4. Let (k, r, n, v, w) be a weight tuple with (k, r) ∈ ZΣ∞ × Z a classical algebraic weight. This
defines an algebraic weight by sending (a, b) ∈ T(Zp)× Z×p to avbr .

Notation 2.1.5. There is a natural map T(Zp) → T(Zp)× Z×p given by t 7→ (t−2, NF/Q(t)). In this way we view
weights (κ, r) ∈ WG with (κ, r, n, v, w) a weight tuple as maps T(Zp)→ Cp given by t 7→ n(t).

Remark 2.1.6. In the literature there are slightly more general weight spaces than the one we have introduced.
One alternative way of defining the weight space is to let W ′ denote the rigid analytic space associated to the
completed group algebra OLJT (Zp)K, where T is a fixed maximal torus of G. The problem with this weight space
is that it contains too many weights for which the associated spaces of modular forms would be empty. For this
reason one usually imposes suitable vanishing conditions on these weights. See [99, Part III] and [2727, 4.3.2]. The
weight spaces one gets this way conjecturally have dimension g + 1 (dependent on Leopoldt’s conjecture).For this
reason we have chosen to work with WG which has the correct dimension. Moreover, if Leopoldt’s conjecture is
true then the resulting eigenvarieties for the different weight spaces will be isomorphic.

Later, when defining the spaces of locally analytic functions it will be convenient for us to extend the definition
of the weight space from T to T , which denotes a fixed maximal torus of G. We do this as follows:
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Definition 2.1.7. Let (κ, r, n, v, w) be a weight tuple with (κ, r) ∈ WG and set

λκ,r

(
a 0
0 d

)
= λ1(a)λ2(d)

where λ1 = (r + n)/2, λ2 = (r − n)/2.

Remark 2.1.8. Note that if we map T (Zp) to T(Zp)×Z×p via ( a 0
0 d ) 7→ (a/d,Norm(a)) then our weights on T and

T agree.

Using this, we talk about weights λ on T where we implicitly assume that there is some (κ, r) ∈ WG such that
λ = λκ,r . This construction then lets us take a weight WG and get a weight in W ′ as in Remark 2.1.62.1.6.

2.2. Eigenvarieties. In order to define an eigenvariety X , we need to specify the eigendata to which it is associated.
We begin by recalling some standard definitions that can be found in [99, 1616].

Definition 2.2.1. Let U be a compact operator on Banach space M . We define the Fredholm determinant as

FredM (U) = det(1−XU |M) := lim
i

det(1−XUi|Mi),

where (Mi)i is a sequence of projective and finitely generated Banach modules such that Ui := U |Mi
converges to

U as i→∞.

For our purposes, we will study the subspace ofWG×A1 cut out by f := FredS†(Up), denoted Z (Up) or Z (f),
where WG is the weight space as in Definition 2.1.22.1.2 and Up is a compact operator on a space S† of overconvergent
Hilbert modular forms. These will give us our spectral varieties.

Definition 2.2.2. Let U ⊂ WG be an affinoid and Z (f) a spectral variety. Define ZU,h = O(U)〈phX〉/(f(X)),
which we view as an admissible affinoid open subset of Z (f). We have a natural map ZU,h → U, which is flat but
might not be finite. We say that ZU,h is slope-adapted if the above map is finite and flat.

Remark 2.2.3. It is the possible to show that ZU,h is slope adapted if and only if f |U admits a slope ≤ h
factorization f |U(X) = Q(X)R(X), from which we have O(ZU,h) = O(U)[X]/(Q(X)). Then [99, Theorem 4.6]
tells us that the collection slope-adapted affinoids is an admissible cover of Z (f).

Definition 2.2.4. Let A be commutative Noetherian K-Banach algebra, for K a field complete with respect to a
non-trivial non-archimedean norm. Following [99], we say a Banach A-module P satisfies property (Pr) if there is
a Banach A-module Q, such that P ⊕Q (with its usual norm) is potentially ON-able.

Definition 2.2.5. LetM1,M2 be Banach R-modules satisfying (Pr) for R a reduced affinoid and TTT a commutative
R-algebra with maps ψi : TTT → EndR(Mi). Let U ∈ TTT act compactly on both M1 and M2. A continuous R-
module and TTT -module homomorphism α : M1 → M2 is called a primitive link if there is a compact R-linear
and TTT -linear map c : M2 → M1 such that ψ2(U) : M2 → M2 is α ◦ c and ψ1(U) : M1 → M1 is c ◦ α. More
generally a continuous R-module and TTT -module homomorphism α : M ′ →M is a link if there exists a sequence
Mi of Banach R-modules satisfying (Pr) for i ∈ {0, . . . , n} such that M ′ = M0, M = Mn and α factors as a
compositum of maps αi : Mi →Mi+1 with αi a primitive link.

Definition 2.2.6. Let W be a reduced rigid space, R a reduced affinoid and TTT be a commutative R-algebra
with a specified element U . For admissible affinoid open U ⊂ W let M(U) a Banach O(U)-module satisfying
(Pr) with an R-module homomorphism ψU : TTT → EndO(U)(MU) such that ψU(U) is compact. Finally assume
that if U ⊂ U′ ∈ W are two admissible affinoid opens, then there is a continuous O(U)-module homomorphism
α : MU → MU′⊗̂O(U′)O(U) which is a link and such that if U1 ⊂ U2 ⊂ U2 ⊂ W are all affinoid subdomains then
α13 = α23 ◦ α12 for αij : MUi

→MUi
⊗̂O(Ui)O(Uj).

We give the name of eigendata or eigenvariety data, to tuple E = (W,M ,TTT , U) where M is the coherent sheaf
defined by the MU.

Theorem 2.2.7 (The Eigenmachine). Attached to E = (W,M ,TTT , U) there is a canonically associated rigid space
X (E) with a finite morphism to the spectral variety Z (U) defined by U and whose points over z ∈ Z (U) are in bijection
with the generalized eigenspace for the action of TTT on the fibre Mz . Moreover, if W is equidimensional of dimension n,
then so is X (E).

Proof. This follows from [99, Construction 5.7, Lemmas 5.8-5.9]. �
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2.3. The Interpolation Theorem. In this section we will recall Chenevier’s interpolation theorem, which we will
use in order to interpolate the Jacquet-Langlands correspondence. For this we will need to find a very Zariski dense
subset of the weight space, together with a classical structure on it. As the name suggests, the classical structure will
be given by the subspace of classical modular forms inside the space of overconvergent modular forms. We then use
this to find closed immersions between different eigenvarieties by relating their classical structures. In our case, it
will be the classical Jacquet-Langlands correspondence that will allow us to relate the classical structures. Following
[1111], we have:

Definition 2.3.1. A subset X ⊂ Z is Zariski dense in Z if for every analytic subset (see [66, Section 9.5.2]) Y ⊂ Z
such that X ⊂ Y , then Y = Z .

Definition 2.3.2. A Zariski dense subset X ⊂ WG(Cp) is very Zariski dense if for each x ∈ X and each irreducible
admissible affinoid open V ⊂ WG containing x, we have that V (Cp) ∩X is Zariski dense in X .

From this we define the classical structures as follows:

Definition 2.3.3. Let E = (W,M ,TTT , U) be a set of eigendata as above and let X ⊂ W be a very Zariski dense
subset. For each x ∈ X , let M cl

x be a finite dimensional TTT -module contained in Mx and, for every h ∈ R, set
Xh = {x ∈ X | M≤h

x ⊂ M cl
x }. We say that M cl gives a classical structure on X if for every open affinoid

neighbourhood V ⊂ W and every h, the sets X ∩ V,Xh ∩ V have the same Zariski closure in V .

Definition 2.3.4. If X is an eigenvariety, with eigendata E = (W,M ,TTT , U), we denote the nilreduction of X by
X red, and we say that an eigenvariety is reduced if X red ∼= X .

With these definitions we can now state the Chenevier’s Interpolation theorem.

Theorem 2.3.5. (Chenevier) Let Xi be eigenvarieties associated to the eigendata of Ei = (Wi,Mi,TTT i, ψi), for i = 1, 2
withW =W1 =W2 and TTT = TTT 1 = TTT 2. Let X ⊂ W a very Zariski dense subset such that M cl

i is a classical structure
on X for each Mi. Assume that, for all t ∈ TTT and all x ∈ X , we have

det
(

1− ψ1(tU)Y |Mcl
1,x

)
divides det

(
1− ψ2(tU)Y |Mcl

2,x

)
in k(x)[Y ], where k(x) is the residue field at x. Then, there is a canonical closed immersion ι : X red

1 ↪→ X red
2 such

that the following diagrams commute

X red
1
� � ι //

��

X red
2

{{

W

TTT
φred

1 //

φred
2

��

O(X red
1 )

O(X red
2 )

ι∗

::

Proof. See [1111, Theorem 1].
�

Corollary 2.3.6. If det
(

1− ψ1(tU)Y|Mcl
1,x

)
= det

(
1− ψ2(tU)Y|Mcl

2,x

)
in k(x)[Y ] for all t ∈ TTT and all x ∈ X ,

then there is an isomorphism X red
1
∼= X red

2 .

Proof. In this case the above Theorem gives us two closed immersions ι12 : X red
1 ↪→ X red

2 and ι21 : X red
2 ↪→

X red
1 , from which the result follows at once by noting that ι12ι21 = IdX2

and ι21ι12 = IdX1
.

�

We now have a result of Chenevier that gives a criterion for an eigenvariety to be reduced. Suppose that
X ⊂ W is a very Zariski dense subset giving a classical structure. For h ∈ R, let Xss

h = {x ∈ X | M cl
x ∩

M≤h
x is a semisimple TTT -module}.

Lemma 2.3.7. If for all h ∈ R, x ∈ X and V ⊂ W an open affinoid containing x, there exists W ⊂ V an open
affinoid containing x, such that Xss

h ∩W contains an open Zariski dense subset of X ∩W , then X is reduced (here we
view X ∩W as a topological subspace of W with the Zariski topology).

Proof. See [1111, Proposition 3.9]. �
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3. Eigenvariety of Hilbert modular cusp forms

In this section we define the spaces of Hilbert modular forms, in a way which generalizes to give the spaces of
overconvergent Hilbert modular cusp forms. We will only discuss the classical spaces here and give some indication
of what is needed to extend this to the overconvergent setting as is done in [22]. Throughout this section our chosen
prime p may be ramified unless otherwise stated.

To define the spaces of Hilbert modular forms for G, we first work with the group G∗ = G×ResF/Q Gm
Gm and

define the spaces of modular forms for G∗. Then using a projector one gets the definition for G. The reason for
working with G∗ is that the relevant moduli problem associated to G∗ is representable while the one for G is not.

Following Hida [1919], we consider the fibered category AF of abelian schemes over the category of schemes.

Definition 3.1.1. An object of AF is a triple (A, λ, ι) where:
(1) A is an abelian scheme A→ S of relative dimension g over S.
(2) OF -multiplication given by an embedding ι : OF ↪→ EndS(A).
(3) Let c be a fractional ideal of F and c+ its cone of totally positive elements. If P ∈ HomOF

(A,A∨) is a sheaf
for the étale topology on S of symmetric OF -linear homomorphisms from A to the dual abelian scheme A∨,
and if P+ ⊂ P is the subset of polarizations, then

λ : (P, P+) −→ (c, c+)

is an isomorphism of étale sheaves, as invertible OF -modules with a notion of positivity. The triple (A,A∨, c)
is subject to the Deligne-Pappas conditions, which means the map A ⊗OF

c → A∨ is an isomorphism of
abelian schemes.

See [1919, Section 4.1] and [22] for more details.

We now state the moduli problem for G∗ associated to the µn-level structure on an abelian variety.

Definition 3.1.2. Let (A, ι, λ) in AF (so λ is a c-polarization). Let n be a non-zero ideal and let µn denote the
locally free group scheme of finite rank given by µn(R) = {x ∈ Gm(R) ⊗Z d−1

F |nx = 0}. Let n ∩ Z = (N) and
let M(c, µn) be the Hilbert moduli scheme representing the functor Eµn

: Sch /Z[1/N ] → Set where Eµn
(S) is the

set of isomorphism classes of (A/S , ι, λ,Φn). Here Φn : µn ↪→ A[N ]/S is a closed immersion compatible with
OF -actions. We call such a Φn a µn-level structure on A.cc

Remark 3.1.3. For a fractional ideal b ∈ OF let b∗ = b−1d−1
F . Let

Γ0(b, n) = GL2(F )+ ∩
(
OF b∗

bndF OF

)
Γ1(b, n) =

{(
a b
c d

)
∈ Γ0(b, n) | d ≡ 1 mod n

}
Γ1

1(b, n) = Γ1
1(b, n) ∩ SL2(F ).

Then one can show that, for n with (N) = n ∩ Z such that N ≥ 3 , M(c, µn)(C) = Γ1
1(c, n)\Hg .

Notation 3.1.4. LetM(c, µn) denote the scheme representing the corresponding moduli problem (for G∗). Denote
by M(c, µn) (resp. M

∗
(c, µn)) a fixed toroidal (resp. the minimal) compactification of M(c, µn).

Definition 3.1.5. Let AAA be a versal semiabelian scheme over M(c, µn) , with real multiplication by OF . Define
ωAAA to be the conormal sheaf to the identity of AAA.

There exist a greatest open subscheme M
R

(c, µn) ⊂M(c, µn) such that ωAAA is an invertible O
M

R
(c,µn)

⊗Z OF -
module. We will use ωAAA to define another invertible sheaf whose sections will be our Hilbert modular forms. But in
order to do so, we first need to define the weight space for G∗ and showing how it is related to WG.

Definition 3.1.6. The weight space WG∗ for G∗ is defined by setting WG∗ to be the rigid analytic space over L
associated to OLJT(Zp))K, where T and L are as before. We will denote such weights by κ or k.

There is a canonical map WG →WG∗ induced from 2.1.52.1.5. We define a classical algebraic weight for G∗ as a
map from T(Zp) to Cp defined by an element k ∈ Zg≥0, as usual.

We now construct an invertible sheaf associated to classical weights in WG∗ , from which we can then define the
spaces of Hilbert modular forms for G∗:

cIf we take µ(N) with N ≥ 3, then the associated moduli problem is representable by a schemeM(c, µ(N)) (cf. [1515, Chapter 3, Theorem 6.9]).
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Definition 3.1.7. Recall that L is a splitting field for F , and let k ∈ ZΣ∞ be a classical weight for G∗. Then,
define the invertible modular sheaf

Ωk :=
⊗
v∈Σ∞

ω⊗kvAAA,v ,

where ωAAA,v := ωAAA ⊗v OL and here ⊗v denotes the tensor over OL ⊗OF via 1⊗ ιv .

Definition 3.1.8. The L-vector space of c-polarized, tame level Γ1
1(c, n) and weight k Hilbert modular forms for G∗

is defined by

Mk(Γ1
1(c, n)) := H0(M

R
(c, µn),Ωk).

The subspace of cusp forms is defined by

Sk(Γ1
1(c, n)) := H0(M

R
(c, µn),Ωk(−B)),

where B := M(c, µn)\M(c, µn) is the boundary divisor in the toroidal compactification.

To define the spaces of Hilbert modular forms associated to G, we need to introduce a certain projector.
First, we note that multiplication by ε ∈ O×,+F gives an isomorphism (A, ι, λ,Φ) ∼= (A, ι, ε2λ, εΦ). Now, let
Sn be the elements of O×,+F congruent to 1 modulo n. Define an action of O := O×,+F /S2

n on M(c, µn), by
ε · (A, ι, λ,Φ) := (A, ι, ελ,Φ). Since multiplication by ε gives an isomorphism ε : A→ A such that ε∗λ = ε2λ, it
follows that, if ε = η2 ∈ Sn, then ε acts trivially on (A, ι, λ,Φ); hence the action factors through O as required.

Definition 3.1.9. Let (k, r, n, v, w) be a weight tuple with (k, r) a classical algebraic weight (for G). We define an
action of O on Ωk by sending a local section f of Ωk on MR(c, µn) to

(ε · f) : (A, ι, λ,Φ, β)→ w(ε)f(A, ι, ε−1λ,Φ, β)

where ε ∈ O×,+F and β is a local generator for ωAAA as a OMR(c,µn) ⊗ OF -module. If ε = η2 ∈ Sn, then this acts
trivially. Hence the action factors through O. With this we define a projector ek,r : Mk(Γ1

1(c, n)) → Mk(Γ1
1(c, n))

by

ek,r :=
1

| O |
∑
ε∈O

ε.

Definition 3.1.10. The L-vector space of classical Hilbert modular forms for G of level Γ1(c, n), and weight (k, r)
is defined to be the image of ek,r and is denoted MG

k,r(Γ1(c, n)). Similarly, we let SGk,r(Γ1(c, n)) be the image of
Sk(Γ1

1(c, n)) under ek,r .

Remark 3.1.11. We note here that there are other ways of defining Hilbert modular forms for G as sections of a
sheaf Ω(k,r) on MG(c, µn) (cf. [2626, Section 2.2]). Working over C one then recovers the spaces Sk,r(Γ1(c, n)) as
defined above. To see the relationship with our definition one observes that there is a morphism m : MR(c, µn)→
MG(c, µn) which is finite and Galois, with Galois group D such that Ωk,r = (m∗(Ω

k))D (cf. [22, Section 1]).

Note that these spaces will not be fixed by the Hecke operators. In fact, note that F×,+ acts on the pairs
(c, c+) by ε(c, c+) = (εc, εc+), which induces an isomorphism αε : MG

k,r(Γ1(c, n)) → MG
k,r(Γ1(εc, n)). Moreover,

if ε ∈ O×,+F , then αε(f) = f for all f ∈ MG
k,r(Γ1(c, n)). To fix this, we must work adelically. Let UG1 (n) ={

γ ∈ G(Ẑ) | γ ≡ ( ∗ ∗0 1 ) mod n
}
. We can now define the space of Hilbert modular forms for G.

Definition 3.1.12. We define the space of classical Hilbert modular forms for G of level U1(n) and weight (k, r)
denoted MG

k,r(U
G
1 (n)) as V/I where

V :=
⊕

(c,c+)

MG
k,r(Γ1(c, n))

and I = (f − αε(f))ε∈(F×,+/O×,+
F ). We define SGk,r(U

G
1 (n)) similarly.

One can define Hecke operators on these spaces, which satisfy the all the usual properties. We denote by TTT (U)
the Hecke algebra consisting of Hecke operators away from the level together with Up for p ∈ Σp. Moreover, when
we come to the Jacquet-Langlands correspondence, we will assume that TTT (U) does not contain Hecke operators at
the finite places dividing the discriminant of the relevant quaternion algebra (if there are any).
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3.2. Overconvergent spaces. Our goal is now to associate to each weight (κ, r) or family of weights (κU, rU),
a space of overconvergent Hilbert modular forms. There are several constructions of these spaces but we will be
interested in the construction given by [22]. In this case, one defines an overconvergent sheaf which interpolates the
sheaf Ωk. Using this, one can then define the spaces of overconvergent Hilbert modular forms for G∗ and then,
using a projector, define the spaces for G. The construction of the overconvergent sheaf can be found in [22, 11, 33, 1717],
so we only give some of its properties.

Let f be the number of primes above p in F and let tm ∈ Qf be a multi-index with 0 < ti ≤ 1
pm for

m ≥ 1. Let M(c, µn) and M
∗
(c, µn) denote the formal completions of M(c, µn),M

∗
(c, µn) along their spe-

cial fibres. Now, let M(c, µn),M∗(c, µn) denote the rigid fibres of M(c, µn),M
∗
(c, µn) respectively and let

M(c, µn, tm),M∗(c, µn, tm) denote the neighbourhoods of the respective ordinary locus defined by the condition
that valp(hpi) ∩ [0, 1] ≤ ti (this is the truncated valuation), where hpi are the partial Hasse invariants as defined in
[22, 3.2.1].

Before continuing let us recall what it means for a weight to be m-analytic, as in [22]:

Definition 3.2.1. Let T̂ be the formal group obtained by completing T along the unit section and let T0
s be the

formal subgroup of T̂ of elements which are congruent to 1 mod ps. We say a weight κ ∈ WG∗ is m-analytic for
some m ∈ Z≥0 if its restriction to T0

m(Zp) factors as exp ◦ψ ◦ log where ψ is some Zp-linear map and exp, log are
the p-adic exponential and p-adic logarithm. We say a weight tuple is m-analytic if it corresponds to an m-analytic
weight under the map WG →WG∗ from 3.1.63.1.6.

Now, the overconvergent sheaves are defined over formal models ofM(c, µn, tm) andM∗(c, µn, tm), which
are obtained as follows: let M(c, µn, tm)) (resp. M

∗
(c, µn, tm)) be the normalization (in M(c, µn, tm) (resp.

M∗(c, µn, tm)) of the formal model ofM(c, µn, tm) (resp. M∗(c, µn, tm) ) given by taking iterated blow-ups along
the ideals (hpi

, pti) of M(c, µn) (resp. M
∗
(c, µn) ) and removing all divisors at infinity. Then on M(c, µn, tm)) we

can construct the following sheaves:

Theorem 3.2.2 (Andreatta–Iovita–Pilloni). For every m-analytic weight κ ∈ WG∗(L) there exists a coherent sheaf
Ω†,κ of OM(c,µn,tm)-modules whose restriction to the rigid analytic fibreM(c, µn, tm) is invertible.

More generally, to each affinoid U with a morphism U→WG∗ and m such that κU is locally m-analytic, one can
attach a coherent sheaf Ω†,κ

U

of OM(c,µn,tm)×Û-modules where Û = Spf(A) is the formal model of U, where A consists

of power bounded elements of U. Moreover, the restriction of Ω†,κ
U

to the rigid fibre is invertible. Lastly, if k is a classical
weight (for G∗), then Ω†,k agrees onM(c, µn, tm) with the classical Ωr .

Proof. See [22, Section 3.4-3.5]. �

Remark 3.2.3. In general, the Ω†,κ
U

and Ω†,κ depend on m, but when restricted to the rigid fibres, they are
independent ofm, for this reason we have suppressed the dependence onm. See [22, Proposition 3.9 and Proposition
3.13].

Using these sheaves, one can then define the spaces of tm-overconvergent cuspidal Hilbert modular forms for G∗

of weight κU by setting

S†U(Γ1
1(c, n), tm) = H0(M(c, µn, tm)× U,Ω†,κ

U

(−B))

where B is again the boundary divisor. From this, one then uses a projector eκU,rU to define families of tm-
overconvergent cuspidal Hilbert modular forms for G of weight (κU, rU) denoted SG,†U (Γ1(c, n), tm). Moreover,
taking U = Spf(L) gives SG,†κ,r (Γ1(c, n), tm).

Theorem 3.2.4. Let U be an admissible open affinoid of WG and (κU, rU) the restriction of the universal character
to U. Let A be the algebra of power bounded elements of U. Then for an appropriatedd choice of m and tm the spaces
SG,†U (Γ1(c, n), tm) are Banach (A⊗OL

L)-modules satisfying (Pr). Moreover, for any weight (κ, r) ∈ U(L) there is a
natural specialization map

SG,†U (Γ1(c, n), tm) −→ SG,†κ,r (Γ1(c, n), tm)

which is surjective.

dThis means such that κU is m-analytic (see Definition 3.2.13.2.1).
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Proof. This is [22, Theorem 4.4]. �

Now as before these spaces have an action of F×,+ so they will not be fixed under the action of Hecke operators.
In particular, we have:

Lemma 3.2.5. Let ε ∈ F×,+ and assume that ε is also a p-adic unit. Then there is a canonical isomorphism

Lε : SG,†U (Γ1(c, n), t) −→ SG,†U (Γ1(εc, n), t)

which only depends on ε modulo totally positive units.

Proof. This is [22, Lemma 4.5]. �

Definition 3.2.6. Let

SG,†U (U1(n), t) :=

 ⊕
c∈Frac(F )(p)

SG,†U (Γ1(c, n), t)

 / (Lε(f)− f)ε∈Princ(F )+,(p)

be the Banach module of tame level U , t-overconvergent cuspidal arithmetic Hilbert modular forms for G with weights
parametrized by U. Here Frac(F )(p) is the group of fractional ideals prime to p and Princ(F )+,(p) is the group
of positive elements which are p-adic units.

Moreover, taking the limit over t we get Frechet spaces SG,†U (U1(n)) which give a quasi-coherent sheaf of
overconvergent cuspidal arithmetic Hilbert modular forms SG,†(U1(n)) overWG, whose value at an open affinoid
U ⊂ WG is SG,†U (U1(n)).

Remark 3.2.7. Note that taking U = Sp(L) with image (κ, r) in WG will give the spaces of this fixed weight.

Following [22, Section 4.3], for q prime to the tame level, one can define commuting Hecke operators Tq, Sq action
on SG,†(U1(n)). Moreover, for p|p one can define operators Up such that Up =

∏
p|p U

ep
p for ep the ramification

degree of p.

Proposition 3.2.8. The Up operator is a compact operator on SG,†κ,r (U1(n)) for any weight (κ, r).

Proof. This follows from [22, Lemma 3.27]. �

Definition 3.2.9. Let h ∈ Q≥0. We say an element f ∈ SG,†κ,r (U1(n)) has slope-≤ h for Up (resp. Up for p|p) if it is
annihilated by a unitary polynomial in Up (resp. Up) whose roots have valuation less than h.ee

We now wish to use Buzzard’s Eigenmachine to construct the eigenvariety of Hilbert modular forms. One of the
key ingredients is the existence of links which is checked explicitly in [1717, Section 3.3.3].

Theorem 3.2.10. Associated to the eigendata of (WG, SG,†(U1(n)),TTT , Up) we have an eigenvariety XG(U1(n)) with
the following properties:

(a) It is equidimensional of dimension g + 1.
(b) There is a universal character φ : TTT → OX .
(c) There is a map α : X →WG that is locally on X andWG, finite and surjective.
(d) For all (κ, r) ∈ WG, the points α−1(κ, r) are in bijection with the finite slope eigensystems occurring in

SG,†(U1(n)) |κ,r= SG,†κ,r (U1(n)).

(e) Let (k, r) be a classical weight inWG. Let f ∈ SG,†k,r (U) be a finite slope (for Up) overconvergent Hilbert modular
form whose Upi

slope is less than hi for pi ∈ Σp. If p is unramified and hi < vpi
(k, r) + minj∈Σpi

{kj − 1} for
all i, then f is a classical form.

Proof. This is essentially [22, Theorem 5.1], the only modification is that using a stronger version of the control
theorem due to [2626], which matches up with the one we will have on the quaternionic side. �

e Note that if f is in fact an eigenform, then having slope-≤ h for Up (resp. Up) is saying that the p-adic valuation of the Up (resp. Up)
eigenvalue is less than h.
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4. Eigenvarieties for totally definite quaternion algebras

Following [99, Part III], we will define the eigenvariety attached to a totally definite quaternion algebra D over F
and prove the control theorem in this setting. In contrast to [99], we will work with the weight space WG which, as
we explained above, has the advantage of being equidimensional of dimension g + 1 (recall [F : Q] = g). Apart
from this small detail, the rest of our construction spaces of overconvergent quaternionic modular forms over F
follows [99, Part III]. Throughout this section our chosen prime p may be ramified unless otherwise stated.

4.1. Classical spaces. We will define the spaces of classical quaternionic modular forms using a definition that,
compared to [1818], is more suited to p-adic interpolation. Most of the set-up will be similar to that of loc. cit. but
with the crucial difference that the actions are ‘shifted’ from the infinite places to the places above p. We recall here
that D/F is a totally definite quaternion algebra split above p.

Notation 4.1.1. (a) Let GD/Qp := ResF/Q(D×)×Qp, which is a connected reductive linear algebraic group over
Qp (via our choice of splitting). Let T be the standard maximal torus, B the standard Borel subgroup, and
the unipotent radical N . We denote by B and N be the opposite Borel and opposite unipotent radical. Let
I ⊂ GD(Zp) be the standard Iwahori subgroup in good position with respect to B (in good position means
that B,N, T,GD, N have fixed compatible integral models over Zp).

(b) For m ∈ ZΣp

≥1, set

Im =

{(
a b
c d

)
∈ G(Zp) | c ∈ πmOp

}
,

with I = I1 = I(1,...,1) and let Im = N(Zp) ∩ Im.
Furthermore, we set

T+ =
{
t ∈ T (Qp) | tN(Zp)t−1 ⊆ N(Zp)

}
=

{(
a 0
0 b

)
∈ T (Qp) | ab−1 ∈ Op

}
.

With this we define the semigroup ∆ = IT+I . Note that the Iwahori decomposition tells us that I =
I1T (Zp)N(Zp), and hence any δ ∈ ∆ can be written uniquely as δ = nδtδnδ with nδ ∈ I1, tδ ∈ T+, nδ ∈
N(Zp).

Definition 4.1.2. Let (k, r, n, v, w) be a weight tuple with (k, r) ∈ ZΣ∞
≥0 × Z. Let Vk be the L-vector space with

basis of monomials
∏

v∈Σ∞
Zmv
v , with m ∈ ZΣ∞

≥0 , 0 ≤ mv ≤ kv − 2. We define a right action of ∆ = IT+I on this

space as follows: for γ = (γp)p∈Σp
=
(
ap bp
cp dp

)
p
∈ ∆, let

γ :
∏

v∈Σ∞

Zms
s 7−→

∏
v∈Σ∞

(cvZv + dv)
nv det(γv)

vv

(
avZv + bv
cvZs + dv

)mv

Note that here (following [99]) we have adopted the notation that for ap (resp. bp, cp, dp) we let av (resp. bv, cv, dv)
denote the image of ap under the corresponding map ι◦ιv for v ∈ Σp. Let Vn,v(L) denote the resulting ∆-module.ff

Definition 4.1.3. Let U be an open compact subgroup of GD(Af ), such that its image under the projection
U → D×p lies in I1 and let (k, r, n, v, w) be a weight tuple with (k, r) ∈ WG a classical weight. The space of
quaternionic modular forms over D of weight k and level U , denoted SDk,r(U), is the space of functions

f : GD(Af ) −→ Vn,v(L)

such that:

(a) For γ ∈ GD(Q), we have f(γg) = f(g) for all g ∈ GD(A).
(b) For u ∈ U we have f(g) = f(gu−1) · up for all g ∈ GD(A), where up denotes the p-part of u.

We will only be interested in the following open compact subgroups of GD(Af ):

fNote that since we have chosen weights such that n + 2v is parallel, O×,+
F will act trivially, when embedded diagonally into I via OF →

Op →M2(Op).
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Definition 4.1.4. Let n =
∏
v q

ev
v be an integral ideal. For D a totally definite quaternion algebragg with

(Disc(D), n) = 1, we fix splitting at all primes dividing n of D. Then we define

U1(n) :=
{
γ ∈ (OD ⊗ Ẑ)× | γ ≡ ( ∗ ∗0 1 ) mod n

}
,

U0(n) :=
{
γ ∈ (OD ⊗ Ẑ)× | γ ≡ ( ∗ ∗0 ∗ ) mod n

}
,

U(n) :=
{
γ ∈ (OD ⊗ Ẑ)× | γ ≡ 1 mod n

}
.

4.2. Overconvergent spaces. We are now going to define the spaces of overconvergent modular forms for D. For
this we need to find a larger ∆-module containing Vn,v(L), so work with the spaces of locally analytic functions.

Let X ⊂ Qsp be open and compact.

Definition 4.2.1. For a finite extension L/Qp, we say a function f : X → L is L-analytic if it can be expressed as
a converging power series f(x1, . . . , xs) =

∑
t1,...,ts

αt1,...,ts(x1− a1)t1 · · · (xs− as)ts , for αt1,...ts ∈ L, and some
(a1, . . . , as) ∈ X . We say it is algebraic if almost all α’s are zero.

Definition 4.2.2. For m ∈ Zr≥0, let A(X,L,m) be the L-vector space of m-locally analytic functions, i.e., functions
that are analytic on balls of radius p−m covering X . Then Am(X,L) is a p-adic Banach space when X is compact.
We let A(X,L) =

⋃
m≥0A(X,L,m). This is the space of functions f : X → L that are m-locally L-analytic for

some n.

We now define the ∆-modules that we will be interested in.

Definition 4.2.3. We begin by identifyingOp with an open compact subset of Qgp compatible with the identification
of I as an open compact of Q4g

p . We then consider A(Op, L) =
⋃
m≥0A(Op, L,m). This is a ∆-module with

the following action. For (κ, r, n, v, w) a weight tuple with (κ, r) ∈ WG(L), f ∈ A(Op, L), γ =
(
a b
c d

)
∈ ∆ and

z ∈ Op, let

(f · γ)(z) = n(cz + d)v(det(γ))f

(
az + b

cz + d

)
.

We denote this module by An,v(Op, L).

Lemma 4.2.4. For (κ, r) ∈ WG there exists a smallest m(κ, r), such that for all m ≥ m(κ, r), (κ, r) is m-locally
analytic.

Proof. See [2727, Lemma 3.2.5]. �

From this it follows that An,v(Op, L) =
⋃
m≥m(κ,r)An,v(Op, L,m), where An,v(Op, L,m) is the ∆-module

A(Op, L,m) with the action defined as above. More generally, since we wish to consider families of modular forms,
one can extend this definition as follows:

Definition 4.2.5. If U is an affinoid subdomain of WG defined over a finite extension L/Qp and (κU, rU) is the
restriction of the universal character to U, then we define AU(Op, L) := AnU,vU(Op, L), with the action of ∆

defined analogously where (κU, rU, nU, vU, wU) is a weight tuple.

It follows from [2727, Lemma 3.4.6], that there exists a smallest integer m(U) such that (κU, rU) is m(U)-analytic.
Moreover, AU(Op, L) =

⋃
m≥m(U)AU(Op, L,m).

Definition 4.2.6. Let (κ, r, n, v, w) be a weight tuple with (κ, r) ∈ WG(L) and U be an open compact subgroup
of GD(Af ), such that its image under the projection U → D×p lies in Im for some m ≥ 1 and t ∈ ZΣp

≥0 is such
that t + m ≥ m(κ) . The space of overconvergent quaternionic modular forms of weight κ, level U and radius of
overconvergence p−t, denoted SD,†κ,r (U, t) is the space of functions

f : GD(Af ) −→ An,v(Op, L, t)
such that:
(a) For d ∈ GD(Q), we have f(dg) = f(g) for all g ∈ GD(A).
(b) For γ ∈ U we have f(g) = f(gγ−1) · γp for all g ∈ GD(A), where γp is the p-part of γ.

gNote that if we take D =M2(F ) one obtains the usual level structures for Hilbert modular forms.

11



If U ⊂ WG is an affinoid subdomain defined over L and t ≥ m(U), then define SD,†U (U, t) to be the space of
functions f : GD(Af ) −→ AU(Op, L, t) satisfying (a), (b) above. Lastly, taking the limit over t we obtain Fréchet
spaces SD,†κ,r (U).

4.3. Hecke operators and the Control Theorem. Following Section 12 of [99], we define the Hecke operators on
these spaces.

Definition 4.3.1. For U ′ = U∗(n) ∩ Ui(πs) with n coprime to π, we call n the tame level and πs the wild level.

Notation 4.3.2. If v is a finite place of F , such that Dv is split, then let ηv ∈ GD(Af ) be the element which is the
identity at all places different from v and at v it is the matrix

(
πv 0
0 1

)
, for πv a uniformiser of Fv. In order to ease

notation later on, when v|p we choose the same uniformisers as we had before.

Definition 4.3.3. Let U have tame level n and wild level πs. For each v as above, we define the Hecke operators
Tv as the double coset operators given by [UηvU ]. Moreover, if v is coprime to level, then we can regard πv as an
element of the centre of D×f and we denote by Sv the operator [UπvU ]. Lastly, for each p ∈ Σp let Up denote the
operator Tp and let Up =

∏
p∈Σp

U
ep
p . We denote by TTT = TTTD(U), the Hecke algebra generated by the operatorshh

Tq, Up, where q - nd with d = Disc(D) and p ∈ Σp.

We now want to show that the overconvergent quaternionic modular forms of small slope are classical. To do this
we will follow the proof of the case F = Q in [88, Section 7]. We begin with some preliminaries.

Lemma 4.3.4. The Up operator acting on S
D,†
U (U ∩ U0(πs), t) for s+ t ≥ m(U) is compact. In particular, this holds

for the spaces SD,†κ,r (U ∩ U0(πs), t) for s+ t ≥ m(κ, r).

Proof. See [99, Lemma 12.2] or [2727, Lemma 3.2.8].
�

Definition 4.3.5. Let (κ, r) be an algebraic weight and let κi = (k1, . . . , ki−1, 2 − ki, ki+1, . . . kg). Note that if
κ = 2w − r then κi = 2w′ − r where w′j = wj for j 6= i and w′i = vi. For each i ∈ {1, . . . , g} corresponding to a

place in Σ∞, we define a map Θi : SD,†κ,r (U, 0) −→ SD,†κi,r(U, 0) by setting Θi(f)(h) = ∂ki−1f(h)

∂z
ki−1

i

for h ∈ GD(Af ).

Note that f(h) ∈ An,v(Op, L, 0) so it can be written as a converging power series in variables (z1, . . . , zg), so
∂ki−1f(h)

∂z
ki−1

i

makes sense. Moreover, one needs to check that Θi is actually well-defined, but this follows at once from

the simple check that for any γ ∈ I we have Θi(f)|γ = Θi(f |γ).

Theorem 4.3.6 (Control Theorem). Let U ′ = U∗(n) with (n, π) = 1 and U = U ′∩U1(πs) for s ≥ 1 and let (k, r)

be a classical weight. Let f ∈ SD,†k,r (U, t) be an eigenform for each Upi
with eigenvalue αpi

. If for each pi|p we have

valp(αpi
) <

vpi(k, r) + minj∈Σpi
{kj − 1}

epi

,

where epi is the ramification degree, then f ∈ SDk,r(U) (in other words, f is classical).

Proof. We will only sketch the proof, but the full detailsii can be found in [2929, Theorem 2.3]. First note that if
Θi(f) = 0 for all i then f must in fact be classical. The task is now to give a criterion for f to be in this kernel

based only on the slope of f . Now, let U0
pi

= π
−vpi

(k,r)
pi

Upi
which has operator norm ≤ 1. Then any eigenform of

U0
pi

with negative slope must in fact be zero. Now Θi sends U0
pi
-eigenforms of slope h to U0

pi
-eigenforms of slope

h− minj∈Σpi
{kj−1}

epi
, from which one can deduce the result.

�

Using the above and the Eigenmachine we can construct the eigenvariety associated to overconvergent quaternionic
modular forms for D/F .

hNote that these operators are independent of choice of uniformiser for v not dividing p.
iUp to normalization
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Theorem 4.3.7. Let U = U ′ ∩ U0(π) with U ′ having level n coprime to π. Let Z be the spectral variety defined as
usual and TTT = TTTD(U) as defined in 4.3.34.3.3. Lastly, let SD,†(U) be the coherent sheaf given the nuclear Frechet spaces
SD,†U (U) where U is an affinoid with a morphism U→WG. Associated to the eigendata of (WG, SD,†(U),TTT , Up) we
have an eigenvariety XD(U) which is equidimensional of dimension g + 1 and satisfies the conditions of Theorem 2.2.72.2.7.

Proof. The existence of such an eigenvariety and the fact that it is equidimensional follows from [99, Section 13].
The fact that is it is equidimensional of dimension g + 1 is due to the weight space that we have used. �

5. p-adic Langlands functoriality

In this section we will relate the different eigenvarieties we have defined in the previous section. In particular, we
prove the following:

Theorem 5.1.1. Let D be a totally definite quaternion algebra with DiscD = d and n an ideal with (n, d) = 1. Let
XG := XG(U1(nd)) and XD := XD(U1(n)) be as in Theorems 3.2.103.2.10 and 4.3.74.3.7 respectively, with U1(nd) a level
whose associated moduli problem is representablejj and let p be unramified. Then these eigenvarieties are reduced and the
classical Jacquet-Langlands correspondence can be interpolated to obtain a closed immersion XD ↪→XG satisfying the
properties of Theorem 2.3.52.3.5.

Corollary 5.1.2. If g = [F : Q] is even, then taking D (totally definite) with d = 1, the closed immersion given by
Theorem 5.1.15.1.1 becomes an isomorphism.

We will derive Theorem 5.1.15.1.1 from Theorem 2.3.52.3.5 (the Interpolation theorem). To this end, we need to exhibit a
very Zariski dense set X ⊂ WG on which we can put classical structures for both sets of eigenvariety data. The set
of all classical weights (see Definition 2.1.12.1.1) is such a candidate. The fact that it is a very Zariski dense subset ofWG

is a well-known fact but we include its proof for the sake of completeness. This requires the following lemma.

Lemma 5.1.3. If W is a non-empty rigid space. Then W is irreducible if and only if the only analytic subset Z ⊂W
which set-theoretically contains a non-empty admissible open of W is Z = W .

Proof. See [1414, Lemma 2.2.3].
�

Proposition 5.1.4. Let X be the set of classical weights, then X is very Zariski dense inWG.

Proof. This is a simple generalization of [1010, Proposition 6.2.7] or [2424, Lemma 4.1]. By 2.1.22.1.2 we have

WG ∼= H∨ ×B(1, 1)g+1 ∼=
⊔
χ

Wχ,

where we index over the elements of H∨. Let κψ be a classical weight with κ = 2w − r and ψ as Definition 2.1.12.1.1.
Then under the above isomorphism

κψ 7→

κ̂ψ,
 g∏

j

(1 + p)wj

 , (1 + p)r

 ,

where κ̂ψ denotes the restriction to H∨ (note that κψ ∈ WG(E), with E = Qp[ψ]). Assume that κψ ∈ Wχ

for some χ and take any irreducible admissible affinoid open V ⊂ WG that contains κψ . Then V ⊂ Wχ and
moreover, since V (E) is open, there exists sss = (s, s′) ∈ QΣ∞

>0 ×Q>0 such that the closed ball of radius sss around
κψ is contained in V , i.e.,

B[κψ, sss] :=

g∏
j

B[wj , sj ]×B[r, s′] ⊂ V.

By Lemma 5.1.35.1.3, we see that if B[κψ, sss] ∩ X is Zariski dense in B[κψ, sss], then V (E) ∩ X is Zariski dense in V ,
which is what we want to prove. So we are reduced to showing that B[κψ, sss](E) ∩X is Zariski dense in B[κψ, sss].
To see this, let κ, κ′ ∈ X , then

jMeaning that the moduli problem of HBAV with a µnd-level structure is representable.
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|κ− κ′| = max
i
{|(1 + p)wi − (1 + p)w

′
i |p, |(1 + p)r − (1 + p)r

′
|p}

= max
i
{|(1 + p)wi−w′i − 1|p, |(1 + p)r−r

′
− 1|p}.

So taking κ′ψ ∈ X , with κ′ = 2w′ − r′ is such that:

• for N large enough, wi ≡ w′i mod (p− 1)pN , r ≡ r′ mod (p− 1)pN ;
• κψ and κ′ψ lie in the same component of the weight space.

Then we can easily see that B[κψ, sss] contains infinitely many elements of X , hence we get the result. �

Definition 5.1.5. Let Z ⊂ WG×A1 be the spectral variety defined by FredM (Up) for M (as usual) the coherent
sheaf on WG of overconvergent Hilbert modular forms on D or M2(F ) with a classical structure M cl. We call
a point z ∈ Z classical if its projection to WG is a classical weight and if det(1 − TUp|Mcl) vanishes at z. We
denote these points by Z cl.

Remark 5.1.6. Note that if M is given by the ‘spreading out’ of the spaces of overconvergent Hilbert modular
forms and if we write z = ((κz, rz), α) ∈ WG × A1 then z is classical if (κz, rz) is a classical weight and there
exists a classical Hilbert modular form with Up eigenvalue α−1.

Proposition 5.1.7. The subset Z cl of Z is a very Zariski dense subset.

Proof. This follows from the proof of [1111, Proposition 3.5]. The basic idea is to use the fact that X and Xh are very
Zariski dense, together with the fact that the admissible cover of Z as given by [99, Section 4] is finite flat over its
projection to weight space. �

Let n be an ideal of OF with (n, d) = 1 and π - nd, where d = Disc(D). Let UD = U1(nπ) and set TTTD(UD) to
be the Hecke algebra.kk Let UG be the corresponding level structure when one takes D = M2(F ), which gives the
level structure in the Hilbert modular form case. By fixing a splitting at places away from d, we let TTTD act on the
spaces of Hilbert modular forms. Therefore, throughout this section we denote TTTD simply by TTT .

Theorem 5.1.8 (The Jacquet–Langlands correspondence). Let (k, r) be a classical weight inWG and UD, UG as above.
There is an isomorphism

SDk,r(U
D)
∼→ Sd-new

k,r (UG ∩ UG1 (d))).

Remark 5.1.9. We note that, for g even, we can pick the quaternion algebra D to be totally definite with d = 1.
Now, by fixing a splitting we can identify UD and UG, which we will simply denote by U . In this case the classical
Jacquet-Langlands correspondence gives an isomorphism of Hecke modules SDk,r(U)

∼→ Sk,r(U). However, for g
odd, since D is totally definite, we must have d 6= 1. In this case, we have an isomorphism of Hecke modules

SDk,r(U
D)

∼−→ Sd-new
k,r (UG(d)) ↪→ Sk,r(U

G(d)),

where UG(d) = UG ∩ UG1 (d).

Theorem 5.1.15.1.1 then follows from Theorem 5.1.105.1.10 (below) together with Lemma 5.1.135.1.13:

Theorem 5.1.10. Let XG and XD be the eigenvarieties associated to the eigendata

D1 = (WG, SG,†(UG(d)),TTT , Up) and D2 = (WG, SD,†(UD),TTT , Up)

respectively and let p be unramified. Then we can interpolate the classical Jacquet-Langlands correspondence and obtain a
closed immersion ιD : X red

D ↪→X red
G .

Proof. We will prove this using Theorem 2.3.52.3.5. Let X be the set of classical weights, whose elements we will denote
by k. We now define classical structure on X . For each (k, r) ∈ X , let M cl

G,k,r and M cl
D,k,r be the TTT -modules

Sk,r(U
G(d)) and SDk,r(U

D) respectively of classical cusp forms of weight k and level UG(d), UD respectively. We
need to check that this is indeed a classical structure. Pick h ∈ R≥0. Then the set of (k, r) ∈ X such that
SG,†k,r (UG(d))≤h ⊂ M cl

G,k,r contains all (k, r) ∈ WG, such that h < vp(k, r) + mini∈Σ∞{ki − 1} by the Control

kNote that the Hecke algebra consists of all Hecke operators away from d.
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Theorem and hence satisfies the properties of Definition 2.3.32.3.3. Recall that the superscript ≤ h denotes slope
decomposition with respect to Up.

Similarly, if (k, r) ∈ X is such thatll h < vp(k, r) + mini∈Σ∞{ki − 1}, then SD,†k,r (UD)≤h ⊂M cl
D,k,r. It follows

that we again have a classical structure. Now, as a consequence of the classical Jacquet-Langlands correspondence

we have that det
(

1− UpX|Mcl
D,k,r

)
divides det

(
1− UpX|Mcl

G,k,r

)
. Hence we can apply Theorem 2.3.52.3.5 to obtain

the closed immersion ιD : X red
D ↪→X red

G .
�

Now observe that if g is even, then we can pick D to be totally definite and have d = 1 (i.e. trivial discriminant).
Then the classical Jacquet-Langlands correspondence gives that M cl

G,k,r
∼= M cl

D,k,r at classical weights, and thus

det(1− UpX |M cl
D,k,r) = det(1− UpX |M cl

G,k,r)

therefore Corollary 2.3.62.3.6 gives us an isomorphism X red
D
∼= X red

G . This proves most of Corollary 5.1.25.1.2, it only
remains to show that the eigenvarieties are reduced which we will follow from Lemma 2.3.72.3.7.

Proposition 5.1.11. Fix h ∈ R≥0. There is a Zariski dense subset X ′ ⊂ X (of WG) such that for all k ∈ X ′, the
TTT -module M cl,≤h

G,k,r is semisimple.

This result will be consequence of the two lemmas below. We begin by noting that the classical Jacquet-Langlands
correspondence gives us that if M cl,≤h

G,k,r is a semisimple TTT -module, then so is M cl,≤h
D,k,r . To ease notation, we let

Rhk,r := M cl,≤h
G,k,r = Sk,r(U

G(d))≤h.

Now, since we are working with classical Hilbert modular forms, the action of the Hecke operators can be described
by their action on q-expansions. Next we note that the only Hecke operators that might not be semisimple are the
Upi

, for pOF =
∏
i pi. This is because all the other operators are normal (commute with their adjoints), so they are

semisimple. Hence we must show that for each i, the operators Upi
act semisimply on the space of cusp forms of

slope-≤ h. In fact we shall show that Upi acts semisimply on Rhk′,r′ for a Zariski dense subset of X ′ ⊂ X . Lastly,
we need to relate slope decomposition of Rhk,r with respect to Up, to the slope decompositions with respect to the
Upi

. To do this we have the following:

Lemma 5.1.12. Let S be a Banach space on which we have pairwise commuting operators Ui for i = 1, . . . , n, all of
which have operator norm ≤ 1 (which means they have positive slopes) and such that U =

∏
i Ui is a compact operator.

Then the slopes of the Ui operators acting on the space S≤h (this is the slope decomposition with respect to U ) are all ≤ h.

Proof. By definition we have that S≤h is a finite dimensional subspace of S. Therefore by choosing a basis we can
view the Ui operators as matrices. Now since the Ui are pairwise commuting operators, we can simultaneously
upper triangularize them (after possibly extending the base field). From this it follows that the eigenvalues of U
acting on S≤h are the product of the eigenvalues of the Ui.

Now since the slopes of an operator are simply the p-adic valuation of its eigenvalues, we have that on S≤h

the slopes of U are the sum of the slopes of the Ui operators and therefore, since they all have positive slopes, it
follows that the slopes of the Ui acting on S≤h are all ≤ h as required.

�

After renormalizing our operators, we can apply this to our situation to see that since Up =
∏
i Upi

is compact,
then we have a slope decomposition for any h. Moreover, for each h we have that the slope of each Upi

acting on
Rhk,r is less than or equal to h. With this we can prove the following Lemma:

Lemma 5.1.13. There is a Zariski dense subset X ′ ⊂ WG, such that for each i, Upi
acts semisimply on Rhk,r for

k, r ∈ X ′.

Proof. Using Lemma 5.1.125.1.12 the result is a simple generalization of the classical situation, as is done in [44, Theorem
3.30], or from the proof of [1212, Theorem 4.2]. But for completeness we prove it here.

First note that we can decompose Rhk,r into its pi-new and pi-old parts. The action of Upi on R
h,pi-new
k,r is normal

and hence diagonalizable. With this we are reduced to showing that this operator acts semisimply on Rh,pi-old
k,r .

lNote that we are in the case where p is unramified.
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In order to prove this, it is enough to show that on each generalized TTT -eigenspace of Rh,pi-old
k,r it acts semisimply.

Each of these spaces will correspond to a newform f of (lower) level not divisible by pi. Now, let api
= aaa(pi, f |Tpi

)
be the Tpi

eigenvalue of f and Ψ its nebentypus. Since we are assuming that for each i, we have (nd, pi) = 1, then
it follows from Atkin-Lehner Theory that each of these pi-old subspaces is 2-dimensional, and generated by f and
f |Bpi (see [2525], for the definition of Bpi ). A simple calculation then shows that on this subspace the Upi operator
has minimal polynomial given by

X2 − api
X +NF/Q(pi)

r+1Ψ(pi).

Therefore, since NF/Q(pi) = plpi (here lpi is the residue degree), we see that if we pick (k, r), such that
r > (2h − lpi

)/lpi
, then h < lpi

(r + 1)/2. Therefore, the polynomial must have a unique root α with valuation
≤ h, from which it follows that on the generalized TTT -eigenspace of Rh,pi-old

k,r corresponding to f , we have that Upi

acts as the scalar α. Hence it is diagonalizable. This then shows that on Rhk,r the Upi
operators act semisimply for

(k, r) large enough as required.
�

From this it follows that for any h ≥ 0, the operators Upi act semisimply on Sk,r(U ′)≤h for (k, r) in a Zariski
dense subset of WG, proving Proposition 5.1.115.1.11. Then by Lemma 2.3.72.3.7, we have at once that X red

D
∼= XD and

X red
G
∼= XG, which proves Corollary 5.1.25.1.2.

Remark 5.1.14. In light of Theorem 5.1.105.1.10 and Remark 5.1.95.1.9, we see that for g even and D totally definite with
d = 1, we have an isomorphism of eigenvarieties ιD : X red

D
∼→ X red

G . However, for g odd and D totally definite,
the closed immersion ιD : X red

D ↪→X red
G is never an isomorphism since d 6= 1. At best, we can say that its image

is the d-new part of of X red
G as in the case of modular forms over Q (cf. [1111]).

Remark 5.1.15. We note that, for g odd, there are alternative constructions for the eigenvariety X red
D . Let D be

the quaternion algebra ramified at all infinite places but one, with d = 1. Then Brasca [77] constructs an eigenvariety
associated to X red

D from which one can use the above to obtain a closed immersion ιD : X red
D ↪→ X red

G , which
is an isomorphism on the closed subvariety given by parallel weights. His construction combines the theory of
Shimura curves with work of Andreatta-Iovita-Pilloni to construct the relevant eigenvarieties.

Remark 5.1.16. Using the work of [1616], one can construct eigenvarieties coming from overconvergent cohomology
groups associated to any quaternion algebra. In this case, the resulting eigenvarieties are larger than the ones we
have constructed, in particular, they may not be equidimensional of dimension g+ 1. Using a more general version
of the Interpolation theorem as in loc.cit. one can obtain closed immersions between the ‘cores’ (as defined in
loc.cit.) of the relevant eigenvarieties.
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