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Approximately 800,000 leukemia and lymphoma cases are
diagnosed worldwide each year. Burkitt’s lymphoma (BL)
and chronic lymphocytic leukemia (CLL) are examples of
contrasting B-cell cancers; BL is a highly aggressive
lymphoid tumor, frequently affecting children, whereas
CLL typically presents as an indolent, slow-progressing
leukemia affecting the elderly. The B-cell-specific overex-
pression of the myc and TCL1 oncogenes in mice induce
spontaneous malignancies modeling BL and CLL, respec-
tively. Quantitative mass spectrometry proteomics and
isobaric labeling were employed to examine the biology
underpinning contrasting E�-myc and E�-TCL1 B-cell tu-
mors. Additionally, the plasma proteome was evaluated
using subproteome enrichment to interrogate biomarker
emergence and the systemic effects of tumor burden.
Over 10,000 proteins were identified (q<0.01) of which
8270 cellular and 2095 plasma proteins were quantita-
tively profiled. A common B-cell tumor signature of 695
overexpressed proteins highlighted ribosome biogenesis,
cell-cycle promotion and chromosome segregation. E�-
myc tumors overexpressed several methylating enzymes
and underexpressed many cytoskeletal components. E�-
TCL1 tumors specifically overexpressed ER stress re-
sponse proteins and signaling components in addition to

both subunits of the interleukin-5 (IL5) receptor. IL5 treat-
ment promoted E�-TCL1 tumor proliferation, suggesting
an amplification of IL5-induced AKT signaling by TCL1.
Tumor plasma contained a substantial tumor lysis signa-
ture, most prominent in E�-myc plasma, whereas E�-
TCL1 plasma contained signatures of immune-response,
inflammation and microenvironment interactions, with
putative biomarkers in early-stage cancer. These findings
provide a detailed characterization of contrasting B-cell
tumor models, identifying common and specific tumor
mechanisms. Integrated plasma proteomics allowed the
dissection of a systemic response and a tumor lysis sig-
nature present in early- and late-stage cancers, respec-
tively. Overall, this study suggests common B-cell cancer
signatures exist and illustrates the potential of the further
evaluation of B-cell cancer subtypes by integrative
proteomics. Molecular & Cellular Proteomics 16:
10.1074/mcp.M116.063511, 386–406, 2017.

Burkitt’s lymphoma (BL)1 and chronic lymphocytic leukemia
(CLL) represent the extremes of B cell cancers; BL is highly
aggressive and frequently affects children, whereas CLL typ-
ically presents as an indolent, slow-progressing leukemia in
the elderly (1, 2).

BL is a hallmark myc-driven tumor; induced by chromo-
somal translocation of the transcription factor myc to immu-
noglobulin (Ig) enhancers (3). Myc influences �15% of the
genome, regulating processes such as cell proliferation, me-
tabolism, adhesion, angiogenesis and de-differentiation (4–
6). Such neoplastic-like traits make myc an aggressive onco-
gene, dysregulated or overexpressed in most cancers (7).
Formal proof of its oncogenic properties were demonstrated
when human myc was placed into the � Ig heavy chain
enhancer (E�) region of the mouse. These ‘E�-myc’ mice
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produced high-penetrance lymphomas within around 100
days, recapitulating several molecular and pathological as-
pects of BL (3, 8–10).

In contrast, CLL is a relatively indolent B-cell cancer, pre-
senting with a CD5�CD19� leukemia (11, 12). Up to 90% of
CLL cases express TCL1—a protein involved in lymphocyte
development (13–15). TCL1 is suggested to promote cell sur-
vival and proliferation by amplification of AKT phosphoryla-
tion, induced by growth factor-, cytokine- and B-cell receptor-
induced PI3K signaling (16, 17). The E�-TCL1 mouse,
overexpressing TCL1 in B-cells again through the � enhancer,
was developed as a potential model of CLL (18). E�-TCL1
mice recapitulate the expanded bone marrow, splenic and
circulatory CD5� B-cell populations of CLL, detectable from
around 3–5 months of age. The disease progresses to lethal
splenomegaly and leukemia at �12 months (18, 19). Currently
it is regarded as one of the most useful preclinical models of
CLL (20, 21).

Together, these models provide the opportunity to study
oncogenesis mediated by two contrasting oncogenes at op-
posing ends of the proliferative spectrum. E�-myc tumors,
like BL, are highly aggressive, have rapid onset and form
lymphoid tumors, whereas E�-TCL1 mice, like CLL, present a
relatively indolent and slow-developing leukemia with sec-
ondary lymphoid organ involvement (3, 18).

In addition to cellular characterizations of tumors, plasma
analysis holds the potential to identify additional biological
signatures arising during oncogenesis. In particular, extracel-
lular fluids can provide insight into the tumor-host dialogue
between the immune system and micro-environment and re-
port on the metabolic and homeostatic aberrations that tu-
mors display. Further, combining cellular and plasma charac-
terization can provide greater insight into the mechanisms
by which any biomarkers of disease may be entering the
circulation.

Liquid chromatography coupled with mass spectrometry
(LC-MS) proteomics currently provides the best means of
establishing global differential protein expression profiles of
cellular and plasma samples. These approaches are evolving
rapidly and yielding ever-increasing proteome coverage (22,
23). Nonetheless plasma/serum proteomics still presents sig-
nificant challenges because of the vast dynamic range of
protein concentrations (24). Although advances continue to
be made with immunodepletion strategies (25–27), an alter-
native method termed, Subproteome Enrichment by Size Ex-
clusion Chromatography (SuPrE-SEC), offers an effective
alternative. SuPrE-SEC uses size-dependent protein fraction-
ation to deplete high-abundance proteins and enrich for low-
abundance proteins. The resulting reduction of the protein
concentration dynamic range facilitates a greater depth of
LC-MS proteomics coverage (28, 29).

This investigation has applied multiplexed, LC-MS pro-
teomics to the characterization of plasma subproteomes and
isolated B-cell material from E�-myc, E�-TCL1 and wildtype

(WT) mice. The resulting proteomes have been interrogated to
identify common and tumor-specific signatures and to under-
stand the combined cellular and extracellular characteristics
of B-cell tumors.

MATERIALS AND METHODS

Materials—Tris(hydroxymethyl)aminomethane (TRIS), SDS,
Na2EDTA, NH4Cl, NaHCO3, sodium deoxycholate (DOC),
guanidine hydrochloride, glycine, HPLC and LC-MS grade
ACN and formic acid (FA) and 100 �m cell sieves were pur-
chased from Fisher Scientific, Loughborough, UK. Tween20
(tween), sodium heparin, propidium iodide (PI), carboxyfluo-
rescein succinimidyl ester (CFSE), asparagine, 2-mercapto-
ethanol, octylphenoxypolyethoxyethanol (IgePalCA630), triton
x-100, protease inhibitors, ponceau S, acetic acid, methyl
methanethiosulfonate (MMTS), tris(2-carboxyethyl)phosphine
(TCEP), triethylammonium bicarbonate (TEAB), DMSO, hy-
droxylamine and ammonium hydroxide (NH4OH) were pur-
chased from Sigma, St. Louis, MO.

Dulbecco’s modified Eagle’s medium (DMEM), glutamine,
pyruvate, penicillin and streptomycin were purchased from
Life Technologies, Carlsbad, CA. Mouse B-cell isolation kits
and magnetic cell sorting columns were purchased from
Miltenyi Biotech, Bergisch Gladbach, Germany. Twenty-
three-gauge needles and 1-ml syringes were purchased from
BD Biosciences, Franklin Lakes, NJ, Interleukin 5 (IL5) recom-
binant protein from Peprotech, Rocky Hill, NJ, Immobilon 0.45
�m pore PVDF membrane from Millipore, Billerica, MA and
nonfat milk from Marvel, Birmingham, UK. 30� DTT and 3�

red loading buffer were purchased for Cell Signaling Technol-
ogies, Danvers, MA. Enhanced chemiluminescence reagents,
tandem mass tags (TMT) 10-plex isobaric labeling reagents
and 2 kDa Mw cut-off Slide-A-Lyzer dialysis cassettes and
proteomics grade lys-c were purchased from Thermo Scien-
tific, Waltham, MA. Proteomics grade trypsin was purchased
from Roche, Basel, Switzerland. Isobaric tags for relative and
absolute quantitation (iTRAQ) 8-plex reagents were pur-
chased from ABSciex, Framingham, MA. Antibodies are de-
tailed in Supplementary Methods.

Animals—Mice were bred and maintained in-house with
procedures carried out in accordance with home office li-
censes PPL30/2450 and 30/2970 and PIL30/9925. Female
E�-myc [C57BL/6J-TgN(Ighmyc)22Bri/J] hemizygous and
E�-TCL1 [C57BL/6J-TgN(IghTCL1)22Bri/J] hemizygous mice
were used. The E�-myc and E�-TCL1 transgenes were de-
tected with PCR. E�-myc primers (annealing temperature;
55 °C): 5�- CAG CTG GCG TAA TAG CGA AGA G -3� and 5�-
CTG TGA CTG GTG AGT ACT CAA CC -3� �900 bp product,
E�-TCL1 primers (annealing temperature; 58 °C): 5�- GCC
GAG TGC CCG ACA CTC -3� and 5�- CAT CTG GCA GCT
CGA -3� �250 bp product. E�-TCL1 mice were screened
monthly for count and percentage of B220� CD5� B-cells in
the blood, being considered terminal either with �80% leu-
kemic cells or palpated splenomegaly �3 cm. E�-myc mice
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were checked daily and were considered terminal, typically
upon visible lymph node tumor presentation.

Experimental Design and Statistical Rationale—Sample
pooling, detailed in supplemental Figs. S1, was used to ac-
commodate comparative experiments in single isobaric label
sets. Tumorous spleens were collected from 4 E�-myc and 4
E�-TCL1 mice with terminal tumor presentation. For nontu-
mor controls, 6 spleens, handled as two pools of 3 spleens,
were collected from 6 week old and 200 day WT littermates
and 6 week-old E�-myc and E�-TCL1 mice with no signs of
tumor or splenomegaly (summarized in supplemental Fig. S1).
Nontumor pools were analyzed with six samples per isobaric
label, whereas tumor samples were analyzed as biological
replicate pools of two tumors.

For plasma, six samples were individually collected for each
of the above tumor and nontumor conditions, in parallel with
B-cell isolation. In addition, 6 samples were isolated from
E�-TCL1 mice at a preterminal “30%” stage, when 30%
B220� CD5� cells were present in the blood. To minimize
bias these were selected from a cohort of 14 E�-TCL1 mice,
from every other mouse reaching the 30% threshold. Tumor
and preterminal “30%” tumor plasma were also analyzed as
biological replicates, with three samples allocated to each
label.

Each pair of tumor pools was compared with two WT sam-
ple pools, generating four ratios which could be evaluated for
consistency and significance to ensure the reproducibility of
quantitative results. Replicate ratios were analyzed for con-
sistency with an FDR-corrected t test and considered signif-
icant with a p value of �0.05. p values were coupled with a
measure of magnitude detailed in Quantitative and Statistical
Analysis of MS Data, below.

B-cell Isolation—B-cells were isolated from single-cell sus-
pensions using the mouse negative selection B-cell isolation
kits and MACS columns according to the manufacturer’s
instructions, washed once at room temperature (RT) in red
blood cell lysis buffer (155 mM NH4CL, 10 mM NaHCO3, 0.1
mM Na2EDTA (pH 7.4) before three washes in PBS. B-cell
isolation efficiency was assessed by flow cytometry immuno-
staining with CD19 and CD3, typically yielding �90% purity
with less than 2% T-cell (CD3�) contamination (supplemental
Fig. S1). B-cell pellets were snap frozen and stored in liquid
nitrogen prior to lysate preparation.

Plasma Isolation—To isolate plasma, maximize sample pu-
rity, minimize red blood cell lysis and accommodate for organ
displacement from tumors, an adaption of bleeding from the
inferior vena cava under terminal anesthesia (30) was utilized.
Using a 23-gauge needle, 700–1000 �l of blood was collected
for each animal into 50 �g/ml sodium heparin in PBS. Blood
was immediately placed on ice and centrifuged at 2000 � g
for 15 min at 4 °C with plasma stored in liquid nitrogen.
Samples were rejected if red blood cell lysis was visible by
eye.

Plasma Subproteome Enrichment—20 �l was taken from
each of the six replicate plasma samples described above to
give pools of 120 �l. For tumor samples, two 120 �l pools of
3 � 40 �l were formed to provide biological replicates (sum-
marized in Figs. 1 and supplemental Fig. S1).

SuPrE-SEC was adapted from that described previously
(28). Each 120 �l plasma pool was diluted with 380 �l of 6 M

guanidine hydrochloride in 10% methanol and separated by 3
KW804 SEC columns in series at 1.2 ml/min and 30 °C. The
low molecular weight subproteome was isolated during elu-
tion from 42–55 min (Supplemental Fig. S1G) and dialyzed (2
kDa Mw cut-off) into ultrapure water (18.2 M� cm	1) with five
exchanges into 5 liters. Protein was lyophilized and re-solu-
bilized in 0.5 M TEAB with 0.05% SDS with 30 �g digested
and labeled for MS analysis as described below.

Sample Preparation for MS—Snap frozen cell pellets were
lysed on ice by trituration with a 23-gauge needle in 0.5 M

TEAB with 0.05% SDS. Disrupted cells were further sonicated
and lysates cleared at 16,000 � g for 10 min at 4 °C. 100 �g
of cell lysate or 30 �g of plasma subproteome was reduced
with 50 mM TCEP and alkylated with 200 mM MMTS, before
digestion overnight at RT with a 30:1 ratio of proteomics
grade trypsin. Plasma proteins were additionally digested for
a further 2 h at 37 °C with 100:1 proteomics grade Lys-c.
Peptides were incubated with either iTRAQ 8-plex (B-cell
peptides) or TMT 10-plex isobaric tags (plasma peptides)
according to the manufacturer’s instructions. Samples were
then lyophilized and labeled peptides serially reconstituted,
for each proteome, in 100 �l of 2% v/v ACN, 0.1% v/v
NH4OH.

Peptide Prefractionation—Peptides were resolved using
high-pH (0.1% v/v NH4OH) RP C8 chromatography (150
mm � 3 mm ID � 3.5 �m particle, XBridge, Waters, Milford,
MA) at 300 �l/min with a LC-20AD HPLC system (Shimadzu)
maintained at 30 °C, using the mobile phases (MP); A - 99.9%
H2O, 0.1% NH4OH, B - 99.9% ACN, 0.1% NH4OH. The 2 h
gradient was as follows; 0 min; 2% B, 10 min; 2% B, 75 min;
30% B, 105 min; 85% B, 120 min; 2% B. Fractions were
collected in a peak-dependent manner and lyophilized.

Peptide Fraction Resolution and Characterization by LC-
MS/MS—Lyophilized peptide fractions were individually re-
constituted in 2% ACN, 0.1% FA, and �500 ng of peptides
were subjected to nano-ultra-performance liquid chromatog-
raphy by a Dionex Ultimate 3000 (Thermo Scientific). Condi-
tions used varied between the plasma and B-cell proteomes,
detailed in Supplementary Methods. In summary, peptides
were trapped by C18 and eluted over a reverse phase gradi-
ent, of which several lengths were used depending on the
peptide fraction abundance and proteome. The total MS time
for the iTRAQ-labeled B-cell proteome was �200 h, with the
TMT-labeled plasma proteome analyzed over �250 h.

Peptide elution was directly coupled to electrospray ioniza-
tion at 2.4 kV using a PicoTip nESI emitter (New Objective,
Woburn, Massachusetts), and were characterized with an
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Orbitrap Elite Velos Pro mass spectrometer (Thermo Scien-
tific). MS characterization of eluting peptides was conducted
between 350 and 1900 m/z at 120,000 mass resolution. The
top 12 � 2 and �3 precursor ions per MS scan (minimum
intensity 1000) were characterized by tandem MS with high-
energy collisional dissociation (HCD) (30,000 mass resolution
(15,000 for the B-cell proteome), 1.2 Da isolation window, 40
keV normalized collision energy) and CID (ion trap MS, 2 Da
isolation window, 35 keV). Additionally, the DMSO ion at
401.922718 was used as a MS lockmass (31).

MS Data Processing—Target-decoy searching of raw spec-
tra data was performed with Proteome Discoverer software
version 1.4.1.14 (Thermo Scientific). Spectra were subject to a
two stage search, both using SequestHT (version 1.1.1.11),
with Percolator used to estimate FDR with a threshold of q �

0.01. The first allowed only a single missed cleavage, mini-
mum peptide length of 7, precursor mass tolerance of 5 ppm,
no variable modifications and searched against the mouse
UniProt Swissprot database, supplemented with the human
sequences for (downloaded 01/15, 16,676 protein se-
quences). The second search used only spectra with q � 0.01
from the first search, allowed two missed cleavages, minimum
peptide length of 6, searched against the human/mouse Uni-
Prot trembl database (with human myc and TCL1, down-
loaded 01/15, 52,469 protein sequences), precursor mass
tolerance of 10 ppm and a maximum of two variable (1 equal)
modifications of; TMT or iTRAQ (Tyr), oxidation (Met), deami-
dation (Asn, Gln) or phospho (Ser, Thr, Tyr). In both searches,
fragment ion mass tolerances of 0.02 Da and 0.5 Da were
used for HCD and CID spectra, respectively. Fixed modifica-
tions of Methythio (Cys), TMT or iTRAQ (Lys and N terminus)
were used. PhosphoRS was used to predict the probability of
specific phosphorylated residues. Reporter ion intensities
were extracted from nonredundant PSMs with a tolerance of
20 ppm. To reduce ratio compression, peptide spectrum
match data for proteins (q�0.01) were exported from Pro-
teome Discoverer and submitted to Statistical Processing for
Isobaric Quantitation Evaluation (SPIQuE) at spiquetool-
.com. This method weighted the contributions of each PSM
quantitation to a protein’s quantitation on the basis of PSM
features (manuscript in preparation). For example, high-inten-
sity peptides with low isolation interference were given a
greater weighting factor. Although the effects upon the ratios
were minimal, the overall trend demonstrated efficient ratio
decompression (Supplementary Methods). An example of the
effect on the ratio decompression to the human TCL1 protein,
discretely expressed in E�-TCL1 B-cells, is outlined in Sup-
plementary Methods.

The raw data and processed outputs have been deposited
to the ProteomeXchange Consortium (32) via the PRIDE part-
ner repository with the data set identifier PXD004608.

Quantitative and Statistical Analysis of MS Data—Log2 (ra-
tios) were generated describing each sample pool relative to
the two WT controls. To define those proteins with the great-

est fold change for each biological state, an FDR-corrected
one sample t test was performed and average values deter-
mined. To derive a single, robust measure, representative of
both the magnitude and consistency of differential expres-
sion, a ratio was defined between that of the mean and the
standard deviation of the 4 log2 ratios, termed the regulation
score (Rs 
 mean/(standard deviation �1)). For proteins with
no, or inconsistent differential expression, the Rs tends to-
ward 0. The Rs also correlated more strongly with p values for
each set of ratios (Supplementary Methods). In all instances,
differentially expressed proteins (DEPs) were defined as those
with an FDR-corrected p value of �0.05 and an Rs threshold
of �0.5 or �-0.5. Although arbitrary, evaluation of this thresh-
old demonstrated a minimum average fold change of 1.4, for
which a fold change variation of just 6% was observed. This
therefore fulfilled the power analysis principles described by
Levin, 2011 (33), but on a case-by-case basis, by incorporat-
ing variation into each Rs via the S.D. as a denominator. The
outliers for this threshold were additionally highlighted to
demonstrate that consistent differential expression was still
observed (Supplementary Methods). Other p values were de-
termined by a false discovery rate-corrected 1- or 2-sample,
two tailed, t test with no assumption of equal variance.

Bioinformatics Analyses—Proteins reaching the thresholds
outlined above were submitted to either Ingenuity Pathway
Analysis (IPA) or Database for Annotation, Visualization and
Integrated Discovery (DAVID). For DAVID analyses, the default
settings were used for pathway and gene ontology (GO) term
enrichment, with Benjamini-corrected p values of �0.05 con-
sidered significant. For B-cell/tumor proteome enrichments,
all quantified proteins were used as a background. For IPA
analyses, default settings were used. Upstream regulator
analysis was determined using all DEPs (Rs�0.5/�-0.5, p �

0.05). Annotations of biomarkers and drug targets were con-
ducted by IPA. Plasma protein deconvolution was conducted
by removing any proteins annotated by IPA as predominantly
cellular in addition to any proteins with more than 30 PSMs
from the B-cell proteome.

SDS-PAGE and Western blotting—Cells were lysed in ra-
dioimmunoprecipitation assay (RIPA) cell lysis buffer (0.15 M

NaCl, 1% v/v octylphenoxypolyethoxyethanol (IgePalCA630),
0.5% w/v sodium deoxycholate (DOC), 0.1% w/v sodium
dodecyl sulfate (SDS), 0.05 M TRIS (pH 8) and 1% v/v prote-
ase inhibitor) and as described previously (34). Lysate super-
natants were isolated by centrifugation (16,000 � g for 10 min
at 4 °C). Protein concentrations were determined by Bradford
assay. Lysates were reduced in loading buffer with 2-mercap-
toethanol at 95 °C for 5 min. Lysates were resolved by SDS-
PAGE and transferred to PVDF. Membranes were blocked in
5% (w/v) nonfat milk for 1 h before probing with primary
antibodies, as detailed in Supplementary Methods. Expres-
sion was detected by incubation with a horseradish peroxi-
dase-conjugated secondary antibody using enhanced chemi-
luminescence reagents and a ChemiDoc-It imaging system
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(UVP). GAPDH or tubulin were used as loading controls. Rel-
ative quantification of protein band intensity was determined
using Image J, normalized against loading controls and ratios
to WT B-cell lysates were derived. For E�-myc tumor valida-
tions, lysate protein concentrations were determined by bi-
cinchoninic acid assay (BCA), reduced with DDT and diluted
in 3x loading buffer. Western blots were visualized with fluo-
rescent antibodies and an Odyssey Imaging System (Li-cor)
and quantified using Image Studio 2.0 (Li-cor).

Cell Culture—Cells derived from E�-myc or E�-TCL1 tu-
mors were cultured in DMEM supplemented with 2 mM glu-
tamine, 1 mM pyruvate, 45 units/ml penicillin, 45 �l/ml strep-
tomycin, 200 �M asparagine, 50 �M 2-mercaptoethanol, and
10% FCS. E�-myc tumors were cultured a density of 5 � 107

cells/ml at 37 °C in 10% CO2. E�-TCL1 cells were cultured at
a density of 5 � 106 cells/ml at 37 °C in 5% CO2. Cells were
cultured for 24 h prior to treatment. Serum starvation was
conducted for 4 h in the above media with 0.5% BSA replac-
ing FCS.

Flow Cytometry—Cells were stained with either the man-
ufacturer’s recommended concentration, or 10 �g/ml, of an-
tibody (Supplementary Methods) for 30 min in the dark,
washed and analyzed by flow cytometry with a FACScan or
FACScalibur (BD) (35, 36). Relative expression was deter-
mined using the geometric means. Cell cycle status was
assessed by hypotonic PI (50 �g/ml PI, 0.1% w/v sodium
citrate, 0.1% w/v triton x-100) incubated at 4 °C for 15 min. PI
fluorescence was measured by FL2 on a linear scale at the
lowest flow rate. Cell division was tracked by CFSE dilution of
cells stained with a concentration of 5 �M for 15 min at room
temperature.

RESULTS

Quantitative Proteomics of E�-myc and E�-TCL1 Tumors
and Plasma—To characterize the global proteome expression
of E�-myc and E�-TCL1 tumors, an 8-plex iTRAQ experiment
was designed incorporating terminal tumor, premalignant and
age-matched WT B-cells (Fig. 1). Sample pooling in combi-
nation with biological replicates enabled the averaging of
biological variability of several samples within a single isobaric
tag experiment. Splenic tumors samples, because of a greater
anticipated variability, were pooled in two pairs of two tumors
from each model; derived from a total of 8 terminal mice
(supplemental Fig. S1). Nontumor controls consisted of sam-
ples pooled from six animals. For plasma proteomics, con-
trols were again characterized as pools of six samples, with
two pools of three plasma samples for each tumor condition.
Additionally, plasma from preterminal E�-TCL1 tumors was
analyzed, derived from mice reaching a CD5� B220� leuke-
mia threshold of 30%, termed “30%” samples. To accommo-
date these additional samples, TMT 10-plex isobaric labels
were used.

The tumors selected for proteomics analysis, detailed in
supplemental Fig. S1A–S1F, were representative of the range

of characteristics observed for the model. The median termi-
nal presentations, for example (supplemental Fig. S1A), of 92
and 318 days for E�-myc and E�-TCL1 tumors, respectively,
agreed with earlier reports (3, 8, 18, 19).

Splenic B-cells from tumors and controls were lysed, tryp-
sin digested, and assigned to the eight isobaric labels of
iTRAQ 8-plex (Fig. 1) to provide relative protein expression
quantitation. The labeled B-cell peptides were pooled and
characterized by two-dimensional (2D) LC-MS identifying
9260 proteins (q�0.01). 8270 proteins were relatively quanti-
tated across all eight sample pools. The depth of proteome
coverage and quantitation is summarized in supplemental Fig.
S1H.

Plasma samples were subjected to an adapted form of
SuPrE-SEC (28), reducing the dynamic range and facilitating
deeper proteome coverage by the exclusion of the majority of
high-abundant proteins (supplemental Table S1, supplemen-
tal Fig. S1G). 2D LC-MS characterization of the plasma sub-
proteome provided relative quantitation for 2095 of the 2688
identified proteins (q�0.01). Peptide spectrum matches
(PSMs) to the higher-Mw protein albumin (n 
 3835, Mw 


68.7kDa), for example, were of far lower abundance than
transthyretin (n 
 7769, Mw 
 15.8kDa) or apolipoprotein A-II
(n 
 7129, Mw 
 11.3kDa). Given approximate plasma con-
centrations of 40 mg/ml, 260 �g/ml and 300 �g/ml for these
proteins (37), respectively, this represented around a 275-fold
enrichment of low Mw proteins.

Reproducibility and Validation of Quantitative Proteomics
Results—The relative quantitative proteomes demonstrated
tumor-dependent hierarchical clustering identifying common
trends of differential tumor expression compared with both
WT controls (Fig. 2A). Evaluation of the reproducibility be-
tween tumor sample pools by linear regression highlighted
the strong correlation between the 5 pairs of independent bio-
logical replicates (Fig. 2B). Additionally, an overlap of 1288
proteins were quantitated in both the B-cell and plasma
proteomes.

Individual protein expression was considered for a number
of candidates to confirm the successful characterization and
analysis of the quantitative proteome. The results presented
an anticipated model-specific overexpression of the myc and
TCL1 human transgenes (Fig. 2C, supplemental Fig. S2A,
S2B), in addition to characteristic CD5 overexpression and
B220 underexpression for E�-TCL1 tumors. Several DEPs
were validated by antibody-based methods to further verify
the relative quantitative accuracy of the proteomics; 10 for
E�-myc tumors and 7 for E�-TCL1 tumors (supplemental Fig.
S2G, S2H). The log2 ratios to WT of these validations were
plotted alongside the quantitative proteomics results (Fig. 2D).
Additionally, previously reported DEPs in E�-myc or E�-TCL1
tumors were compared with the proteomics results (supple-
mental Fig. S2D, S2F). A correlation was also observed with a
study describing relative mRNA expression in E�-myc tumors
(38) (supplemental Fig. S2J). Overall, the quantitative pro-
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teomics correctly identified over or underexpression for the
vast majority of the 38 DEPs observed by antibody-based
quantitations. This comparison also highlighted reporter ion
ratio compression, a commonly reported feature of isobaric
tag quantitation (39, 40). Anticipated plasma proteins, such as
IgM overabundance in E�-TCL1 tumors, was also observed
(supplemental Fig. S2I). These results therefore supported the

overall reliability of the DEP observations and the character-
ization and analysis by which they were generated.

Proteomic Characterization of B-cell Tumor Phenotypes—
Proteins were considered DEPs when both tumor pools dem-
onstrated a clear, consistent over- or underexpression to both
6-week and 200-day WT samples. Rather than an average of
the four derived ratios for each tumor, potentially misrepre-
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FIG. 1. E�-myc and E�-TCL1 model proteomic characterization workflow. B-cells and plasma were isolated from splenocytes and
blood, respectively, derived from terminal and preterminal E�-myc and E�-TCL1 mice and WT controls (supplemental Fig. S1C). Pooling was
used to accommodate all samples within single isobaric-labelled experiments for B-cell (iTRAQ 8-plex) and plasma (TMT 10-plex) proteomics.
Pools of 2, 3, or 6 samples were used for tumors, tumor plasma and pretumor controls, respectively. For all tumor samples, biological replicate
pools were analysed. Plasma pools, totalling 120 �l per pool, were subjected to size exclusion chromatography (SEC) to isolate the low
molecular weight subproteome (supplemental Fig. S1G). B-cells were isolated by negative selection and were lysed, quantified and 100 �g of
protein pooled. Plasma and B-cell proteins were subjected to reducing conditions, cysteine alkylation, trypsin proteolysis and isobaric labelling
and pooling of the generated peptides. The labeled peptides for each proteome were resolved by two-dimensional liquid chromatography and
quantitatively characterized by mass spectrometry (MS). The MS data were then subject to target-decoy analysis and reporter ion quantitation
to generate two quantitative proteomes.
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FIG. 2. Analysis and validation of the quality of quantitative proteomics data. A, Hierarchical clustering of all 8270 and 2095 fully profiled
protein log2 (ratios) relative to the 6 week WT control (in addition to the 200 day WT control for tumor samples) using Cluster 3.0 and Euclidian
distance to represent the topological similarities and differences for each sample. A Venn diagram highlights proteins identified in both
proteomes. B, Linear regression highlighting the reproducibility of the log2 (ratios) relative to WT 6 week samples of the biological replicates
analysed for each tumorous condition. C, Relative quantitative proteomics-derived fold changes of transgene-derived protein expression and
characteristic E�-TCL1 phenotypes, relative to WT B-cells. D, A summary of 17 Western blot and flow cytometry validations of E�-myc and
E�-TCL1 tumor protein expressions relative to WT B-cell controls, plotted alongside the proteomics-derived expression changes (as log2

(ratios)). These values relate to the validations detailed in supplemental Fig. S2G, S2H.
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sentative of variable findings, a ratio of average to standard
deviation (mean/(S.D.�1)) was calculated, termed the regula-
tion score (Rs). This provided a single value expressive of both
magnitude and consistency for either, or both, tumors relative
to WT B-cells. In combination with FDR-corrected p values,
the Rs allowed careful selection of the most confidently and
consistently DEPs (detailed in Supplementary Methods).

The range of significantly DEPs for each tumor were repre-
sented by volcano plot, comparing Rs to -log10 (p values) (Fig.

3A, supplemental Fig. S3A). This analysis illustrated the broad
extent of DEP signatures observed in each tumor, with �3000
and 1500 DEPs in E�-myc and E�-TCL1 tumors, respectively.
The 6-week E�-myc and E�-TCL1 B-cells exhibited signa-
tures broadly indistinguishable from terminal E�-myc tumors
and WT B-cells, respectively (supplemental Fig. S3B). The
6-week E�-myc B-cell signature did however, present a lesser
extent of differential expression. When compared with one
another, a common signature became apparent between E�-
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FIG. 3. Differential protein expression in E�-myc and E�-TCL1 B-cell tumors. A, Volcano plots highlighting reproducible, significant
differential protein expression in each B-cell tumor on the basis of the regulation score (Rs) and FDR-corrected p-values (one sample t-test).
The Rs was calculated from the mean and standard deviation (SD) of the 4 log2 (ratios) of tumor protein expression relative to both WT controls
(Rs 
 mean/(SD�1)). The number of proteins considered significantly (p � 0.05) overexpressed (Rs � 0.5) or underexpressed (Rs � 	0.5) is
detailed. B, A linear regression between the protein expression observed in E�-myc and E�-TCL1 B-cell tumors, both relative to WT B-cells.
C, Venn diagrams highlighting proteins considered over- and underexpressed common to both E�-myc and E�-TCL1 B-cell tumors. D, Heat
maps of individual log2 (ratios to WT), for examples of proteins differentially expressed commonly in both tumors. The top 10 proteins falling
into the following categories are presented; significantly overexpressed in both tumors with high confidence (3 unique peptides and unique
quantitations), cell surface expression, proteins annotated by ingenuity pathway analysis as drug targets, proteins for which no specific links
to any type of cancer have previously been made, based on PubMed searching and proteins significantly underexpressed in both tumors.
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myc and E�-TCL1 tumors (Fig. 3B) demonstrating that many
of the E�-myc tumor-overexpressed proteins were also over-
expressed in E�-TCL1 tumors, but to a lesser magnitude.
Approximately 700 and 200 proteins were considered over-
and underexpressed in the tumors of both models, respec-
tively (Fig. 3C). Examples of the 10 most consistently DEPs
from this common signature were presented (Fig. 3D); and
annotated as predicted cell surface markers with potential as
immunotherapy targets; drug targets, annotated by IPA; and
novel DEPs with no previous published links with cancer
(detailed further in supplemental Fig. S3C–S3G). Among the
DEPs common to both tumors were, for instance signatures
of cell cycle upregulation, such as the three kinesin proteins,
KIF11, KIF20A, and KIF23 and an overall trend of cell sur-
face protein underexpression such as CD23, CR2, CD200,
CD40, IgG receptor FCGRT, CD38, CD22, and IL21R. The
most consistently overexpressed surface proteins, HMMR/
CD168, has previously been associated with B-cell cancers
(41, 42).

Bioinformatics Reveals Signatures Common to Contrasting
B-cell Tumors—Although individual DEPs can suggest func-
tional insight, approaches simultaneously considering all
DEPs, potentially offer a broader understanding of biologi-
cal mechanisms. Accordingly, topological, proteome-wide
expression patterns were investigated by bioinformatics.

Gene ontology (GO) term enrichment was used to identify
processes overrepresented by the DEPs observed in both
tumors (Fig. 4A, supplemental Table S3). Among the overex-
pressed proteins GO term enrichment identified strong signa-
tures of mechanisms relating to cell growth and proliferation,
including; “ribosome biogenesis” (n 
 106, p 
 1.8 � 10	27),
“translation” (n 
 135, p 
 1.2 � 10	16), “chromosome seg-
regation” (n 
 81, p 
 6.0 � 10	14) and “cell cycle” (n 
 229,
p 
 2.5 � 10	11). Among the underexpressed proteins were
trends of several immune function-related terms, such as
lymphocyte activation (n 
 41, p 
 8.8 � 10	7), Ig-mediated
immune response (n 
 15, p 
 2.1 � 10	5), and BCR signal-
ing (n 
 11, p 
 2.9 � 10	4). Additionally, several processes
related to immune evasion, differentiation, and growth inhibi-
tion were enriched.

To visualize these processes and highlight the proteins
contributing to the enriched GO terms, networks were dis-
played descriptive of individual proteins and their interrela-
tionships, defined by STRING (43). Fig. 4B demonstrates a
network generated from proteins annotated with “chromo-
some segregation” highlighting the scale and complexity of
the dysregulation of this process seen in both tumors. “Ri-
bosome biogenesis” was also illustrated in this way (Fig.
4C), highlighting those overexpressed proteins responsible
for the term’s enrichment. A cluster of interacting ribosome
proteins was identified, alongside several assembly regula-
tors. Several canonical pathways, including ribosome-,
translation-, and cell cycle-related pathways demonstrated
significant enrichment in both tumors (supplemental Fig.

S4A). A network detailing all underexpressed proteins re-
vealed a highly interrelated series of interactions highlight-
ing major histocompatibility complex proteins, interferon
response proteins and B-cell-related signaling molecules
(Fig. 4D).

To simultaneously analyze both proteome-wide over- and
underexpression, upstream regulators were evaluated using
IPA. Upstream regulator activity was inferred by the compar-
ison of anticipated downstream expression profiles of pro-
teins with those expression profiles derived by quantitative
proteomics for both tumors (supplemental Table S3, supple-
mental Fig. S4B–S4E). Protein functionality was then inferred
from a combination of the resulting upstream regulator acti-
vation z-scores—a value proportional to overall predicted ac-
tivation (44)—and the proteomics-determined differential ex-
pression (Fig. 4E). Several regulators not quantitated by
proteomics, including miRNA were also inferred to be acti-
vated or inactivated (supplemental Fig. S4C, S4E).

Myc overexpression and inferred activation (Rs 
 1.11, z 


8.09, p 
 6.6 � 10	26), alongside other proliferative drivers
and oncogenes (e.g. E2F3, MYCN, RABL6 (Rs�0.5, z�4))
described several key, functional regulators influencing the
neoplastic B-cell phenotype (Fig. 4E, supplemental Table S3).
The combined overexpression and inferred inactivation of
TP53 (Rs 
 0.97, z 
 	3.76, p 
 1.6 � 10	34) and retino-
blastoma 1 (RB1) (Rs 
 0.59, z 
 	2.86, p 
 2.3 � 10	21),
represented an anticipated evasion of tumor suppressor path-
ways. Interestingly, RB1-like 1 (RBL1) (Rs 
 0.92, z 
 	4.47,
p 
 2.2 � 10	16), a lesser-established tumor suppressor, had
greater overexpression and inferred inhibition than its better-
studied family member.

It was additionally possible to compare differential protein
phosphorylation to infer activation or inhibition (supplemental
Fig. S4F–S4H). HDAC2 overexpression in E�-myc tumors, for
instance, was accompanied by a signature of downstream
inactivation (supplemental Fig. S4B) and a decreased phos-
phorylation of Ser394 (supplemental Fig. S4H), a modification
previously associated with the activation of HDAC2 (45). Sim-
ilarly, in E�-TCL1 tumors, RBL1 overexpression was accom-
panied by apparent inactivation and decreased Thr385 phos-
phorylation. Differential phosphorylation of BCR signaling
pathway components demonstrated an increased phosphor-
ylation of downstream proteins such as NF-�B, OCT2 and
ETS1 (supplemental Fig. S4J).

Characteristics Specific to E�-myc B-cell Tumors—Al-
though the common tumor signature in both models was
strong, several tumor-specific differences were also apparent,
particularly in the more aggressive E�-myc tumors. To eval-
uate tumor-specific expression, proteins were filtered to in-
clude those which exhibited significant over- or underexpres-
sion in one tumor model (Rs�0.5/�-0.5, p � 0.05) but not the
other (Rs�0.25/�-0.25). This identified 572 and 537 proteins
with specific over- or underexpression in E�-myc tumors,
respectively. The 10 most over- and underexpressed proteins
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FIG. 4. Bioinformatic interrogation of commonly differentially expressed B-cell tumor proteins. A, Gene ontology (GO) term enrichment
analysis for proteins over- and underexpressed in both tumors, visualized using Revigo (94) and summarized based on parent GO terms and
Revigo-defined semantic space. B–D, StringDB networks highlighting interactions and relationships for proteins; B, overexpressed in both
tumors annotated with the term ‘chromosome segregation’ (GO:0007059) (n 
 81), C, overexpressed in both tumors annotated as “ribosome
biogenesis” (GO:0042254) (n 
 106), and D, those proteins underexpressed in both tumors relating to terms descriptive of immune regulation.
E, Upstream regulator activation z-scores inferred by IPA for all consistently differentially expressed B-cell tumor proteins, plotted against
tumor protein expression, relative to WT B-cells. A positive z-score indicates a signature of protein activation.
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in addition to cell surface proteins were illustrated to highlight
examples of this specific differential expression pattern in
E�-myc tumors (Fig. 5A).

The over- and underexpressed proteins specific to E�-myc
tumors were evaluated, as for Fig. 4A, for GO term enrichment
(Fig. 5B, supplemental Fig. S3). The majority of GO terms
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FIG. 5. E�-myc-specific tumor characteristics. A, Heat maps of individual log2 (ratios to WT), for the top 10 proteins specifically over- and
underexpressed in E�-myc tumors (Rs E�-myc �0.5/�-0.5, p �0.05, Rs E�-TCL1 �0.25/�-0.25). Additionally, the top 10 proteins with specific
cell surface expression are shown. B, GO term enrichment analysis for differential expression specific to E�-myc tumors (as described for Fig.
4). C–D, StringDB networks derived from E�-myc-specific differentially expressed proteins annotated with C, “methylation” (GO:0032259) (n 

50), and D, “actin cytoskeleton organization” (GO:0030036) (n 
 49). E, Western blot evaluation of the three “actin cytoskeleton organization”-
annotated proteins, coronin 1a (COR1A), lymphocyte cytosolic protein 1 (LCP1) and actin regulatory protein CAPG, expression in E�-myc tumors,
relative to nontumor B-cells. Two addition cytoskeletal proteins, myosin-9 (MYH9) and moesin (MOE) are also evaluated alongside myc.
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observed for both tumors were also observed for the E�-myc-
specific proteins, further highlighting trends of increased pro-
liferation and growth of cells. Exceptions included trends of
epigenetic-related processes and underexpressed cytoskel-
etal processes.

Most notably specific to overexpressed E�-myc tumor pro-
teins was the enrichment of the term “methylation” (n 
 50,
p 
 0.03). A network was formed from these 50 proteins (Fig.
5C), highlighting overexpressed methylation enzymes relating
to gene expression; both epigenetically (histone methylation,
n 
 18) and post-transcriptionally (RNA methylation, n 
 10).
CpG methylation appeared widely dysregulated with 2/3
methylation (DNMT1, DNMT3B) and 2/3 demethylation (TET2,
TET3) enzymes overexpressed.

E�-myc tumors demonstrated a broad downregulation of
processes relating to the cytoskeleton, for example, “actin
cytoskeleton organization” (n 
 49, p 
 1.2 � 10	6), as
illustrated in a network (Fig. 5D). This illustrated the underex-
pression of six actin-related protein 2/3 complex subunits
(ARPC) and three coronin proteins. Three interrelated proteins
from this network, coronin 1a (COR1A), lymphocyte cytosolic
protein 1 (LCP1) and actin regulatory protein CAPG, were
evaluated for relative expression in E�-myc tumors, relative to
nontumor B-cells by Western blot (Fig. 5E). In each instance,
underexpression was observed in line with that of the quan-
titative proteomics findings (compared in Fig. 2D). Addition-
ally, myc overexpression was evaluated alongside two further
cytoskeleton-related proteins; a broadly functioning regulator
of cytoskeletal activity, myosin-9 (MYH9) and a cytoskeletal-
membrane junction protein, moesin (MOE) again demonstrat-
ing anticipated differential expression.

Characteristics Specific to E�-TCL1 B-cell Tumors—Pro-
tein expression specific to E�-TCL1 tumors was also eval-
uated, with the top 10 DEPs and membrane proteins pre-
sented (Fig. 6A). As validation this illustrated the discrete
expression of human TCL1 (supplemental Fig. S2A) in E�-
TCL1-derived B-cell samples. GO term enrichment identified
upregulated processes relating to intracellular compartments,
such as ER stress, vesicular transport and glycosylation. Ex-
tracellular interactions, including signaling, locomotion and
adhesion appeared as the strongest underexpressed process
in E�-TCL1 tumors (Fig. 6B). A network formed from E�-
TCL1-specific overexpressed proteins (Fig. 6C) presented
clusters of associated proteins contributing to enriched GO
terms, such as ER and golgi proteins. Several signaling pro-
teins were also specifically overexpressed, such as phospha-
tidylinositol kinases and phosphatases. Associated with these
signaling proteins were the alpha and beta subunits of the
interleukin 5 receptor (IL5R� and IL5R�), also apparent
among the top 10 membrane proteins, highlighted in Fig. 6A.

Interleukin 5 Receptor is Overexpressed by E�-TCL1 B-cell
Tumors—The overexpression of the IL5R was first evaluated
by plotting the individual iTRAQ ratios for each unique peptide
matching IL5R� and IL5R� (Fig. 6D, supplemental Fig. S5A–

S5E). For both IL5R subunits a clear, specific overexpression
was apparent. Furthermore, the signature for IL5 activity was
apparent through various bioinformatics analyses, including
IPA regulator analyses (supplemental Fig. S4C, S5F). A sig-
nature additionally became apparent in E�-TCL1 terminal and
preterminal plasma indicative of an IL5-induced proliferation
signature, as well as plasma signatures of quantitated pro-
teins and inferred regulators potentially upstream of IL5 in-
duction (supplemental Fig. S5G–S5I).

Given the strength of this evidence, the surface expression
of IL5R�, the subunit specific to IL5 recognition, was evalu-
ated by flow cytometry for terminal and pretumor E�-TCL1
B-cells, relative to WT B-cells (Fig. 6E, supplemental S5J–
S5K). Although IL5R� expression was observed across a wide
distribution for WT B-cells, for pretumor E�-TCL1 B-cells, the
emerging CD5� population was observed with high IL5R�

expression. The E�-TCL1 tumor cells exhibited the same
CD5�IL5R�� expression as the emerging pretumor E�-TCL1
B-cell population.

Interleukin 5 Drives Proliferation in E�-TCL1 B-cell Tumors
via AKT—The observation of substantial overexpression of
both IL5R� and IL5R�, strongly suggested a functional role
for the IL5R and IL5 in driving E�-TCL1 tumors. To investigate
and functionally validate the IL5R overexpression, terminal
tumors from E�-TCL1 mice were treated with 0, 10 and 100
ng/ml of IL5 for 48 h in vitro. First, cell density indicated a
dose-dependent expansion induced by IL5 (Fig. 7A). CFSE
labeling confirmed that cells were proliferating in a dose-de-
pendent manner with as many as 70% of cells being postmi-
totic after 48 h of 100 ng/ml IL5 treatment (Fig. 7B). Further-
more, evaluation of cell cycle phases by hypotonic PI staining
demonstrated that almost three times as many cells (14.5%)
were in S/G2/M phase after 100 ng/ml IL5 treatment, com-
pared with no treatment (4.9%) (Fig. 7C).

Given the proposed role of TCL1 in amplifying AKT signal-
ing (16, 17), AKT activation by IL5 was investigated (Fig. 7D).
Serum starvation and the subsequent addition of IL5 induced
AKT phosphorylation in a dose-dependent manner at doses
of greater than 5 ng/ml. Downstream signaling (summarized in
Fig. 7E) was also apparent, with dose-dependent phosphor-
ylation of the S6 ribosomal protein and S6 kinase, indicative of
mTOR activation.

Plasma proteomics reveals signatures of tumor lysis and
immune response—To investigate the overall plasma pro-
teome signature, those proteins quantified commonly or dis-
cretely within the B-cell and plasma proteomes (supplemental
Table S2) were dissected based on canonical protein local-
izations (Fig. 8A). The vast majority (82%) of the 1288 proteins
observed as common to both proteomes, were annotated
with a canonical cellular localization, compared with just 40%
of proteins identified discretely in the plasma proteome. Fur-
thermore, evaluation of the relative abundances in terminal
tumor plasma revealed a striking signature of overabundant
cell-derived proteins (Fig. 8B). The tumor origin of this plasma
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FIG. 6. E�-TCL1-specific tumor characteristics. A, Heat maps for proteins and surface proteins specific to E�-TCL1 tumors (Rs E�-TCL1

�0.5/�-0.5, p�0.05, Rs E�-myc �0.25/�-0.25). B, GO term enrichment analysis for differential expression specific to E�-TCL1 tumors. C, A
StringDB network derived from E�-TCL1-specific differentially expressed proteins demonstrating interaction scores of �0.7 highlighting
processes in protein clusters. (ER; endoplasmic reticulum). D, Individual iTRAQ quantifications (as log2 (ratios to WT)) for the peptides uniquely
matching to IL5RA and it receptor partner CSF2RB (IL5RB). E, Flow cytometry evaluation of IL5 receptor alpha subunit (IL5R�) expression on
an E�-TCL1 tumor (representative of four evaluated tumors (supplemental Fig. S5K)), compared to splenic B cells pooled and isolated from
three 2-month-old WT and E�-TCL1 mice.
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signature was additionally indicated by GO term enrichment
(Fig. 8C), with highly similar trends to that of the B-cell tumors
(Fig. 4A), and an inter-proteome correlation between the ap-
proximate protein abundances (supplemental Fig. S6A). Ad-
ditionally proteins were illustrated with biomarker applications
(supplemental Fig. S6H), specific tumor plasma signatures
(supplemental Fig. S6J–S6P), differential abundance relative
to approximate relative plasma concentrations (supplemental
Fig. S6Q), over- and underabundance in both the tumor and
plasma proteomes (supplemental Fig. S6R) and with potential

as biomarkers derived from functional tumor regulators (sup-
plemental Fig. S6S–S6T).

To explore differential protein abundance resulting from
the extrinsic response to the tumor, the plasma proteome
was subject to deconvolution, removing proteins with a
clear cellular origin. The remaining proteins, termed the
“lysis-free” plasma proteome (supplemental Table S2, sup-
plemental Fig. S6F), provided a signature descriptive of an
immune response. Terms including “defense response”
(n 
 16, p 
 4.0 � 10	5) and “extrinsic apoptotic signaling
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pathway via death domain receptors” (n 
 6, p 
 1.4 �

10	4) were identified as enriched among these overabun-
dant “lysis-free” plasma proteins (Fig. 8C). To detail this

lysis-free signature further, a network was generated from
all overabundant lysis-free plasma proteins (Fig. 8D). Pro-
tein clusters included chemotaxis regulators Ccl2, Ccl9 and
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Ccl21a, wound and inflammation response proteins, fibrin-
ogens �, �, and � and the hyaluronan-binding, interalpha-
trypsin inhibitor proteins, ITIH1-ITIH4.

Comparison between the terminal plasma signatures for
each tumor model (Fig. 8B) demonstrated the dominance of
this tumor lysis signature in E�-myc tumors, whereas E�-
TCL1 terminal plasma contained a dominant signature of
extracellular proteins. In both cases these signatures were
observed for the opposing tumor, but to a lesser extent. GO
term enrichment for overabundant plasma proteins specific to
E�-myc and E�-TCL1 terminal tumors illustrated model-spe-
cific signatures of tumor lysis and extracellular proteins, re-
spectively (Fig. 8E). E�-myc tumor plasma specific GO terms
had a strong resemblance to that of the B-cell tumors, high-
lighting cellular processes similar to both the tumors and the
common plasma signature (Fig. 4A and 8C). Overabundant
plasma proteins specific to terminal E�-TCL1 tumors en-
riched for several GO terms related to immune processes,
such as “immune response” (n 
 17, p 
 1.5 � 10	4) and
“lymphocyte activation” (n 
 12, p 
 4.8 � 10	4).

Finally, consideration was given to proteins emerging in the
preterminal “30%” E�-TCL1 plasma (Fig. 8F). Plasma pro-
teins demonstrating a correlation between overabundance
and tumorigenesis were plotted, highlighting the extracellular
immune-response proteins haptoglobin (Hp) and ITIH1, both
also observed in the lysis free signature. Several additional
proteins demonstrating overabundance in preterminal “30%”
E�-TCL1 plasma are detailed in supplemental Fig. S6I.

DISCUSSION

B-cell tumors have been intensively investigated by genom-
ics and transcriptomics in recent years, advancing clinical and
biological understanding (46–49). Such information, is how-
ever sometimes limited, especially in a functional context,
because of the weak correlations observed between mRNA
and protein expression (50, 51). A comparison between our
proteomics data and a former E�-myc tumor mRNA expres-
sion data set (supplemental Fig. S2J) highlighted an example
of this, demonstrating an anticipated but limited correlation
(52). Furthermore, genomics and transcriptomics are limited in
capturing organism-wide tumor biology from acellular sam-
ples such as plasma.

This study aimed to combine and implement recent ad-
vances in quantitative MS proteomics to comprehensively
characterize the tumors and plasma of contrasting mouse
B-cell cancer models; E�-myc and E�-TCL1. By comparing
tumors driven by contrasting oncogenes, with differing phe-
notypes and rates of progression, any apparent common
signatures could suggest the most conserved and essential
B-cell cancer mechanisms. Model-specific signatures could
provide insight into the molecular basis of the discrete cancer
phenotypes and oncogenes, potentially of relevance to BL
and CLL. Simultaneous plasma characterization offered po-
tential insight into tumor-host dialogue, systemic cancer im-

pacts and biology of biomarker emergence. Furthermore,
greater understanding of these models offers an opportunity
to appreciate their strengths and weaknesses in preclinical
applications.

Overall, isobaric-labeled LC-MS proteomics of B-cell and
plasma samples (Fig. 1) provided biologically reproducible
(Fig. 2A, 2B), high-depth (supplemental Fig. S1H) and repre-
sentative (supplemental Fig. S1) characterizations of the E�-
myc and E�-TCL1 tumor models. The accuracy of the quan-
titative results was validated by anticipated transgene
expression (Fig. 2C), Western blotting and flow cytometry
(Figs. 2D, supplemental Fig. S2G, S2H) alongside compari-
sons to previously published protein expressions (supplemen-
tal Fig. S2D, S2F) and mRNA expression data (supplemental
Fig. S2J). Interestingly, a brief analysis revealed that those
proteins overexpressed without corresponding mRNA over-
expression were enriched with proteins annotated with the
term “translation.”

A Common B-cell Tumor Signature in Divergent Models—
The expression correlation between the contrasting E�-myc
and E�-TCL1 tumors (Fig. 3B) was indicative of a common
B-cell tumor signature that was proportional to aggression.
Indeed, this signature strongly highlighted canonical tumor
characteristics such as upregulated cell proliferation and
growth (Fig. 4). Furthermore, frequent observations of these
overexpressed proteins in several human cancers (supple-
mental Fig. S3C) highlighted potential relevance to non-B-cell
cancers. This was particularly noteworthy, given the many
clinically relevant cell surface proteins and drug targets char-
acterized (Fig. 3D, supplemental S3F, S3G). HMMR/CD168,
for instance, has previously been considered as an immuno-
therapy target in B-cell cancers (41, 53). Similarly, amino acid
and zinc transporter overexpression could offer targets of
metabolic inhibition or immunotherapy. The observation of
proteins, and even putative proteins, in this common B-cell
tumor signature with no prior links to cancer offers several
new hypotheses (supplemental Fig. S3E). DDX49 and MAK16,
for instance, are poorly characterized proteins overexpressed
in all four tumor pools, and could be inferred to have a role in
ribosome biogenesis, given their homology, orthologous func-
tions and the prevalence of ribosome biogenesis upregulation
in both tumors.

Downregulation of immune functions were indicative of the
loss of B-cell characteristics, not essential and potentially
even inhibitory toward tumor development. Constitutive Ig
synthesis, for instance, would provide a negative selective
pressure on resource-limited tumor cells. MHC component
underexpression suggested a clear mechanism of immune
evasion, described previously (54, 55).

Model Specific Signatures of E�-myc and E�-TCL1 Tu-
mors—E�-myc- and E�-TCL1-specific DEPs (Figs. 5–6) high-
lighted distinct expression patterns responsible for the con-
trast in tumor phenotypes; such as the vast protein
dysregulation and proliferation produced by the aggressive
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and pleiotropic nature of myc. The contrast between these
models was also apparent prior to tumorigenesis (supplemen-
tal Fig. S3B), with little to no tumor signature in 6-week E�-
TCL1 B-cells, whereas E�-myc 6-week old B-cells were al-
most indistinguishable from terminal tumors. Although none
of these 6-week E�-myc mice presented with splenomegaly,
metastases or ill health, it remains possible that tumor devel-
opment was present at an early stage in one or more of the
mice. E�-myc-specific DNA and histone methylation dysregu-
lation (Figs. 5B, 5C) suggests dynamic epigenomic instability
as a basis of myc-induced tumor characteristics, previously
observed in B-cell lymphomas (56, 57). This potentially drives
accelerated trait acquisition via nonmutational evolution (58).

Broad underexpression of actin cytoskeletal organizing
components was potentially indicative of defects to normal
B-cell migration and adhesion (Fig. 5D), identifying a possible
mechanism promoting lymph node metastases; frequently
observed for E�-myc tumors. These proteins may also have
been underexpressed as a result of redundant immune-re-
lated functions such as those described in Fig. 4D. Of the
three inter-connected actin cytoskeletal organizing proteins
validated with underexpression (Fig. 5E), all three demon-
strated both immune and cytoskeletal function. Cor1A pro-
motes F-actin disassembly and cell motility (59) and muta-
tions have been shown to impair lymphocyte function (60, 61).
LCP1 regulates actin bundling and B-cell development (62,
63), whereas LCP1 knock out impaired B-cell migration (64).
CAPG caps actin filaments with CAPG	/	 mice exhibiting
immune defects (65). Given observations of the pro-meta-
static nature of these proteins in nonlymphocyte tumors (66,
67), this indicated metastasis may be a more passive event for
E�-myc tumors. Overexpression of adhesion components
such as integrin beta 1 may have facilitated this. Noncanoni-
cal cytoskeletal component AHNAK, a titin-related and can-
cer-associated cytoskeletal protein, shown to be essential for
migration and invasion (68); was overexpressed in E�-myc
tumors, potentially highlighting an alternative metastatic path-
way. Additionally, other cytoskeletal components such as
those directing chromosome segregation were overex-
pressed. Validation of two further underexpressed proteins
extended the observation of cytoskeletal dysregulation, with
moesin and myosin-9 annotated with roles in leukocyte mi-
gration. Together these observations suggest a trend for fur-
ther investigation.

The E�-TCL1-specific features, such as ER stress response
and aberrant glycosylation upregulation (Fig. 6B–6C) have
previously been observed (69). Additional features, such as
integrin-�2 underexpression, transmembrane protein proc-
essing, post-translational modification, transport and mem-
brane lipid composition, may suggest several potential mech-
anisms by which circulatory, leukemic cell formation may be
promoted in E�-TCL1 tumors.

Generally unaltered BCR pathway component expression,
relative to the underexpression observed for E�-myc tumors,

indicates a role for antigen-receptor signaling in E�-TCL1
tumors, observed previously (70) (supplemental Fig. S4J). This
highlights potential examples of negative regulation or re-
dundant functions for tumor growth and survival e.g. BCL6,
FOXO1, and CD45. Upregulated phosphorylations, such as
PI3Ks and FOXO1, specifically in E�-TCL1 tumors may also
illustrate tumor mechanisms (supplemental Fig. S4J, supple-
mental Table S4).

Interleukin 5 Receptor Overexpression and Signaling in E�-
TCL1 Tumors—Signaling dysregulation (Fig. 6C) and in-
creased expression and phosphorylation of PI3Ks (supple-
mental Fig. S4J) suggested the presence of strong receptor
signaling underlying E�-TCL1 tumorigenesis. IL5R overex-
pression (Fig. 6, supplemental Fig. S5) strongly implied a role
for the IL5:IL5R signaling pathway in E�-TCL1 tumors. Al-
though not previously described in E�-TCL1 mice, other
mouse CLL-like B-cell tumors have demonstrated IL5 sensi-
tivity (71–74), in addition to a CLL-like leukemia arising in mice
with constitutive overexpression of IL5 (75).

The dose-dependent proliferation of E�-TCL1 tumor cells
upon IL5 treatment (Fig. 7A–7C) provided additional, func-
tional validation of IL5R overexpression. IL5R signaling has
been suggested to induce activation of Lyn, JAK2, Syk, BTK,
NF-�B, and PI3K (76–78). Given the suggested role of AKT
amplification by TCL1, PI3K signaling was a likely candidate for
the effectuation of the IL5 response. Indeed, the PI3K catalytic
subunit type 2 beta (PIK3C2B), alongside other PI3K isoforms,
appeared as the most overexpressed of the IL5R downstream
signaling molecules. Dose-dependent AKT phosphorylation
upon IL5 treatment confirmed a role for the PI3K pathway,
highlighting TCL1 as a potential factor in the amplification of
IL5R signaling (Fig. 7D–7E).

The observation of IL5RA expression by the expanded
CD5� peritoneal and splenic B-cell populations in young E�-
TCL1 mice (supplemental Fig. S5J) strongly suggests a pre-
cursor cell population with characteristics of B-1 B-cells.
Given the induction of B-cell proliferation observed with IL5
(79, 80) and that IL5	/	 mice are deficient for CD5� B-1
B-cells (81), IL5R signaling emerges as a probable component
driving E�-TCL1 tumorigenesis from CD5� IL5RA� B-1 B-
cells.

The role for IL5 in B-cells, and B-cell tumors, appears to not
be conserved between species (80, 82) highlighting a limita-
tion in the recapitulation of human CLL with previous reports
suggesting IL5 induces spontaneous apoptosis in these cells
(83). However, the similarities of IL5R signaling in E�-TCL1
tumors with IL4 signaling in CLL, suggest continued potential
for E�-TCL1 mice in modeling many aspects of the human
disease.

Plasma Proteomics and Systemic Tumor Signatures—The
�250-fold depletion of high-abundance proteins by SuPrE-
SEC and the identification of a wide range of tumor and
systemic proteins (supplemental Fig. S6, Table S1) suggested
proteomic characterization of the low Mw subproteome pro-
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vided an effective approach to plasma analysis. The capture
of the degradome and peptidome, portions of plasma con-
taining fragmented proteins and potential biomarkers, likely
contributed to the success of this method (84–86).

The overabundance of tumor-derived proteins in terminal
plasma strongly suggested tumor lysis as a dominant mech-
anism (Figs. 8A–8E, supplemental S6), a process described in
aggressive therapies and lymphoma (87–89). Lysis product
overabundance correlated with tumor aggression and higher
rates of cell death, most clearly in E�-myc tumors. A corre-
lation between total protein abundance in the B-cell proteome
and overabundance in the plasma was observed, regardless
of tumor overexpression (supplemental Fig. S6G–S6I). Sev-
eral of these proteins were annotated biomarkers (supple-
mental Fig. S6H) highlighting tumor-lysis products in late-
stage, aggressive tumors, as the dominant biomarker
signature. It is likely that exosomes and apoptotic blebs also
contributed to this signature.

The systemic immune response signature observed for ter-
minal E�-TCL1 plasma suggested that slower tumor devel-
opment elicited a greater inflammatory response, perhaps
because of gradual accumulation, chronic inflammation and
a loss of immune regulation (Figs. 8E). An anti-tumor im-
mune signature emerged for both models, when deconvo-
luted to give the “lysis-free” plasma proteome, which sug-
gested several potential systemic biomarkers (Fig. 8C, 8D).

The contrasting signatures of tumor lysis and immune re-
sponse in E�-myc and E�-TCL1 terminal plasma respectively,
was reflective of the vastly differing rates of tumor develop-
ment. However, in both models the signatures were observed,
to a lesser extent, in the opposing tumor.

Several systemic signatures were also observed upon inte-
gration of the B-cell tumor and plasma proteomes. Overabun-
dance of the carriers of the extracellular matrix component
hyaluronan ITIH1–4 (Fig. 8E), substantial tumor overexpres-
sion of CD168 (HMMR, hyaluronan-mediated motility recep-
tor) (Fig. 3D) and links between hyaluronan, inflammation and
tumor growth (90) suggest hyaluronan as a component of the
B-cell tumor microenvironment. Given their high concentra-
tions in plasma (supplemental Table S1, supplemental Fig.
S6Q) (37), ITIH proteins hold potential as biomarkers of B-cell
tumors and aberrant hyaluronan metabolism and transport.
Fibronectin (FN1), recognized in the promotion of cancers
(91), was observed as marginally overabundant and inferred
to be functional (supplemental Fig. S6S). Given the overex-
pression of FN1-binding integrin �1 on tumors, this may rep-
resent another microenvironment signature of pro-oncogenic
interactions with B-cell tumors.

Functional biomarker analysis for overabundant plasma
proteins with inferred functionality in tumors highlighted
S100A6, a previously proposed biomarker (92, 93), and
EIF4G1 (supplemental Fig. S6T) suggesting candidates for
noninvasive testing directly related to tumor function.

Preterminal E�-TCL1 plasma additionally offered several
interesting findings, describing a more clinically-relevant time
point in tumorigenesis when a leukemia is present, but is
otherwise asymptomatic. The observation of overabundant
preterminal “30%” E�-TCL1 plasma proteins common to the
terminal signature (Fig. 8F, supplemental S6I, S6O, S6P) sug-
gested the characterization of progressive, early biomarkers
of B-cell tumors. Components of the tumor lysis-free signa-
ture describing a systemic immune response were more prev-
alent, such as Hp and ITIH1. Proteins correlating with tumor
progression, traceable to tumor lysis were, however, also
present to some extent, suggesting that both lysis and im-
mune signatures offer a source of biomarkers at earlier stages
of tumor development. The more detailed evaluation of the
multiple stages of tumor progression, of these and other
tumor models, could therefore offer considerable insight into
the dynamics of biomarker emergence, better informing bio-
marker discovery and application.

CONCLUDING REMARKS

In conclusion, this study has detailed the protein expression
changes present across highly contrasting B-cell tumors,
highlighting dominant features of proliferation and growth.
E�-myc tumors demonstrated a specific trend of epigenomic
instability and cytoskeletal component underexpression,
whereas E�-TCL1 tumors specifically exhibited ER stress,
dysregulated signaling, and IL5-driven proliferation. Many
specific targets of kinase inhibitors, nucleoside analogues and
immunotherapy emerged for each tumor type. Plasma pro-
teomics indicated lysis products as a major late-stage tumor
biomarker signature, dominantly in the more aggressive E�-
myc tumors, whereas E�-TCL1 tumor plasma had a dominant
signature of an anti-tumor immune response. Integration of
plasma and B-cell proteomics data, alongside tumor lysis,
highlighted IL5, HMMR/CD168, ITIH proteins, FN1, S100A6,
and EIF4G1 as candidate biomarkers for further investigation.
These findings reinforce that aggressive, targeted, chemother-
apy and immunostimulatory antibodies promise effective
means of treating E�-myc and E�-TCL1 tumors, respectively
with the results offering exciting possibilities when combined
and integrated with further additional ‘omics and functional
data. Finally, these findings suggest that global, integrative eval-
uation of tumors can provide systemic insight into tumor biology
not captured by the evaluation of cells or plasma in isolation.
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