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Abstract

Teleparallel gravity is an alternative formulation of gravity which has the same

field equations as General Relativity (GR), therefore, it also known as the Teleparallel

equivalent of General Relativity (TEGR). This theory is a gauge theory of the trans-

lations with the torsion tensor being non-zero but with a vanishing curvature tensor,

hence, the manifold is globally flat. An interesting approach for understanding the

late-time accelerating behaviour of the Universe is called modified gravity where GR

is extended or modified. In the same spirit, since TEGR is equivalent to GR, one

can consider its modifications and study if they can describe the current cosmological

observations. This thesis is devoted to studying several modified Teleparallel theories

of gravity with emphasis on late-time cosmology. Those Teleparallel theories are in

general different to the modified theories based on GR, but one can relate and clas-

sify them accordingly. Various Teleparallel theories are presented and studied such

as Teleparallel scalar-tensor theories, quintom models, Teleparallel non-local gravity,

and f(T,B) gravity and its extensions (coupled with matter, extensions of new GR

and Gauss-Bonnet) where T is the scalar torsion and B is the boundary term which

is related with the Ricci scalar via
◦
R = −T +B.

This thesis was completed under the supervision of Christian Böhmer.
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Impact statement

The new results showed in this thesis are based on eleven different published

scientific papers. Basically, this thesis aimed at two directions, establishing new

research into some questions within modified gravity and cosmology, in particular,

for theories based on Teleparallel gravity. There is no foreseen impact outside of

academia at this stage.

One impact of this thesis was the possibility of determining a certain relationship

between standard modified theories of gravity based on General Relativity (GR)

and other modifications based on TEGR. Many of these theories were considered in

isolation in the past and their relationship with other similarly looking theories was

only made implicitly. Further, in this thesis, it was showed how two very popular

modified theories coming from these two different approaches, f(
◦
R) (based on GR)

and f(T ) gravity (based on TEGR), are related and could construct the fundamental

theory underlying them both.

Another impact of this thesis is related to constructing a viable modified Telepar-

allel theory which could describe the evolution of the Universe without evoking any

cosmological constant. This tells us that modifications of Teleparallel gravity could

be good potential candidates for describing the dark energy problem.

An additional impact related to a quantum gravity approach was also shown in
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this thesis. There was proposed a new non-local Teleparallel theory of gravity which

is the first attempt to integrate this fundamental physical concept from quantum

gravity into Teleparallel gravity. Moreover, in different studies related to non-locality

(based on GR), researchers found that exponential type of couplings were able to

achieve a renormalisable theory of gravity. In all of those studies, researchers put

those terms by hand. In one work presented in this thesis, it was shown that these

exponential couplings appear naturally by using first physical principles with the

symmetries of the Lagrangian. Therefore, this study had an impact in resolving this

aspect about non-locality.
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1
Introduction

After the discovery that our Universe is expanding in an accelerating rate in 1998,

our comprehension of it has dramatically changed. This scenario was in a completely

opposite direction from what researchers expected and the responsible for this was

labelled as dark energy. It turns out that General Relativity (GR) can describe this

phenomenon by introducing a cosmological constant which acts like a fluid with a

negative pressure and violates the energy conditions making effectively a kind of re-

pulsive gravitational force. Due to the lack of theoretical motivations related to this

constant, other approaches have been formulated to explain this late-time accelerat-

ing behaviour of the Universe. One approach which is important for this thesis is the

one considered by the so-called modified theories of gravity. In this approach, one

considers that GR can be extended or modified and such differences could explain

the cosmological observations. There are other motivations on modifying GR such

as: explaining dark matter, inflation, the theory being non-renormalisable, etc.

GR is based on a specific connection which is called the Levi-Civita connection

which is symmetric and torsionless. This is of course, not the most general or unique

way to describe gravity. This thesis will be focused on an alternative way to describe

gravity which is called Teleparallel gravity. This theory is based on the Weitzenböck

connection which is a skew-symmetric and curvatureless one with a non-zero tor-

sion tensor. This theory is equivalent to GR on field equations, therefore, it is also

called the Teleparallel equivalent of General Relativity (TEGR). Then, this is an

1
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alternative and equivalent way to describe gravity, having the same observational

predictions as GR. However, the physical and mathematical interpretations are dif-

ferent. Since modified gravity has been very successful in cosmology, one can also

consider modifications of Teleparallel gravity and explore its consequences. In gen-

eral, modifications of TEGR are no longer equal to modifications of GR. This thesis

will deal with modifications of TEGR and will try to make a comparison and classify

them with respect to modified theories based on GR. Moreover, this study is also

conducted in order to study some cosmological models that one can formulate from

modifying TEGR. The emphasis will be given to the late-time accelerating behaviour

of the Universe.

Even though modifications of GR are very popular in order to tackle some of the

issues that appear in the theory, modifications to Teleparallel gravity were proposed

only some years ago. Then, the following question arises: are modified Teleparallel

theories of gravity good candidates to solve or alleviate some cosmological problems

such as the dark energy of dark matter problem? In terms of cosmology, is there any

advantage in modified Teleparallel gravity than standard modifications? Is there any

way to connect or classify those theories? Several modified Teleparallel theories will

be presented in this thesis in order to try to answer some of those questions.

This thesis is organised as follows: In Chap. 2, the Theory of General Relativity

is presented. The physical and mathematical principles underlying this theory are

described which give us the notion on how gravity can be described by geometrical

quantities such as curvature or the metric. Then, a brief discussion about standard

Friedman-Lemâıtre-Robertson-Walker (FLRW) cosmology is given with the ΛCDM

model being presented as the easiest way to describe the cosmological observations.

Chap. 3 is devoted to introducing Teleparallel gravity as an alternative and equiv-

alent (in field equations) way to describe gravity. This theory can be written as a

gauge theory of the translations where the torsion tensor is the field strength of the
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theory. Its equations and equivalence with GR is also shown in this chapter. Chap. 4

deals with the most popular modifications of TEGR, the so-called f(T ) gravity and

Teleparallel scalar-tensor theories. The issue of the lack of Lorentz covariance in

modified Teleparallel theories is also discussed and then, the “good tetrad” approach

is presented as being a way to alleviate this issue. New Teleparallel scalar-tensor

theories are presented and a extended quintom model is studied in the context of

cosmology. In Chap. 5 there is presented and studied an interesting Teleparallel

model labelled as f(T,B) gravity which is directly connected to the so-called f(
◦
R)

gravity which is one of the most popular modified theories based on GR. Then, flat

FLRW cosmology will be studied using the Noether symmetry approach and the re-

construction method. After that, a generalised model which considers non-minimally

couplings with matter is presented giving also a complete classification of how those

generalised theories are related to theories based on GR. Chap. 7 is dedicated to

present new classes of modified Teleparallel models based on the decomposition of

the torsion scalar. Chap. 6 will introduce a generalisation of f(T,B) by including

Teleparallel Gauss-Bonnet terms and the trace of the energy-momentum tensor. As

a final model, Chap. 8 presents a non-local theory of gravity based on Teleparallel

gravity. This theory is introduced motivated by quantum gravity. The cosmology

of those kind of models is presented and studied numerically and using the Noether

symmetry approach. Finally, Chap. 9 finishes this thesis with some concluding re-

marks.



2
The Theory of General relativity

Chapter Abstract

This chapter is devoted to briefly introducing the most important conceptual and

mathematical characteristics of General Relativity. A discussion related to the prin-

ciples underlying the theory is presented. The most important mathematical and

geometrical quantities are defined and the Einstein field equations are stated. A

brief introduction to cosmology concludes this chapter.

2.1 A theory of curved spacetime

General Relativity (GR) was proposed by Einstein in 1915, changing the way we

understand gravity. He introduced the idea of a dynamic spacetime, where gravity is

explained as a geometric consequence, where matter and energy deform spacetime.

Any source of energy curves the spacetime, which creates the notion that another

particle is attracted by it. The idea of Newtonian gravity, based on the gravita-

tional force is replaced by the notion of a deformable spacetime. It relies on several

principles such as the equivalence principle which assumes an equivalence between

accelerated frames and gravitational fields. It is assumed that the gravitational mass

mg is exactly the same as the inertial mass mi (Roll et al., 1964).

GR has been a very successful theory. It has been tested with good precision at

Solar System scales. GR also describes new phenomena that in standard Newtonian

4
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gravity are not present. Some of them are: gravitational lensing, gravitational red-

shift, gravitational waves, black holes, etc. Some of these effects have been measured

in different scenarios. Further, gravitational waves were discovered in 2016 giving us

the last untested verification of GR and a new window for astronomical observations.

In the following, the main mathematical and physical properties of GR will be

introduced. The aim is to only briefly explain the most relevant concepts. For a

more detailed descriptions of GR, see the classical books by Weinberg (1972); Misner

et al. (1973) ; Wald (1984) and also more modern books D’Inverno (1992); Böhmer

(2016).

2.2 Basic principles of the theory

Before going further in the mathematical description of General Relativity, the prin-

ciples that are assumed to be true which are the basis of the theory will be described.

2.2.1 Equivalence principle

The equivalence principle is one of the most important ingredients of General Rela-

tivity. This principle states that there is an equivalence between the measurements

obtained by an observer who is immersed in a gravitational field in an inertial refer-

ence frame, and an observer in the absence of a gravitational field in an accelerated

reference frame. This principle can be separated into two parts: the weak equivalence

principle and the strong equivalence principle.

2.2.1.1 Weak equivalence principle

The weak equivalence principle is important not only in General Relativity, but also

in the Newtonian gravitational law. It formally states that:
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“The movement of a test particle in a gravitational field is independent of its

mass and composition.”

It should be clarified that a test particle is a particle which is affected by a

gravitational field but it does not make any modification or contribution to it. Hence,

if a body is free-falling and only gravitational forces are acting on it, its mass and

composition will not play any role on its movement. Here is given an easy example of

this effect. Suppose that an elephant and a mouse start falling down at a time t0 from

a tall building as is depicted in Fig. 2.1. Also, suppose that there is no air resistance

so the only force acting on them is the gravitational force of the Earth. The weak

equivalence principle states that even though the elephant has a much bigger mass

than the mouse, they must reach the ground at the same time tf . This principle

is not something new since different physicists noticed this effect experientially in

the past. Galileo Galilei in the 17th century observed experimentally this effect by

dropping two different objects at the same time with different compositions and mass

from the top of the Tower of Pisa. For this reason, this principle is also known as

the Galilean equivalence principle. Later, Isaac Newton and Friedrich Wilhelm also

noticed a similar effect by measuring the period of different pendulums with different

masses and identical lengths. Even though these experiments were carried out with

old experimental techniques, all of them suggested that the mass and composition

of a body in a gravitational field do not contribute to its movement (assuming zero

external forces other than gravity). For example, the astronauts from Apollo 11 who

landed on the Moon in 1969 also carried out an experiment showing that a hammer

and a feather dropped at the same height and time, reached the ground of the Moon

at the exact same moment (see Shapiro et al. (1976) for details). This experiment

was possible since the Moon has no atmosphere. More recent experiments have also

observed this effect with great precision (see for example Baessler et al. (1999)).
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~g ≈ 9.8 m/s2

Figure 2.1: Representation of the weak equivalence principle.

Technically speaking, this principle states that the inertial mass will have exactly

the same value as the gravitational mass. On the one hand, the inertial mass refers

to the mass which appears in the second law of Newton. This quantity measures how

resistant a certain body is to change its movement when a force acts on it. On the

other hand, the gravitational mass is directly related to the gravitational forces and

is a measure of how strong (or weak) a certain body will attract another. Physically

speaking, there is not a fully well-explained reason on why these two quantities need

to be equal. Since all the experiments suggest that these masses have the same value,

then, this assumption is needed for a consistent theory of gravity. Moreover, modern

experiments have shown that both masses are equal with a precision of 10−13 in order

of magnitude (Baessler et al. (1999)). The question whether the gravitational mass
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and the inertial mass are always the same is somehow one of the most important and

basis principles known in physics. Since this principle is based on observations, it

will always be important to check if this principle is valid at all scales also with much

higher precision. Further, there currently exist new projects such as the Satellite Test

of the Equivalence Principle (STEP) and the CNES (Sur le site du Centre national

d’études spatiales) micro-satellite, which are supposed to increase the precision of

measurements up to around 10−17 of order in magnitude (Touboul et al. (2012)).

A brief description will show mathematically how this principle works using New-

tonian laws. Consider a particle of inertial mass mi and gravitational mass mg which

is moving in a certain gravitational field ~g. If one assumes that there are no external

forces, the force which acts on the particle will be given by

~F = mi~a = mg~g , (2.1)

where ~a is the acceleration of the particle. Hence, this equation can be also expressed

as

~a =
(mg

mi

)
~g . (2.2)

From here one can directly see that the trajectory of the particle depends on the

gravitational field, its inertial mass and also on its gravitational mass. Consider that

~x(t) is the position vector of the particle measure with respect to a reference frame

O, then the above equation will be

d2~x(t)

dt2
=
(
��mg

��mi

)
~g = ~g , (2.3)

where it is assumed that the weak equivalence principle is always valid giving us

mi = mg. Since both masses cancel in the above equation, the trajectory of the
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particle only depends on the gravitational field and does not depend on its mass nor

composition. If one assumes that the gravitational field is constant and homogeneous,

then the acceleration will also be constant. Since the acceleration is constant, the

trajectory of the particle with respect to O will be either a straight line or a parabola.

2.2.1.2 Strong equivalence principle

Now, let us also infer another important result from Eq. (2.3). Consider another

reference frame O′ which is accelerating constantly with respect to the reference

frame O. The reference coordinate systems are related as follows

t′ = t , ~x′ = ~x− 1

2
~a t2 , (2.4)

where ~a is the acceleration. By taking second derivatives with respect to time, it can

easily be found that

d2~x′

dt′2
=
d2~x

dt2
− ~a . (2.5)

Now, by replacing Eq. (2.3) in the above equation, it gives us

d2~x′

dt′2
= ~g − ~a . (2.6)

From this equation it can be noticed that there is a certain equivalence between

an accelerated reference frame and a homogeneous constant gravitational field. For

instance, if one takes ~a = ~g, i.e., if the reference frame O′ is a free-falling reference

frame, the trajectory which follows the particle with respect to the observer O′ is a

straight line with constant velocity with respect to O′. From here, one can infer that

for any homogeneous and constant gravitational field, an observer who is free-falling

will not experience any gravitational effects. Hence, it is possible to eliminate all

the effects produced by a homogeneous constant gravitational field in a reference
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frame which is free-falling. Fig. 2.2b represents a free-falling frame where a person

is inside a lift which is falling towards the Earth since its rope was cut. In this case,

the term ~a = ~g in Eq. (2.6) and then d2~x′/dt′2 = 0. If the person throws a ball,

its trajectory must follow a straight line with constant velocity ~v with respect to

the person. The movement of the ball will not experience any gravitational force.

Fig. 2.2a represents a frame where a person is inside a rocket in the space in such

a way that all the gravitational forces acting on it are zero. In this case ~g = ~a = ~0

and then again one has d2~x′/dt′2 = 0. Therefore, if the person throws a ball, its

trajectory will be identical to the other mentioned frame where the person is inside

the elevator falling towards the Earth. Thus, there is an equivalence between the

movement of the ball inside the lift and inside the rocket. Moreover, any experiment

made in a frame as Fig. 2.2a will be equivalent to other experiments made in a frame

as Fig. 2.2b. So, it could be said that both frames are indistinguishable from each

other. This effect has been tested experimentally many times, see for example (Will,

2014). One interesting experiment is the Zero Gravity facility by NASA which uses

a reduced gravity aircraft to test this effect. Since the 1960s, this special spacecraft

has been used to experience a zero gravity environment by falling down for about

5 seconds. By doing this, the objects inside the vehicle are in free-fall due to the

gravitational force of the Earth and hence, for some time, it is possible to eliminate all

the gravitational effects inside the spacecraft. Another experiment is carried out by

ZARM (the centre of applied zero technology and microgravity) located in Bremen.

They have a special tower known as Bremen Drop Tower, where it is also possible to

experiment highest-quality conditions of weightlessness, comparable to one millionth

of the Earth’s gravitational force.

This principle can also be understood the other way around. One in principle can

replicate all the gravitational effects on its corresponding accelerating inertial frame.

As an example, Fig. 2.3 shows two other physically equivalent reference frames. In
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the first frame, a person is inside a rocket in the space where all the gravitational

effects are zero. In this frame, the term ~g = 0 in Eq. (2.6). Now, consider that this

rocket is accelerating constantly exactly as the gravitational acceleration in the Earth

~a = ~g as it is drawn in Fig. 2.3a. Now, if this person shoots a ball, this ball will follow

a parabola exactly as in the Earth. Moreover, the person inside the rocket cannot

make any experiment to distinguish if he/she is on an accelerated rocket or he/she is

on the surface of the Earth as Fig. 2.3b. Hence, physically speaking, the situations

described in Figs. 2.3a and 2.3b are indistinguishable, making them equivalent.

~v

(a) Person in a rocket.

~g ≈ 9.8 m/s2

EARTH

~v

(b) Person in a lift falling towards the Earth.

Figure 2.2: Two equivalent reference frames showing the strong equivalence principle.
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~a = ~g ≈ 9.8 m/s2

(a) Person in an accelerating rocket.

~g ≈ 9.8 m/s2

EARTH

(b) Person on the Earth.

Figure 2.3: Two equivalent reference frames showing the strong equivalence principle.

A similar thought experiment as is drawn in Fig. 2.2 was carried out by Einstein

after he developed his Theory of Special Relativity. He thought about what would

happen if someone is in an elevator and suddenly the rope is cut. If this happens,

the elevator will start falling down towards the Earth and hence, a person inside the

elevator will be in a free-falling reference frame. From the Einstein’s perspective,

he realised that since the person will not experience any gravitational effect when

he/she is falling down, then there must be some connection between gravitational

fields and accelerated reference frames. This thought experiment was important for

him so he postulated the strong equivalence principle, which says:
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“Locally, the behaviour of the matter in an accelerated reference frame can

not be distinguished from the behaviour of it on its corresponding gravitational

field.”

This principle states that if one considers a free-falling reference frame where the

observers are constrained in a sufficiently small region where the inhomogeneities of

a gravitational field are negligible, then this reference frame will be an inertial frame

(locally). This kind of reference frame is called local inertial reference frames. All

the known physical laws can be applied in inertial reference frames. Hence, using

this principle, it is possible to connect all ideas of Special Relativity with systems

which are immersed in gravitational fields. Therefore, when a certain gravitational

field exists, it is possible to reproduce all the known physics for inertial reference

frames if one considers a sufficiently small region which is in a free-falling reference

frame. If one neglects all other forces, in these kinds of local reference frames, a test

particle will be at rest or moving in a straight line with constant velocity.

An important consequence of this principle is related to the concept of gravity.

The Newtonian concept of gravity states that a certain massive object with a certain

mass produces an attractive gravitational force to another body. This results in

producing that they experience movement (with respect to the mass centre of the

system). In the next section, this idea will be discussed mathematically (see Sec. 2.3).

Einstein changed this idea radically by saying that the matter (any kind of matter

described by the energy-momentum tensor) would produce that the spacetime (an

entity defined in Special Relativity which connects the notion of space and time)

now will deform or curve in such a way that the objects/matter will experience this

attraction force between them. Hence, gravity is now described as an effect due to

the curvature of the spacetime and all kind of matter (even energy) can produce this

kind of deformation. If one object contains more mass/energy, then the spacetime
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will be more curved. This idea can be summarised by using one of most famous John

Wheeler’s quotes: “Spacetime tells matter how to move; matter tells spacetime how

to curve” (Wheeler & Ford, 2000). This will be discussed further in Sec. 2.4. Fig. 2.4

represents a pictorial view of the notion of gravity introduced by Einstein. In this

picture, there is a big massive object (that for example this could be the Sun) and a

smaller massive object (that could be the Earth). Both objects curve the spacetime

but the more massive one curves it more. This deformation of the spacetime creates

the smaller object to orbit around the bigger massive body (strictly speaking, it

orbits around the centre of mass of the system).

Figure 2.4: Representation of how a big massive object (the Sun) curves the space-
time making another small body (the Earth) orbits around the big massive object
(or strictly speaking, orbits the centre of mass of the whole system).

A very important example of this mentioned effect is that light is deflected when

it passes near a gravitational field, the so-called light deflection. This effect happens

since the matter produced a curved spacetime so that when a ray of light passes near

this curved region, it will experience a change in its direction (and even it can be

magnified). This phenomenon was first observed by the astronomers Dyson, Edding-
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ton and Davidson in 1919 (Dyson et al. (1920)), only 4 years after Einstein proposed

his Theory of General Relativity. To do this, they studied different stars located

in the same direction as the Sun and during a Solar eclipse, they measured that

the light coming from those stars were deflected by the gravitational field produced

by the Sun. General Relativity predicts that these stars must appear in a different

position due to the deformation of the spacetime of the Sun since their light must

be influenced on their path to the Earth for being in the same direction as the Sun.

This experiment was the first which verified the Theory of General Relativity. As

pointed out before, this theory was a paradigm shift in physics since some researchers

at that time were a little sceptical about the validity of GR. This experiment was

crucial since gave a lot of credibility to the theory. More recent experiments have

been carried out with high precision matching also with the GR’s predictions (Will

(2014)).

Another important prediction of General Relativity which directly emerges from

the equivalence principle is the gravitational time dilation. GR says that for an

observer who is closer to a matter source, its proper time will be slower. Hence,

a person located on the surface of the Earth will measure a different proper time

than an astronaut who is inside the International Space Station. Indeed, this effect

has been measured several times and actually is one of the most important effects

that needs to be taken into account for the correct operation of artificial satellites

and GPS systems. Since the satellites which are used for GPS are not located on

the Earth, their clocks will be slightly faster than the clocks on the Earth. The

full phenomenon is a little more complicated since the satellites are also moving

with respect to the Earth so another correction needs to be added to the clocks

since Special Relativity predicts that the proper time also changes when a source is

moving with respect to another (dilation of time). The later effects produce that the

clocks of the satellites are slightly slower than a clock situated on the Earth. If one
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combines both effects, dilation of time due to the movement of the satellite (slow

proper time) and the gravitational time dilation due to the fact that the satellite is

a certain distance of the Earth (faster proper time), the clocks on-board are slightly

faster than a clock located on the Earth. It has been measured that the combined

effect is around 38 microseconds per day (Ashby, 2002). The error margin predicted

by the GPS system is of the order of 15 metres, so it requires sensitivity on time

of about 15 m/c (where c is the velocity of the light). This sensitivity is around

50 nano-seconds, so even though the delay time produced by relativistic effects is

small, it is significant since the sensitivity of the instruments is very high. Further,

if one does not take into account these relativistic effects, the clocks on-board would

make the whole GPS system to make an incorrect position in only about 2 minutes

and it would accumulate at a rate of about 10 kilometres per day. Therefore, the

gravitational time dilation is an important effect that needs to be taken into account

in a correct operating GPS system. This is one of the most important practical

applications of General Relativity.

To conclude, the equivalence principle is one of the most important theoretical

postulates in physics. Einstein used this principle as an initial point to develop his

theory and by using it, all the kind of effects mentioned before appear naturally in

the theory. Some of these consequences will be mathematically explained afterwards

but some of them will not be shown since it is not the main aim of this thesis.

2.2.2 General Covariance principle

Another important principle which is assumed to be valid in GR is the covariance

principle, which can be summarised as follows:

“Field equations must be written in a tensorial form so they must be covariant

under an arbitrary but smooth transformation of the spacetime coordinates. In
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other words, they must be invariant under spacetime diffeomorphisms.”

It is well-known that Special Relativity was founded on the basis of inertial ob-

servers where all of them are equivalent. In GR, Einstein incorporated non-inertial

observers. As pointed out before, he introduced the idea of local inertial reference

frames, where in a small region of the spacetime all the inhomogeneities of a gravi-

tational field can be neglected. From the equivalence principle, accelerated reference

frames (non-inertial reference frames) are equivalent locally to a frame which is not

accelerating but immersed in its corresponding gravitational field. Since it is always

possible to locally define a local inertial reference frame by choosing a small region of

the spacetime in such a way that all the gravitational effects are neglected, Einstein

incorporated all the well-known physics coming from inertial reference frames. Since

the laws of physics cannot change from one observer to another, if one can find some

laws with respect to a specific reference frame, they must be also valid for any other

reference frame.

This principle also states that the field equations must be invariant under diffeo-

morphisms which requires a smooth (one-to-one) map between manifolds. Basically,

if the equations are invariant under diffeomorphisms, this set of mapping preserves

the structure of the manifold. This statement can be separated into two parts: pas-

sive and active diffeomorphism invariant principles. The former is intrinsically valid

in all theories in physics. This principle says that a specific object in a theory (for

example, a metric) can be represented in different coordinate systems but it can-

not represent different physical consequences. The active diffeomorphism associates

different objects in a certain manifold in the same coordinate system. Hence, a dif-

feomorphism map f : xµ → fµ(xν) associates one point to the manifold to another

one. For more details regarding the diffeomorphism invariance, see Gaul & Rovelli

(2000).
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The covariant principle is relevant since it tells us that if one is able to formulate

field equations in a tensorial form (quantities which are invariant under general trans-

formations of spacetime coordinates), they must be also true in all other reference

frames.

2.2.3 Lorentz covariance principle

The majority of the physics known assumes the validity of the Lorentz covariance

principle which can be summarised as follows:

“Field equations must be valid in all inertial frames in such a way that ex-

perimental results are independent of the boost velocity or the orientation of a

laboratory though space.”

This principle ensures that the experimental results must coincide in different

inertial frames. This principle of course is related to the general covariance principle

but it is more restricted since the quantities must be also covariant under Lorentz

transformations. Mathematically speaking, this means that all the physical quanti-

ties must transform under the Lorentz group. As mentioned before, GR defined the

locally inertial frames in a sufficiently small region of space. So, GR also assumes a

locally Lorentz covariance principle which says that for any infinitesimal region, all

the physical quantities must also be Lorentz covariant. In this sense, Einstein’s field

equations are invariant under a Lorentz transformation. This makes a consistency

theory with respect to Special Relativity in the absence of gravitational fields. There

are some modified theories of gravity which do not obey this principle. As will be

seen in a forthcoming section, f(T ) gravity is an example of this (see Chap. 4). How-

ever, there is a way to alleviate this problem in this theory which will be discussed

later.
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2.2.4 Causality and relativity principles

Another two important principles which are implicit in GR are the causality and the

relativity principles. The former one can be summarised as follows

Causality principle: “Each point in the spacetime must have a valid notion of

past, present and future”.

The causality principle is of course implied by Special Relativity and light cones.

This principle ensures that an effect in the future always occurs from a cause in the

past from the light cone of the event. This is of course a consequence of the velocity

of the light being finite. It can be understood as a cause-effect relationship always

ensuring that the world line lies inside its light cone. There are some theories which

are acasual, for example see Chap. 8.

Another important implicit principle is the relativity principle which tells us that

Relativity principle : “There is not a preferred inertial frame ”

The Relativity principles states that there are no special or preferred inertial

frames. Hence, it is not possible to have a situation where a special frame exists where

the experiments produce different results. All the physics laws must be equivalent

in all inertial frames. Since it is always possible to have locally inertial frames, the

principle of relativity must be also valid in GR (as it is valid in Special Relativity).

From this principle comes the name of General Relativity since the movement is

always related to a frame but neither of them should give rise different physical

interpretations.
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2.2.5 Mach’s Principle

An important philosophical principle which inspired Einstein to develop GR is Mach’s

principle. Even though, this principle is not a fundamental assumption underlying

GR, it is worth mentioning it since it inspired Einstein when he was formulating GR.

Imagine that there is only one particle in the Universe. If this particle is moving and

all the motion is always a relative concept (comparing different frames), how can one

explain the inertia of this particle without having any other frame? Mach postulated

the following philosophical statement

“The inertia felt by the bodies are the result of the interaction of all the matter

of the Universe with them”

Hence, this principle states that the large-scale structure of the Universe affects

locally the behaviour of a certain body and hence the corresponding physical laws

acting on it. Therefore, local inertial frames are affected by all the other distribution

of matter in the Universe. The idea of inertia is something that Einstein questioned

himself. Consider that someone is on a bus and this bus rapidly changes its direction.

The person on the bus will feel a fictional force known as a centrifugal force. This

kind of effect is considered to be an inertial one and Mach thought that the person

on the bus actually is affected by the matter of the whole Universe (or distant stars)

which creates these inertial effects. Physically speaking, this principle is vague and

for that reason, some people believe that it is more a hypothesis than a principle

or a conjecture. However, Einstein believed in this principle and even though it is

more a philosophical point of view of the theory, it was important at that time. For

a more detailed discussion about this principle, see Brans & Dicke (1961).
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2.3 Important mathematical quantities

Since GR is a theory based on the assumption that matter/energy curves spacetime,

Euclidean geometry is insufficient to fully describe the theory. For describing curved

spaces, the geometry must be described by a more general kind of geometry allowing

non-flat Euclidean spaces. The main aim of this section is to define some basic

mathematical quantities that will be useful in all the thesis. The purpose of this

section is to only formulate basic quantities and not be so mathematically rigorous.

A deeper introduction to the important geometrical quantities can be found in the

books Wald (1984); Böhmer (2016). GR is constructed in a Riemannian geometry

which deals with the concept of Riemannian manifolds. Just after Einstein created

his Theory of Special Relativity (1905), he wanted to incorporate the idea of gravity

into it. Then, he proposed this notion of deformation of spacetime as a new way of

thinking about gravitational effects. The problem was that he needed to spend a lot

of time to formulate GR due to the fact that Riemannian geometry was needed. Up to

that point, the concept of space in physics was always considered to be flat and non-

dynamic. Hence, a new set of tools was needed for him to formulate his conceptions.

So, he spent around 10 years formulating his ideas based on non-trivial spaces using

the concepts only used by mathematicians at that time. GR is constructed as a

3 + 1 dimensional continuum spacetime theory with three spatial dimensions and

one temporal dimension. This spacetime is a special space known as a manifold M

which is a set that has the local differential structure for R4 but not necessarily its

global properties (see Wald (1984) for its mathematical definition and properties).

2.3.1 Metric tensor

In order to measure angles between curves and distances between points in non-trivial

spacetimes one needs to define the metric tensor. This tensor is a rank 2 symmetric
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tensor defined on a smooth manifoldM, labelled as gµν , which is directly related to

the line element (or the interval in Special Relativity) ds as follows

ds2 = gµν(x)dxµdxν . (2.7)

The line element measures the distance between two infinitesimal points located at

xµ and xµ +dxµ. The metric tensor is usually called the metric for simplicity. More-

over, it is also usual (but incorrect) to also refer to the line element as the metric.

In general, the metric depends on the coordinates. A non-degenerate spacetime is

the one which satisfies g ≡ det(gµν) 6= 0. The inverse of the metric gµν is always

well-defined for non-degenerated spacetimes, which of course satisfies gµνg
νλ = δλµ.

Since dxµdxν is symmetric, only the symmetric part of gµν plays a role in the line

element. A symmetric metric tensor in n dimensions contains n(n+ 1)/2 functions.

Therefore, in 4 dimensions as in GR, the metric tensor has 10 functions. The metric

in n dimensions is a n× n matrix with positive, negative or even mixed sign eigen-

values. General Relativity is a 4 dimensional theory (one time dimension and three

space dimensions) which assumes a Lorentzian metric whose posses three positive

eingenvalues and one negative eigenvalue. Hence, it is usual to consider two kind of

signature notations, namely (−+++) or (+−−−). The metric and its inverse allow

us also to map contravariant (defined in the tangent space) and covariant vectors

(defined in the cotangent space). For any arbitrary covariant vector vµ, its corre-

sponding contravariant vector vµ can be obtained by contracting it with the metric

as vµ = gµνvν . Hence, one can also define the scalar product of two arbitrary vectors

vµ and wµ via

v · w = gµνv
µwν , (2.8)
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where both vectors are evaluated at the same point of the manifold. From this

definition, one can also define the norm of a vector on the manifold which reads

v · v = |v|2 = gµνv
µvν . (2.9)

When vectors are orthogonal to themselves, they are called null vectors and satisfy

gµνv
µvν = 0.

Further, one can easily then define that the angle θv,w between two arbitrary

non-null vectors as follows

cos θv,w =
v · w
|v||w|

=
gµνv

µwν√
(gλρvλvρ)(gαβwαwβ)

. (2.10)

From this definition it can be seen that two vectors are orthogonal if gµνv
µwν = 0.

Furthermore, the metric and its inverse also allows us to raise and lower indices for

tensors. For example, for a ( 1
3 ) tensor Tµνλ

α, one can also define its corresponding

(2
2) tensor as Tµν

λα = gβλTµνβ
α.

Let us now consider an arbitrary curve C on a manifold parametrised by xµ =

xµ(λ) in a certain coordinate system xµ. If this curve starts at a point Pi and finishes

at a point Pf (the end points of the curves), the length of this curve is defined as

L =

ˆ Pf

Pi

ds =

ˆ Pf

Pi

√
gµνdxµdxν =

ˆ Pf

Pi

√
gµν

dxµ

dλ

dxν

dλ
dλ . (2.11)

Moreover, one can also define the n-volume of a space of dimension n as

V =

ˆ
det(gµν)d

nx . (2.12)

As can be seen, the definitions of angles, distances, longitudes and volume depend

on the metric. Hence, this geometric object is one of the main ingredients in General

Relativity.
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2.3.2 Geodesic equation

A geodesic equation is defined as a particular curve which joins two points Pi and Pf

making its length (defined by (2.11)) stationary under small variations and vanish

at the end points. Basically, this curve represents the curve which minimises (or

maximises) the distance between the points Pi and Pf . This definition comes from

the principle of least action or Hamilton’s principle which states that the dynamics

of any physical system is determined by minimising the action S of the system.

Mathematically speaking, this is equivalent to taking variations of the action and

then assuming that for all possible perturbations, that variation is δS = 0. In this

case, to find the shortest length which joins the points, one can consider that L and

ds in (2.11) are the action and the Lagrangian of the system respectively. Therefore,

by taking variations in (2.11) it can directly be found that geodesics satisfy the

Euler-Lagrange equation,

δds

δxµ
=
∂ds

∂xµ
− d

dλ

∂ds

∂
(
dxµ

dλ

) = 0 , (2.13)

where ds =
√
gµνdxµdxν . It is easy to check that the first and second term on the

above equation can be written as

∂ds

∂xµ
=

1

2

∂gνβ
∂xµ

(dxν
dλ

)(dxβ
dλ

)
, (2.14)

d

dλ

∂ds

∂
(
dxµ

dλ

) =
d

dλ

( 1

ds
gµν

dxν

dλ

)
= gµν

d2xν

dλ2
+
(∂gµβ
∂xν

)(dxν
dλ

)(dxβ
dλ

)
, (2.15)

where it was used the fact that ds = 1 for the affine parametrisation. By replacing

the above expression in the Euler-Lagrange equation (2.13) and then multiplying it
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with the inverse of the metric gαµ, one finds the geodesic equation given by

d2xα

dλ2
+
{
α
µν

} dxµ
dλ

dxν

dλ
= 0 , (2.16)

where the Christoffel symbol of the second kind
{
α
µν

}
has been defined as

{
α
µν

}
=

1

2
gαβ
(
∂µgνβ + ∂νgµβ − ∂βgµν

)
. (2.17)

It is easy to see that when one is considering an Euclidean space in Cartesian co-

ordinates, the Christoffel symbol is zero for all the components and then from the

geodesic equation, one obtains d2xα/dλ2 = 0 which gives us that a straight line is

the shortest curve which joins the points Pi and Pf . It is important to mention that

this quantity does not transform as a tensor under a general coordinate transforma-

tions, so, it is not a tensor. Since the metric is symmetric, one can directly notice

that the Christoffel symbol is symmetric on its lower indices giving us that for a

n-dimensional space, it contains n2(n + 1)/2 components. Thus, for GR which is a

4-dimensional theory, this quantity contains 40 components.

In conclusion, the geodesic equation is the equation which describes the motion for

any kind of body (or particle) when gravitational effects are taking into account and

it is one of the most important ingredients in GR.

2.3.3 Covariant derivative, connections and paral-

lel transportation

Let us consider an arbitrary vector vµ and perform a coordinate transformations

from xµ → x′µ. By taking partial derivatives of the new vector v′µ with respect to

the second coordinate system ∂v′µ/∂x
′ν , it can be seen that this quantity is related
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to ∂vµ/∂x
ν as follows

∂′νv
′
µ =

∂v′µ
∂x′ν

=
( ∂xα
∂x′ν

)( ∂xβ
∂x′µ

)∂vα
∂xβ

+
( ∂2xα

∂x′µ∂x′ν

)
vα , (2.18)

so that due to the second term on the right hand side of the above equation, deriva-

tives of vectors do not transform as tensors under a general coordinate transfor-

mation. This quantity depends on the coordinates chosen and therefore it is not a

convenient quantity to consider on the manifold. One can also make a similar trans-

formation and compute partial derivatives in two different coordinate systems with

respect to an arbitrary tensor, for example Aµν . If one computes ∂′νA
′
µλ, one can also

obtain the same conclusion that partial derivatives do not transform as tensors under

general coordinate transformations. Therefore, one can not know if a vector (or a

tensor) is constant on a manifold without introducing another kind of derivative.

Thus, one needs to define another type of derivative which transforms covariantly

under general coordinate transformations.

Let us first define a geometrical object defined on a manifold known as connec-

tion labelled as Γαµν . This geometrical object is the one which transforms from one

coordinate system to another as

Γ′αµν =
(∂x′α
∂xβ

)( ∂xλ
∂x′µ

)( ∂xε
∂x′ν

)
Γβλε +

(∂x′α
∂xβ

)( ∂2xβ

∂x′µx′ν

)
. (2.19)

In general, a connection defined on a certain manifold does not necessary depend on

the metric. Using this definition, it is possible to define a covariant derivative ∇µ

on a manifold which has the property that it transforms covariantly under a general

coordinate transformation. The covariant derivative of covariant and contravariant

vectors can be defined as

∇µvν = ∂µvν − Γβµνvβ , (2.20)
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∇µv
ν = ∂µv

ν + Γνβµv
β . (2.21)

It is easy to check that ∇µvν and ∇µv
ν transform as tensors as expected. For any

arbitrary (nm) rank tensor Aµν...
αβ..., one can then define that the covariant derivative

with respect to it is given by

∇λAµν···
αβ··· = ∂λAµν···

αβ··· − ΓεµλAεν···
αβ··· − ΓενλAµε···

αβ··· − . . .

+ ΓαελAµν···
εβ··· + ΓβελAµν···

αε··· + . . . . (2.22)

Again, it is easy to check that this definition is covariant under coordinate trans-

formations. Hence, the connection allows us to define derivatives which transform

covariantly under general coordinate transformations. One can also notice that for

any function f , the covariant derivative is exactly the same as the partial derivative

∇µf = ∂µf . The covariant derivative maps a (nm) rank tensor to a ( n
m+1) rank ten-

sor and it is linear. Additionally, covariant derivatives satisfy the Leibniz rule and

commute with contraction. From the latter properties, it can be clearly seen that

∇µ(gαβg
βγ) = 0→ ∇µgαβ = −gανgβγ∇µg

νγ . (2.23)

Let us now define a tensor Qµαβ, to rewrite the above equation as

∇µgαβ = Qµαβ ≡ −gανgβγ∇µg
νγ . (2.24)

Clearly, Qµαβ is a 3 rank symmetric tensor on its last two indices. From here, it is

necessary to distinguish between two kind of geometries which depend on the choice

of the connection defined on the manifold:

1. Metricity or metric compatibility : when Qµαβ = 0

2. Non-metricity : when Qµαβ 6= 0.
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A connection which satisfies the metric compatibility condition is labelled as Lorentz

connection. General Relativity is a theory which assumes the first kind of connection

where ∇µgαβ ≡ 0. Moreover, another important condition for the connection is

established in GR. It is assumed that the connection in GR is torsion-less (assumes

that torsion tensor is identically zero, see Sec. 2.3.4), which is equivalent as having

a symmetric connection

◦
Γ
α
µν =

◦
Γ
α
νµ . (2.25)

This torsion-less connection is also named the Levi-Civita connection and it is one

of the main ingredients in constructing GR. Hence, GR is a geometric theory based

on a specific connection which satisfies the metric compatibility condition and it

is torsion-less. From hereafter, ◦ will be used to denote mathematical quantities

computed with the Levi-Civita connection (GR). This notation will be useful in other

sections dealing with Teleparallel gravity where the connection and then covariant

derivatives are different.

One can verify that the unique connection which satisfies the metric compatibility

condition which is also symmetric, is given by the Christoffel symbol (2.17), namely

◦
Γ
α
µν =

{
α
µν

}
=

1

2
gαβ
(
∂µgνβ + ∂νgµβ − ∂βgµν

)
. (2.26)

Therefore, the torsion-less and compatibility conditions give us the above connection

which matches with the Christoffel symbol defined in the geodesic equation.

In standard flat spacetimes, a vector vi remains constant along a line if it satisfies

dvi

dλ
= 0 , (2.27)

where λ is an affine parameter used to characterised the curve. Since GR is based on
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curved spacetimes, the notion of transporting vectors parallel along a line needs to

be changed. In this context, one needs to introduce the parallel transportation that

allows us to define this kind of transportation in curved spacetimes. It is then said

that any vector vi is parallel transported along a curve parametrised by λ if

T i∇iv
j = 0 , (2.28)

where∇i is the covariant derivative and T i is a tangent vector of the curve. According

to this definition, it can be proved that the final transported vector v′i resulting by

parallel transporting the vector vi from xi to an infinitesimally close point located

at xi + dxi will be

v′i(x+ dx) = vi(x)− Γijkv
j(x)dxk = vi(x) + δvi(x) . (2.29)

Additionally, for a covariant vector vi, after a parallel transportation along the curve,

one can also obtain the vector v′i located at x+ dxi via

v′i(x+ dx) = vi(x) + Γkilvk(x)dxl = vi(x) + δvi(x) . (2.30)

These definitions will be useful in forthcoming sections where the geometrical inter-

pretation of some important mathematics quantities will be explained.

2.3.4 Curvature tensor, Ricci scalar, scalar curva-

ture and torsion tensor

In general, unlike partial differentiation, a covariant derivative defined on a manifold

does not necessary commute, i.e., in general, ∇γ∇λAµν···
αβ··· 6= ∇λ∇γAµν···

αβ···. Let

us first study the commutator relationship considering an arbitrary smooth function
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f by computing its second covariant derivative using (2.21) which gives us

∇µ∇νf = ∂µ∂νf − Γλµν∂λf , (2.31)

∇ν∇µf = ∂ν∂µf − Γλνµ∂λf . (2.32)

Now, using ∂ν∂µf = ∂µ∂νf , one finds that the commutator relation for covariant

derivative for a function is given by

2∇[µ∇ν]f = ∇µ∇νf −∇ν∇µf = −T λµν∂λf , (2.33)

where it has been defined the torsion tensor T λµν as

T λµν ≡ Γλµν − Γλνµ . (2.34)

This quantity will be important in the forthcoming chapter where Teleparallel theo-

ries of gravity are considered. As pointed out before, GR is based on a torsion-free

connection, so that in that theory it is assumed that T λµν ≡ 0 or equivalently the

connection is symmetric
◦
Γανµ =

◦
Γαµν . The torsion tensor is skew-symmetric on its last

two indices. Hence, for a n-dimensional space, it contains n2(n − 1)/2 components

and therefore in 4 dimensions contains 24 components. It can be proved that even

though the connection Γ does not transform as a tensor under a general coordinate

transformation, the torsion tensor does transform as a tensor.

Even though this quantity is assumed to be zero in GR, let us try to understand

better what this quantity is measuring. To do that, let us consider a 2 dimensional

geometry and then define three different points P0, P1 and P2 separated infinitesi-

mally from each other. Let us suppose that P0 is located at xi and P1 and P2 are

located at xi + dxi1 and xi + dxi2 respectively. Hence, the difference between the

points P0 and P1 is just dxi1 and the difference between P0 and P2 is just dxi2. Then,
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let us transport the vectors dxi1 and dxi2 defined at the point P0 towards the points

P3 and P4. By doing this, one is able to define the two new vectors as dxi3 and dxi4

respectively. These two vectors defined at the points P1 and P2 can be obtained with

the parallel transportation equation obtained in (2.29), giving us

dxi3(P1) = dxi2 − Γijk(x)dxk1dx
j
2 , dxi4(P2) = dxi1 − Γijk(x)dxj1dx

k
2 . (2.35)

Using these two new vectors, one can then define two new points P3 and P4 with

coordinates being equal to

xi(P3) = xi(P1) + dxi3(P1) , xi(P4) = xi(P2) + dxi4(P2) . (2.36)

Now, by subtracting the coordinate of these points, it is found the following expres-

sion

xi(P3)− xi(P4) =
(
xi + dxi1 + dxi2 − Γijk(x)dxk1dx

j
2

)
−
(
xi + dxi2 + dxi1 − Γijk(x)dxj1dx

k
2

)
(2.37)

= T ijk(x)dxj1dx
k
2 , (2.38)

where Eq. (2.34) was used. From here, one can understand the geometrical meaning

of the torsion tensor. The difference of the coordinates of the points P3 and P4 is

proportional to this tensor. Hence, this quantity measures the failure to close an

infinitesimal parallelogram since if the torsion tensor is different from zero, those

points will not coincide. Fig. 2.5 represents more or less the situation described here,

starting from a point P0 and then defining new points P1 and P2 infinitesimally sep-

arated. As can be seen from the figure, the points P3 and P4 do not coincide, making

an “open” parallelogram. Obviously, when the torsion tensor is zero, the points co-

incide and the standard kind of geometry is recovered where a closed parallelogram
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is obtained. GR is a theory which assumes that the torsion tensor is zero so that,

the final parallelogram always will be closed. However, in Teleparallel theories of

gravity when the torsion tensor is different from zero, this geometrical effect plays a

role (see Chap. 3).

Figure 2.5: Representation of a 2 dimensional manifold with torsion. This represen-
tation shows that the parallelogram will not be closed on a manifold with torsion.

Let us now consider an arbitrary vector vµ and again use the definition of covariant

derivative acting on contravariant vectors given in (2.21). By taking second covariant

derivatives of this vector, one can easily find that

∇γ∇λv
µ = ∂γ(∂λv

µ + Γµαλv
α)− Γαλγ(∂αv

µ + Γµβαv
β) + Γµαγ(∂λv

α + Γαβλv
β) , (2.39)

∇λ∇γv
µ = ∂λ(∂γv

µ + Γµαγv
α)− Γαγλ(∂αv

µ + Γµβαv
β) + Γµαλ(∂γv

α + Γαβγv
β) , (2.40)



Chapter 2. The Theory of General relativity 33

so that by assuming ∂λ∂γv
µ = ∂γ∂λv

µ and subtracting the above equations, one finds

2∇[γ∇λ]v
µ = ∇γ∇λv

µ −∇λ∇γv
µ = Rµ

αγλv
α + T ργλ∇ρv

µ , (2.41)

where the curvature tensor Rµ
αγλ was defined as

Rµ
αγλ ≡ ∂γΓ

µ
αλ − ∂λΓ

µ
αγ + ΓµβγΓ

β
αλ − ΓµβλΓ

β
αγ . (2.42)

This geometric object is skew-symmetric on its last two lower indices Rµ
αγλ =

−Rµ
αλγ. Hence, it contains n3(n−1)/2 components in a n-dimensional space, giving

rise to 96 components in a 4 dimensional space. Exactly as with the definition of

the torsion tensor, it can be proved that the curvature tensor transforms as a tensor

under a general coordinate transformations. It is interesting to note that a sufficient

condition for finding a coordinate system where all the components of the connection

Γαµν = 0, is by having that in that coordinate system, Rµ
αγλ = 0 and T λµν = 0.

Let us now try to understand geometrically what this quantity means. To see this,

let us take a 2 dimensional example with an initial vector vi0 (where i = 1, 2) de-

fined on a certain point P0 = xi on a manifold which possesses curvature. Let us

now parallelly transport the vector vi0 around a small closed curve. If one parallelly

transports the vector vi0 from the point P0 located at xi to a point P1 located at a

point xi + dxi1, from (2.29), one obtains

vi0(x)− vi1(P1) = Γijk(x)vj0(x)dxk1 . (2.43)

Now, one can parallelly transport the vector vi1 from the point P1 to the point P2

located at xi + dxi1 + dxi2. Since the new vector obtained by transporting vi1 is

different, it will be labelled as vi2. Then, one closes the curve by transporting the

vector from P2 to P3 (located at xi + dxi2) and then from P3 to our initial point P0
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with the vectors labelled as vi3 and vi4 respectively. Therefore, as written above, the

difference between the vectors for that circuit is given by

vi1(P1)− vi2(P2) = Γijk(P1)vj1(P1)dxk2 , (2.44)

vi2(P2)− vi3(P3) = −Γijk(P2)vj2(P2)dxk1 , (2.45)

vi3(P3)− vi4(x) = −Γijk(P3)vj3(P3)dxk2 . (2.46)

It should be remarked that it was used that xi(P3) − xi(P2) = −dxi1 and xi(P0) −

xi(P3) = −dxi2. One is interested to find how the initial vector vi0(x) is related with

the final vector vi4(x). The coordinates of the points Pi are known so that it is easy

to find that the connections evaluated at each point are

Γijk(P1) = Γijk(x+ dx1) = Γijk(x) + dxl1(∂lΓ
i
jk)(x) , (2.47)

Γijk(P2) = Γijk(x+ dx1 + dx2) = Γijk(x) + (dxl1 + dxl2)(∂lΓ
i
jk)(x) , (2.48)

Γijk(P3) = Γijk(x+ dx2) = Γijk(x) + dxl2(∂lΓ
i
jk)(x) . (2.49)

Using the above relationships and (2.43) and (2.44), one can find that the vector

vi2(P2) is equal to

vi2(P2) = vi0(x)− Γijk(x)vj0(x)dxk1 − Γijk(x)vj0(x)dxk2

+Γijk(x)Γjlm(x)vl0(x)dxm1 dx
k
2 − (∂lΓ

i
jk)(x)vj0(x)dxl1dx

k
2 , (2.50)

where terms proportional to dxl1dx
m
1 dx

k
1 were neglected. Then, by using (2.45) and

(2.49) and after some simplifications, the vector vi3(P3) becomes

vi3(P3) = vi0(x)− Γijk(x)vj0(x)dxk2 +Ri
jkl(x)vj0dx

k
1dx

l
2 , (2.51)

where (2.42) was used to incorporate Ri
jkl(x), which is the curvature tensor evaluated



Chapter 2. The Theory of General relativity 35

at the initial point P0. Finally, from (2.46) one can find that the difference between

the final vector vi4(x) and the initial vector vi0(x) at the point P0 located at xi becomes

vi4(x)− vi0(x) = Ri
jkl(x)vj0dx

k
1dx

l
2 . (2.52)

Hence, the difference between those vectors is proportional to the curvature tensor.

From here, one can directly understand geometrically what this tensor represents.

If one starts with an initial vector vi0(x) and one parallelly transports it around a

closed curve, one will end up with another vector vi4(x), and the difference between

them is proportional to the curvature tensor evaluated at that point. Hence, the

curvature tensor measures the failure of this vector to return to its original value

when it is parallelly transported. This procedure is depicted in Fig. 2.6 where it can

be seen that the final vector vi4(x) differs by the initial vector vi0(x) after parallelly

transporting it around a closed curved.

Figure 2.6: Representation of a 2 dimensional manifold endorsed with curvature. If
the curvature tensor is different than zero, the final vector vi4(x) would not coincide
with the initial one vi0(x).
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Let us now state the Ricci theorem which says that any Lorentz connection can

be written as a combination of torsion, known as contortion tensor Kµ
λ
ν , and the

Levi-Civita connection
◦
Γλµν , which reads as

Γλµν =
◦
Γ
λ
µν +Kµ

λ
ν , (2.53)

where the contortion tensor is defined as

Kµ
λ
ν =

1

2
(T λµν − Tνµλ + Tµ

λ
ν) . (2.54)

This theorem is valid for any connection. If one uses this relationship in the curvature

(2.42), one obtains

Rλ
µσν =

◦
R
λ
µσν +

◦
∇σKν

λ
µ −

◦
∇νKσ

λ
µ +Kσ

λ
ρKν

ρ
µ −Kσ

ρ
µKν

λ
ρ , (2.55)

where Rλ
µσν is a generic curvature and

◦
Rλ

µσν is a curvature computed with the

Levi-Civita connection. Hence, curvature can be always split as a combination of a

torsion piece which depends on the contortion tensor and, the curvature computed

with the Levi-Civita connection. In GR, torsion is zero so that Kσ
λ
µ = 0 and then

Rλ
µσν =

◦
Rλ

µσν . It is important to mention that by doing some computations, one

can also relate the curvature tensor with the torsion tensor yielding

Rµ
[αγλ] = −T β [αγT

µ
λ]β −∇[αT

µ
γλ] . (2.56)

It is also possible to define some contractions of the curvature tensor. One impor-

tant contraction of the curvature tensor is the Ricci tensor which is obtained by

contracting the first and third indices of the curvature tensor, giving us

Rαλ ≡ Rµ
αµλ = ∂µΓµαλ − ∂λΓ

µ
αµ + ΓµβµΓβαλ − ΓµβλΓ

β
αµ , (2.57)
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which in general is not symmetric. Again, by using the Ricci theorem, one obtains

Rµν =
◦
Rµν +

◦
∇λKν

λ
µ −

◦
∇νKλ

λ
µ +Kλ

λ
ρKν

ρ
µ −Kλ

ρ
µKν

λ
ρ . (2.58)

Moreover, it is also possible to express the above quantity as

2R[αλ] = −3∇[αT
β
βλ] + T ββγT

γ
αλ . (2.59)

It is easy to see that for GR, the Ricci tensor is always symmetric since the tor-

sion tensor is zero. It should be remarked that one can also define the contraction

Rγ
γµλ = R̄µλ which is a totally skew-symmetric tensor and it vanishes for a sym-

metric connection (as in GR). This quantity is known as homothetic curvature. The

other contraction Rγ
µλγ = −Rµλ is just minus the curvature tensor due to its skew-

symmetric property on its last two indices. Therefore, there are only two possible

independent contractions for the curvature tensor and for the GR case, only the Ricci

tensor is non-zero.

Further, one can also consider a contraction with the metric and the Ricci tensor,

which gives us the so-called curvature scalar or Ricci scalar given by

R ≡ gαλRαλ = gαλ∂µΓµαλ − ∂
αΓµαµ + gαλΓµβµΓβαλ − g

αλΓµβλΓ
β
αµ . (2.60)

A Riemannian space is the one which possesses curvature but the torsion tensor is

zero and then the connection is equal to the Levi-Civita one. As pointed out before,

GR is based on this kind of spaces. For this case, the curvature tensor has also two

additional symmetry conditions

◦
Rα

µ
γλ = −

◦
R
µ
αγλ ,

◦
R
µ
αγλ =

◦
Rγλ

µ
α , (2.61)

which gives us that the curvature tensor contains only n2(n2 − 1)/12 components in
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a torsion-less space. Hence, in GR, the curvature tensor contains 20 components.

2.4 Einstein field equations

2.4.1 Newton’s law of Universal Gravitation

This section will briefly review some basic properties of the Newtonian Gravitational

law. The aim is to have a picture of those laws in order to then study the Einstein

field equations which are a generalisation of them. First of all, Newtonian gravity

is of course based on Newtonian laws. After Einstein proposed Special Relativity, it

was known that Newton’s laws are valid only in some situations. Surprisingly, for

the most part of the phenomena at the scales of the human are within the range of

Newton laws. Mainly all the physics employed on Earth is based on these laws and

even though they are incomplete, they cannot be discarded. It is now known that

classically, these laws are valid when:

• A body is moving with a certain velocity v which is very small comparable

with the velocity of light (v/c� 1).

• Is valid when the gravitational field is in a weak field regime (GM/r � 1).

• They are valid only in inertial reference frames.

• Is based on the Galilean transformations (not Lorentz transformations as Spe-

cial and General Relativity)

In 1687, Newton proposed the Universal gravitational laws which in some sense,

governed the notion of gravity from that time until Einstein proposed GR. Let us

consider a case where there are two particles whose masses m1 and m2 are separated

by a vector ~r = ~x2 − ~x1. For observational reasons, Newton realised that the force

which exerts the particle m2 to the particle with mass m1 must be proportional to its
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masses and inversely proportional to the square of the distance between the vector

which separates them, namely

~F = G
m1m2

|~r|2
~r

|~r|
, (2.62)

where |~r| is the norm of the vector ~r and G is a gravitational constant that a priori

needs to be determined by experimental measurements. Fig. 2.7 shows a represen-

tation of this situation. Cavendish in 1789 was the first who measured this constant

using a torsion balance. To be precise, Cavendish was not trying to calculate this

constant. Rather, he was trying to calculate the density of the Earth. Moreover, the

real value of the gravitational constant G was not important at that time. However,

if one can measure the density of the Earth, using Newtonian laws, it is also possible

to estimate the value of G. Cavendish did not compute G but using the value of the

density of the Earth that he found, it is trivial to find the correct value of G. There-

fore, mostly all authors said that Cavendish was the first who actually measured the

value of G, even though in his notes he did not mention G at all. Hence, one can

say that Cavendish was the first who measured implicitly the value of G. Currently,

we know that the value of G in the international system of units is approximately

G ≈ 6.67408(31) · 10−11Nm2/kg2 (Mohr et al., 2016).

Figure 2.7: Representation of how the Newtonian Gravitational law works for two
particle with masses m1 and m2 located at ~x1 and ~x2 with respect to an observer O.
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Since Newton knew that the gravitational force acts even at very long distances,

he realised that it was convenient to also define the gravitational field ~g. A gravita-

tional field ~g1 of a particle with mass m1 is defined as the gravitational force which

this mass generates to a test particle (m2 in this case), divided by the mass of this

test particle m2, which reads as

~g1 = −
~F

m2

= −Gm1

|~r|2
~r

|~r|
. (2.63)

Notice that the minus sign comes from the third Newtonian law since the force

appearing on the above equation is the force which exerts m1 to m2 and hence it is

a minus of difference with respect to the force given in Eq. (2.62). Hence, a certain

particle m1 will generate a gravitational field ~g1 for having a mass and its value will

be given by the above expression. Now, if one generalises this idea by changing the

particle to a continuous body, one can express its gravitational field by

~g = −G
ˆ
V

ρ(~x′)
~x′ − ~x
|~x′ − ~x|3

dV ′ , (2.64)

where V is the volume of the body, dV ′ is an infinitesimal volume of the body

and now the vectors ~x′ and ~x describe the position where the gravitational field

is computed and the origin vector of the coordinate system respectively. In this

equation, ρ(~x′) is the density distribution of the matter which of course in general

can be non-constant. From this definition, it is easy to check that ~∇× ~g = 0 which

tells us that the Newtonian gravitational field is irrotational. Hence, there exists a

gravitational potential φ such that

~g = −~∇φ , (2.65)
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where φ is defined as

φ = G

ˆ
V

ρ(~x′)

|~x′ − ~x|
dV ′ . (2.66)

Thus, the gravitational potential satisfies the Poisson equation given by

∇2φ = 4πGρ , (2.67)

and also the gravitational field satisfies the Gauss equation ~∇ · ~g = −4πGρ. The

above equation can be used to calculate the gravitational potential for any kind of

configuration as, for example, a spherically symmetric body. An important conse-

quence can be seen from this equation. First of all, it tells us that the gravitational

effects act instantly since the time is not present in this equation. This means that

Newtonian gravity says that if the Sun suddenly disappears, all the planets orbiting

around it, will automatically feel that the gravitational force of the Sun disappeared.

This is of course not consistent with Special Relativity which says that the maximum

speed which information can travel is the velocity of the light. The latter thought

experiment is known as the cosmic catastrophe. Today, it is known that the basics

of Newtonian laws are valid only for some specific cases as mentioned earlier.

Using GR, it is possible to check that the gravitational field propagates at ex-

actly the velocity of the light so it is not instant as is proposed by Newtonian gravity.

Even though the Newtonian gravitational laws have some inconsistencies, the Poisson

equation for the gravitational field could describe mostly all the phenomena in the

Planetary system. Hence, it is a good tool for astronomers and engineers to estimate

some specific gravitational scenarios such as the movement of comets, asteroids or

even the movement of the Earth around the Sun. This is true since the gravitational

field in those situations can be considered as being weak and then Newtonian law

can be used. However, for example, when one wants to understand how Mercury is
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moving around the Sun, one cannot use Newtonian gravity. This problem happens

since the gravitational field is much stronger near the Sun and since Mercury is the

closest planet to the Sun, the gravitational effects cannot be estimated using Newto-

nian gravity. This problem was actually observed before Einstein came out with GR,

when astronomers did not understand why the orbit of Mercury and its movement

around the Sun were not the one expected using Newtonian gravity. Moreover, at

that time, astronomers needed to introduce a new planet near the Sun to more or

less match the observations. This planet of course was never found. This problem

is known as the Mercury perihelion shifting. Using GR, one can study how Mer-

cury moves around the Sun and actually one can measure and see that the orbit of

Mercury changes around 43 arcseconds per century on its perihelion in every cycle,

matching with a high precision with astronomical observations. For the interested

reader about confrontation between GR and experiment, see Will (2014).

2.4.2 Einstein field equations

Einstein was an intuitive person formulating his theories. Based on the principles

mentioned in a Sec. 2.2, he was able to formulate the field equations which rules the

movement of bodies when gravitational fields are presented. In order to find these

field equations, Einstein used some conditions that those equations must satisfied

and then he formulated the equations intuitively. First, he realised that the field

equations should have a similar form as Maxwell’s equations. One can proceed as

follows. Let us take the metric gµν in a slightly curved spacetime in such a way that

one can express it as a flat Minkowski metric plus an additional small metric term.

This perturbation can be written as

gµν = ηµν + hµν , with |hµν |� 1 . (2.68)
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Now, consider the Newtonian limit where the gravitational fields are small and also

that the bodies move with velocities much smaller than the velocity of the light. For

coordinates xµ = (t, xi), the geodesic equation (2.16) for this case will be given by

d2xµ

dτ 2
+

1

2
ηµν∂νh00 ≈ 0 . (2.69)

Then, for the 0-component, one obtains

d2t

dτ 2
= 0 , (2.70)

which gives us t = c1τ + c2. So, without loosing generality, one has dτ = dt. Then,

the i-th component in (2.69) becomes

d2~x

dt2
≈ −1

2
~∇h00 . (2.71)

Now, for the 2nd Newtonian law d2~x/dt2 = ~g and by comparing the Newtonian

Poisson equation (2.67) with the above equation, it is easy to see that

∇2h00 = 8πGρ , (2.72)

so that one directly finds that the Newtonian gravitational potential is related to the

perturbed metric as

h00 ≈ −2φ , (2.73)

so that the 00 component of the metric will be

g00 ≈ −(1 + 2φ) . (2.74)
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Hence, the first ingredient needed to construct the field equations is that the 00

component of the metric must satisfy the above equation for the cases where the

gravitational field is weak.

For non-relativistic matter, the 00 component of the energy-momentum tensor is

T00 ≈ −ρ and then by using (2.68) and (2.72) one finds that

∇2g00 = 8πGT00 . (2.75)

The above equation could describe the Newtonian Gravitational law for the specific

case where the gravitational field is not sufficiently large to deform sufficiently the

spacetime. The above equation is known as the Newtonian gravitational limit. The

above equation is just a guess of the final field equation for any kind of gravitational

field since it is based on non-relativistic assumptions. However, one can notice that

the form of the Einstein field equations for any distribution kind of matter, must

relate the energy-momentum tensor to gravity. Therefore, let us take the following

form of the possible field equations,

◦
Gµν = κ2Tµν , (2.76)

where κ2 is a unknown coupling constant and
◦
Gµν is a tensor that it is unknown

a priori, but it must satisfy some specific properties to ensure the validity of all

the principles studied in Sec. 2.2. Therefore this tensor must satisfy the following

conditions

• It must be formed from the metric tensor and also its derivatives.
◦
Gµν must

have dimensions of a second derivative. Any other terms with N 6= 2 number

of derivatives would appear multiplied with a constant of dimensions of length

to the power of N − 2. GR assumes that the field equations are uniform in

scale, so that
◦
Gµν must have only terms with second derivatives of the metric.
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Hence, this tensor only contains either terms quadratic in the first derivatives

or linear in the second derivatives of the metric.

• From Eq. (2.76), it can be noticed that the right-hand side of the equation ap-

pears the energy-momentum tensor which always is a symmetric tensor. Hence,

◦
Gµν must also be a symmetric tensor.

• Since the matter must be conserved in the sense of covariant differentiation,

i.e.,
◦
∇µT µν = 0, from Eq. (2.76), one notices that this new tensor

◦
Gµν must

also be covariantly conserved, i.e.,
◦
∇µ

◦
Gµν = 0. This condition ensures that

matter and energy are conserved and also that particles follow geodesics.

• As one can see from Eq. (2.75), for weak gravitational fields (Newtonian limit),

the 00 component of the tensor
◦
Gµν must be approximately equal to

◦
G00 ≈

∇2g00.

As discussed in Sec. 2.3.4, the curvature tensor (2.42) is constructed with the metric

and its derivatives. Moreover, this tensor contains up to second derivatives in the

metric so that it seems like a plausible quantity to consider in the final form of the

field equations. Further, it can be seen that a linear combination of its contraction

(Ricci tensor and scalar curvature) is the most general form that
◦
Gµν must have in

order to full fill the first condition written above. Therefore, one can write down

that the most general
◦
Gµν should take the following form

◦
Gµν = C1

◦
Rµν + C2 gµν

◦
R , (2.77)

which of course is a symmetric tensor and C1 and C2 are arbitrary constants. These

constants can be set directly by using the Newtonian limit and also the fact that

this tensor must satisfy
◦
∇µG

µν = 0. A simple analysis tells us that using these two

conditions, one has that C1 = −2C2. It should be noted again that the symbol ◦
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was introduced to label quantities computed with the Levi-Civita connection since

in forthcoming chapters, it will be dealt with other kinds of connections. Therefore,

a tensor which satisfies all the requirements established above is the one which is

given by

◦
Gµν ≡

◦
Rµν −

1

2
gµν

◦
R . (2.78)

This tensor is known as the Einstein tensor. Moreover, from the Newtonian limit

one can also notice that the coupling constant must be equal to

κ2 = 8πG . (2.79)

Hence, from Eq. (2.76), the final form of the famous Einstein field equation is the

following

◦
Rµν −

1

2

◦
Rgµν = κ2Tµν . (2.80)

The above equations are known as the Einstein field equations. The left-hand side of

this equation describes the geometry of spacetime, characterised by the Ricci tensor,

scalar curvature and the metric. The right-hand side of this equation contains all

the information related to the matter content, which is in the energy-momentum

tensor Tµν . The constant κ2 is just a coupling constant that needs to be equal to

8πG in order to match the Newtonian limit given by the Poisson equation (2.67). In

this form, one can directly notice that the concept of gravity is directly related to

the geometry. This consequence comes directly from the principles assumed in the

theory. In general, this equation is difficult to solve since it is a system of 10 non-

linear partial differential equations. For that reason, Einstein thought that nobody

will be able to solve his equation. Surprisingly, only one year after Einstein proposed



Chapter 2. The Theory of General relativity 47

its equations, Karl Schwarzschild found the first exact solution of GR for a vacuum

spherically symmetric geometry. Currently, there are more than 4000 known exact

solutions in GR (Stephani et al., 2009). Basically, the equations are complicated to

solve but they can be treated by assuming some symmetries in the spacetime studied.

Soon after Einstein proposed this famous equation, in 1917 he proposed its first

modification. With the aim of having a stationary Universe, he realised that one

needed to introduce an additional term to Eq. (2.80). He thought that the Universe

must be static and that also that it must satisfy the Mach’s principle. Moreover, he

also thought that in order to avoid the gravitational collapse, one needed to introduce

this new term to his equation. He said: “The term is necessary only for the purpose

of making possible a quasi-static distribution of matter, as required by the fact of

the small velocities of the stars”. This term is known as the cosmological constant

and he noticed that it is possible to modify his field equations to also satisfy the

condition of having a static Universe. This modification it is known as the Einstein

field equations with cosmological constant, explicitly given by

◦
Rµν −

1

2

◦
Rgµν + Λgµν = κ2Tµν , (2.81)

where Λ is the famous cosmological constant. Some years later Einstein introduced

this cosmological constant, astronomical observations proved that the Universe is

expanding (not static). Then, he thought that adding this term to his equation was

the most important failure of his career. Today, it is known that the Universe is

expanding but also in an accelerated way. Trying to understand the acceleration of

the Universe is one of the most important goals for the physics today. Actually, one

of the most important models for modern cosmology is based on this cosmological

constant since it can mimic (quite well) the behaviour of the accelerated expansion of

the Universe (see Sec. 2.5.2). One can say that the motivational idea of introducing

this constant was incorrect (since Einstein wanted to have a static Universe), how-
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ever, in the end, this constant is one of the most important ingredients in modern

cosmology.

Another alternative way to find the Einstein field equations is by using the stan-

dard Lagrangian approach. Soon after Einstein proposed its equation, the mathe-

matician Hilbert realised that it is also possible to define an action which describes

the Einstein field equations. Then, one can vary this action with respect to the

metric using the standard variational method. The action principle tells us that for

any given action S, its variation δS (in this case with respect to the metric) must

be zero. This principle comes from the idea of the minimization of the action. This

action is known as the Einstein-Hilbert action and it is explicitly given by

SGR =
1

2κ2

ˆ
d4x
√
−g

◦
R + Sm , (2.82)

where g = det(gµν) and Sm is any matter action. In this action the scalar curvature

◦
R is the main ingredient. By varying this action with respect to the metric and

equating it to zero, δSGR = 0, one directly finds that the integrand of the first term

becomes

√
−g δ

◦
R +

◦
Rδ
√
−g =

[ δ ◦R
δgµν

− 1

2

◦
Rgµν

]
δgµν
√
−g , (2.83)

where it has been used that δ
√
−g = −(1/2)

√
−g gµνδgµν . From the definition of

the scalar curvature
◦
R =

◦
Rµνg

µν given in Eq. (2.60), now with Γλµν =
◦
Γλµν , it can be

directly found that the first term in the above equation becomes

√
−g δ

◦
R

δgµν
=
√
−g

◦
Rµνδg

µν +
√
−g

◦
∇σ

[
gµνδΓσνµ − gµσδΓλλµ

]
=
√
−g

◦
Rµνδg

µν + b.t. , (2.84)

where
√
−g

◦
∇µV

µ = ∂µ(
√
−g V µ) was used (where V µ is any vector). By using the
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latter identity, one can directly see that the whole last term on the above equation is

a boundary term (b.t.). Since this boundary term does not affect the field equations,

it can be neglected. Hence, from Eq. (2.83) and the action (2.82) one directly finds

that

◦
Rµν −

1

2

◦
Rgµν = κ2Tµν , (2.85)

where Tµν is the energy-momentum tensor defined as

Tµν = − 2√
−g

( δSm

δgµν

)
δgµν . (2.86)

As can be seen, Eq. (2.85) matches with (2.80) so that, the Einstein field equations

obtained from the Einstein-Hilbert action match with the ones proposed by Einstein.

One can also add a cosmological constant to the Einstein-Hilbert action by adding

the term

SΛ = − 1

κ2

ˆ
d4x
√
−gΛ , (2.87)

and then find the corresponding Einstein field equation with a cosmological constant.

For modified theories of gravity, the Lagrangian approach is extremely important. In

future chapters, this approach will be used to obtain the field equations of modified

theories of gravity. This thesis will be focusing on modified theories of gravity,

explicitly speaking, modified Teleparallel models. As pointed out, it will focus on

studying some cosmological models. To understand this better, the basis concepts

of cosmology will be introduced in the next section.
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2.5 Friedmann-Lemâıtre-Robertson-Walker

cosmology

Cosmology is facing an important challenge today. The discovery of the acceler-

ated expansion of the Universe changed radically the notion of how our Universe

is evolving. This section is devoted to describing some basic properties of cosmol-

ogy, starting from Newtonian cosmology and then finishing with the well-known

Friedmann-Lemâıtre-Robertson-Walker cosmologies starting from GR. These sec-

tions will be useful to also understand future sections related to modified theories of

gravity where different models will be proposed to mimic the dark energy problem.

Cosmology tries to address and model the Universe at great scales and understand

how it evolves and how it will continue evolving in time. Hence, its study is difficult

and challenging but also it is an extremely interesting and on-going subject. One

can say that cosmology is quite a new field on physics but that is not true at all.

From the very beginning of times, mankind has asked about what is our place in the

Universe and how it all started. Even though those questions have always been on the

table, before the 20th century, cosmology was thought to be more a subject related to

philosophy rather than physics. One can say that modern cosmology started in 1929,

when the astronomer Edwin Hubble discovered that the Universe is expanding. The

expansion of the Universe has been one of the most important discoveries in the XX

century since it changed the vision and comprehension of the Universe. Hubble used

distant galaxies and realised that if a galaxy is further away from the Earth, they

tended to move faster with respect to the Earth. So, distant galaxies are moving

further away from Earth than the nearest ones. The most accepted model which

deals with those observations is that the Universe itself is expanding and hence, with

respect to an observer on the Earth, a further away galaxy will move faster than
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nearer galaxies. An easy way to understand the expansion of the Universe is by

thinking that the Universe is similar to a balloon which is inflated at each moment

as it is depicted in Fig. 2.8. Consider that initially at t0, the Earth is located at

a point A of this balloon, and there are two galaxies: a nearer galaxy located at

the point B and a further away galaxy located at a point C. Now, if the balloon is

inflated at t′, from the perspective of an observer located on the Earth (comoving

with the expansion), the galaxies will be displaced towards two new points B′ and

C ′. Now the distance between the galaxies are greater due to the expansion, i.e.,

∆x′AB > ∆xAB and ∆x′AC > ∆xAC . Hence, from a comoving observer located on the

Earth, the galaxies would be moving further away with respect to the Earth. Since,

there are more space contained from the Earth and the further away galaxy located

initially at B, the increment in the ∆xAC → ∆x′AC is greater than the increment in

the distance ∆xAB → ∆x′AB. Therefore, the quotient
∆x′AC−∆xAC

t′−t0 >
∆x′AB−∆xAB

t′−t0 , or in

other words, the velocities of the galaxies with respect to the Earth satisfy vAC > vAB.

Hence, a further away galaxy will move faster than a closer galaxy with respect to

the comoving observer located in the Earth. From the perspective of the Earth, one

can think that the galaxies are moving further away from it, but it is the balloon

(the Universe) which is creating this effect since it is inflating in all directions making

the points become displaced. This is actually the same as Hubble measured: distant

galaxies were moving faster away with respect to the Earth. Therefore, exactly as

the balloon is expanding one can understand those measurements as the Universe

itself is expanding.

Hubble measured the recession velocity v for different galaxies and noticed that

depending on its distance D with respect to the Earth, one can establish the following

relationship

v = H0D , (2.88)
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Figure 2.8: The Universe is represented as an expanding balloon where an observer
located at the Earth is said to be comoving with the expansion. The further away
galaxy (located initially at C) will move faster than the closer galaxy (located initially
at B) with respect to the Earth.

where H0 is known as the Hubble constant. The above equation is known as the

Hubble law. Hence, the recession velocity of a further away galaxy will be greater than

a near galaxy. Hubble measured this constant but it is known that his measurements

were not good enough to find a good approximation of its real value. Actually,

from his measurements, the relationship between v and D was not linear. Since he

developed this theory, many researchers have tried to estimate this constant with

higher precision. This is one of the most important constants in physics and with

different modern techniques and astronomical measurements, it is believed to be

approximately H0 ≈ 67, 4 ± 0.5 km s−1Mpc−1 (Aghanim et al., 2018). However,

there is a discrepancy of around 3.6σ about this value with local measurements of the

Hubble constant, which suggest that its value is slightly bigger; H0 ≈ 73, 24±1, 74 km

s−1Mpc−1 (Riess et al., 2016). Then, those values and error bars are non-overlapping.

The Hubble constant is also important to estimate the age of the Universe since it
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is directly related to it via (Hawley & Holcomb, 2005)

tUniverse =
1

H0

≈ 13.8 Gyrs . (2.89)

Thus, the Universe is more or less 13.8 billion years old. The Hubble law can be seen

as the beginning of modern cosmology and because of that, Hubble is regarded as

one of the fathers of cosmology.

A more recent important discovery which changed all the notion of modern cos-

mology was discovered in 1998. Supernovae type Ia have a consistent peak luminosity

so they can be used as standard candles in the Universe. Two independent groups

of researchers studied these kinds of astrophysical objects and they noticed that

the Universe is not only expanding, but also it is expanding in an accelerated rate

(see Riess et al. (1998); Perlmutter et al. (1999)). This is an extremely important

discovery since it was in the opposite direction as physicists believed. Further, the

researchers who discovered the accelerated expansion of the Universe won the Nobel

prize in 2011. If the Universe is accelerating, there must be something unknown that

is creating this behaviour. Since this ingredient was not understood, it was labelled

as dark energy. Even today researchers do not understand well this quantity and

it is an on-going field to study. One of the most important goals is to understand

this quantity better and hence, some people believe that GR must be modified to

understand this problematic issue in a better way. This thesis will be focus on some

modifications of GR with an emphasis on studying the dark energy problem.

In the next sections, it will briefly describe the basic notions of Newtonian cosmol-

ogy and then the standard Friedmann-Lemâıtre-Roberton-Walker cosmology starting

in GR with a cosmological constant. The latter model gives us one of the most im-

portant models of modern cosmology describing the current observations.
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2.5.1 Newtonian Cosmology

The basic ideas of cosmology will be introduced using standard Newtonian gravity

and then GR will be used to understand cosmology in a more rigorous way. An

expanding Universe can be naively understood using the ideas of Newtonian gravity

and Newton’s laws. Let us suppose that the Universe is homogeneous and spherically

symmetric. Consider a comoving spherically symmetric surface located in a certain

position of that Universe. Let us also suppose that the radius of this surface is much

less than the radius of the Universe. Therefore, all the galaxies inside the comoving

surface will only by influenced by their own gravitational fields. In this way, one can

neglect all the other gravitational fields from the rest of the Universe. Thus, this

situation can be understood if one imagines that the Universe is a Newtonian gas

expanding homogeneously and isotropically in all directions. Any particle of this gas

(which can be seen as a cluster of galaxies) will have the following trajectory

x(t) = x(t0)
a(t)

a(t0)
, (2.90)

where a(t) is a scale factor of the whole gas and t0 is an initial time where the expan-

sion started. This function will tell us how the gas is expanding (or contracting). If

one assumes a coordinate system where the centre of the gas is located at its origin,

the gravitational energy potential of a particle of the gas U(t) located at a distance

equal to the radius of the comoving sphere |x(t)| can be found by using Eq. (2.66),

giving us

U(t) = Mφ(t) = −Gmρ(t)V (t)

|x(t)|
= −4

3
Gmπρ|x(t0)|2 a(t)2

a(t0)2
, (2.91)
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where M is the mass inside the sphere of radius |x(t)| and V (t) = (4/3)π|x(t)|3 is

the volume of the sphere. The kinetic energy of this particle will be

K(t) =
1

2
m|x(t0)|2 ȧ(t)2

a(t0)2
, (2.92)

where dots represent differentiation with respect to the time t. Then, the total energy

of the particle will be the sum of the energy potential plus the kinetic energy, namely

E =
1

2
m
|x(t0)|2

a(t)2

[
ȧ(t)2 − 8πG

3
ρa(t)2

]
. (2.93)

On the other hand, from the 2nd Newtonian law, one directly finds that the acceler-

ation ẍ(t) of the gas will be

ẍ(t) = −G M

|x(t)|2
= −4

3
πGρ|x(t)| . (2.94)

Now, if one substitutes (2.90) into the above equation, one can find a differential

equation for the scale factor:

ä(t) = −4

3
πGρ(t)a(t) . (2.95)

Now, the energy density can be written as

ρ(t) =
M

V (t)
=

3

4π
M
a3(t0)

x(t0)
a(t)−3 = ρ0a(t)−3 , (2.96)

where initial energy density ρ0 = 3Ma3(t0)/(4πx(t0)) was defined here. Therefore,

one can rewrite (2.95) as follows

d

dt
(ȧ2(t)) =

8

3
πGρ0

d

dt

(
1

a(t)

)
. (2.97)
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Finally, by integrating this equation, one finds

( ȧ(t)

a(t)

)2

=
8πG

3
ρ(t)− k

a(t)2
, (2.98)

where k is an integration constant. The above equation is known as the first

Friedmann-Lemâıtre-Robertson-Walker (FLRW) equation, with the scale factor a(t)

being the function which measures distances in a expanding or contracting universe.

Using GR, the constant k can be identified as the spatial curvature of the universe.

Using Newtonian gravity, it is not possible to identify k with the spatial curvature of

the Universe. This equation is extremely important in cosmology since as it will be

seen later on, this equation also appears naturally using GR. The model described

above using Newtonian gravity to find the FLRW equations was firstly introduced

in McCrea & Milne (1934), soon after the FLRW model was introduced in GR.

Let us now briefly study what one can say about this model. As pointed out

before, this model visualizes the expanding Universe as a Newtonian gas which is

expanding in time. Each particle of the gas can be interpreted as a galaxy in an

expanding Universe. From observational measurements, at these scales, it has been

tested that the Universe is homogeneous and isotropic (see Sec. 2.5.2 for further

details). Hence, in principle one can choose any supercluster of galaxies (a particle

in our model) to draw the spherical surface which contains it on this boundary in

such a way that one can neglect all the other gravitational effects by the rest of the

Universe. By using (2.93) and (2.98), one can find that the total energy of a particle

on the boundary of this sphere will be given by

E = −1

2
m
|x(t0)|2

a(t)2
k . (2.99)

From here, one can notice three important cases which depend on the sign of the

constant k. Depending on this sign, different kinds of expanding universes can be
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obtained. From the above equation, one can notice that this model tells us that

for k < 0 the universe expands infinitely, for k = 0 the universe expands until a

late-time t → ∞ and for k > 0 the universe expands and then it stops to begin a

new contracting era (known as Big Crunch). The model used using the Newtonian

laws is known as Newtonian Cosmology. Even though, Newtonian Cosmology might

reproduce some viable characteristics from (2.98) and (2.99), to fully understand the

dynamics of our Universe, one needs to use GR. The Newtonian interpretation is

essentially incomplete for various reasons, for instance:

• The Newton laws do not work for situations where the particles move at veloc-

ities comparable to the velocity of the light.

• To have a better understanding of what it means the scale factor a(t), one

needs to use GR.

• To justify that one can neglect all the effects of the matter outside the sphere

one needs to assume the Birkhoff Theorem. To probe this theorem, one of

course needs GR.

• To understand that the constant of integration k is a spatial curvature one

needs to use GR.

• Newtonian gravity uses the concept of absolute time which is incorrect.

There are other several important problems coming from this approach. However,

the Newtonian laws can give us an intuitive and initial idea of the behaviour of an

expanding universe. Therefore, to understand it with more precision and in a more

rigorous physical way, GR needs to be used.

2.5.2 FLRW Cosmology and ΛCDM model

Cosmology tries to describe the structure, history and the dynamic of the Universe

considering it as an entire whole entity. When one is referring to Einstein cosmology,
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one is referring to the cosmology which assumes that GR is valid. Therefore, it

implies that also the GR principles and the Einstein field equations are assumed

to be correct. As will be seen in following sections, it is also possible to obtain

more general equations by taking some modified theories of gravity. In mostly all

those models, the standard GR case can be recovered in a a specific limit. Mainly

all the cosmological models assumed that at cosmological scales, the Universe is

homogeneous and isotropic. Therefore, any location in the Universe does not occupy

a special position. The latter is known as the cosmological principle, which can be

summarised as follows

“Over very large scales and statistically, the Universe is homogeneous and

isotropic on its spatial part, always it has been like that and it will be like this for

ever ”.

Homogeneous means that the Universe must be uniformly distributed and isotropic

means that there is not any preferred direction. The cosmological principle also says

that those characteristics must be valid from the beginning of the Universe and

moreover, that it will be like that for ever. Hence, the Universe has translational

and rotational symmetries. It also states that it is valid on very large scales. Cur-

rently, there is observational evidence that the Universe satisfies the cosmological

principle for scales at around l & 200h−1[Mpc]1 (∼ 108 light years). Observational

observations such as the 2dF Galaxy Redshift Survey (Loveday et al., 1995) shows

that at that mentioned scale, the Universe is homogeneous and that the galaxies are

somehow non-randomly associated or organized. It is important to mention that one

of the most important evidences which suggests that our Universe is isotropic comes

from CMB observations (Ade et al., 2014b).

1h−1[Mpc] is a galaxy distance unit which depends on the Hubble constant H0 and hence it
depends on the cosmological model assumed. In this case h = H0/100[km/s/Mpc]
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2.5.2.1 FLRW cosmology

The assumption that the Universe is homogeneous and isotropic, one can find a

metric which describes this kind of spacetime. The metric which describes a universe

which satisfies the cosmological principle is the FLRW metric. In this geometry, the

space contains the greatest number of symmetries so it is the maximally symmetric

spacetime. Technically speaking, a maximally symmetric spacetime is a spacetime

which has N(N+1)/2 Killing vectors for N spatial dimensions of the spacetime. For

the GR case N = 3, there are 6 independent Killing vectors. They are associated with

the invariance of rotations and translations in the FLRW spacetime. Using pseudo-

spherical coordinates (t, r, θ, φ) centred at any point of the universe, the most general

spacetime with this property is given by the FLRW metric which is

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2 dθ2 + r2 sin2 θ dϕ2

]
, (2.100)

where a(t) > 0 is the scale factor of the universe which has dimensions of length

and of course only depends on the coordinate t since re-scale distances through the

expansion. This function is the same one introduced in the previous Newtonian

cosmology section. The constant k = {−1, 0, 1} is the spatial curvature representing

different kind of universes. For k = −1 the universe is an open universe (hyperbolic

space), hence if for example one draws a triangle, the sum of their angles is less

than 180◦. For the k = 0 case, the universe is flat (Euclidean space) and finally for

the case k = +1 the universe is closed (3-sphere space). For the last case, the sum

of the angles of a triangle is always greater than 180◦. Cosmological observations

tell us that the Universe is almost flat k ≈ 0 (Aghanim et al., 2018). This metric

was first derived by Alexander Friedmann in 1924 but his results were not regarded

important at that time since the Universe was assumed to be static. Soon after,

Georges Lemâıtre also derived the same result independently and later in the 30s
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Howard Roberton and Arthur Walker showed rigorously that actually the above

spacetime is the most general one satisfying the cosmological principle. For these

historical reasons, some people only name this spacetime as Friedmann-Roberton

(FR) or Friedmann-Roberton-Walker (FRW). However, being rigorous, all of them

somehow contributed to this important metric so throughout this thesis, this metric

will be labelled as the FLRW metric.

To fully describe the dynamics of the Universe, one also needs to assume the

matter/energy which describes the content of the Universe. In cosmology, it is usual

to model all the matter/energy content of the Universe as a perfect fluid whose

energy-momentum tensor is given by

Tµν = (ρ+ p)uµuν − p gµν , (2.101)

where p = p(t) and ρ = ρ(t) are the pressure and energy density of the fluid and uµ is

the 4-velocity of an observer comoving with the expansion uµ = (1, 0, 0, 0) satisfying

uµuµ = 1. It should be noted that a perfect fluid is the one which that has an

equation of state which relates its pressure with its energy density as ρ = ρ(p) or

p = p(ρ). Now, there are all the ingredients to obtain the FLRW equations in a GR

setting. For the FLRW metric (2.100) and the matter content described by a perfect

fluid as (2.101), the standard FLRW equations can be obtained using the Einstein

field equations (2.80), giving us

3H2 +
3k

a2
= κ2ρ , (2.102)

3H2 + 2Ḣ +
k

a2
= −κ2p , (2.103)

where dots denote differentiation with respect to time and the so-called Hubble pa-
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rameter or Hubble rate has been introduced,

H =
ȧ

a
. (2.104)

Eq. (2.102) is called the first Friedmann equation of the Friedmann constraint and

Eq. (2.103) is called the second Friedmann equation or the acceleration equation.

The first FLRW equation is the same one described in the Newtonian Cosmology

section (see Eq. (2.98)).

Sometimes it is also convenient to derive the so-called Raychaudhuri equation

which can be directly found from the FLRW equations. By subtracting (2.102) with

(2.103) one arrives at

ä

a
= −κ

2

6
(3p+ ρ) , (2.105)

which tells us about the acceleration of the universe. The universe is acceler-

ating(decelerating) when ä > 0(ä < 0) and moreover expanding(contracting) if

ȧ > 0(ȧ < 0). From this equation one can notice that if 3p+ ρ > 0 the universe will

be decelerating whereas for 3p + ρ < 0 the universe is accelerating. By using the

fact that the energy-momentum tensor is covariantly conserved (
◦
∇µT µν = 0), one

can obtain the conservation equation for the fluid which is given by

ρ̇+ 3H(ρ+ p) = 0 . (2.106)

This equation is not an independent equation since it can also be obtained directly

from the FLRW equations. There are two independent equations and there are three

unknown variables (a(t), ρ and p), so the system must be closed with an additional

equation. To do this, one usually assumes that the fluid relates its energy density

with its pressure as a certain function p = p(ρ). Hence, there is a certain equation
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of state (EoS) which relates those quantities. Moreover, a barotropic fluid is usually

assumed for standard cosmology. This fluid has the following equation of state

p = w ρ , (2.107)

where w is a constant known as the equation of state parameter. Depending on its

value, it could represent different kind of fluids, namely:

• Cosmological constant fluid w = −1.

• Dark energy fluid w = −1/3.

• Dust (non-relativistic fluid) w = 0.

• Radiation (relativistic fluid) w = 1/3.

Fluids are known to be always in the regime where w = [0, 1] but negative values of w

could be also considered. However, up to now, fluids with negative w have not been

discovered yet. Using the EoS equation, the system of equations is closed. Then, by

using the conservation equation of the fluid (2.106) it can be directly found that the

energy density behaves as

ρ(t) = ρ0 a(t)−3(1+w) . (2.108)

Hence, the energy density for matter-like, radiation-like and a cosmological-like fluids

behave respectively as

ρm = ρ0,m a(t)−3 , ρrad = ρ0,rad a(t)−4 , ρΛ = ρ0 . (2.109)

Here ρ0,m, ρ0,rad and ρ0 are integration constants. If one uses the equation of state
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(2.107) into Eq. (2.105), one finds

ä

a
= −κ

2

6
(3w + 1)ρ . (2.110)

From this equation one can see that the only way to achieve an accelerating scenario

would be when w < −1/3. Hence, one needs negative values of the state parameter

to obtain accelerating universes. Therefore, dark energy needs to be described by

a negative value of the state parameters which gives rise to repulsive gravitational

effects. These kind of fluids violate the standard energy conditions. A fluid described

by a w < −1 state parameter is known as phantom fluid . Fluids with w < 0 have

not been found yet in the laboratory.

Assuming a flat universe (k = 0), if one replaces (2.108) in the Friedmann con-

straint (2.102), one can find that the scale factor of the universe takes a power-law

form when w 6= −1

a(t) ∝ t
2

3(1+w) , (2.111)

and an exponential form

a(t) ∝ e±
√
κ2ρ0

3
t , (2.112)

when w = −1. From (2.111), one can see that for a radiation-like fluid the scale factor

behaves as a(t) ∝ t1/2 and for a matter-like fluid as a(t) ∝ t2/3. It should be remarked

that (2.111) could describe an expanding or contracting universe depending on the

sign of the square root. The solution described by (2.111) is known as a power-law

solution and the solution behaving as (2.112) is known as a de-Sitter solution. The

latter solution corresponds to a never-ending accelerating behaviour of the universe.



Chapter 2. The Theory of General relativity 64

2.5.2.2 A very brief history of the Universe

In this section, it will be very briefly discussed what observations have told us about

the history of the Universe. Roughly speaking, from different observations, it has

been noticed that the Universe has faced different eras. It started at around 13.8

billion years ago in a Big Bang in a cosmological singularity where all the evolution

of the Universe started. The Universe was really hot and small and then during the

expansion became colder and bigger. It can be said that GR is not a sufficiently

powerful theory to fully describe what happened from times from 0 to the Planck

time (around < 10−43 seconds after the Big Bang). To understand this era better,

a quantum theory of gravity is needed since quantum effects are important at those

scales. Up to now, there is not a final accepted quantum gravity theory so this

is a challenging open question in physics. After this, the Universe experienced an

inflation era, which was an extremely rapid accelerating expansion of the primordial

Universe. The Universe expanded around 1026 times in a very small fraction of

time of around 10−33 to 10−32 seconds (Guth, 1981). This is the same as more

or less expanding the Universe from a nanometre to approximately 10 light years

in only that extremely small period of time! After that, the Universe passed an

era dominated by radiation (around 10 seconds after the Big Bang) where photons

dominated the evolution of the Universe (Ryden, 2016). At this stage, the Universe

became transparent and then the Cosmic Background radiation was created (CMB)

(Spergel et al., 2007). This epoch finished at around 400.000 years after the Big Bang

(Ryden, 2016). As seen, in GR, a(t) ∝ t1/2 in this era. Cosmology at early-times tries

to deal with those epochs of the Universe. After that, the Universe faced a matter

dominated era, that according to GR, the scale factor behaves as a(t) ∝ t2/3. It is

believed that in this epoch, the galaxies were formed. Finally, at approximately 10

billion years after the Big Bang, the Universe started experiencing a dark energy era.
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The physics of the era comprehending from matter to the dark energy dominated era

is known as late-time eras. In this moment, we are living in the transition between

matter-dark energy eras. This history of course, is just a very brief description about

what actually has happened to the Universe and how it has been evolved. However,

a good cosmological model should be able to at least describe those kinds of different

dominated eras. One of the most challenging and important questions in physics is

how to try to describe the evolution of the Universe from the Big Bang. This naive

model of our Universe is constructed by different observational measurements (see

for example Aghanim et al. (2018); Spergel et al. (2007)).

2.5.2.3 ΛCDM model

The simplest model which mimics the dark energy is known as the Λ-cold-dark-matter

model or ΛCDM. In this model, the cosmological constant Λ plays an important role

and it is assumed that the Einstein field equations with the cosmological constant

are valid. For the FLRW metric, the Einstein field equations with a cosmological

constant (2.81) takes the following form

3H2 +
3k

a2
− Λ = κ2ρ , (2.113)

3H2 + 2Ḣ +
k

a2
− Λ = −κ2p . (2.114)

These equations are called the FLRW with cosmological constant. It should be noted

that Λ can be written either on the left hand side or the right hand side of the above

equations, but to emphasize that it is related to the geometry (or a modification of

the Einstein field equations), it was written on the left hand side. This is of course

just a matter of convention; one can also think that Λ is a kind of matter and then,

it should appear on the right hand side of the above equations. If one assumes that

ρ = p = k = 0 and Λ 6= 0 one can directly find a(t) ∝ e
√

Λ/3t which according to
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(2.112), is the same solution as a w = −1 fluid with

Λ = κ2ρ0 . (2.115)

Then, a flat universe without any source will give rise a de-Sitter universe. Hence, the

cosmological constant is related to the vacuum energy density ρ0 = ρvac and behaves

as a fluid with a negative pressure. Since a constant energy density (w = −1) give

rise to the same evolution of a universe as only having a cosmological constant, this

kind of fluid is sometimes known as a cosmological-like fluid.

Let us now consider the standard flat ΛCDM model where it is assumed that k = 0

and the matter is described by a energy density ρ = ρm and a barotropic pressure

p = pm = wρm. For this case, the energy density will be given by Eq. (2.108) and

from the FLRW with a cosmological constant (2.113)-(2.114), one can directly find

that the scale factor behaves as

a(t) ∝ sinh
[1

2

√
3Λ(1 + w)t

] 2
3(w+1)

, (2.116)

which behaves as a(t) ∝ t
2

3(1+w) (matter dominated) for t → 0 and a(t) ∝ e
√

Λ/3

(cosmological constant dominated) for t → ∞. Hence, this model has the correct

asymptotic behaviour starting with a matter-dominated era and then finishing in

dark energy dominated era with Λ being the responsible of this epoch. The latter

epoch is then dominated by the cosmological constant. For early-times, this model

can replicate a radiated dominated era by choosing w = 1/3 and a matter dominated

era by choosing w = 0. However, this model cannot describe both early dominated

eras at the same time. To achieve a universe which faces the correct history of our

Universe; radiation era → matter era → cosmological constant era; an additional

fluid must be introduced. However, by doing that, it is not possible to find an exact

solution for the scale factor. One can then use for example, dynamical systems
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techniques to analyse and model this more reliable representation.

If one introduces more fluids, in general, these fluids must satisfy the conser-

vation equation given by (2.106). So, for example let us assume that there are two

fluids characterised by their two energy-momentum tensor T (1)
µν and T (2)

µν respectively.

Since the total energy-momentum tensor Tµν = T (1)
µν + T (2)

µν satisfies the conservation

equation, one can rewrite that each fluid satisfies

◦
∇µT (1)

µν = Qν ,
◦
∇µT (2)

µν = −Qν , (2.117)

where Qν is a vector which measures a transfer of energy-momentum between the

fluids. If there is no interaction or transfer of energy-momentum between those

fluids, one obtains that Qν = 0 and therefore each fluid, independently satisfy its

own conservation equation
◦
∇µT (1)

µν = 0 and
◦
∇µT (2)

µν = 0. This procedure of course

can be generalised for N fluids but of course the model will be more complicated to

analyse.

Today, it is also known that the matter content described by ρm is mainly com-

posed by another unknown quantity labelled as dark matter in 1933 by Fritz Zwicky.

This quantity was introduced with the aim to understand different astronomical ob-

servations that did not match with the theoretical gravity models. Examples for those

observations are weak gravitational lensing (Clowe et al., 2006), CMB (Spergel et al.,

2007), galaxy rotation curves (Rubin et al. (1980); Navarro et al. (1996); Corbelli

& Salucci (2000)) and also observations from galactic halos and clustering (Moore

et al. (1999); Cooray & Sheth (2002)). It is believed that this kind of matter does

not interact electromagnetically, and thus it is not possible to directly observe it with

standard telescopes. Usually, it is modelled as a cold kind of matter with an EoS

w = 0.

For completeness, let us finish this briefly description of ΛCDM by introducing

three different fluids: a cold dark matter-like fluid ρcdm, a baryonic matter-like fluid
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ρb and a radiation-like fluid ρrad. The first two matter-like fluids can be described as

a fluid with an EoS w = 0 behaving as ρm ∝ a(t)−3. Then, the first FLRW equation

(2.113) reads

3H2 = κ2(ρcdm + ρb + ρrad) + Λ− 3k

a2
. (2.118)

Assuming that there is not interaction between the fluids, the energy densities behave

as Eq. (2.109). Now, by dividing the above equation by 3H2, one can rewrite it as

follows

1 = Ωm + Ωrad + ΩΛ + Ωk , (2.119)

where dimensionless density parameters were defined in the following way

Ωm = Ωcdm + Ωb =
κ2

3H2
(ρcdm + ρb) , Ωrad =

κ2ρrad

3H2
, ΩΛ =

Λ

3H2
, (2.120)

and then Ωk = −3k/ȧ2 = 1− Ωm − Ωrad − ΩΛ. Now, by using the solutions (2.109)

and then by replacing them in (2.119) one finds

H2 = H2
0

[
(Ωcdm,0 + Ωb,0) a−3 + Ωrad,0 a

−4 + ΩΛ,0 + Ωk,0 a
−2
]
, (2.121)

where it was assumed that the integration constants (related to ρ0,x) are a0 = 1

and Ω0,x, and H0 is the Hubble constant. Using this simple model, one can mimic

different epochs of the Universe as matter, radiation and cosmological constant eras.

From the above equation, one can directly see that at early-times, the radiation term

will dominate, then matter will dominate and finally the Universe will be dominated

by dark energy represented by the cosmological constant. From observations we

know that the best way to describe our Universe is by having the following parame-
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ters (Aghanim et al., 2018)

Ωcdm,0h
2 = 0.11933± 0.00091 , Ωb,0h

2 = 0.02242± 0.00014 , Ωrad ≈ 10−4 ,

(2.122)

Ωm,0 = 0.3111± 0.0056 , ΩΛ,0 = 0.6889± 0.0056 , Ωk,0 = 0.001± 0.002 .

(2.123)

The above values tells us that our Universe is mainly composed by the dark energy

component. Hence, it is extremely important to understand its behaviour and its

physical properties. Observational measurements suggest that our Universe is almost

flat (k ≈ 0). This will be considered in almost all the models studied throughout

this thesis. One can also notice that non-baryonic matter (cold dark matter) consists

of around 84% of all the matter content ρm. Thus, one can say that cosmology is

facing the most exciting and interesting time on its history since the most important

ingredients, dark energy and dark matter, are not very well understood yet. One

of the most important motivations of introducing modified theories of gravity is

to try to understand those quantities better. Using Combining Planck data with

Pantheon supernovae and BAO data, it has been measured that the dark energy

state parameter is w = −1.03± 0.003 which is consistent with having a cosmological

constant as a responsible of dark energy (Aghanim et al., 2018). Hence, one can

say that the ΛCDM described by Eq. (2.121), is the simplest model which describes

the different epochs that the Universe has experienced. Of course, this is not the

final model and there are certain problems that will be discussed better in the next

section.

2.5.2.4 The Cosmological constant problem

Despite the good precision with which ΛCDM predicts the current cosmological

observations, theoretically there are some issues and one of the most important
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ones is called the cosmological constant problem. In this section, this problem will be

briefly explained. For more details, see the reviews by Weinberg (1989, 2000); Martin

(2012). The cosmological constant is introduced in GR as a parameter with the aim

of describing the accelerating expansion of the Universe. Then, using observations,

one can constrain its value. According to what was shown in the previous section,

a cosmological constant acts like a fluid with a negative pressure with an equation

of state equal to pΛ = −ρΛ (with wΛ = −1). From observations, the cosmological

constant needs to take a very small value of approximately (Clifton et al., 2012)

Λ ≈ 10−52 m−2 . (2.124)

However, it is not possible to consider a fundamental theoretical reason on why this

value needs to take this very small value. In quantum field theory, the energy density

of a vacuum ρvac is given by (Sakharov, 1968)

〈0|Tµν |0〉 = −ρvac gµν , (2.125)

where |0〉 is the vacuum state which, classically, is the state of minimum energy.

At the quantum level, due to the Heisenberg principle, the kinetic and the potential

energy cannot be zero at the same time. Then, an additional source of energy coming

from quantum effects (vacuum state) contributes to the Einstein field equations.

Thus, there are two types of cosmological constants, one related to classical effects

and the other related to quantum ones. Classically, it is interpreted as the value

of matter fields when the kinetic energy is zero and the potential is minimum, then

ρvac = V (φmin), where φ is a classical scalar field which represents a perfect fluid. By

doing this, one obtains that classically,

ρΛ ' 10−47 GeV4 . (2.126)
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On the other hand, the quantum effects due to fluctuations in the vacuum state can

be computed by considering a massive scalar field φ with mass m and a potential

V (φ) = m2φ2/2. The energy density of this quantum state is given by (Martin et al.,

2014)

ρQM
vac = 〈0| ρφ |0〉 =

1

2(2π)3

ˆ √
k2 +m2 d3k =

m4

64π2
log

(
m2

µ2

)
' −108 GeV4 ,

(2.127)

where k = |ki| is the norm of the 3-dimensional momentum ki. It is clear that the

above integral diverges (UV divergence), therefore a cut-off scale kmax was introduced

to obtain the above approximated value. Quantum field theory would be valid until

this cut-off and GR is supposed to be valid just below the Planck scale. It should be

noted here that the zero-point energy density is positive for bosons and negative for

fermions. Both contributions are equal in absolute value and then the final result is

zero. Fermions are anti-commuting objects, giving rise to a negative vacuum energy

density. This is the reason why in the above equation, a negative sign appears. For

more details about this, see Weinberg (1989); Martin (2012).

The problem arises here. The Standard Model of particles predicts two symmetry

breaking phase transitions: Electro-Weak and QCD phase transitions. In those

phase transitions, the vacuum energy plays an important role being non-zero and

from experiments and observations, it has been measured that the energy density of

vacuum in those transitions are at the order of

ρEW
vac ' 108 GeV4 , ρQCD

vac ' 10−2 GeV4 . (2.128)

Then, the total energy density of vacuum is the sum of each quantity

ρvac = ρEW
vac + ρQCD

vac + ρQM
vac ' 108GeV4 . (2.129)
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Now, if one compares the above resulting value with the observed value of the cos-

mological constant (2.126), one notices that there is a huge difference of around 45

orders of magnitude! This is known as the cosmological constant problem and theo-

retically, is still an open problem in modern physics. One approach on trying to solve

this issue is by modifying the Einstein field equations, which is known as modified

theories of gravity. This thesis will deal with modifications of gravity but considering

an alternative and equivalent formulation of gravity, known as Teleparallel gravity.



3
Teleparallel gravity

Chapter Abstract

This chapter is devoted to presenting a translation gauge theory of gravity known

as Teleparallel gravity. The most important mathematical quantities are defined

and it is demonstrated that their field equations are equivalent to the Einstein field

equations. This theory represents an alternative description of gravity where the

spacetime is globally flat but not trivial since the torsion tensor is non-zero and

appears as the field strength of the theory.

3.1 An alternative description of gravity:

Teleparallel gravity

General Relativity (GR) is a very successful theory accurately describing the dynam-

ics of the Solar System. All predictions of General Relativity, including gravitational

waves, have now been experimentally verified. Nonetheless, when applied to the

entire Universe, we are faced with conceptual and observational challenges that are

sometimes simply summarised as the dark energy and the dark matter problems.

When considering the total matter content of the Universe, it turns out that approx-

imately 95% is made up of these two components we do not fully understand yet.

This, together with developments in other fields of physics has motivated a variety

of models which can be seen as extensions or modifications of General Relativity.

73
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Perhaps surprisingly, alternative formulations of General Relativity were con-

structed and discussed shortly after the formulation of the Einstein field equations.

One such description, which is of particular interest here, is the so-called Teleparallel

gravity or Teleparallel equivalent of General Relativity (TEGR). Its equations of mo-

tion are identical to those of General Relativity and their actions only differing by a

total derivative term. While both theories are conceptually different, experimentally

these two theories are indistinguishable. In TEGR, there is not a geodesic equation as

in GR. Instead, similar to electromagnetism, force equations describe the movement

of particles under the influence of gravity. Additionally, the dynamical variable is the

tetrad instead of the metric as in GR. With the aim to unifying electromagnetism

with gravity, Einstein introduced this approach in the 1920s with the tetrads being

the dynamical fundamental variables. This quantity has 16 degrees of freedom and

the metric only 10, so Einstein thought that the remaining degrees of freedom could

be used to describe electromagnetism. Of course, he did not succeed this unification

due to the fact the extra degrees of freedom, in the end, were related to the Lorentz

invariance of the theory. These ideas were first introduced by Einstein (Einstein,

1928).

The key mathematical result to this approach goes back to Weitzenböck in 1923

(Weitzenböck, 1923) who noted that it is indeed possible to choose a connection

such that the curvature vanishes everywhere but being non-trivial by having non-

zero torsion. The Teleparallel name stems from the fact that the notion of parallelism

is global instead of local on flat manifolds, see for instance Møller (1961); Hayashi &

Nakano (1967); Cho (1976); Aldrovandi & Pereira (2013); Maluf (2013) and reference

therein. Additionally, parallel transportation does not depend on the path chosen,

hence, angles and lengths are invariant under parallel transport.

This chapter is devoted to introducing the basis foundations of TEGR, which

is derived as a gauge theory of the translations. The field strength is given by
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torsion tensor and due to the nature of the spin connection, it gives a globally flat

spacetime with zero curvature. For a more detailed description of TEGR, see the

book Aldrovandi & Pereira (2013), which will be used in this thesis to review the

most important properties of this theory.

3.2 Tetrads and linear frames

Any gravitational theory is constructed in a manifold which at any point, a tangent

space is defined as a Minkowski spacetime with a metric ηab = diag(+1,−1,−1,−1).

In this thesis, Greek indices α, β, γ, .. denote spacetime indices whereas Latin indices

a, b, c, .. denote tangent space indices. Then, local bases for vector fields are defined

as {∂µ} = { ∂
∂xµ
} for a spacetime coordinate xµ, and {∂a} = { ∂

∂xa
} for a tangent space

coordinate xa. The fundamental variable in Teleparallel gravity is the so-called tetrad

field or vierbein which are the basis for vectors on the tangent space. In this thesis,

the tetrad is labelled as eaµ and its inverse as Eµ
a . Hence, the basis can be written as

ea = eaµdx
µ and ea = Eµ

a∂µ. It should be noted that tetrads can be always defined

if the manifold is assumed to be differentiable. The tetrads satisfy the orthonormal

conditions, namely

Eµ
me

n
µ = δnm , (3.1)

Eν
me

m
µ = δνµ . (3.2)

Additionally, the linear basis satisfies the following commutation relationship,

[ea, eb] = eaeb − ebea = Eµ
a∂µ(Eν

b ∂ν)− E
µ
b ∂µ(Eν

a∂ν) . (3.3)

After some simplifications, one gets that the above equation becomes

[ea, eb] = Eµ
aE

ν
b (∂µe

c
ν − ∂νecµ)ec = f cabec , (3.4)
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where the structure coefficients or coefficient of anholonomy f cab was defined as

the curl of the basis {ea}. Holonomic frames or inertial frames are the ones where

f cab vanishes at every point of the manifold. Linear frames provide a relation be-

tween Minkowski tangent spacetime metric ηab and Minkowski spacetime metric ηµν ,

namely,

ηµν = eaµe
b
νηab , (3.5)

which are known as trivial frames. Let us now define linear frames where f cab is

related to gravitation and inertia. In those frames, a pseudo-riemannian metric and

its inverse can be written with the tetrads as follows

gµν = eaµe
b
νηab , gµν = Eµ

aE
ν
b η

ab . (3.6)

It should be remarked that in those frames, it is always possible to locally have

f cab = 0 but globally they will not be zero since now they represent both inertia

and gravity. It is easy to verify that the determinant of the tetrad is related to the

determinant of the metric by

e = det(eaµ) =
√
−g . (3.7)

Then, in Teleparallel gravity, the fundamental variable is the tetrads and metric can

be reconstructed via (3.6).



Chapter 3. Teleparallel gravity 77

3.3 Gravitational gauge theory of the trans-

lations

Teleparallel theories of gravity are based on the idea of working within a geometri-

cal framework where the notion of parallelism is globally defined. In the standard

formulation of General Relativity this is only possible for spacetimes which are flat

and hence are completely described by the Minkowski metric ηµν . When working on

manifolds with torsion, it is possible to construct geometries which are globally flat

but have a non-trivial geometry. It turns out that Teleparallel gravity can be written

as a gauge theory of the translations. A gauge transformation is defined as a local

translation of the tangent space coordinates,

xa → x′a + εa(xµ) , (3.8)

where εa is a transformation parameter and then the infinitesimal transformation

takes the form δxa = εbPbx
a with Pa = ∂a being the infinitesimal generator that

satisfies [Pa, Pb] = ∂a∂b − ∂b∂a = 0. Now, a general source field ϕ = ϕ(xa(xµ)) will

transform under the transformation (3.8) as δϕ = εa∂aϕ. A global translation will

lead that those derivatives to transform according to

δ(∂µϕ) = εa∂a∂µϕ+ (∂aϕ)∂µε
a , (3.9)

which is not covariant. The above expression will be covariant only if εa is constant.

Then, one needs to introduce an auxiliary gauge potential Bµ with the aim to recover

covariance when derivatives are acting on any generic source field ϕ. If one introduces
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the translational gauge potential

Bµ = Ba
µPa , (3.10)

with Pa being the infinitesimal generators of translations, one can construct a gauge

covariant derivative

eµϕ = ∂µϕ+Ba
µ∂aϕ , (3.11)

with δBa
µ = −∂µεa, in such a way that for any source field ϕ, one obtains

δ(eµϕ) = εa∂a∂µϕ , (3.12)

which transforms covariantly under gauge transformations. Then, the gravitational

coupling prescription is achieved by replacing ∂µϕ→ eµϕ, giving

eµϕ = eaµ∂aϕ , (3.13)

and the tetrad field now is given by

eaµ = ∂µx
a +Ba

µ . (3.14)

It should be noted that the above tetrad is non-trivial, then Ba
µ 6= ∂µε

a.

Let us now perform a Lorentz transformation xa → Λa
bx

b which changes the frame

from eaµ → Λa
be
b
µ and then the gauge potential transforms as Ba

µ → Λa
bB

b
µ. Then, the

covariant translation derivative transforms as eµϕ = eaµ∂aϕ as before but with the

tetrads being equal to

eaµ = ∂µx
a +

•
wabµx

b +Ba
µ , (3.15)

where

•
wabµ = Λa

d∂µΛd
b (3.16)
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is a purely gauge quantity known as spin connection which represents inertial effects

in the new rotated frame. Since this connection is different from the ones computed

in GR, bullets will be used to differentiate between them. Here, one can find that

the gauge covariant derivative acting on a vector xa is equivalent to

•
Dµxa ≡ ∂µx

a +
•
wabµx

b , (3.17)

and notice that this term represents the non-gravitational part of the tetrad. In

these frames, one finds δBa
µ = −

•
Dµεa.

Let us remember here that any general connection can be split into two parts,

Γλµν = Eλ
a∂νe

a
µ + Eλ

aw
a
bνe

b
µ ≡ Eρ

aDµeaν , (3.18)

where the first part depends on tetrads and the second part on the spin connection.

Here Dµ is a covariant derivative where the generators act on tangent space only.

Conversely, one can find that the spin connection can be written as

wabµ = eaν∂µE
ν
b + eaνΓ

ν
ρµE

ρ
b = eaν∇µE

ν
b , (3.19)

where ∇µ is a general covariant derivative acting on the spacetime indices. The

above relationship is valid for any theory of gravity.

If one computes the commutation relation of gauge covariant derivatives, one

obtains

[eµ, eν ] = eµeν − eνeµ = eaµ∂ae
b
ν∂b − eaν∂aebµ∂b

=
(
∂µB

a
ν − ∂νBa

µ +
•
wabµB

b
ν −

•
wabνB

b
µ

)
Pa , (3.20)

where Eq. (3.15) was used. In gauge theories, the field strength is given exactly by
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the above quantity, which in this case is

T aµν ≡ ∂µB
a
ν − ∂νBa

µ +
•
wabµB

b
ν −

•
wabνB

b
µ =

•
DµBa

ν −
•
DνBa

µ . (3.21)

Now, if one replaces (3.15) in the above equation and uses [
•
Dµ,

•
Dν ]xa = 0, one

obtains that the field strength can be rewritten as

T aµν = ∂µe
a
ν − ∂νeaµ +

•
wabµe

b
ν −

•
wabνe

b
µ =

•
Dµeaν −

•
Dνeaµ ≡

•
Γ
a
µν −

•
Γ
a
νµ , (3.22)

which is skew-symmetric and the so-called Weitzenböck connection was defined as

•
Γ
a
µν =

•
Dµeaν = ∂µe

a
ν +

•
wabµe

b
ν . (3.23)

If one compares (2.34) with (3.22), one notices that the field strength T aµν is exactly

the torsion tensor. This means that in Teleparallel gravity, the field strength is

the torsion tensor and the connection is the Weitzenböck connection which is skew-

symmetric on its lower indices. It can be proved that the torsion tensor transforms as

a tensor and it is covariant under local Lorentz transformations, i.e., if x′a → Λa
bx

b,

the torsion tensor T ′aµν → Λa
bT

b
µν . Moreover, since tetrads are invariant under gauge

transformations, the torsion tensor is also invariant under gauge transformations. It

should be noted again that quantities with bullets mean that they are computed

in terms of the Weitzenböck connection. To avoid writing bullets in all quantities,

only connections, covariant derivatives and terms computed from curvature will be

labelled with them and all the other quantities as torsion will not have a bullet.

It is worthy mentioning here that
•
wabµ is a purely inertial connection which

represents inertial effects. Then, one can choose a specific frame where globally, this
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term vanishes. Using (2.42), one can rewrite the curvature tensor as

Ra
bµν = ∂µw

a
bν − ∂νwabµ + wacµw

c
bν − wacνwcbµ , (3.24)

then, if wa
bν =

•
wa

bν , the connection is purely inertial (see (3.16)) and the curvature

is identically zero:

•
R
a
bµν = ∂µ

•
wabν − ∂ν

•
wabµ +

•
wacµ

•
wcbν −

•
wacν

•
wcbµ = 0 , (3.25)

and for a non-trivial tetrad, T µνλ 6= 0 since the potential Bb
µ 6= 0. Therefore, Telepar-

allel gravity is a theory where the curvature is zero (globally flat spacetime) but

torsion is non-zero. Moreover, Teleparallel gravity is a gauge theory of translations

where the torsion tensor appears as the strength field of the theory. On the other

hand, in GR, the spin connection
◦
wabµ gives a zero torsion but a non-vanishing cur-

vature. Let us finish this section by using (3.19) which in Teleparallel gravity will

read as

•
wabµ = eaν∂µE

ν
b + eaν

•
Γ
ν
ρµE

ρ
b = eaν

•
∇µE

ν
b , (3.26)

which in a specific frame where the spin connection vanishes
•
wabµ = 0, one obtains

the Teleparallel condition:

eaν∂µE
ν
b + eaν

•
Γ
ν
ρµE

ρ
b = eaν

•
∇µE

ν
b = 0 . (3.27)

From the above equation, one can understand why the theory is called Teleparallel

gravity. It turns out that this equation is a distant parallelism condition since tetrad

is parallel-transported by
•
Γνρµ. This however, is no longer true for other frames

where the spin connection is non-zero. This thesis will be focused on modifications

of Teleparallel gravity in the frames where the spin connection vanishes since the

majority of the literature, historically, has been written in those frames. It should
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be remarked again that spin connection is a pure gauge quantity which measures

inertial effects so that it does not modify the equations of motion.

3.4 Action, field equations and equiva-

lence with GR

In this section, the Teleparallel field equations will be derived and their equivalence

with GR will be stated. For Teleparallel gravity, one has that the relationship be-

tween the Weitzenböck connection and the Levi-Civita connection (used in GR) is

given by the Ricci theorem (2.53),

•
Γ
λ
µν =

◦
Γ
λ
µν +Kµ

λ
ν , (3.28)

or in terms of spin connections

•
wabc =

◦
wabc +Kb

a
c . (3.29)

As seen in Sec. 2.3.4, from Eq. (2.55), the curvature tensor can be split into two

pieces: one part depending only on a combination of torsion, known as the contortion

tensor defined as (2.54), and the Riemannian curvature
◦
Rλ

αµν computed with the

Levi-Civita connection. Then, by contracting Rλ
αλν = Rαν , one obtains the Ricci

tensor which can be also split into two pieces as in (2.58). Now, if one contracts the

Ricci tensor given by (2.58), with the inverse of the metric as gαβRαβ, one obtains

the Ricci scalar (or scalar curvature) which can be written as

R =
◦
R + T − 2

e
∂µ(eT µ) =

◦
R− T +B , (3.30)
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where the boundary term

B =
2

e
∂µ(eT µ) = 2

•
∇µT

µ , (3.31)

and the so-called torsion scalar T

T =
1

4
T µνλTµνλ +

1

2
T µνλTνµλ − T µTµ , (3.32)

were defined. Here, the torsion vector Tµ = T λλµ was also defined. Later, it will

be remarked why B is called the boundary term. For simplicity, it is convenient to

introduce the superpotential

Sσ
µν =

1

4
(Tσ

µν −T µσν −T νσµ) +
1

2
(δνσT

µ− δµσT ν) =
1

2
(Kσ

µν − δµσT ν + δνσT
µ) , (3.33)

in order to rewrite the scalar torsion in a compact way as follows

T = Sλ
µνT λµν . (3.34)

For GR, one has T λµν ≡ 0 and hence T = B = 0 which gives us that the Riemannian

curvature
◦
R = R. On the other hand, for Teleparallel gravity, the Weitzenböck

connection gives us a globally flat spacetime with zero curvature and then with zero

scalar curvature (see (3.25)). By choosing the TEGR case, one needs to replace

quantities with the bullets, then Rλ
αµν =

•
Rλ

αµν and also R =
•
R. Therefore, in

Teleparallel gravity, Eq. (3.30) becomes

R
!

=
•
R =

◦
R + T − 2

e
∂µ(eT µ) =

◦
R− T +B = 0 , (3.35)
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which can be arranged to obtain

◦
R = −T +

2

e
∂µ(eT µ) = −T +B . (3.36)

Let us emphasise here that T and B are computed with the Weitzenböck connection

whereas
◦
R is a scalar computed from the Levi-Civita connection. Then, (3.36) is a

fundamental equation which relates GR with Teleparallel gravity and it will appear

frequently in the following chapters. It should be remarked again that this equation

is only valid in Teleparallel gravity.

The Lagrangian of Teleparallel gravity needs to be constructed as any gauge

theory, with the strength field which is the torsion tensor. To do this, one needs to

consider the following action

STEGR =
1

2κ2

ˆ
tr(T ∧ ?T ) + Sm , (3.37)

where tr represents the trace, T = (1/2)T aµνPadx
µ ∧ dxν is a 2-form and ?T =

(1/2)?T aµνPadx
µ ∧ dxν is its Hodge dual (∧ is the exterior product). The constant

κ2 = 8πG is added in the action in order to match it with the Newtonian limit

(and GR). Additionally, a matter action Sm was added for increased generality. It

is important to mention that this Hodge dual is not the standard one. In this case,

this Hogde dual is more general since TEGR is constructed on the soldered bundle

giving the opportunity to transform internal and spacetime indices with the tetrad

fields. Therefore, this dual is sometimes called as generalised Hodge dual. Involving

all the possible index contractions, one has

?T λµν = e εµνρσ(aT λρσ + bT ρλσ + cTαραg
λσ) , (3.38)

where a, b and c are constants and εµνρσ is the Levi-Civita symbol. Since the torsion



Chapter 3. Teleparallel gravity 85

tensor is skew-symmetric on its last two indices, T λµν = −T λνµ, only two contractions

are needed to construct the generalised Hodge dual, then one needs to set b = 2a.

Moreover, in 4 dimensions one has ??T λµν = −T λνµ which gives us that a = 1/4 and

c = −1. Further, if one uses some identities from the form calculus, one obtains that

the action (3.37) becomes

STEGR =
1

2κ2

ˆ
Te d4x+ Sm , (3.39)

with T being the scalar torsion (see (3.34)). From here one can notice a very im-

portant property of Teleparallel gravity that it is one of the reasons why it is a

fundamental theory. According to (3.36), the Ricci scalar
◦
R and the torsion scalar

T differ by the term B. Since the Einstein-Hilbert action, which is the action which

produces the Einstein equations (see (2.82)), is constructed with the Lagrangian

LGR =
√
−g

◦
R = e

◦
R and the Teleparallel Lagrangian is LTEGR = eT , they will differ

by

LGR − LTEGR = e(
◦
R + T ) = eB = ∂µ(eT µ) . (3.40)

Clearly, the Teleparallel Lagrangian and the Einstein-Hilbert Lagrangian differs only

by a term which is a boundary term. That is the reason why B was labelled as a

boundary term before. This means that the Teleparallel action (3.39) differ only by a

boundary term with respect to the Einstein-Hilbert action (2.82). Thus, if one takes

variations with respect to the tetrads in the Teleparallel action, one obtains the same

equations as taking variations of the Einstein-Hilbert action (2.82) with respect to the

metric. Therefore, action (3.39) gives the Einstein field equations. This is the reason

why in the literature, Teleparallel gravity is also known as the Teleparallel equivalent

of General Relativity or TEGR. Although they have the same field equations, they

are not completely equivalent theories since they have different actions and different

physical interpretations of the same physical effect. Since Teleparallel gravity has



Chapter 3. Teleparallel gravity 86

the same equations as GR, all the experiments that have confirmed its validity can

be also understood as confirming that Teleparallel gravity is correct also. Then, one

can conclude that it is a matter of interpretation whether gravity is described by a

zero torsion theory with non-zero curvature (GR) or a theory with zero curvature

and non-zero torsion (TEGR).

It should be mentioned here that Einstein used another approach to construct

the Teleparallel action based on scalars constructed by all the possible contractions

of the torsion tensor: T µνλTµνλ, T
µνλTνµλ and Tλµ

λT νµν . By doing this, one has a

three parameter theory, that Einstein set in a very specific way in order to recover a

theory which is equivalent to GR in field equations. A theory without setting these

three parameters was later studied by Hayashi & Shirafuji (1979) and called New

General Relativity. In Chap. 6, this theory and its modifications will be discussed.

To conclude this section, let us find the Teleparallel field equations which are

equivalent to the Einstein field equations. Since this thesis will deal with the frames

where the spin connection is zero, this will be assumed here, giving us that the torsion

tensor (3.22) can be written as

T aµν = ∂µe
a
ν − ∂νeaµ =

•
Dµeaν −

•
Dνeaµ =

•
Γ
a
µν −

•
Γ
a
νµ . (3.41)

One can label this approach as the pure tetrad formalism since the spin connection

does not appear. It should be noted that TEGR was first formulated in this formalism

and historically, it has remained like this over time. An important consequence

arises here. The torsion tensor is no longer covariant under Lorentz transformations.

This, however, it is not an important issue with TEGR since it turns out that the

theory with zero spin connection is quasi-local Lorentz covariant due to the fact

that the Teleparallel action (3.39) is invariant under local Lorentz transformations

by a boundary term (Cho, 1976). For more details about this, see Sec. 4.2. When

one considers modifications of Teleparallel gravity, one needs to be careful with the
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Lorentz covariance. This will be discussed in the forthcoming chapters (see Sec. 4.2).

Let us now take variations of the action (3.39) with respect to the tetrads, giving

us

δSTEGR =
1

2κ2

ˆ
(eδT + Tδe)d4x+

ˆ
δ(Lm e)d

4x , (3.42)

where Lm is a density matter Lagrangian. If one uses gµν = ηabEµ
aE

ν
b , it is easy to

show that

δgµν = −
(
gνλEµ

a + gµλEν
a

)
δeaλ , (3.43)

δe = eEλ
a δe

a
λ . (3.44)

Then, the second term in (3.42) is equal to

Tδe = eTEλ
a δe

a
λ . (3.45)

The first term in (3.42) requires more computations. By expanding that term one

obtains

eδT = e
(1

4
δ(T µνλTµνλ) +

1

2
δ(T µνλTνµλ)− δ(T µTµ)

)
. (3.46)

By varying and taking derivatives in (3.2) one finds respectively the following rela-

tions

δEσ
m = −Eσ

nE
µ
mδe

n
µ , ∂νE

σ
m = −Eσ

nE
µ
m∂νe

n
µ . (3.47)

Then, using Eqs (3.43) and (3.47), it is easy to show that

δT λµν = −Eλ
aT

β
µνδe

a
β + Eλ

a (∂µδe
a
ν − ∂νδeaµ) , (3.48)

δT µ = −
(
Eµ
aT

λ + gµλTa + T λa
µ
)
δeaλ + gµνEλ

a

(
∂λδe

a
ν − ∂νδeaλ

)
. (3.49)
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Using the latter equations, it is possible to find the following identities:

δ(TµT
µ) = −2

(
T βTαβµ + TαTµ

)
Eµ
a δe

a
α + 2 (TαEµ

a − T µEα
a ) ∂αδe

a
µ ,(3.50)

δ(TαµνT
µαν) = 2

(
T βµα − Tαµβ

)
TµανE

ν
aδe

a
β +

(
Tα β

µ − T β α
µ

)
Eµ
a∂αδe

a
β , (3.51)

δ(TαµνT
αµν) = −4TαµνTαµβE

β
a δe

a
ν + 4T µν

α Eα
a ∂µδe

a
ν . (3.52)

By replacing (3.50)-(3.52) in (3.46), integrating by parts and neglecting boundary

terms, one finds

eδT = 4
[
− ∂µ(eSa

µλ) + eT σ µaSσ
λµ
]
δeaλ . (3.53)

Finally, by replacing (3.45) and (3.53) in (3.42) and setting δSTEGR = 0, one obtains

the Teleparallel field equations given by

4

e
∂µ(eSa

µλ)− 4T σ µaSσ
λµ − TEλ

a = 2κ2T λa , (3.54)

where the energy-momentum tensor was defined as

T λa =
1

e

δ(eLm)

δeaλ
. (3.55)

If ones introduces the following current vector

ja
µ = Eσ

aT
ρ
νσSρ

µν − 1

4
TEµ

a , (3.56)

one finds that the conservation law is valid,

∂µ

(
e(ja

µ − 2κ2Taµ)
)

= 0 . (3.57)
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Using (2.58), (3.28) and (3.36), one finds that the Einstein tensor is equivalent to

◦
G
λ
ν =

2

e
eaν∂µ(eSa

µλ)− 2T σµνSσ
λµ − 1

2
Tδλν , (3.58)

hence, the Teleparallel field equations (3.54) are equivalent to the Einstein field

equations (2.80). This is of course expected as it was discussed before since their

Lagrangians differ only by a boundary term, hence, giving the same field equations.

3.5 The Teleparallel force equation

In the previous section, it was demonstrated that the Teleparallel field equations are

the same as the Einstein field equations. In this section, in the context of Telepar-

allel gravity, the equation which describes how particles move in the presence of

gravity will be presented. The motion of a spinless particle of mass m immersed in

a gravitational field given by the gauge potential Bµ
a is described by the following

action

S = m

ˆ b

a

ds = m

ˆ b

a

gµν
dxµ

ds
dxν = m

ˆ b

a

gµνu
µdxν = m

ˆ b

a

uae
a , (3.59)

where uµ = dxµ/ds and ua = uµeaµ. Then, by using ea = dxa + Ba
µdx

µ (see (3.14)),

one obtains

S = m

ˆ b

a

ua(dx
a +Ba

µdx
µ) . (3.60)

It should be noted again that the spin connection was set to be zero (special frame).

Now, by taking variations in the above action, using δxa = (∂µx
a)δxµ, δBa

µ =

(∂λB
a
µ)δxλ and eaδua, and finally by simplifying the expression, one arrives at

δS = m

ˆ b

a

(
eaµ
dua
ds
− (

•
DµBa

ν −
•
DνBa

µ)uau
ν
)
δxµds . (3.61)
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By using (3.41), one notices that the term
•
DµBa

ν−
•
DνBa

µ = T aµν is the torsion tensor.

Therefore, by setting δS = 0, one finds

eaµ
dua
ds

= T λµνuλu
ν , (3.62)

that can be rewritten as

duµ
ds

+
(
Kλ

µν −
•
Γ
λ
µν

)
uλu

ν = 0 , (3.63)

where T λµνuλu
ν = −Kλ

µνuλu
ν and the Teleparallel condition (3.27) were used. The

above equation is the Teleparallel force equation which is the equation of motion of

a particle m in a gravitational field. Here, contortion plays the role of a force. Here,

one can notice an important difference between GR and Teleparallel gravity. In GR,

free-falling particles follow geodesics given by (2.16). On the other hand, in Telepar-

allel gravity, particles follow the force equation where contortion (or torsion) acts as

the force. From the Ricci theorem Kλ
µν −

•
Γλµν =

◦
Γλµν , one finds that the Teleparallel

force equation is equivalent to the dynamics described by the geodesic equation (see

(2.16)). Then, spinless particles will follow the same trajectories in the presence of

gravity in GR than Teleparallel gravity. Then, TEGR is also consistent with the

equivalence principle. An interesting feature can be interpreted here. As discussed

in Sec. 2.2.1, GR is based on the weak equivalence principle which says that the grav-

itational mass is equal to the inertial mass, i.e., mg = mi. This principle is based on

experiments and a priori, it could be violated at some scales such as quantum scales

(Damour, 2001; Lammerzahl, 1996). If new experiments show that this principle is

violated at some scales, then GR will be ruled out at those scales. So far, all the ex-

periments have measured with great precision the equivalence between those masses

but future experiments with better precision could find a certain difference between

them. On the other hand, Teleparallel gravity does not have this principle as one of
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the bases of the theory. This principle was not used to construct Teleparallel gravity

as a gauge theory of the translations. Then, Teleparallel gravity dispenses with the

weak equivalence principle. Hence, it can comply with universality, but remains a

consistent theory in its absence. Moreover, in Aldrovandi et al. (2004a,b), it was

found that the Teleparallel force equation (3.62) would be modified if one does not

assume that mi = mg, giving

(
∂µx

a + αBa
µ

)dua
ds

= αT λµνuλu
ν , (3.64)

where α = mg/mi is the ratio between the gravitational mass and the inertial mass.

If α = 1, one recovers the standard Teleparallel force equation. This equations

could be extremely important if the weak equivalence principle is violated. Let us

emphasise again here that this formalism cannot be achieved in the context of GR.

This is one of the great advantages of Teleparallel gravity with respect to GR and it

could be one of the unique ways to distinguish between these equivalent gravitational

theories.



4
f (T ) gravity and Teleparallel scalar-tensor theories

Chapter Abstract

This chapter discusses the most popular modifications of Teleparallel gravity, the

so-called f(T ) gravity and Teleparallel scalar-tensor theories. The physical motiva-

tions for introducing modifications of gravity will be discussed, giving emphasis to

cosmology. The issue of the breaking of the Lorentz transformations is also discussed

and then how one can alleviate the issue using “good tetrads”. Some cosmological

predictions or models are also provided and a new quintom scalar field model is

presented.

4.1 Why do we want to modify TEGR (or

GR)?

Since GR (or TEGR) describes many effects that have been observed and it is a

successful theory, why are we interested in modifying it? In this section, there will

be discussed some motivations and physical reasons on why modified gravity could

be a reasonable way to address some issues that cannot be avoided with standard

GR. For a more detailed description of modified gravity, see the reviews Nojiri &

Odintsov (2006); Sotiriou & Faraoni (2010); Capozziello & De Laurentis (2011); No-

jiri & Odintsov (2011); Clifton et al. (2012). Since GR has the same field equations

as TEGR, the physical motivation could be the same since the same issues that

92
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GR cannot address, are also true in TEGR. One usually call modified gravity where

the Einstein-Hilbert (or TEGR) action is modified/extended. One can modify it by

changing the matter/energy (right hand side of the GR’s equations) or the parts

related to the geometry (left hand side of the GR’s equations). Usually, changing

the matter/energy is not considered as being part of modified gravity since the ge-

ometrical theory is the same but new different kind of sources are considered. This

is an alternative way to understand some issues related to cosmology. For example,

quintessence models introduce a scalar field to understand the late-time accelerating

behaviour of the Universe.

Let us first discuss some issues related to cosmology which is one of the main

important subject in this thesis. First of all, GR needs a cosmological constant Λ,

which acts as a fluid with a negative pressure pΛ = −ρΛ, to describe the current

accelerating behaviour of the Universe. Without evoking a cosmological constant,

GR can only produce this scenario by adding some extra scalar fields. As discussed

in Sec. 2.5.2.4, the value of the cosmological constant measured by observations

is drastically different from that expected from considering quantum and classical

aspects related to the vacuum energy. The latter is known as the cosmological

constant problem and some researchers believe that there is no way out of this

problem without either changing GR, adding extra scalar fields or changing the

Standard Model of physics. If one considers modifications of GR, it is possible for

some theories, to describe an accelerating late-time behaviour of the expansion of

the Universe without evoking any cosmological constant. Further, the new terms

coming from the modifications are responsible for this acceleration. This is one of

the most important motivations for modified gravity.

At early-times of the Universe, there was a period of an extremely rapid accel-

erating expansion of the Universe. A cosmological constant Λ cannot be used to

describe this epoch since inflation is followed by a radiation era and there is no way
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to stop inflation (acceleration) with a cosmological constant. This accelerated epoch

can be understood by GR with a scalar field called the inflaton. However, GR does

not explain the origin of the inflation or its nature. In addition, its predictions have

fine-tuning problems in the parameters. Some examples of this are: the initial con-

ditions for inflation and the slow-roll approximations. Modified gravity is able to

describe both the inflationary era (early-times) and the current dark energy era in a

unified way.

Another interesting problem that cannot be cured with GR, can also be addressed

with some modified theories of gravity. As seen in Sec. 2.5.2.3, the value of the energy

density of matter (baryonic plus dark matter) is today at the same order of magnitude

as the energy density of the dark energy. Why are those values exactly the same

order of magnitude today? Is there any physical reason why those quantities should

be the same order of magnitude? This problem is known as the coincidence problem.

Some physicists believe that this is not a problem and indeed is just a coincidence

but, a priori, there is no theoretical explanation for this. Some modifications of GR

might be able to solve this issue (Nojiri & Odintsov, 2006).

Another issue in cosmology is related to the cosmological singularities. In GR, it

is not possible to avoid them but for some modified gravity theories, it is possible to

construct bounce solutions which avoid some singularities which are related to the

initial time of the Universe.

It is well known that in order to understand the observations of the rotation curves

of galaxies, one needs to introduce a dark matter component. Since this is just a

component which is introduced by hand in GR in order to describe those effects (and

others), is there any possibility that one can describe those effects without evoking a

fluid like dark matter? Well, the answer is yes. There are some modifications of GR

such as f(
◦
R) gravity or MOND (Modified Newtonian Dynamics) which mimic some

behaviour coming from dark matter. For example, MOND modifies the Newtonian
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laws to reproduce the flat rotation curves for spiral galaxies and also to achieve

the luminosity-rotation velocity relation, known as Tully-Fisher relation (Famaey &

McGaugh, 2012). This theory is a empirically motivated theory. It is important to

mention that modified gravity has not been so successful to describe dark matter as

to describe dark energy.

Another motivation for introducing modified gravity theory is related to the so-

called missing satellite problem. According to ΛCDM (and then GR), the Milky

way should have numerous dwarf galaxies orbiting it. However, only about 30 dwarf

galaxies orbiting our galaxy have been observed (Clifton et al., 2012).

Another problems in GR is the fact that it is not renormalisable and also it

cannot be quantised. Some modified theories of gravity have also tried to formulate

a renormalisable theory in order to unify it with the other forces.

As a final comment related to motivating GR (or TEGR) is the fact that by

studying modified gravity theories, one can learn more about GR (or TEGR). Since

modified gravity can be seen as a generalisation of GR (or TEGR), one can learn

more properties that could not be seen easily directly by studying GR (or TEGR).

There are many ways of modifying the gravity sector. One can think that at Solar

System scales, GR works fine but at large scales such as cosmological ones, GR might

be modified. Having this in mind, any viable modification of GR must predict the

same observations at Solar System scales as GR. This can be achieved by having an

Einstein-Hilbert action and then adding more terms coming from the modifications.

Alternately, one can neglect a GR background and work out a modified theory with

some screening mechanisms which can ensure the predictions of the theory at Solar

System scales. Still, there is not a final modified theory of gravity which can solve

all the problems that we know so far.

There are more additional problems related to GR and also to cosmology. For

further details, see the reviews Sotiriou & Faraoni (2010); Clifton et al. (2012).
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4.2 Lorentz transformations

Since the TEGR action is based on contractions of the torsion tensor (scalar torsion

T ), then, TEGR is generally covariant under general transformations. However, what

happens with Lorentz covariance? In this section, the Lorentz transformations for

Teleparallel gravity will be discussed. These transformations are just transformations

of the tangent space coordinate xa. Then, a local Lorentz transformation is given by

xa → Λa
bx

b , (4.1)

where Λa
b is the Lorentz matrix which satisfies

ηab = ηcdΛ
c
aΛ

d
b , (4.2)

where ηab is the Minkowski metric. Special Relativity is consistent with the covari-

ance of the Lorentz transformations, therefore, they are fundamental transformations

in physics. GR is invariant under Lorentz transformations (see Sec. 2.2.3), but what

happens with TEGR? Further, when one is considering modifications of TEGR, are

they also invariant under Lorentz transformations? To study this, let us consider the

case where the spin connection is different from zero. By performing a local Lorentz

transformations (4.1), one obtains that tetrads and the spin connection transform

according to

eaµ → Λa
ce
c
µ ,

•
waµb → Λa

c

•
wcµd(Λ

−1)db − (Λ−1)ac∂µΛc
b . (4.3)

Here, (Λ−1)ac represents the inverse of the Lorentz matrix. Then, one can prove that

the torsion tensor with the spin connection different to zero (3.22) is covariant under
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local Lorentz transformations,

T aµν → Λa
bT

b
µν , when spin connection is non-zero . (4.4)

Therefore, the scalar torsion T is also covariant under Lorentz transformations. Since

the TEGR action is based on T , then, the TEGR’s equations are invariant under

Lorentz transformations. However, as mentioned before, for historical and compu-

tational reasons, Teleparallel gravity was formulated in the so-called pure tetrad

formalism where the spin connection is set to be zero. This is like choosing a gauge

(or a frame) from the beginning since this object is related to inertial effects. The

field equations do not change when one is considering those frames since the TEGR

Lagrangian (3.39) can be written as (Krššák, 2017a)

LTEGR(eaµ,
•
wabµ) = LTEGR(eaµ, 0) + ∂µ(e

•
wµ) , (4.5)

where
•
wµ =

•
wabνe

ν
ae
µ
b , and the spin connection appears like a boundary term without

affecting the field equations. When one considers the frames where the spin connec-

tion vanishes, one obtains that after a Lorentz transformation (4.1), the torsion

tensor transforms as

T aµν → Λa
bT

b
µν + Λa

b

(
ecν∂µΛb

c − ecµ∂νΛb
c

)
, when spin connection is zero , (4.6)

therefore, it is not covariant under Lorentz transformations. Then, in the pure

tetrad formalism, T is not longer covariant under Lorentz transformations. However,

according to (4.5), one has that the torsion scalar can be separated as follows

T (eaµ,
•
wabµ) = T (eaµ, 0) +

4

e
∂µ(e

•
wµ) . (4.7)
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Then, from (4.6) and (4.7), it can be shown that even though the torsion tensor is no

longer covariant under local Lorentz transformation, the Lagrangian (4.3) is quasi-

invariant under local Lorentz transformation (up to a boundary term). The terms

which break the Lorentz covariance are the ones in the boundary term. Then, any

linear combination in T in the action will lead to a theory which respects the Lorentz

covariance. Then, the TEGR action is invariant under local Lorentz covariance

in both the pure tetrad formalism and the covariance one. However, how does it

happen when one is referring to modifications of Teleparallel gravity where now the

Lagrangian is no longer LTEGR = eT/2κ2? In general, those theories will break

Lorentz covariance since now the surface term, which is not a local Lorentz invariant

quantity, is now no longer a total divergence (Golovnev et al., 2017; Li et al., 2011;

Sotiriou et al., 2011). Therefore, there are two alternatives to avoid this issue:

(i) Work within the formalism when the spin connection is different to zero: This

is a new formalism, first developed in Krššák & Saridakis (2016). The spin

connection depends on the choice of the observer so that it is not determined

uniquely. Moreover, it is only related to inertial effects. In TEGR, this quantity

does not affect the field equations since it appears as a boundary term in the

action. However, when one is modifying TEGR, it is no longer a boundary term

and hence, it contributes. In order to obtain this spin connection, one can use

a reference tetrad defined by setting the gravitational constant equal to zero.

This methodology is still under development and there is still a debate on how

to find the spin connection since there is no equation for this field. It can be

understood that this is a field without dynamics so it might be a problematic

issue.

(ii) Work within the pure tetrad formalism which breaks the Lorentz covariance but

considering the so-called “good tetrads”. This will be discussed in Sec. 4.3.2

As mentioned before, both formalisms will give rise to the same field equations.
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In this thesis, for practical and historical reasons, the second approach (ii) will be

employed for formulating modified Teleparallel theories of gravity. Another reason

for choosing this approach is that (i) is currently in progress. For new studies related

to this approach, see Krššák & Saridakis (2016); Golovnev et al. (2017); Krššák

(2017a,b).

4.3 f (T ) gravity

4.3.1 Action and field equations

A well-studied modification of GR is to consider f(
◦
R) gravity (De Felice & Tsujikawa

(2010); Sotiriou & Faraoni (2010); Capozziello & De Laurentis (2011)) where f is an

arbitrary (sufficiently smooth) function of the Ricci scalar

S
f(
◦
R)

=
1

2κ2

ˆ
f(
◦
R)
√
−g d4x+ Sm . (4.8)

This action is a straightforward modification of the Einstein-Hilbert action (2.82),

where now
◦
R is replaced by an arbitrary function f(

◦
R). Then, for the specific case

where f(
◦
R) =

◦
R, one recovers GR. It should be remembered that the Ricci scalar

depends on second derivatives of the metric tensor. Hence variations with respect

to the metric will require integration by parts twice which will result in terms of the

form
◦
∇µ

◦
∇νF where F = f ′(

◦
R), making the theory fourth order. Moreover, only

the GR case where f(
◦
R) ∝

◦
R yields second order field equations. In cosmology,

this theory has interesting applications, for example, the possibility of describing the

cosmological history of the Universe without evoking a cosmological constant. For

more details about those models, see the reviews Nojiri & Odintsov (2011); Clifton

et al. (2012); Nojiri et al. (2017).

In analogy to the above theory, one then can consider a straightforward modi-

fication of Teleparallel gravity by changing in the TEGR action (3.39), the scalar
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torsion T by an arbitrary function f(T ). Then, the action of this theory is given

by (Bengochea & Ferraro, 2009)

Sf(T ) =
1

2κ2

ˆ
f(T )e d4x+ Sm . (4.9)

Since the torsion scalar T only depends on the first derivatives of the tetrads, this

theory is a second order theory. Moreover, in the pure tetrad formalism, since T itself

is not covariant under local Lorentz transformations (see Sec. 4.2), f(T ) gravity is

also not locally Lorentz covariant (Li et al., 2011; Maluf, 2013). Hence, there is a

trade-off between second order field equations and local Lorentz covariance. Since

f(T ) does not differ from f(
◦
R) by a total derivative term, these theories are no longer

equivalent. For a complete discussion about this, see Chap. 5. By taking variations

in (4.9) with respect to the tetrads, one obtains

δSf(T ) =
1

2κ2

ˆ [
efT δT + fδe+ δ(eLm)

]
d4x , (4.10)

where fT = df(T )/dT . The second term in the variations is δe = eEλ
a δe

a
λ (see (3.45)).

The first term in the above equation can be computed by expanding it,

efT δT = efT

(1

4
δ(T µνλTµνλ) +

1

2
δ(T µνλTνµλ)− δ(T µTµ)

)
, (4.11)

and then using (3.50)-(3.52) accordingly, and finally ignoring boundary terms, the

above term takes the following form

efT δT =
[
− 4e(∂µfT )Sa

µλ − 4∂µ(eSa
µλ)fT + 4efTT

σ
µaSσ

λµ
]
δeaλ . (4.12)

Then, by replacing the above expression, using (3.45) and setting δSf(T ) = 0, one
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arrives at the f(T ) field equations which are

4e
[
fTT (∂µT )

]
Sν

µλ + 4eaν∂µ(eSa
µλ)fT − 4efTT

σ
µνSσ

λµ − efδλν = 2κ2eT λν , (4.13)

where the energy-momentum tensor T λν was defined as (3.55). Clearly, by taking

f(T ) = T , one recovers Teleparallel gravity. To finish this section, let us mention

that according to Ferraro & Guzmán (2018), f(T ) has three degrees of freedom which

means that it has one extra degree of freedom than GR (or TEGR). This extra degree

of freedom can be interpreted as scalar one. However, in Bamba et al. (2013a), the

authors found that f(T ) gravity does not have any further gravitational modes at

first linear perturbation level. Therefore, f(T ) gravity has two propagating degrees

of freedom, exactly as GR. Then, it will not be possible to find any difference between

f(T ) and GR in future gravitational wave detections.

4.3.2 Good and bad tetrads

This section is devoted to presenting the approach presented in Tamanini & Boehmer

(2012) which is a way to work properly when one is considering modifications of

Teleparallel gravity. In some sense, the problem that f(T ) breaks the Lorentz covari-

ance is somehow alleviated using this approach. It is based on choosing the correct

tetrads since different tetrads give rise to different field equations. Good tetrads are

the special form of tetrad (or frames) where the field equations do not impose any

condition on the form of the function f . This definition and formalism can be then

extended to any modified Teleparallel theory of gravity since this structure is the

same for any modification.

In f(T ) gravity, Lorentz transformations change the field equations (not the met-

ric). Let us first study a spherically symmetric case whose line element in spherical
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coordinates (t, r, θ, φ) is

ds2 = A(r, t)2dt2 −B(r, t)2dr2 − r2(dθ2 + sin θ2dφ2) . (4.14)

As mentioned before, according to gµν = ηabe
a
µe
b
ν , different tetrads could give rise

to the same metric tensor. The easiest tetrad for the above metric is given by the

diagonal one given by

eaµ = diag(A(r, t), B(r, t), r, r sin θ) . (4.15)

Using this diagonal tetrad in the f(T ) field equations (4.13), gives us that the theory

satisfies the Birkhoff theorem but the Schwartzschild metric is no longer a solution

of this theory. Without affecting the metric, one can always change tetrads by a

local Lorentz transformation, obtaining Eq. (4.3). Then, let us perform this Lorentz

transformation for the diagonal tetrad (4.15). To do this, consider the tetrad (4.15)

and perform a general 3-dimensional rotation R in the tangent space parametrised

by three Euler angles α, β, γ so that

Λa
b =


1 0

0 R(ϕ, ϑ, ψ)

 , (4.16)

where R(ϕ, ϑ, ψ) = Rz(ψ)Ry(ϑ)Rx(ϕ) with Ri being the rotation matrices about the

Cartesian coordinate axis with angles ϕ, ϑ, ψ, respectively. One reduces transforma-

tion (4.16) considering the following values for the three Euler angles

α = θ − π

2
, β = φ , γ = γ(r) , (4.17)

where γ is taken to be a general function of both t and r. By doing this, the new
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rotated tetrad becomes

ēaµ =



A 0 0 0

0 B sin θ cosφ −r(cos θ cosφ sin γ + sinφ cos γ) r sin θ(sinφ sin γ − cos θ cosφ cos γ)

0 B sin θ sinφ r(cosφ cos γ − cos θ sinφ sin γ) −r sin θ(cos θ sinφ cos γ + cosφ sin γ)

0 B cos θ r sin θ sin γ r sin2 θ cos γ


.

(4.18)

Then, with this new rotated tetrad, the f(T ) field equations are reduced to 7 inde-

pendent equation with two important constraints:

fTTT
′(r, t) cos γ = 0 , fT Ḃ(r, t) = 0 , (4.19)

where primes denote differentiation with respect to the radial coordinate r and dots

with respect to time t. Here, one can see how this approach works. Since the idea

is to eliminate all constraints on f , we can assume fTT 6= 0 and fT 6= 0, otherwise

TEGR is recovered. From the above equation, one directly finds that B(r, t) = B(r).

The case T ′ = 0 is also a very specific case where T is a constant, therefore, any

solution in GR can be constructed in this case since f(T ) will be f(T0). Then, one

good choice is when cos γ = 0 which gives us γ = π/2 (or −π/2). By choosing

γ = −π/2 and B(r, t) = B(r), Eqs. (4.19) are satisfied. Then, the rotated tetrad

with γ = −π/2 becomes

ēaµ =



A 0 0 0

0 B sin θ cosφ r cos θ cosφ −r sin θ sinφ

0 B sin θ sinφ r cos θ sinφ r cosφ sin θ

0 B cos θ −r sin θ 0


, (4.20)
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which gives us the following torsion scalar

T =
2(B − 1) (A(B − 1)− 2rA′)

r2AB2
. (4.21)

The rotated tetrad (4.20) is indeed a good tetrad since it does not constrain the value

of f nor the value of T (see (4.21)) and contains TEGR (or GR) in the background,

i.e., if f = T , one recovers the expected results: the Birkhoff theorem is valid and the

standard GR spherically symmetric equations are recovered without imposing any

condition on T and f . This procedure can also be used for other spacetimes such as

FLRW cosmology or different ones.

4.3.3 FLRW Cosmology

One can follow the same methodology described before for FLRW cosmology. Let us

discuss the flat case (k = 0). Consider the FLRW metric (4.33) in pseudo-spherical

coordinates. The FLRW diagonal tetrad can be written as follows

eaµ = diag
(

1, a(t), a(t)r, a(t)r sin θ
)
. (4.22)

Using this tetrad, one can notice that the scalar torsion T (see Eq. (3.34)) becomes

T = −6H2 +
2

r2a2
, (4.23)

where H = ȧ/a. Here, one notices that this tetrad is a “bad tetrad” since based on

the isotropy and homogeneity of the FLRW spacetime, the scalar torsion needs to

depend only on time. Moreover, if one uses the diagonal tetrad (4.22), the FLRW

cosmological equations for f(T ) gravity also depend on the radial coordinate. For
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example, the first FLRW equation in f(T ) gravity for this tetrad reads

(
6H2 − 1

r2a2

)
fT +

f

2
= κ2ρ , (4.24)

where a perfect fluid with energy density ρ was considered. Therefore, this tetrad

is a bad tetrad and one can follow the procedure employed in the previous section

to fix this issue. Let us now perform a rotation in this tetrad, in such a way that

ēaµ = Λa
be
b
µ where Λa

b is the rotational matrix (4.16) with the three Euler angles now

being

α = θ − π

2
, β = φ , γ = γ(r, t) , (4.25)

where now the function γ = γ(t, r) depends on time and the radial coordinate. By

doing this, one finds the following rotated tetrad

ēaµ =



1 0 0 0

0 a cosφ sin θ −ra(cos γ sinφ+ cos θ cosφ sin γ) ra sin θ(sinφ sin γ − cos θ cosφ cos γ)

0 a sin θ sinφ ra(cosφ cos γ − cos θ sinφ sin γ) −ra sin θ(cos θ cos γ sinφ+ cosφ sin γ)

0 a cos θ ra sin θ sin γ ra cos γ sin2 θ


. (4.26)

It is easy to check that, as expected, the flat FLRW metric (4.33) is invariant under

this rotation since the above tetrad also satisfies Eq. (3.6). Using this tetrad, one

finds

T =
4

a2r2

(
r
dγ

dr
cos γ + sin γ + 1

)
− 6H2 . (4.27)

Since the scalar torsion cannot depend on the radial coordinate, the first term in

parenthesis needs to be cancelled, giving us the following equation for γ:

r
dγ

dr
cos γ + sin γ + 1 = 0 , (4.28)
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which can be solved and gives us 6 solutions. One can choose one of those solutions

to find the correct good tetrad. In this case, the two easiest solutions to work out

are: γ = −π/2 or γ = 3π/2. If one uses the first solution (γ = −π/2), one finds that

the rotated tetrad (4.26) becomes

ēaµ =



1 0 0 0

0 a cosφ sin θ ra cos θ cosφ −ra sin θ sinφ

0 a sin θ sinφ ra cos θ sinφ ra sin θ cosφ

0 a cos θ −ra sin θ 0


. (4.29)

In this rotated tetrad, the torsion scalar becomes

T = −6H2 , (4.30)

which does not depend on the radial coordinate. Therefore, this rotated tetrad is a

good tetrad. Using the rotated tetrad (4.29) and the f(T ) field equations (4.13), the

flat FLRW cosmological equations for f(T ) become

6H2fT +
1

2
f(T ) = κ2ρ , (4.31)

2(3H2 + Ḣ)fT + 2HḟT +
1

2
f(T ) = −κ2p , (4.32)

where ḟT = fTT Ṫ . Different studies have been conducted to analyse these equations.

The most important results in cosmology are the followings:

• Some specific forms of f(T ) give an accelerating behaviour of the Universe

without introducing any cosmological constant Λ. For some important studies

in this direction, see Wu & Yu (2010a,b); Bamba et al. (2011); Dent et al.

(2011).

• A phantom divide line becomes plausible. According to observations (Feng
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et al., 2005), the equation of the state parameter of dark energy crossed the

cosmological constant boundary wΛ = −1 from above to below (Wu & Yu,

2011).

• It is possible to find bounce solutions which solve the Big Bang singularity

issue presented in GR. Some examples of those solutions are described in Cai

et al. (2011); Bamba et al. (2013b); de Haro & Amoros (2013); Odintsov et al.

(2015).

• According to Nunes (2018), using CMB+BAO+H0 observations, a small de-

viation of f(T ) gravity with ΛCDM is observed with a better fit in the data.

Additionally, it is possible to solve the issue of the tension on measuring the

Hubble constant H0 which appears in GR1.

For a comprehensive review regarding the physical and cosmological interpretations

regarding f(T ) cosmology, see Cai et al. (2016).

Alternatively, it is not so difficult to show that in flat FLRW, the metric in Cartesian

coordinates

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2) , (4.33)

with the diagonal tetrad

eaµ = diag(1, a(t), a(t), a(t)) (4.34)

is a good tetrad in the sense of Sec. 4.3.2 and Tamanini & Boehmer (2012) since

it does not constrain the function f nor the scalar torsion T . The majority of the

cosmological models that will be presented are related to flat FLRW cosmology2,

1The local value of the Hubble constant is slightly different from different observations but
matching within the error bars.

2For observations constraints k ≈ 0. See Sec. 2.5.2.3 for more details.
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hereafter, the above diagonal tetrad with the flat FLRW metric in Cartesian coordi-

nates will always be chosen since it is a good tetrad. Obviously, tetrad (4.34) gives

the same field equations (4.31)-(4.32) than considering the rotated tetrad in spherical

coordinates (4.26).

4.4 Scalar-tensor theories

4.4.1 Brans-Dicke and scalar-tensor theories

There are numerous ways to modify both General Relativity and Teleparallel gravity

with the aim of being able to understand the late-time acceleration of the Universe

without the need for a cosmological constant. One approach is to modify the gravi-

tational sector and one can consider both f(
◦
R) theories of gravity and f(T ) theories,

as discussed in the previous sections. One can also consider a coupling between

a scalar field and the gravitational sector. In standard General Relativity, matter

fields are only coupled to gravity via the metric gµν and this ensures the validity

of the strong equivalence principle. In the original idea of Brans & Dicke (1961), a

non-minimal coupling was introduced to obtain a relativistic theory implementing

Mach’s principle. Not surprisingly it is known as Brans-Dicke theory and it is one of

the most studied modifications of Einstein gravity.

The action of Brans-Dicke theory is given by

SBD =

ˆ
d4x
√
−g
[
φ

2κ2

◦
R−

ωBD

2φ
∂φ2 + Lm

]
, (4.35)

where Lm determines the matter contents, κ2 = 8πG and φ is the scalar field. The

constant ωBD is called the Brans-Dicke parameter. If the latter parameter is positive,

then the scalar field is canonical whereas if it is negative it represents a phantom

scalar field since it has the other opposite sign in the kinetic term. In later gen-

eralisations of this theory a self-interacting potential V (φ) for the scalar field was
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introduced in the action, namely

SBD =

ˆ
d4x
√
−g
[
φ

2κ2

◦
R−

ωBD

2φ
∂φ2 − V (φ) + Lm

]
. (4.36)

In the presence of matter, Brans-Dicke theory reduces to General Relativity in the

limit ωBD → ∞, and from Solar System experiments, the strong bound ωBD & 104

can be obtained (see e.g. Bertotti et al. (2003)). One interesting aspect of the action

above is that the scalar field φ changes the effective Newton’s gravitational constant.

This implies that now the strength of the gravitational interaction depends on the

value of the scalar field, which in turn can depend on the spacetime position.

One can further generalise the Brans-Dicke action by considering any arbitrary

coupling function F (φ) non-minimally coupled with the Ricci curvature. Then, ac-

tion (4.36) can be generalised to

Sscalar−tensor =

ˆ [( 1

κ2
+ F (φ)

) ◦
R

2
+

1

2
w(φ)∂µφ∂

µφ− V (φ) + Lm

]
√
−g d4x ,

(4.37)

where now F (φ) and w(φ) are coupling functions. The above action gives rise to the

so-called scalar-tensor theories. For w(φ) = 1 (w(φ) = −1) one obtains a canonical

scalar field (phantom scalar field). The standard approach is to consider a coupling

between the scalar field and the Ricci scalar, of the form (Chernikov & Tagirov

(1968); Callan et al. (1970); Birrell & Davies (1980))

F (φ) = ξφ2 . (4.38)

Here ξ is a coupling constant. In this notation the effective gravitational constant
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can be written as

Geff =
G

1 + κ2ξφ2
, (4.39)

and one can redefine such a scalar field so that it coincides with the standard Brans-

Dicke field. Such a non-minimal coupling has motivations from different contexts.

It appears as a result of quantum corrections to the scalar field in curved space-

times (Ford, 1987) and it is also required by renormalisation considerations (Callan

et al., 1970). It also appears in the context of superstring theories (Maeda, 1986).

Such models have attempted to explain the early-time inflationary epoch, however,

the simple model with a quadratic scalar potential is now disfavoured by the current

Planck data (Martin et al. (2014); Ade et al. (2014a, 2016)).

Minimally coupled quintessence corresponds to taking F (φ) = 0 (or ξ = 0) in

the Lagrangian (4.37). For a review of quintessence type models, see Copeland

et al. (2006). Quintessence alone can give rise to many interesting features from

late-time accelerated expansion of the Universe to inflation Ratra & Peebles (1988);

Wetterich (1988); Zlatev et al. (1999). However, simple models of scalar field inflation

are becoming disfavoured by the latest Planck data. Another issue with a simple

quintessence approach is that the effective equation of state must always satisfy

weff > −1 and require a very flat fine tuned potential in order to explain current

cosmological observations.

Minimally coupled quintessence is not considered as modified gravity since the

action only has the standard Einstein Hilbert action plus some terms related to

the scalar field. Then, this theory is in the so-called Einstein frame. The frame

corresponding to f(
◦
R) gravity is usually called the Jordan frame. If one considers

vacuum case Lm = 0, by making the following conformal transformation,

gµν = e−ϕ ĝµν (4.40)
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with gµν denoting the Einstein frame metric, one obtains that the minimally cou-

pled quintessence action (Einstein frame) is equivalent to the f(
◦
R) gravity (Jordan

frame). Then, there is a correspondence or equivalence between the Einstein and Jor-

dan frames (Nojiri & Odintsov, 2011). In the case where Lm 6= 0, this equivalence

still holds but matter in the new frame is now coupled with the conformal factor in

a different way, making that particles in the new frame do not follow geodesics. In

addition to these, there are also frames in which the scalar field is non-minimally

coupled to gravity, and these can be reached by a f(
◦
R) gravity by also using a suit-

ably chosen conformal transformation, or directly by the Einstein frame theory by

conformally transforming the theory. Generally speaking, one should confront the

theoretical predictions of a specific gravitational theory with the observable Universe

history supported by the current observational data. In this sense, each of the three

mentioned frames, namely the f(
◦
R) gravity, and the minimal and non-minimal scalar

theories, may give a viable description of the observable Universe history. However,

it is not clear that a viable description in one frame gives also a viable and conve-

nient description in the other frame. For instance, it may give a viable but physically

inconvenient description. In other words, there appears the question which of these

three frames is the most physical one (and in which sense) or, at least, which of these

frames gives a convenient description of the Universe history. Eventually, the answer

to this question depends very much from the confrontation with the observational

data, from the specific choice of the theory and from the observer associated with

specific frame. At the same time, the related question is about equivalent results

in all three frames and/or about construction of the observable quantities which are

invariant under conformal transformations between the three frames. Further, even

though mathematically, both frames are equivalent, in Bahamonde et al. (2016), it

was shown that it is possible to have various correspondences of finite time cosmolog-

ical singularities, and in some cases it is possible a singular cosmology in one frame
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might be non-singular in the other frame. This situation appears since the conformal

transformation is singular in those cosmological singularities. Moreover, if acceler-

ation is imposed in one frame, it will not necessarily correspond to an accelerating

metric when transformed in another frame (Bahamonde et al., 2017e).

4.4.2 Teleparallel scalar-tensor theories

An alternative approach related to scalar-tensor theories has been to consider a

scalar field non-minimally coupled to torsion. The following action for Teleparallel

scalar-tensor theories is considered,

STEGR ST =

ˆ [( 1

κ2
+ F (φ)

)T
2

+
1

2
w(φ)∂µφ∂

µφ− V (φ) + Lm

]
e d4x . (4.41)

This gives rise to different dynamics to the case of the non-minimal coupling to

the Ricci scalar. When F (φ) = 0, one obtains a minimally-coupled model which

is Teleparallel gravity and a kinetic and a potential term, which is equivalent as

quintessence models (taking F (φ) = 0 in (4.37)). This action was first introduced

in Geng et al. (2011), with the specific case where w(φ) = 1 (canonical scalar field)

and, similarly as in (4.38), the coupling function was taken to be

F (φ) = χφ2 . (4.42)

This theory was labelled as Teleparallel dark energy. This theory again has a richer

structure than simple standard quintessence behaviour, with both phantom and

quintessence type dynamics possible, along with dynamical crossing of the phan-

tom barrier.

The equivalence between General Relativity and Teleparallel gravity breaks down

as soon as one non-minimally couples a scalar field and then the field equations result

in different dynamics. In Bahamonde & Wright (2015); Zubair et al. (2017), there



Chapter 4. f(T ) gravity and Teleparallel scalar-tensor theories 113

was introduced a more general action, with the aim of unifying both of the previous

considered approaches

STEGR−STE =

ˆ [( 1

κ2
+ F (φ)

)T
2

+
1

2
G(φ)B +

1

2
w(φ)(∂µφ)(∂µφ)

− V (φ) + Lm

]
e d4x, (4.43)

where now there is a additional coupling function G(φ) with the boundary term B.

Since
◦
R = −T + B (see (3.36)), the above action also contains the case where the

Ricci scalar is non-minimally coupled with the scalar field when the functions are

chosen to be F (φ) = −G(φ). Then, in the latter case, the above action is reduced

to (4.37). For the case G(φ) = 0, a Teleparallel theory non-minimally coupled with

the torsion scalar is recovered and for F (φ) = 0, a Teleparallel quintessence with a

non-minimal coupling to a boundary term is recovered.

Let us now find the field equations for the theory (4.43). By varying the ac-

tion (4.43) with respect to the tetrad field, one finds

δSTEGR−STE =

ˆ {[1

2

( 1

κ2
+ F (φ)

)
δT +

1

2
G(φ)δB − w(φ)(∂µφ)(∂λφ)Eµ

a δe
a
λ

]
e

+
[1

2

( 1

κ2
+ F (φ)

)
T +

1

2
G(φ)B +

1

2
w(φ)(∂µφ)(∂µφ)− V (φ)

]
Eλ
a δe

a
λ

+δ(eLm)
}
d4x , (4.44)

where δe = Eλ
a δe

a
λ and (3.43) were used. Variations with respect to the scalar

torsion fδT were found in Sec. 4.3 (see Eq. (4.11)). Hence, one needs to change fT

by 1
κ2

+ F (φ) in (4.11) in order to obtain the corresponding term which appears in

the above equation. The second term in the variations corresponds to find variations

with respect to the boundary term B. By doing the corresponding calculations, one
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obtains

G(φ)δB =
[
2Eν

a

◦
∇λ

◦
∇νG(φ)− 2Eλ

a

◦
�fB −BfBEλ

a − 4(∂µG(φ))Sa
µλ
]
δeaλ . (4.45)

For further details about how to compute this term, see Sec. 5.1 where all the im-

portant calculations are derived and only one needs to replace fB by G(φ) in order

to obtain the above result. Hence, by using the above equation and Eq. (4.11), one

obtains that the field equations are given by

2
( 1

κ2
+F (φ)

)[
e−1∂µ(eSa

µν)− Eλ
aT

ρ
µλSρ

νµ − 1

4
Eν
aT

]
−Eν

a

[
1

2
w(φ)∂µφ∂

µφ− V (φ)

]
+w(φ)Eµ

a∂
νφ∂µφ+2(∂µF (φ)+∂µG(φ))Eρ

aSρ
µν +Eν

a

◦
�G(φ)−Eµ

a

◦
∇ν

◦
∇µG(φ) = T νa ,

(4.46)

where
◦
� =

◦
∇α

◦
∇α, remembering that

◦
∇α is the covariant derivative linked with the

Levi-Civita connection and T νa is the matter energy momentum tensor. We have

used units where κ2 = 1.

By taking variations in the action (4.43) with respect to the scalar field φ, one

finds the modified Klein-Gordon equation given by

w(φ)
◦
�φ−

1

2
w′(φ)

◦
∇µφ

◦
∇µφ+ V ′(φ) =

1

2

(
F ′(φ)T +G′(φ)B

)
. (4.47)

Here primes denote differentiation with respect to the scalar field.

For flat FLRW described by the metric (4.33) and the diagonal tetrad (4.34), and

considering a canonical scalar field w(φ) = 1, Eqs. (4.46) become

3H2(1 + F (φ)) = ρm + V (φ) +
1

2
φ̇2 + 3Hφ̇G′(φ), (4.48)

(3H2 + 2Ḣ)(1 + F (φ)) = −
(
pm − V (φ) +

1

2
φ̇2
)
− 2Hφ̇F ′(φ) + (G′′(φ)φ̇2 +G′(φ)φ̈).

(4.49)
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Here, H = ȧ(t)/a(t) is the Hubble parameter and dots and primes denote differ-

entiation with respect to the time coordinate and the argument of the function

respectively. It was also considered that the matter is described by a perfect fluid

with energy density given by ρm and pressure pm.

The modified Klein-Gordon equation (4.47) becomes

φ̈+ 3Hφ̇+ V ′(φ) =
1

2

(
F ′(φ)T +G′(φ)B

)
, (4.50)

where in flat FLRW, T = −6H2 and B = −6(Ḣ+ 3H2). It should be noted that the

Klein-Gordon equation can be also obtained directly from the field equations (4.48)

and (4.49), so that it is not an extra equation. Thus, this model has two independent

equations, three given functions depending on the model (F (φ), G(φ) and V (φ)) and

four dynamical variables (φ, a(t), ρm and pm).

One can also rewrite (4.48)-(4.49) in a fluid representation as follows,

3H2 =
1

1 + F (φ)
ρeff , (4.51)

2Ḣ = − 1

1 + F (φ)
(ρeff + peff) , (4.52)

where ρeff = ρm+ρφ is the total energy density and peff = pm+pφ is the total pressure.

The energy density and the pressure of the scalar field ρφ and pφ are respectively

defined as follows

ρφ =
1

2
φ̇2 + V (φ) + 3Hφ̇G′(φ) , (4.53)

pφ =
1

2
φ̇2 − V (φ) + 2Hφ̇F ′(φ)− (G′′(φ)φ̇2 +G′(φ)φ̈) . (4.54)

It can be shown that the conservation equation, i.e.
◦
∇µT µν = 0 is valid, then the
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standard continuity equations read

ρ̇eff + 3H(ρeff + peff) = 0 , (4.55)

ρ̇m + 3H(ρm + pm) = 0 . (4.56)

In Bahamonde & Wright (2015), the specific case was studied for the coupling func-

tions

F (φ) = ξφ2 , G(φ) = χφ2 , (4.57)

where ξ and χ are coupling constants. Specifically, using the dynamical system

techniques, in the case when there is only a pure coupling to the boundary term

(ξ = 0), it was found that the system generically evolves to a late-time accelerating

attractor solution without requiring any fine tuning of the parameters. A dynamical

crossing of the phantom barrier was also shown to be possible. For further details

regarding the method of dynamical system, see the review Bahamonde et al. (2017a).

In Zubair et al. (2017), the validity of the first and second law of thermodynamics at

the apparent horizon was discussed for any coupling F (φ) and G(φ). Moreover, the

authors also found some analytical cosmological solutions for the Eqs. (4.48)-(4.49).

To finalise this section, let us note that a theory which is minimally coupled with

the scalar torsion (replace F (φ) = 0 in (4.43)), which is the analogy of a theory

which is minimally coupled with the Ricci scalar (replace F (φ) = 0 in (4.37)) is

not equivalent to f(T ) gravity. Hence, if one takes f(T ) gravity, which can be

considered as a Jordan frame, and performs a conformal transformation (4.40), the

resulting action does not give a Teleparallel minimally coupled theory. Thus, the

dynamics of f(T ) gravity is not equivalent to Teleparallel action plus a scalar field

since an additional term appears (Yang (2011); Wright (2016)). For more details

about conformal transformations in modified Teleparallel theories of gravity, see
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Sec. 6.4.

4.4.3 Teleparallel quintom models

For minimally coupled models (F (φ) = 0 in (4.37)) with canonical scalar field, the

equation of state must satisfy wde ≥ −1, while for a phenomenologically acceptable

phantom case, (i.e. valid only after the early-time discontinuities in its equation of

state have taken place), the phantom scalar field equation of state is constrained to

be wde < −1. In a minimally coupled model, there is no way to cross this phantom

barrier (i.e. the cosmological constant value wde = −1) with a single canonical or

phantom scalar field. An interesting model which allows for such a crossing to take

place was proposed by Feng et al. (2005), which is known as quintom models. This

scenario of dark energy gives rise to the equation of state larger than -1 in the past

and less than -1 today, satisfying current observations. It can be achieved with more

general non-canonical scalar fields, but the simplest model is represented by the

quintom action made up of two scalar fields, one canonical field φ and one phantom

field σ (minimally coupled):

Squintom =

ˆ [ ◦
R

2κ2
+

1

2
∂µφ∂

µφ− 1

2
∂µσ∂

µσ − V (φ, σ) + Lm

]√
−g d4x ,(4.58)

where now the energy potential V (φ, σ) depends on both scalar fields. A phantom

scalar field has the opposite sign of the kinetic term. It should be noted that phantom

scalar fields violate the conservation of probability and also they have unboundedly

negative energy density. This lead to the absence of a stable vacuum quantum state.

Therefore, phantom scalar fields have Ultra-Violet quantum instabilities (Cline et al.,

2004; Copeland et al., 2006). Hence, the model presented above needs to be consider

as a toy model to describe the dark energy, and not as a fundamental theory of

gravity. For more details about quintom scalar fields, see Cai et al. (2010).

On the other hand, it is also possible to consider Teleparallel quintom models
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minimally coupled with two scalar fields. Since
◦
R = −T + B, a minimally coupled

model based on
◦
R (GR plus two scalar fields minimally coupled) will lead to the

same theory as a theory based on T (TEGR plus two scalar fields minimally cou-

pled). However, one can generalise the quintom models by considering non-minimally

coupling between the Ricci scalar and the scalar fields, namely

Sg−quintom =

ˆ [ ◦
R

2κ2
+

1

2

(
f1(φ) + f2(σ)

) ◦
R +

1

2
ξ∂µφ∂

µφ+
1

2
χ∂µσ∂

µσ

−V (φ, σ) + Lm

]√
−g d4x , (4.59)

where now there are two coupling functions f1(φ) and f2(σ) and for being more

general, two coupling constants, χ and ξ were introduced in order to have quintom

models with ξ = −χ = 1 (one canonical scalar field and one phantom scalar field),

two canonical scalar fields (ξ = χ = 1) or two phantom scalar fields (ξ = χ = −1).

It should be remarked that in principle one can also introduce coupling functions

w1(φ) and w2(σ) instead of the coupling constants ξ and χ. For simplicity, coupling

constants will be only considered in this section. The above action can be seen as

a generalisation of the non-minimally scalar field model presented in (4.37), with

now having two scalar fields. This action was first presented in Marciu (2016) with

f1(φ) = c1φ
2 and f2(σ) = c2σ

2 and ξ = −χ = 1. The author studied its cosmology

using numerical techniques finding a late-time accelerating behaviour of the Universe

with a possibility of the crossing of the phantom divide line.

In the same spirit as (4.59), recently, there was proposed a generalised Teleparallel

action which is a generalisation of (4.44) with two scalar fields, namely (Bahamonde

et al., 2018a)

STEGR−quintom =

ˆ [ T
2κ2

+
1

2

(
f1(φ) + f2(σ)

)
T +

1

2

(
g1(φ) + g2(σ)

)
B

+
1

2
ξ∂µφ∂

µφ+
1

2
χ∂µσ∂

µσ − V (φ, σ) + Lm

]
e d4x , (4.60)
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the functions f1, f2, g1 and g2 are coupling functions which depend on two different

scalar field φ and σ. The field equations for this model can be easily found by

using (4.11) and (4.45). Moreover, the computation is straightforward from the field

equations for one scalar field (see Eq. (4.46)). The cosmological equations are then

given by

3H2(1 + f1(φ) + f2(σ)) = ρm + V (φ, σ) +
1

2
ξφ̇2 +

1

2
χσ̇2

+3H(g′1(φ)φ̇+ g′2(σ)σ̇) , (4.61)

(3H2 + 2Ḣ)(1 + f1(φ) + f2(σ)) = −pm + V (φ, σ)− 1

2
ξφ̇2 − 1

2
χσ̇2

−2H(φ̇f ′1(φ) + σ̇f ′2(σ)) + g̈1(φ) + g̈2(σ) .

(4.62)

Here, κ2 = 1 was also assumed. It can be shown that the continuity equations (4.55)

and (4.56) are also valid in this theory. The modified FLRW equations (4.61) and

(4.62) can be also be rewritten in terms of effective energy and pressure, as follows

3H2 = ρeff , (4.63)

3H2 + 2Ḣ = −peff , (4.64)

where ρeff = ρm + ρφ + ρσ, peff = pm + pφ + pσ were defined and

ρφ = −3H2f1(φ) + V1(φ) +
1

2
ξφ̇2 + 3Hg′1(φ)φ̇ , (4.65)

pφ = (3H2 + 2Ḣ)f1(φ) +
1

2
ξφ̇2 + 2Hφ̇f ′1(φ)− g̈1 − V1(φ) , (4.66)

ρσ = −3H2f2(σ) + V2(σ) +
1

2
χσ̇2 + 3Hg′2(σ)σ̇ , (4.67)

pσ = (3H2 + 2Ḣ)f2(σ) +
1

2
χσ̇2 + 2Hσ̇f ′2(σ)− g̈2 − V2(σ) . (4.68)

One can define the equation of state of the dark energy or scalar fields as the following
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ratio of the scalar field pressures and energy densities

ωφ =
pφ
ρφ
, ωσ =

pσ
ρσ
. (4.69)

For the present generalised quintom model in Teleparallel gravity, the dark energy

equation of state is:

wde =
pφ + pσ
ρφ + ρσ

. (4.70)

One can also define the total or effective equation of state as

ωeff =
peff

ρeff

=
pm + pφ + pσ
ρm + ρφ + ρσ

, (4.71)

and the standard matter energy density as:

Ωm =
ρm

3H2
. (4.72)

Analogously, one can define the energy density parameter for dark energy or scalar

fields as,

Ωde = Ωφ + Ωσ , Ωφ =
ρφ

3H2
, Ωσ =

ρσ
3H2

, (4.73)

such that the relation Ωm + Ωφ + Ωσ = Ωm + Ωde = 1 holds.

In Bahamonde et al. (2018a), the specific case where the coupling functions are

f1(φ) = c1φ
2 , f2(σ) = c2σ

2 , g1(φ) = c3φ
2 , g2(σ) = c4σ

2 , (4.74)

where ci (i = 1, .., 4) are constants was studied. Further, the authors considered that

the energy potential is an exponential type and also that it can be split into two

parts,

V (φ, σ) = V1(φ) + V2(σ) = V1e
−λ1φ + V2e

−λ2φ , (4.75)
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where λ1,2 > 0 and V1 and V2 are constants. It was also assumed that the fluid is a

standard barotropic one with pm = wρm. The dynamical system of this model was

studied in Bahamonde et al. (2018a), finding a 6 dimensional one with 21 critical

points (but only 13 ensures that the potentials are positive). One of those points

represents a matter dominated era whereas the other ones are dark energy dominated

eras. The numerical solutions deduced in the case of scalar torsion and boundary

couplings with the scalar fields are depicted in Figs. 4.1-4.5. The study can be

divided into two general models: (i) a model where the torsion scalar is non-minimally

coupled with the scalar fields (g1 = g2 = 0); ii) a model where the boundary term

is non-minimally coupled with the scalar fields (f1 = f2 = 0). For each model,

four different set of numerical constant were chosen. For the model non-minimally

coupled with T , the following four models were studied:

• Model T1: c1 = 0.7, λ1 = λ2 = 0.6, V1 = V2 = 1.02, φ(ti) = σ(ti) = −0.6,

φ̇(ti) = σ̇(ti) = 0, ti = 0.008.

• Model T2: c1 = 0.5, λ1 = λ2 = 0.5, V1 = V2 = 1, φ(ti) = σ(ti) = 0.5, φ̇(ti) =

0.01, σ̇(ti) = 0.001, ti = 0.05.

• Model T3: c1 = 0.7, λ1 = λ2 = 0.6, V1 = V2 = 1.08, φ(ti) = σ(ti) = 0.6, φ̇(ti) =

0, σ̇(ti) = 0, ti = 0.008.

• Model T4: c1 = 0.6, λ1 = λ2 = 0.01, V1 = V2 = 1.01, φ(ti) = σ(ti) = 8, φ̇(ti) =

0.0001, σ̇(ti) = 0.001, ti = 0.035.

On the other hand, for the model non-minimally coupled with the boundary term,

the following models were studied:

• Model B1: c3 = 0.5, λ1 = λ2 = 0.7, V1 = V2 = 1, φ(ti) = σ(ti) = 0.6, φ̇(ti) =

0.001, σ̇(ti) = 0.000001, ti = 0.0295.
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• Model B2: c3 = 0.6, λ1 = λ2 = 0.4, V1 = V2 = 1.05, φ(ti) = σ(ti) = 1.5, φ̇(ti) =

0.001, σ̇(ti) = 0.001, ti = 0.0295.

• Model B3: c3 = 0.4, λ1 = λ2 = 0.2, V1 = V1 = 1.05, φ(ti) = σ(ti) = −5, φ̇(ti) =

0.00001, σ̇(ti) = 0.00001, ti = 0.0083.

• Model B4: c3 = 0.6, λ1 = λ2 = 0.5, V1 = V2 = 1.055, φ(ti) = σ(ti) = 1.1, φ̇(ti) =

σ̇(ti) = 0.00001, ti = 0.0015.

In the left panel of Fig. 4.1, the evolution of the cosmic scale factor as a function

of cosmic time for the four models Ti. One can observe that the dynamics of the

Universe in the case of the four scalar torsion models corresponds to an accelerated

expansion, very close to a de Sitter expansion at late-times. The present time is at

the numerical value of t0 = 0.96, where the cosmic scale factor is approximately equal

to unity a(t0) ∼ 1, as requested from the numerical method considered. Moreover,

one can observe that the values of the coupling coefficient c1 have a minor influence

on the dynamics on the large scale. The Universe in this model is accelerating

independently from the values of the coupling parameter c1.

The case of boundary coupling models, neglecting the scalar torsion couplings

are represented in the right panel of Fig. 4.1, where a similar behaviour is observed:

the dynamics of the Universe in the case of the four boundary coupling models

corresponds to an accelerated expansion, toward a de Sitter stage, independently

from the values of the coupling parameter c3. As previously mentioned, one has a

similar behaviour as in the left panel of Fig. 4.1; an evolution of the system toward

a de Sitter stage in the distant future.

The influence of the scalar torsion coupling coefficient c1 in the evolution of

the density parameters of the Universe (dark energy density parameter and matter

density parameters) are presented in Fig. 4.2. In these figures one can observe that

at the present time t0 = 0.96, the density parameters have the values suggested by
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astrophysical observations, Ωde = 1 − Ωm ∼ 0.70. From the numerical evolution, it

can be noticed that at the initial time, the Universe faces a matter dominated era,

while at the final numerical time, the cosmic picture is dominated by the dark energy

quintom fields non-minimally coupled with the scalar torsion. Hence, the present

quintom model with a scalar torsion coupling is able to explain the current values of

the density parameters in the Universe, in a good agreement with astronomical and

astrophysical observations. It is easy to see that the values of the coupling coefficient

c1 have minor effects on the values of the density parameters, since with a proper fine-

tuning of the initial conditions, we are able to reproduce the corresponding current

values of the density parameters in the Universe. From this, one remarks that the

present generalised quintom model in the framework of Teleparallel gravity theory

with a scalar torsion coupling is a feasible dark energy model.

Additionally, in Fig. 4.3 is displayed the evolution of the density parameters in

the case of boundary coupling models Bi, considering different values of the coupling

coefficient c3, previously discussed. Here, one has a similar behaviour as in the case

of a scalar torsion coupling. At the initial time, the Universe faces the matter domi-

nated epoch, while at late-times the dark energy fields dominate the cosmic picture.

Hence, boundary coupling models Bi also represent feasible dark energy models, ex-

plaining the acceleration of the Universe as well as the current values of the density

parameters. The values of the boundary coupling parameters c3 have a minor influ-

ence on the evolution of the density parameters corresponding to the dark energy

fluid and matter fluid, respectively, similar to the scalar torsion models Ti. Conse-

quently, in both models with boundary couplings Bi and scalar torsion couplings Ti

endowed with decomposable exponential potentials, the Universe is evolving towards

a state dominated by dark energy fields over the matter fluid, while the cosmic scale

factor is in an accelerated stage.

The time evolution of the dark energy equation of state in the case of scalar torsion
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coupling models Ti is shown in Fig. 4.4. One can remark that for the scalar torsion

coupling models, the dark energy equation of state can exhibit the main specific

feature to quintom models; the crossing of the phantom divide line. For scalar

torsion coupling models, in the first stage of evolution, the dark energy equation of

state presents oscillations around the cosmological constant boundary, while at later

times the equation of state evolves asymptotically towards the ΛCDM model, acting

almost as the cosmological constant. As a consequence, the generalised quintom

model in the Teleparallel gravity theory with a scalar torsion coupling can be in

agreement with cosmological observations which have suggested that the cosmological

constant boundary might be crossed by the dark energy equation of state. Finally,

the evolution of the dark energy equation of state in the case of boundary coupling

models Bi, is depicted in Fig. 4.5. As in the previous models, at the initial stage

of evolution, the models show the crossing of the phantom divide line, while in

the end at the final time, the dark energy quintom model acts asymptotically as

a cosmological constant. As a concluding remark, it should be remembered that

the present generalised quintom model in the Teleparallel gravity with scalar torsion

and boundary couplings represents also a possible dark energy model, an alternative

to the ΛCDM model, which can explain the observed crossing of the cosmological

constant boundary in the near past of the dark energy equation of state, as suggested

by various cosmological observations. Notice that this behaviour can be achieved

without evoking any cosmological constant.
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Figure 4.1: The time evolution of the cosmic scale factor for models with
scalar torsion coupling(left panel) T1, T2, T3, T4 and boundary couplings(right panel)
B1, B2, B3, B4

Figure 4.2: The evolution of the quintom energy density and matter energy density
for scalar torsion coupling models

Figure 4.3: The evolution of quintom energy density and matter energy density for
boundary coupling models
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Figure 4.4: The evolution of the dark energy equation of state for boundary coupling
models T1, T2, T3, T4

Figure 4.5: The evolution of the dark energy equation of state for boundary coupling
models B1, B2, B3, B4



5
f (T,B) gravity and its extension with non-minimally

matter couplings

Chapter Abstract

In this chapter, a modified Teleparallel theory of gravity is presented which is based

on an arbitrary function f which depends on the scalar torsion T and a boundary

term B = (2/e)∂µ(eT µ) which appears via
◦
R = −T + B. This theory can be-

come either f(T ) gravity or the Teleparallel equivalent of f(
◦
R) gravity. Flat FLRW

cosmology is discussed in this theory, finding some cosmological solutions using the

Noether symmetry approach and also the reconstruction method, which mimics some

interesting kinds of universes.

5.1 General equations

As seen in Chap. 4, the first straightforward modification of the Teleparallel equiv-

alent of General Relativity is the so-called f(T ) gravity where one generalises the

TEGR Lagrangian (see Eq. (3.39)) to an arbitrary function of the scalar torsion. In

the standard Teleparallel approach where the spin connection is zero, this theory

is not covariant under Lorentz transformations. This theory is very different from

its analogous metric counterpart, f(
◦
R) gravity. A general framework will be now

considered which includes both f(
◦
R) gravity and f(T ) gravity as special sub-cases.

This theory was presented in Bahamonde et al. (2015), and then, this chapter will

127
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review the most important results discussed in that paper. Let us emphasize here

that in this chapter, the standard approach in Teleparallel theories of gravity will

be assumed where the spin connection is zero (pure tetrad formalism). Eq. (3.36)

says that the Ricci scalar
◦
R differs by a boundary term B from the scalar torsion T .

Therefore, Bahamonde et al. (2015) proposed a new modified Teleparallel theory of

gravity given by the following action,

Sf(T,B) =

ˆ [
1

2κ2
f(T,B) + Lm

]
e d4x , (5.1)

where f is a function of both T andB = (2/e)∂µ(eT µ) and Lm is a matter Lagrangian.

Variations of the action with respect to the tetrad gives

δSf(T,B) =

ˆ [
1

2κ2

(
f(T,B)δe+ efB(T,B)δB + efT (T,B)δT

)
+ δ(eLm)

]
d4x ,

(5.2)

where fB = ∂f/∂B and fT = ∂f/∂T . The variations of Fδe and eFδT , where F is

a function, were derived in Sec. 4.3.1. Using those results, one obtains

efT (T,B)δT =
[
− 4e(∂µfT )Sa

µλ − 4∂µ(eSa
µλ)fT + 4efTT

σ
µaSσ

λµ
]
δeaλ , (5.3)

f(T,B)δe = ef(T,B)Eλ
a δe

a
λ . (5.4)

Now, let us compute the variations of the new term coming form δB. Performing

this variation, one first finds

efB(T,B)δB = −
(
fBB + 2(∂µfB)T µ

)
δe− 2e(∂µfB)δT µ , (5.5)

where

T µ = gµνT σσν = gµνEσ
a

(
∂σe

a
ν − ∂νeaσ

)
, (5.6)
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was used to define the torsion vector. By using (3.49), the last term on the right

hand side of (5.5) becomes

e(∂µfB)δT µ =
[
∂ν

(
Eλ
a (egµν)(∂µfB)

)
− ∂ν

(
Eν
a (egµλ)(∂µfB)

)
− e(∂µfB)

(
Eµ
aT

λ + gµλTa + T λa
µ
)]
δeaλ , (5.7)

where boundary terms were neglected. Using ∂λe = egµν∂λgµν and the compatibility

equation for the metric ∇λ(g
µν) = 0 one finds

∂λe = e
•
Γλ

ρ
ρ , ∂λg

µν = −
( •

Γλ
νµ +

•
Γλ

µν
)
. (5.8)

It should be reminded that
•
Γλ

νµ denotes the Weitzenböck connection. Using Eqs. (3.28)

and (5.8), the first term of (5.7) can be written in terms of covariant derivatives as

∂ν

(
Eλ
a (egµν)(∂µfB)

)
= eEλ

a

◦
�fB − e(∂µfB)

(
Eλ
a

•
Γν

µν − Eλ
a

•
Γ
νµ

ν +
•
Γ
µλ

a

)
. (5.9)

Remind here that
◦
� =

◦
∇µ

◦
∇µ which is computed with the Levi-Civita connection.

Using the same idea, the second term of (5.7) becomes

∂ν

(
Eν
a (egµλ)(∂µfB)

)
= eEν

a

◦
∇λ

◦
∇νfB + e(∂µfB)

(
gµλ(

•
Γa

ν
ν −

•
Γν

ν
a)

−
•
Γa

λµ −
•
Γa

µλ +
•
Γ
λµ

a −Kλµ
a

)
. (5.10)

By replacing (5.9) and (5.10) into (5.7) one obtains

e(∂µfB)δT µ = −
[
e(∂µfB)

(
Eµ
aT

λ + gµλTa + T λa
µ + gµλ(

•
Γa

ν
ν −

•
Γν

ν
a)−

•
Γa

λµ

−
•
Γa

µλ +
•
Γ
λµ
a −Kλµ

a −
•
Γa

µλ +
•
Γ
µλ
a + Eλ

a

•
Γν

µν − Eλ
a

•
Γ
νµ
ν

)
− eEλ

a

◦
�fB

+ eEν
a

◦
∇λ

◦
∇νfB

]
δeaλ . (5.11)
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If one uses the symmetry of the Levi-Civita connection and then uses Eq. (3.28), one

can simplify the above equation as follows

e(∂µfB)δT µ = −
[
e(∂µfB)

(
Eµ
aT

λ +
•
Γ
λµ
a −

•
Γa

µλ −Kλµ
a

)
− eEλ

a

◦
�fB + eEν

a

◦
∇λ

◦
∇µfB

]
δeaλ . (5.12)

Now, by replacing this expression into (5.5) and using (3.44) and 2Sa
λµ = Ka

λµ +

Eµ
aT

λ − Eλ
aT

µ, one finds

efB(T,B)δB =
[
2eEν

a

◦
∇λ

◦
∇νfB − 2eEλ

a

◦
�fB −BefBEλ

a + 2e(∂µfB)
(

2Sa
λµ

−Ka
λµ +

•
Γ
λµ
a −

•
Γa

µλ −Kλµ
a

)]
δeaλ . (5.13)

The last four terms on the right hand side are identically zero due to (3.28). Thus,

finally, the variations of the boundary term contribution become

efB(T,B)δB =
[
2eEν

a

◦
∇λ

◦
∇νfB − 2eEλ

a

◦
�fB −BefBEλ

a − 4e(∂µfB)Sa
µλ
]
δeaλ . (5.14)

Hence, the f(T,B) field equations can be obtained by replacing the above expression

and the variations of δT and δe (see Eqs. (5.3)-(5.4)) into (5.2) and then using

δSf(T,B) = 0 giving us

2eEλ
a

◦
�fB − 2eEσ

a

◦
∇λ

◦
∇σfB + eBfBE

λ
a + 4e

[
(∂µfB) + (∂µfT )

]
Sa

µλ

+ 4∂µ(eSa
µλ)fT − 4efTT

σ
µaSσ

λµ − efEλ
a = 2κ2eT λa , (5.15)

where the energy-momentum tensor was defined as follows

T λa =
1

e

δ(eLm)

δeaλ
. (5.16)
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One can rewrite the above field equation in spacetime indices by contracting with

eaν , yielding

2eδλν
◦
�fB − 2e

◦
∇λ

◦
∇νfB + eBfBδ

λ
ν + 4e

[
(∂µfB) + (∂µfT )

]
Sν

µλ

+ 4eaν∂µ(eSa
µλ)fT − 4efTT

σ
µνSσ

λµ − efδλν = 2κ2eT λν . (5.17)

Here, the energy-momentum with only spacetime indices was defined as contracting

(5.16) with eaν , namely T λν = eaνT λa . In the following, some properties of this theory

will be studied, as for example, the limiting cases that one can recover from this

approach.

5.1.1 Some important special theories

In this section, some interesting theories that can be recovered from f(T,B) gravity

will be presented. The first special case that is interesting to mention is a new kind

of theory related to the boundary term, choosing

f(T,B) = T + F (B) , (5.18)

where F (B) is a function that depends only on the boundary term. The term T

was included above in order to have GR in the background and then this theory

can have all the GR solutions in the limit where F (B) = 0. This theory is new

and in general is a 4th order theory. Cosmological solutions in this theory will be

found in forthcoming sections (see Sec. 5.2.1.3). Additionally, in Sec. 5.2.2.4, the

reconstruction method for this theory will be employed to mimic some interesting

cosmological models.

Another straightforward theory that can be covered from f(T,B) gravity is when
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one considers

f(T,B) = f(T ) , (5.19)

so that fB = 0. In this case, one finds the same f(T ) field equations given by (4.13).

Let us make an important remark about this limit. One verifies immediately that

this is the unique form of the function f which will give second order field equations.

Recall that linear terms in the boundary term B do not affect the field equations.

Therefore, the generic field equations contain terms of the form ∂µ∂νfb which are

always of fourth order and can vanish if and only if fb is a constant, so that f is

linear in the boundary term. Therefore, for a non-linear function f , f(T ) gravity

is the only possible second order modified theory of gravity constructed out of
◦
R,

T and B. As mentioned before, the price to pay is the violation of local Lorentz

covariance.

Another interesting theory that can be constructed from this theory is found by

considering

f(T,B) = f(−T +B) = f(
◦
R) , (5.20)

where Eq. (3.36) was used. This is the Teleparallel equivalent of f(
◦
R) gravity. Let

us now verify that this theory actually has the same field equations as standard f(
◦
R)

gravity. To do this, let us introduce the standard notation for the derivative of f

from f(
◦
R) gravity

f ′(
◦
R) = f ′(−T +B) = −fT = fB . (5.21)

Inserting this form of function into our general f(T,B) field equation (5.17) leads to
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the following field equations

2eδλν
◦
�F − 2e

◦
∇λ

◦
∇νF + eBFδλν − 4eaν∂µ(eSa

µλ)F + 4eFT σµνSσ
λµ − efδλν = 2κ2eT λν .

(5.22)

This equation is not written in the standard way of f(
◦
R) gravity since the above

equation is written in terms of quantities related to Teleparallel gravity such as the

superpotential and the torsion tensor. To verify that this equation is the same as

standard f(
◦
R) gravity, one must change all those terms. One can rewrite the fourth

term in (5.22) as

4eaν∂µ(eSa
µλ) = 2∂µ(eKν

µλ)− 2∂ν(eT
λ) + eBδλν + 4eSσ

λµ
•
Γµ

σ
ν . (5.23)

Inserting this back into (5.22) gives

2eδλν
◦
�F − 2e

◦
∇λ

◦
∇νF − 2F∂µ(eKν

µλ) + 2F∂ν(eT
λ)

− 4eFSσ
λµ
•
Γν

σ
µ − efδλν = 2κ2eT λν . (5.24)

Next, one needs to replace the torsion components with curvature. To do this, one

needs to change
•
Γαµν =

◦
Γαµν + Kµ

α
ν and then use Eq. (2.58) to find the following

identity

◦
R
λ
ν =

1

e

(
∂σ(eKν

λσ) + ∂ν(eT
λ)
)
− 2Sσ

λµ
•
Γν

σ
µ . (5.25)

Using this final identity (5.25), it is then easy to see that the field equations reduce

to the f(
◦
R) field equations in standard form

F
◦
Rµν −

1

2
fgµν + gµν

◦
�F −

◦
∇µ

◦
∇νF = κ2Tµν , (5.26)

where Tµν is the energy-momentum tensor. Thus it can be concluded that equa-
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tion (5.22) is the Teleparallel equivalent of f(
◦
R) gravity. From here, one can notice

how f(
◦
R) and f(T ) are related. Fig. 5.1 shows how those theories are related. The

starting point is a gravitational action based on an arbitrary function f(T,B) which

depends on the torsion scalar and a torsion boundary term. If this function is as-

sumed to be independent of the boundary term, one arrives at f(T ) gravity which we

identified as the unique second order gravitational theory in this approach. Likewise,

if the function takes the special f(−T + B), one finds the Teleparallel equivalent of

f(
◦
R) gravity. Any other form of f(T,B) will result in gravitational theories which

are not of second order.

f(T,B) f(T )

f(
◦
R) GR or TEGR

f = f(−T +B)

f = f(T )

f =
◦
R

f = T

Figure 5.1: Relationship between f(T,B) and other gravity theories.

5.1.2 Lorentz covariance

One important issue in modified Teleparallel theories of gravity is the loss of the

Lorentz covariance. In this section, this property will be studied for f(T,B) gravity.

Let us first rewrite the field equations in a covariant way. If one inserts the expression

for the Ricci tensor (5.25) into the field equation (5.17), one finds
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Hµν := −fTGµν + gµν
◦
�fB −

◦
∇µ

◦
∇νfB +

1

2
(BfB + TfT − f)gµν

+ 2
[
(fBB + fBT )(

◦
∇λB) + (fTT + fBT )(

◦
∇λT )

]
Sν

λ
µ = κ2Tµν , (5.27)

where the relations
◦
R = −T + B and

◦
Rλ
ν =

◦
Gλ
ν + 1

2
(B − T )δλν were used. It is

readily seen that if one considers the f(T ) limit, then this equation coincides with

the covariant form of the f(T ) field equations presented in Li et al. (2011), and one

notes that this equation is manifestly covariant. However, it is not in general invariant

under infinitesimal local Lorentz transformations. Since the Lorentz transformations

are symmetric, a necessary condition for the equation to be Lorentz covariant is that

the antisymmetric part of the field equations to be identically zero, so the coefficient

of Sν
λ
µ must vanish identically, see for example Li et al. (2011). Requiring this gives

two conditions

fBB + fBT = 0 , and fTT + fBT = 0 , (5.28)

which can be satisfied if one chooses

fT + fB = c1 , (5.29)

where c1 is a constant of integration. By introducing X = T + B and Y = T − B,

one obtains that the above equation becomes fX = c1 which can be solved yielding

f(T,B) = f̃(−T +B) + c1B = f̃(
◦
R) + c1B . (5.30)

Since B is a total derivative term, the resulting field equations are unchanged by

terms linear in B. Hence, one can set c1 = 0 without loss of generality. As showed

before, f of this form simply reduces to the f(
◦
R) field equations, which are manifestly

Lorentz invariant. Hence one can conclude that the above field equations are Lorentz
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invariant if and only if they are equivalent to f(
◦
R) gravity. Therefore, the Teleparallel

equivalent of f(
◦
R) gravity is the only possible Lorentz invariant theory of gravity

constructed out of
◦
R, T and B. Conversely to the above, the price to pay is the

presence of higher order derivative terms.

5.1.3 Conservation equations

Requiring the matter action to be invariant under both local Lorentz transforma-

tions and infinitesimal coordinate transformations gives the condition that Tµν is

symmetric and divergence free

◦
∇µTµν = 0 , (5.31)

as shown in Li et al. (2011). Hence one requires the left-hand side of our field

equations to also have this property. Let us show that this is indeed the case and

that there is no need for this to be imposed as an extra (independent) condition.

For compactness, let us define the vector

Xλ =
[
(fBB + fBT )(

◦
∇λB) + (fTT + fBT )(

◦
∇λT )

]
. (5.32)

Taking the covariant derivative of Hµν , one finds after some simplification

◦
∇µHµν = −

[
◦
Rµν −

1

2
Bgµν + 2

◦
∇ρSνρµ

]
Xµ. (5.33)

Now using

◦
Rµν = −2

◦
∇ρSνρµ +

1

2
Bgµν − 2SρσµKνσρ , (5.34)
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simplifies Eq. 5.33 to

◦
∇µHµν = 2SρσµKνσρX

µ. (5.35)

However, one knows that the energy momentum tensor is symmetric, and hence

H[µν] = −S[νµ]
λXλ = 0 . (5.36)

This implies

◦
∇µHµν = 2H [ρσ]Kνρσ = 0 , (5.37)

which follows from K being antisymmetric in its last two indices. This means that

on shell the left-hand side of the field equations are conserved.

5.2 FLRW Cosmology

In this section, flat FLRW cosmology will be studied for f(T,B) gravity. First, the

main equations will be derived and then results from Bahamonde et al. (2018b); Ba-

hamonde & Capozziello (2017) will be presented. First, some cosmological analytical

solutions will be found using the Noether symmetry approach. These results were

presented in Bahamonde & Capozziello (2017). Then, the other sections will be

devoted to review Bahamonde et al. (2018b) where the reconstruction method of

f(T,B) cosmology will be studied. Let us now introduce the basic equations of a

flat FLRW cosmology in f(T,B) gravity. The metric which describes this spacetime

in Cartesian coordinates is given by

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2) , (5.38)
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where a(t) is the scale factor of the universe. In these coordinates, the tetrad field

can be expressed as follows

eaµ = diag (1, a(t), a(t), a(t)) . (5.39)

Since f(T,B) is not covariant under Lorentz transformations, one needs to be very

careful with the choice of the tetrad. For instance, the unwanted condition fTT = 0

appears when one considers a flat diagonal FLRW tetrad in spherical coordinates.

The above vierbein is a “good tetrad” as we discussed in Sec. 4.3.3 since it will not

constrain our system. By considering a standard perfect fluid as a content of the

universe described by an energy-momentum as (2.101) and using the above tetrad,

one can find that the field equations (5.17) in flat FLRW become

3H2(3fB + 2fT )− 3HḟB + 3ḢfB +
1

2
f(T,B) = κ2ρ , (5.40)

(3H2 + Ḣ)(3fB + 2fT ) + 2HḟT − f̈B +
1

2
f(T,B) = −κ2p , (5.41)

where dots represent differentiation with respect to the cosmic time and ρ and p

are the energy density and pressure of the cosmic fluid. It should be remarked that

ḟB = fBBḂ + fBT Ṫ and ḟT = fBT Ḃ + fTT Ṫ . Clearly, if one chooses that

f(T,B) = T = −6H2 , (5.42)

one recovers the standard flat FLRW equations in GR (see Eqs. (2.102)–(2.103) with

k = 0).

It can be shown that the scalar torsion and the boundary term in flat FLRW

become

T = −6

(
ȧ

a

)2

= −6H2 , (5.43)
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B = −6

[
ä

a
+ 2
( ȧ
a

)2
]

= −6(Ḣ + 3H2) . (5.44)

Therefore, the Ricci scalar is

◦
R = −T +B = −6

[( ȧ
a

)2

+
ä

a

]
= −6(Ḣ + 2H2) . (5.45)

It should be observed here a very important remark regarding the notation. One

needs to be very careful with different metric signature notations. Usually, in

Teleparallel theories of gravity, researchers use the metric signature as in this the-

sis; ηab = diag(1,−1,−1,−1). However, in standard theories of gravity as in f(
◦
R)

gravity, authors usually use the other signature notation ηab = diag(−1, 1, 1, 1). The

difference of this notation makes that T,B and
◦
R have different signs. If one uses

the notation ηab = diag(−1, 1, 1, 1), one obtains that T = 6H2, B = 6(Ḣ + 3H2) and

◦
R = 6(Ḣ+2H2). Since this thesis uses the standard Teleparallel notation, one needs

to be careful when one wants to compare our theories with f(
◦
R) gravity since usually

other papers in that theory use the other signature notation. Hence, to recover f(
◦
R)

gravity in the standard notation (see for example Sotiriou & Faraoni (2010)), one

needs to replace f(T,B) = f(+T − B) = f(−
◦
R). Therefore, to recover that case

with the standard notation, one must change

fT → fR , fB → −fR , fTT → fRR , fBB → fRR , fTB → −fRR . (5.46)

It should be noted that to avoid to write ◦ as a sub-index, fR = df(
◦
R)/d

◦
R was

defined instead of f ◦
R

. By doing this, one easily obtains that Eqs. (5.40) and (5.41)

become the standard FLRW equations in f(
◦
R) gravity reported in Sotiriou & Faraoni

(2010), namely

−3H2fR + 3HḟR − 3ḢfR +
1

2
f = κ2ρ , (5.47)



Chapter 5. f(T,B) and its extension non-minimally coupled with matter 140

−3H2fR − ḢfR + 2HḟR + f̈R +
1

2
f = −κ2p . (5.48)

It should be noted here that ḟR = fRR d
◦
R/dt and then f̈R = fRRR (d

◦
R/dt)2 +

fRR d
2
◦
R/dt2. One can also recover f(T ) gravity just by assuming that f(T,B) =

f(T ) in (5.40)–(5.41), giving us the same equations (4.31)–(4.32) studied in Sec. 4.3.3.

In the following sections, some properties and consequences for flat FLRW cosmology

will be studied for modified f(T,B) gravity.

5.2.1 Noether symmetry approach

In this section, the Noether symmetry approach will be used to find exact cosmologi-

cal solutions in f(T,B) gravity. This section is a review of the paper by Bahamonde

& Capozziello (2017). This technique proved to be very useful for several reasons: i)

it allows us to fix physically interesting cosmological models related to the conserved

quantities (i.e. in particular couplings and potentials) (Capozziello et al., 1996); ii)

the existence of Noether symmetries allows to reduce dynamics and then to achieve

exact solutions (Capozziello et al., 2012); iii) symmetries act as a sort of selec-

tion rules to obtain viable models in quantum cosmology (Capozziello & Lambiase,

2000). The Noether symmetry approach has been widely used in the literature to

find cosmological solutions in modified gravity (see Nojiri & Odintsov (2006); Nojiri

& Odintsov (2011); Bamba et al. (2012); Clifton et al. (2012); Nojiri et al. (2017) for

recent reviews).

The main idea is to find symmetries in a given model and then to use them to

reduce related systems and find exact solutions. As a byproduct, the existence of

the symmetries selects the functions inside the models that, in some cases, have a

physical meaning. In this sense, the existence of a Noether symmetry is a sort of

selection rule. Essentially, the technique consists of deriving constants of motions.

Any constant of motion is related to a conserved quantity that allows to reduce the
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system and then to obtain exact solutions. If the number of constants is equal to

the number of degrees of freedom, the system is completely integrable.

In the specific case here, the cosmological equations can be derived both from the

field Eqs. (5.40)-(5.41) or deduced by a point-like canonical Lagrangian L(a, ȧ, T, Ṫ , B, Ḃ)

related to the action (5.2). Here, Q ≡ {a, T,B} is the configuration space from which

it is possible to derive TQ ≡ {a, ȧ, T, Ṫ , B, Ḃ}, the corresponding tangent space on

which L is defined as an application. The variables a(t), T (t) and B(t) are, re-

spectively, the scale factor, the torsion scalar and the boundary term defined in the

FLRW metric. The Euler-Lagrange equations are given by

d

dt

∂L
∂ȧ

=
∂L
∂a

,
d

dt

∂L
∂Ṫ

=
∂L
∂T

,
d

dt

∂L
∂Ḃ

=
∂L
∂B

, (5.49)

with the energy condition

EL =
∂L
∂ȧ
ȧ+

∂L
∂Ṫ

Ṫ +
∂L
∂Ḃ

Ḃ − L = 0 . (5.50)

As a consequence, the infinite number of degrees of freedom of the original field

theory are reduced to a finite number as in mechanical systems.

Let us consider the canonical variables a, T,B in order to derive the f(T,B)

action as follows

Sf(T,B) =

ˆ
L(a, ȧ, T, Ṫ , B, Ḃ)dt .

By using (5.43) and (5.44), one can rewrite the action (5.2) into its point-like repre-

sentation using the Lagrange multipliers λ1 and λ2 as

Sf(T,B) = 2π2

ˆ
dt

{
f(T,B)a3 − λ1

[
T + 6

( ȧ
a

)2
]
− λ2

(
B + 6

[
ä

a
+ 2
( ȧ
a

)2
])}

.

(5.51)

Here 2π2 is the volume of the unit 3-sphere. By varying this action with respect to
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T and B, one finds

(a3fT − λ1)δT = 0 → λ1 = a3fT , (5.52)

(a3fB − λ2)δB = 0 → λ2 = a3fB . (5.53)

Thus, the action (5.51) becomes

Sf(T,B) = 2π2

ˆ
dt
{
f(T,B)a3 − a3fT

(
T + 6

( ȧ
a

)2
)

−a3fB

(
B + 6

[
ä

a
+ 2
( ȧ
a

)2
])}

, (5.54)

and then the point-like Lagrangian is

Lf(T,B) = a3
[
f(T,B)− TfT −BfB

]
− 6aȧ2fT + 6a2ȧ

(
fBT Ṫ + fBBḂ

)
, (5.55)

where we have integrated by parts. This Lagrangian is canonical and depends on the

three time-dependent fields a, T , and B. If one chooses f(T,B) = f(T ), one recovers

the Teleparallel f(T ) cosmology with the Lagrangian (Basilakos et al., 2013)

Lf(T ) = a3
[
f(T )− TfT

]
− 6aȧ2fT . (5.56)

In addition, if one chooses f(T,B) = f(+T − B) = f(−
◦
R) one obtains the point-

like Lagrangian action of f(
◦
R) gravity with the standard notation (Capozziello &

De Felice, 2008)

L
f(
◦
R)

= a3
[
f(
◦
R)−

◦
RfR

]
+ 6aȧ2fR + 6a2ȧ d

◦
R/dtfRR . (5.57)

With these considerations in mind, let us search for cosmological solutions for the

above models by the Noether symmetry approach.
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In general, a Noether symmetry for a given Lagrangian exists, if the condition

LXL = 0 → XL = 0 , (5.58)

is satisfied. X is the Noether vector field and LX is the Lie derivative. It should be

observed that (5.58) is not the most general condition for finding Noether symmetries

to a specific Lagrangian. In this section, (5.58) will be used but in a forthcoming

section (see Sec. 8.4), the most general Noether symmetry condition will be used for

another modified Teleparallel theory.

For generalised coordinates qi, one can construct the Noether vector field X given

by

X = αi(q)
∂

∂qi
+
dαi(q)

dt

∂

∂q̇i
, (5.59)

where αi are functions defined in a given configuration space Q that assign the

Noether vector. In our case, a symmetry generator X in the space Q ≡ {a, T,B} is

X = α∂a + β∂T + γ∂B + α̇∂ȧ + β̇∂Ṫ + γ̇∂Ḃ , (5.60)

where α, β, γ depend on a, T and B. Therefore one has

α̇ =
(∂α
∂a

)
ȧ+

(∂α
∂T

)
Ṫ +

( ∂α
∂B

)
Ḃ , (5.61)

β̇ =
(∂β
∂a

)
ȧ+

(∂β
∂T

)
Ṫ +

( ∂β
∂B

)
Ḃ , (5.62)

γ̇ =
(∂γ
∂a

)
ȧ+

( ∂γ
∂T

)
Ṫ +

( ∂γ
∂B

)
Ḃ . (5.63)

A Noether symmetry exists if at least one of the functions α, β, and γ is different

from zero. Their analytic forms can be found by making explicit Eq. (5.58), which

corresponds to a set of partial differential equations given by equating to zero the

terms in ȧ2, ȧṪ , ȧḂ, Ṫ 2, Ḃ2, ḂṪ and so on. For a n dimensional configuration space,
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one has 1 + n(n + 1)/2 equations derived from Eq. (5.58). In this case, the config-

uration space is three dimensional, so one has seven partial differential equations.

Explicitly, from (5.58), one finds the following system of partial differential equations

fT

(
2a
∂α

∂a
+ α

)
+ fTB

(
aγ − a2∂β

∂a

)
+ afTTβ − a2fBB

∂γ

∂a
= 0 , (5.64)

fTB

(
a
∂α

∂a
+ a

∂β

∂T
+ 2α

)
− 2fT

∂α

∂T
+ afBB

∂γ

∂T
+ a(fTTBβ + fTBBγ) = 0 , (5.65)

fBB

(
a
∂α

∂a
+ a

∂γ

∂B
+ 2α

)
+ afTB

∂β

∂B
+ a(βfTBB + γfBBB)− 2fT

∂α

∂B
= 0 , (5.66)

fTB
∂α

∂T
= 0 , (5.67)

fBB
∂α

∂B
= 0 , (5.68)

fTB
∂α

∂B
+ fBB

∂α

∂T
= 0 , (5.69)

3 (f −BfB − TfT )α− a (BfTB + TfTT ) β − a (BfBB + TfTB) γ = 0 , (5.70)

where the unknown variables are α, β, γ and the function f(T,B). There are two

different strategies to solve it and to find symmetries: (i) one can directly solve

the system (5.64)-(5.70) and then find the unknown functions; (ii) one can impose

specific forms of f(T,B) and search for the related symmetries. The second approach

will be adopted to study f(T,B) cosmology. Hence, some different f(T,B) functions

will be imposed to then find out the Noether vector satisfying (5.64)–(5.70). Finally,

by using the symmetries, cosmological solutions will be found.

5.2.1.1 f(T,B) = f(T )

The first example that will be studied is f(T ) gravity. The cases studied in Atazadeh

& Darabi (2012); Wei et al. (2012) are straightforwardly obtained. Eqs. (5.67)-(5.69)

are identically satisfied since fTB = fBB = 0. The other equations become

fT

(
2a
∂α

∂a
+ α

)
+ afTTβ = 0 , (5.71)
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fT
∂α

∂T
= 0 , (5.72)

fT
∂α

∂B
= 0 , (5.73)

3 (f − TfT )α− aβTfTT = 0 . (5.74)

By discarding the TEGR case (f(T ) = T ) one has that fT 6= 0 and hence, from

Eqs. (5.72) and (5.73), one finds α = α(a). From Eq. (5.74), one finds that

α(a) =
afTTT

3(f − TfT )
β(a, T,B) . (5.75)

By replacing this expression in (5.71), one obtains the following differential equation

for β

∂β

∂a
= − 3f

2afTT
β(a, T,B) . (5.76)

To solve this equation, let us assume that β can be separated as β(a, T,B) =

β1(a)β2(T )β3(B), giving us

2a

β1

dβ1

da
= − 3f

fTT
= − 3

C
. (5.77)

Here, we have used that the l.h.s of the equation only depends on a and the r.h.s only

on T , so that C is a constant. Thus, it is easy to solve the above equation yielding

f(T ) = f0T
C , (5.78)

where f0 is an integration constant. Moreover, it is straightforward to find that the

Noether symmetry vector becomes

X = −1

3
β0a

1− 3
2C ∂a +

β0Ta
− 3

2C

C
∂T + γ∂B , (5.79)
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where β0 is an integration constant. As shown in Atazadeh & Darabi (2012); Wei

et al. (2012), using this symmetry, one finds that f(T ) gravity admits power-law

cosmological solutions of the form of a(t) ∝ t−2C/C3 , where C3 is another constant.

A more general study of power-law f(T ) cosmology is in Basilakos et al. (2013) where

the full Noether symmetry condition was used.

5.2.1.2 f(T,B) = f(−T +B) = f(
◦
R)

One can recover f(
◦
R) gravity by assuming f(T,B) = f(−T +B) = f(

◦
R). However,

as mentioned above, it is better to find the corresponding f(−
◦
R) equations to match

with the standard notation used in f(
◦
R) gravity. Hence, one needs to change the

derivatives as (5.46) and then the system of differential equations (5.64)-(5.70) related

to the Noether symmetry in f(
◦
R) gravity becomes

fR

(
2a
∂α

∂a
+ α

)
+ afRR

(
β + a

∂β

∂a
− γ − a∂γ

∂a

)
= 0 , (5.80)

fRR

(
a
∂α

∂a
+ a

∂β

∂T
+ 2α− a ∂γ

∂T

)
+ 2fR

∂α

∂T
+ afRRR(β − γ) = 0 , (5.81)

fRR

(
a
∂α

∂a
+ a

∂γ

∂B
+ 2α− a ∂β

∂B

)
+ afRRR(β − γ)− 2fR

∂α

∂B
= 0 , (5.82)

−fRR
∂α

∂T
= 0 , (5.83)

fRR
∂α

∂B
= 0 , (5.84)

fRR

(∂α
∂T
− ∂α

∂B

)
= 0 (5.85)

3α
(
f −

◦
RfR

)
− a

◦
RfRR(β − γ) = 0 . (5.86)

In addition, one requires that β = −γ to obtain the same generators as in f(
◦
R)

gravity. In doing this, Eqs. (5.81) and (5.82) are identical due to (5.85) and hence

the Noether equations become

fR

(
2a
∂α

∂a
+ α

)
+ 2afRR

(
β + a

∂β

∂a

)
= 0 , (5.87)



Chapter 5. f(T,B) and its extension non-minimally coupled with matter 147

fRR

(
a
∂α

∂a
+ 2α + 2a

∂β

∂R

)
+ 2fR

∂α

∂R
+ 2aβfRRR = 0 (5.88)

fRR
∂α

∂B
= 0 . (5.89)

3α
(
f −

◦
RfR

)
− 2aβ

◦
RfRR = 0 . (5.90)

It is worth noticing that, in order to recover the same Noether symmetry equations

as in Capozziello & De Felice (2008), one requires that β = 1
2
β̃. This issue comes out

in the computation of the Lie derivative since the generator and some terms related

with the generator of T and B are summed twice. Therefore, by changing β = 1
2
β̃

one finds the same equations as in Capozziello & De Felice (2008), that is

fR

(
2a
∂α

∂a
+ α

)
+ afRR

(
β̃ + a

∂β̃

∂a

)
= 0 , (5.91)

fRR

(
a
∂α

∂a
+ 2α + a

∂β̃

∂R

)
+ 2fR

∂α

∂R
+ aβ̃fRRR = 0 (5.92)

fRR
∂α

∂R
= 0 , (5.93)

3α
(
f −

◦
RfR

)
− a

◦
RfRRβ̃ = 0 . (5.94)

Since the trivial GR case is not important in this study, fRR 6= 0 and, from (5.93),

one directly finds that α = α(a). Hence, Eq. (5.92) can be rewritten as

∂R(β̃fRR) = −fRR
(dα
da

+
2α

a

)
, (5.95)

and solved yielding

β̃(a,
◦
R) =

g(a)

fRR(
◦
R)
− (aα′(a) + 2α(a)) fR(

◦
R)

afRR(
◦
R)

, (5.96)
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where g(a) is an arbitrary function depending on a. Now if one replaces this solution

into (5.91), one obtains

fR(
◦
R) [α(a)− a (aα′′(a) + α′(a))] + a [ag′(a) + g(a)] = 0 , (5.97)

which is satisfied only if each bracket is zero. One has

α(a) =
(a2 + 1)α0

2a
− (a2 − 1)α1

2a
, (5.98)

g(a) =
c

a
, (5.99)

where c, α0 and α1 are integration constants. It is important to mention that this

result is more general than that in Capozziello & De Felice (2008) where some terms

in α(a) are not present; however the final result does not change since the symmetry

vectors are similar. By replacing the above expression into (5.94), one finds

(α0 + α1)
(

3f(
◦
R)− 2

◦
RfR(

◦
R)
)

2a
+

3

2
a(α0 − α1)f(

◦
R)− c

◦
R = 0 , (5.100)

which is valid only if c = 0 and α0 = α1. This gives the result

f(
◦
R) = f0

◦
R

3/2 , (5.101)

where f0 is an integration constant. By using this symmetry it is possible to show

that f(
◦
R) gravity admits power-law solution of the form

a(t) ∝ t1/2 , and a(t) = a0[c4t
4 + c3t

3 + c2t
2 + c1t+ c0]1/2 . (5.102)

The above analysis for f(
◦
R) gravity is not new, so all the details on how to find the

above cosmological solutions were not included above. For more details about how

those cosmological solutions were found after finding the symmetries, see Capozziello
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& De Felice (2008).

5.2.1.3 f(T,B) = T + F (B)

The case f(T,B) = T+F (B) is a deviation of TEGR up to a function which depends

on the boundary term. The Noether conditions (5.64)-(5.70) give

2a
∂α

∂a
+ α− a2FBB

∂γ

∂a
= 0 , (5.103)

−2
∂α

∂T
+ aFBB

∂γ

∂T
= 0 , (5.104)

FBB

(
a
∂α

∂a
+ a

∂γ

∂B
+ 2α

)
+ aγFBBB − 2

∂α

∂B
= 0 , (5.105)

FBB
∂α

∂B
= 0 , (5.106)

FBB
∂α

∂T
= 0 , (5.107)

3α (F −BFB)− aBFBBγ = 0 . (5.108)

Discarding the trivial case F (B) = B which gives standard TEGR, from (5.106) and

(5.107) one obtains again that α = α(a). Using this condition in (5.104), one finds

that γ = γ(B, a) and the equations become

2a
dα

da
+ α− a2FBB

∂γ

∂a
= 0, (5.109)

FBB

(
a
dα

da
+ a

∂γ

∂B
+ 2α

)
+ aγFBBB = 0, (5.110)

3α (F −BFB)− aBFBBγ = 0 . (5.111)

One can rewrite (5.110) as

∂B(γFBB) = −FBB
(dα
da

+ 2
α

a

)
, (5.112)
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which can be solved for γ, yielding

γ = −
(dα
da

+ 2
α

a

) FB
FBB

+
g(a)

FBB
, (5.113)

where g(a) is an arbitrary function of the scale factor. It should be remarked that the

latter solution is very similar to the one found in (5.96) for the case f(T,B) = f(
◦
R).

Therefore, from (5.109) one finds that

FB

(
2α− 2a

dα

da
− a2d

2α

da2

)
+ α + 2a

dα

da
+ a2dg

da
= 0 , (5.114)

which has the following solution

α(a) = c1a+
C2

a2
, g(a) = c3 −

C2

a3
− 3c1 log a . (5.115)

Here, c1, C2 and c3 are integration constants. Now, by using (5.111) and (5.113) one

finds that

a3(3Bc1 log(a)−Bc3 + 3c1F ) + C2(B + 3F − 3BFB) = 0 . (5.116)

Since F = F (B), the first term is zero, so that c1 = c3 = 0, yielding

B + 3F − 3BFB = 0 , (5.117)

which can be solved obtaining

F (B) = f0B +
1

3
B log(B) . (5.118)
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Therefore, one finds the following symmetry solutions

X =
C2

a2
∂a + β∂T −

C2

a3FBB
∂B , (5.119)

f(T,B) = T + f0B +
1

3
B log(B) . (5.120)

Let us now search for cosmological solutions for this model. Considering (5.119), it

is convenient to introduce the following normal coordinates

u =
1

3C2

a3 , v =
1

3C2

[
FB + log(a)

]
, (5.121)

which transform the Noether vector as

X = ∂u + β∂T . (5.122)

Lagrangian (5.55) reads as follows (ü 6= 0)

L =
2C2

ü(t)

[
ü(t)2 +

...
u (t)u̇(t)

]
, (5.123)

and hence, the Euler-Lagrange equation for u(t) is

....
u (t)−

...
u (t)2

ü(t)
= 0 . (5.124)

Hence, it is easy to find the following solution

u(t) =
u3

u2
1

eu1t + u2t+ u0 , (5.125)

where u0, u1, u2 and u3 are integration constants. Additionally, since L = E − 2V ,

with E being the Hamiltonian (the energy) of the system and V (t) = 2C2u3e
tu1 can
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be understood as an energy potential, one finds the following constraint

2C2u1v1 = E . (5.126)

Finally, using (5.121) one can express this cosmological solution in terms of the scale

factor as follows,

a(t) =
[3C2u3e

u1t

u2
1

+ 3C2

(
tu2 + u0

)]1/3

. (5.127)

It is easy to see that this solution gives a de-Sitter universe for the specific choice

u2 = u0 = 0.

To conclude this section, let us stress again that the method employed in the

Noether symmetry approach is not the most general form. However, using the sym-

metries found from this approach, some interesting cosmological solutions were found.

This method is very useful to study systems with difficult equations as seen in this

section. It is important to mention that those symmetries come directly from the

first principles of physics (Noether symmetries) and then the solutions found are

implicitly part of the symmetries of the equations.

There are other alternative ways to find solutions in this kind of models, like for

example the reconstruction method that will be used in the next section.

5.2.2 Reconstruction method in f (T,B) gravity

In this section, the usual reconstruction method will be used to find the specific form

of the function f(T,B) which mimics different cosmological models. This section

is devoted to review Bahamonde et al. (2018b). Remark that in the latter paper,

the authors used the other metric signature notation, therefore, the following solu-

tions would be slightly different from the ones presented there. Hereafter, it will

be assumed that the matter pressure is pm = wρm where w is the state parameter.
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Therefore, by using the matter conservation equation, one finds

ρm(t) = ρ0a(t)−3(w+1) . (5.128)

5.2.2.1 Power-law Cosmology

It would be interesting to explore the existence of exact power solutions in f(T,B)

gravity theory corresponding to different phases of cosmic evolution. Let us consider

a model described by a power-law scale factor given by

a(t) =
( t
t0

)h
, (5.129)

where t0 is some fiducial time and h is greater than zero. These solutions in General

Relativity (GR) help to explain the cosmic history including matter/radiation and

dark energy dominated eras. In GR, these solutions provide the scale factor evolution

for the standard fluids such as dust (h = 2/3) or radiation (h = 1/2) dominated eras

of the Universe. Also, in GR, h > 1 predicts a late-time accelerating Universe. Using

(5.43) and (5.44), the scalar torsion and boundary read as follows

T = −6h2

t2
, (5.130)

B = −6h(3h− 1)

t2
. (5.131)

Now, for simplicity, let us assume that the function can be written in the following

form

f(T,B) = f1(T ) + f2(B) . (5.132)
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By inverting (5.130) and (5.131), the 00 equation given by (5.40) becomes

1

2
f1(T )− Tf1,T (T )− κ2ρm(t) = K , (5.133)

−2B2f2,BB(B) + (1− 3h)Bf2,B(B) + (3h− 1)f2(B) = (2− 6h)K . (5.134)

Here, K is a constant for the method of separation of variables and f1,T = df1/dT

and f2,B = df2/dB. One can directly solve the above equations obtaining

f1(T ) =
2κ2ρ0

1− 3h(w + 1)

( t0√
6h

√
−T
)3h(w+1)

+ C1

√
−T + 2K , (5.135)

f2(B) = −C2B
1
2

(1−3h) − C3B − 2K . (5.136)

Then, one can mimic either radiation dominated era or matter dominated era by

choosing w = 1/3 and w = 0 respectively. Then, the scale factor parameter h

can have any value for those epochs. In GR, those parameters are always h = 1/2

(radiation era) and h = 2/3 (matter era), but in f(T,B) gravity, the scale factor

can have different power-law parameters for those eras. It should be noted that this

is one specific form of the function which mimics a power-law cosmology. There

are other possible functions that also will represent this model. The separation of

variables can be done either by choosing that ρm depends on T or B. The latter

comes from the fact that ρm = ρm(t) and also T = T (t) an B = B(t). Hence, in

principle, the energy density is ρ(t) = ρ0( t
t0

)−3h(w+1) and by using (5.130) and (5.131)

one can rewrite the energy density in two ways, namely

ρm(T ) = ρ0

(
6h/2

(
h√
−Tt0

)h)−3(w+1)

, or (5.137)

ρm(B) = ρ0

6h/2

(√
h(1− 3h)√
Bt0

)h
−3(w+1)

. (5.138)
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Hence, one has a freedom to choose either ρm = ρm(T ) or ρm = ρm(B) in the

separation of variables. In the computations done above, ρm = ρm(T ) was chosen

but in principle, another kind of solution for the reconstruction method can be found

by choosing ρm = ρm(B). A similar approach was done in Sec. 5.1 in de la Cruz-

Dombriz & Saez-Gomez (2012) and also in de la Cruz-Dombriz et al. (2017). As

stated in those references, in TEGR, the density matter is usually described by T so

that without losing any generality, the same approach was used here. Then, for the

following sections, ρm = ρm(T ) instead of ρm = ρm(B) will be also used. It should

be noted that from Eqs. (5.130) and (5.131), one can also express T = T (B) or

B = B(T ). In principle, one can try to solve the 00 equation (5.40) just by changing

all in terms of T . However, this procedure makes the equation very complicated

and it is almost impossible to find an analytical solution for the function f . As

pointed out before, this kind of behaviour is something well-known in reconstruction

techniques when one is considering two functions in f . See for example de la Cruz-

Dombriz & Saez-Gomez (2012); de la Cruz-Dombriz et al. (2017) where the authors

also would be able to express either T = T (TG) or
◦
R =

◦
R(

◦
G) in their theories. Here,

◦
G is the Gauss-Bonnet term (see Sec. 7.1 for more details about this term). In those

papers, one can also notice the situation described above.

5.2.2.2 de-Sitter reconstruction

If one assumes that the universe is governed by a de-Sitter form, i.e., the scale

factor of the universe is an exponential a(t) ∝ eH0t, both the torsion scalar and

the boundary term are constants. Explicitly they are given by T = −6H2
0 and

B = −18H2
0 respectively. This kind of evolution of the universe is very well known

and important since it correctly describes the expansion of the current universe. In

GR, for this kind of universe, it is known that the universe must be filled by a dark

energy fluid whose state parameter w = −1 and hence the energy density is also a

constant. To find de-Sitter reconstruction, one must set H = H0. From Eq. (5.40), it
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can easily be seen that any kind of functions of f(T,B) can admit de-Sitter solution

if the following equation is satisfied,

H2
0 (9fB(T0, B0) + 6fT (T0, B0))− 1

2
f(T0, B0) = κ2ρ0 . (5.139)

For instance, by assuming that the function is separable as f(T,B) = f1(B) +f2(T ),

a possible reconstruction function which describes a de-Sitter universe is given by

f(T,B) = 2κ2ρ0 + f0e
− B

18H2
0 + f̃0e

− T

12H2
0 , (5.140)

which of course is a constant function. Here, f0 and f̃0 are integration constants.

5.2.2.3 ΛCDM reconstruction

Here, the reconstruction of the f(T,B) function for a ΛCDM cosmological evolution

will be discussed in the absence of any cosmological constant term in the modified

Einstein field equations. This model was firstly formulated in Elizalde et al. (2010)

in f(
◦
R,
◦
G) modified Gauss-Bonnet theory of gravity. The cosmological effects of

the cosmological constant term in the concordance model is exactly replaced by

the modification introduced by f(T,B) function with respect to the usual Einstein-

Hilbert Lagrangian.

For simplicity, instead of working with all the variables depending on the cosmic

time t, the e-folding parameter defined as N = ln (a/a0) will be used. By using

a(t) = a0/(1 + z), the e-folding parameter can be also written depending on the

redshift function z as N = − ln(1 + z) = ln(1/(1 + z)). In terms of this variable, one

can express a(t), H(t) and time derivatives as

a = a0e
N , H =

ȧ

a
=
dN

dt
,

d

dt
= H

d

dN
.
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Therefore, one can rewrite equation (5.40) in terms of N , yielding

3H2(3fB + 2fT )− 18H
[
(H2H ′′ +HH ′2 + 6H2H ′)fBB + 2H2H ′fBT

]
+ 3HH ′fB +

1

2
f(T,B) = κ2ρm(N) . (5.141)

Here, primes denote differentiation with respect to the e-folding N . Additionally,

in term of the e-folding, the scalar torsion and the boundary term are T = −6H2

and B = −6H(3H +H ′) respectively. Now, for convenience, let us introduce a new

variable g = H2 making the above equation become

3

2
(g′ + 6g) fB − 18gg′fTB − 9gfBB (g′′ + 6g′) + 6gfT +

1

2
f(T,B) = κ2ρm . (5.142)

It is easy to find that the torsion scalar and the boundary term written in this

variable are T = −6g and B = −3(g′+6g) respectively. Now, it will be also assumed

that the function f(T,B) is separable as Eq. (5.132). Using these assumptions, the

above equation becomes

3

2
(g′ + 6g) f1,B(B)− 9gf1,BB(B) (g′′ + 6g′) +

1

2
f1(B) =

κ2ρm(N)− 1

2
f2(T )− 6gf2,T (T ) . (5.143)

Let us now reconstruct the ΛCDM model whose function g = g(N) is given by

(Elizalde et al., 2010)

g = H2 = H2
0 + le−3N , l =

κ2ρ0a
−3
0

3
. (5.144)

In this model, the e-folding can be expressed depending on the boundary term and
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the torsion scalar as follows

N =
1

3
log

(
− 9l

B + 18H2
0

)
=

1

3
log

(
− 6l

6H2
0 + T

)
. (5.145)

Therefore, one can rewrite Eq. (5.143) as follows

2
(
27BH2

0 + 162H4
0 +B2

)
f1,BB(B)−Bf1,B(B) + f1(B) = K , (5.146)

κ2ρ0

(
6H2

0 + T

−6la3
0

)w+1

− 1

2
f2(T ) + Tf2,T (T ) =

K

2
, (5.147)

where K is a constant since the r.h.s. of (5.143) depends only on T and the l.h.s.

only on B. The energy density can be expressed depending on T or B so that, the

above equations are one of the possible options to reconstruct a ΛCDM Universe.

Thus, by solving the above equations, one finds one way to reconstruct ΛCDM is by

taking the following functions,

f1(B) = 2BC1 + C2

√
B + 9H2

0 +K , (5.148)

f2(T ) = −K + C3

√
−T − κ2ρ0

3
H2w

0 (a3
0l)
−(w+1)

(
6H2

0 2F1

(
−1

2
,−w;

1

2
;− T

6H2
0

)
−T 2F1

(
1

2
,−w;

3

2
;− T

6H2
0

))
, (5.149)

where H0 6= 0 and for the case where H0 = 0 one finds

f1(B) = BC1 + C2

√
−B +K , (5.150)

f2(T ) =
2−wκ2ρ0

2w + 1

(
− T

3a3
0l

)w+1

+ C3

√
−T −K . (5.151)

Here, C1, C2 and C3 are constants and 2F1 represents the hypergeometric function

of the second kind. The case where H0 = 0 represents a power-law solution with

h = 2/3. The above solution is consistent with Eqs. (5.135) and (5.136) in that limit.

The case T = −6H2
0 , B = −18H2

0 which represents de-Sitter universes can not be
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recovered directly from the above equations. However, these models can be recovered

directly from (5.143) by imposing g = H2
0 (with l = 0) which actually gives us the

same result obtained in the previous section (see Eq. (5.140)). This issue comes from

the fact that one expresses the e-folding depending on B or T , one needs to assume

l 6= 0. The same issue can be seen in Sec. 2.1 in Elizalde et al. (2010).

5.2.2.4 Reconstruction method in f(T,B) = T +F (B) cosmol-

ogy

In this section, the specific case where the function takes the form f(T,B) = T+F (B)

will be studied, which is similar to models of the form f(
◦
R) =

◦
R + F (

◦
R) and

f(T ) = T + f(T ) studied in f(
◦
R) and f(T ) gravity respectively (Nesseris et al.,

2013). This theory is equivalent to consider a Teleparallel background (or GR)

plus an additional function which depends on the boundary term which can be also

understood as F (B) = F (T +
◦
R). It is important to mention that even though

the case f(T,B) = f1(B) + f2(T ) studied in the previous section is more general

and in principle could contain the case f(T ) = T + F (B), one might obtain a

different reconstruction solution. The latter comes from the fact that the case f(T ) =

T + F (B) is a very specific choice of the function and also that all the functions

found before in Secs. 5.2.2.1-5.2.2.3 are one of the possible choices for reconstructing

the corresponding models. Moreover, due to the mathematics technique employed

before, i.e., the method of separation of variables, if one tries to recover the case

f(T ) = T + F (B) from the solution, one might not obtain the same answer. As an

example, for the power-law case it is not possible to recover f(T,B) = T + F (B)

unless one restricts the model with C1 = 0 and h = 2
3(w+1)

which is only a kind

of power-law model (see Eqs. (5.135) and (5.136)). Hence, it is interesting and

important to also study if it is possible to reconstruct these cosmological models

within this particular theory.
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In this model, the 00 field equation (5.40) becomes

3H2 + 9H2FB − 3HḞB + 3ḢFB +
1

2
F (B) = κ2ρm(t) , (5.152)

where the energy density is given by (5.128). Equivalently, from (5.141), it is easy

to rewrite the above equation in term of the e-folding,

3H2 +9H2FB−18H
[
(H2H ′′+HH ′2 +6H2H ′)FBB

]
+3HH ′FB+

1

2
F (B) = κ2ρm(N) .

(5.153)

Let us now perform a reconstruction method for all the same models studied in

Secs. 5.2.2.1-5.2.2.3.

For a power-law cosmology described in Sec. 5.2.2.1, Eq. (5.152) can be written as

follows,

B (h+ 2BFBB(B))

2− 6h
− 1

2
BFB(B) +

F (B)

2
= κ2ρ0

(
−6h(3h− 1)

Bt20

)− 3
2
h(w+1)

,(5.154)

which can be directly solved, yielding the following solution

F (B) = C1B
1−3h

2 +B

(
C2 +

2h

(3h+ 1)2

)
− hB log(B)

3h+ 1

−
(3h− 1)κ22p+13pρ0

(
(1−3h)h

Bt20

)p
(p+ 1)(−3h+ 2p+ 1)

, (5.155)

where C1 and C2 are integration constants and p = −3
2
h(w + 1).

Now, for a de-Sitter reconstruction, the scale factor behaves as a(t) = a0e
H0t, then

B = −18H2
0 and hence from (5.152) we directly find that the function takes the

following form,

F (B) = C1e
− B

18H2
0 − 2

(
3H2

0 − κ2ρ0

)
. (5.156)
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Here, C1 is an integration constant. Let us now reconstruct a ΛCDM universe where

g = H2
0 + le−3N . In this theory, Eq. (5.143) becomes

(B2 + 27BH2
0 + 162H4

0 )FBB(B)− 1

2
BFB(B) +

F (B)

2
− 1

3

(
B + 9H2

0

)
=

3−2(w+1)κ2ρ0

(
a0

3

√
− l

B + 18H2
0

)−3(w+1)

, (5.157)

where Eq. (5.145) was used to express all in terms of the boundary term B. The

above equation is difficult to solve analytically for all values of w, so that for sim-

plicity, let us assume the cold dust case w = 0, which gives us

F (B) =
4κ2ρ0 (B + 9H2

0 )

9a3
0l

+
2B log (B + 18H2

0 ) (3a3
0l − κ2ρ0)

9a3
0l

+

8H0

√
B + 9H2

0 arctan

(√
B+9H2

0

3H0

)
(3a3

0l − κ2ρ0)

3a3
0l

+ C1

√
B + 9H2

0

+ 2BC2 −
4B

3
− 18H2

0 , (5.158)

where C1 and C2 are integration constants.

Let us stress here that the final expressions for the function F (B) becomes less

complicated than in f(T,B) gravity.

5.3 Generalised non-minimally gravity matter-

coupled theory

Other kinds of modified theories of gravity have been considered in the literature.

Some interesting ones are theories with non-minimal coupling between matter and

gravity. In the standard metric approach, some alternative models have been pro-

posed such as f(
◦
R, T ) (Harko et al., 2011), where T is the trace of the energy-

momentum tensor or non-minimally coupled theories between the curvature scalar
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and the matter Lagrangian f1(
◦
R) + f2(

◦
R)Lm (Bertolami et al., 2007). Further, an-

other more general theory is the so-called f(
◦
R,Lm) where now an arbitrary function

of
◦
R and Lm is considered in the action (Harko & Lobo, 2010). Along the lines

of those theories, modified Teleparallel theories of gravity where couplings between

matter and the torsion scalar have been also considered. Some important theories

are for example: f(T, T ) gravity (Harko et al., 2014a) and also non-minimally cou-

plings between the torsion scalar and the matter Lagrangian theory f1(T )+f2(T )Lm

(Harko et al., 2014b). Along this line, recently, there was presented a new generalised

non-minimally gravity-matter coupled theory with the following action (Bahamonde,

2018)

Sf(T,B,Lm) =

ˆ
ef(T,B,Lm) d4x , (5.159)

where the function f depends on the scalar curvature T , the boundary term B and

the matter Lagrangian Lm. The energy-momentum tensor of matter T βa is defined

as

T βa =
1

e

δ(eLm)

δeaβ
. (5.160)

Let us further assume that the matter Lagrangian depends only on the components

of the tetrad (or metric) and not on its derivatives, which according to Harko et al.

(2014b) is equivalent as having

∂Lm

∂(∂µeaρ)
= 0 , (5.161)

which gives us the following energy-momentum tensor

T βa = LmE
β
a +

∂Lm

∂eaβ
. (5.162)



Chapter 5. f(T,B) and its extension non-minimally coupled with matter 163

Now, by a variation of action (5.1) with respect to the tetrad, one obtains

δSf(T,B,Lm) =

ˆ [
efT δT + efBδB + efL

δLm

δeaβ
δeaβ + fδe

]
d4x , (5.163)

=

ˆ
e
[
fT δT + fBδB + fL

(
T βa + LmE

β
a

)
δeaβ + fEβ

a δe
a
β

]
d4x ,

(5.164)

where Eq. (5.162) was used and fT = ∂f/∂T, fB = ∂f/∂B and fL = ∂f/∂Lm.

Variations with respect to the torsion scalar and the boundary term are given by

(5.3) and (5.14) respectively. Hence, by setting δSf(T,B,Lm) = 0, one obtains the

f(T,B,Lm) field equations given by

2Eβ
a

◦
�fB − 2Eσ

a

◦
∇β

◦
∇σfB +BfBE

β
a + 4

[
(∂µfT ) + (∂µfB)

]
Sa

µβ

+ 4fT

(
e−1∂µ(eSa

µβ)− T σ µaSσ βµ
)
− fEβ

a − fLLmE
β
a = fLT βa .

The above field equations can be also written only in spacetime indices by contracting

it by eaλ giving us

2δβλ
◦
�fB − 2

◦
∇β

◦
∇λfB +BfBδ

β
λ + 4

[
(∂µfT ) + (∂µfB)

]
Sλ

µβ

+4fT e
a
λ

(
e−1∂µ(eSa

µβ)− T σ µaSσβµ
)
− fδβλ − fLLmδ

β
λ = fLT βλ . (5.165)

From these field equations, one can directly recover Teleparallel gravity by choosing

f(T,Lm) = T/2κ2 + Lm which gives us the same action as (3.39). Moreover if

one chooses f(T,Lm) = T/2κ2 + f1(T ) + (1 + λf2(T ))Lm, one recovers the non-

minimal torsion-matter coupling extension of f(T ) gravity presented in Harko et al.

(2014b). Let us now study the conservation equation for this theory. First,
◦
R
β
λ =

◦
G
β
λ+ 1

2
(B−T )δβλ will be used, where

◦
G
β
λ is the Einstein tensor. Using this relationship,

one can rewrite the field equation (5.165) as follows
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Hλβ := fT
◦
Gλβ −

◦
∇λ

◦
∇βfB + gλβ

◦
�fB +

1

2

(
TfT +BfB − LmfL − f

)
gλβ

+2XνSλ
ν
β =

1

2
fLTλβ , (5.166)

where for simplicity the quantity

Xν = (fBT + fBB + fBT )
◦
∇νB + (fTT + fTB + fTL)

◦
∇νT

+(fTL + fBL + fLL)
◦
∇νLm (5.167)

was introduced. By taking the covariant derivative of Hλβ and after some simplifi-

cations, one finds that

◦
∇λHλβ = −2SσρλKβσρX

λ − 1

2
gλβ

◦
∇λ(LmfL) = −1

2
gλβ

◦
∇λ(LmfL) , (5.168)

where there was used the fact that the energy-momentum tensor is symmetric and

hence SσρλKβσρX
λ = 0. The latter comes from the fact that field equations are

symmetric, and hence the energy-momentum tensor is also symmetric. Now, let us

find a condition that f needs to satisfy in order to have the standard conservation

equation for the energy momentum tensor, i.e.,
◦
∇µT µν = 0. By taking the covari-

ant derivative in (5.166) and assuming
◦
∇µT µν = 0, one obtains that the standard

conservation equation for the energy-momentum tensor is satisfied if the function f

satisfies the following form

(
Tµν + gµνLm

) ◦
∇µfL = −2eaµgβν

∂Lm

∂eaβ

◦
∇µfL = 0 , (5.169)

which matches with the conservation equation presented in Harko & Lobo (2010).

Thus, in general in f(T,B,Lm) gravity, the energy-momentum tensor is not covari-

antly conserved and depending on the metric and the model, the energy-momentum
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tensor may or may not be conserved.

In Bahamonde (2018), the complete dynamical system for flat FLRW cosmology

was presented and for some specific cases of the function, the corresponding cosmo-

logical model was studied for a perfect fluid. It should be noted that even though

the density matter Lagrangian Lm is not unique for a perfect fluid, according to

Bertolami et al. (2008), its choice does not change the energy-momentum tensor and

therefore, the field equations would be the same independently of this choice. In

general, the theory is very complicated to work since it becomes a 10 dimensional

dynamical system. This is somehow expected since the theory is very general and

complicated. Using the full dynamical system found for the full theory, different

special interesting theories were also studied in that reference.

Fig. 5.2 shows the most important theories that can be constructed from the action

(5.159). The graph is divided into three main parts. The left part of the figure

represents the scalar-curvature or standard metric theories coupled with the matter

Lagrangian. Different interesting cases can be recovered from this branch, such as

a generalised f(
◦
R,Lm) theory or a non-minimally scalar curvature-matter coupled

gravity T/2κ2 + f1(B) + f2(B)Lm or just standard f(
◦
R) gravity. The entries at the

middle of the figure represent all the theories based on the boundary term B and the

matter Lagrangian Lm. In this branch, new kind of theories are presented based on

a general new theory T/2κ2 +f(B,Lm), where the term T/2κ2 is added in the model

to have TEGR (or GR) in the background. The right part of the figure is related to

Teleparallel theories constructed by the torsion scalar and the matter Lagrangian.

Under these models, a new general theory f = f(T,Lm) is highlighted in a box,

allowing to have a new kind of theories with new possible couplings between T and

Lm. As a special case, this theory can also become a non-minimally torsion-matter

coupled gravity theory f = f1(T )/2κ2 + f2(T )Lm, presented previously in Harko

& Lobo (2010). Thus, different gravity curvature-matter or torsion-matter coupled
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theories can be constructed. Some of them have been considered and studied in the

past but others were recently presented in Bahamonde (2018). From the figure, one

can directly see the connection between modified Teleparallel theories and standard

modified theories. The quantity B connects the right and left part of the figure.

Hence, the connection between the Teleparallel and standard theories is directly re-

lated to this boundary term B. Therefore, one can directly see that the mother of

all of those gravity theories coupled with the matter Lagrangian is the one presented

in this section, the so-called f(T,B,Lm).

f(T,B,Lm)

f(
◦
R,Lm)

T

2κ2
+ f(B,Lm) f(T,Lm)

f1(
◦
R)

2κ2
+ f2(

◦
R)Lm

T

2κ2
+ f1(B) + f2(B)Lm

f1(T )

2κ2
+ f2(T )Lm

f1(
◦
R)

2κ2
+ Lm

T

2κ2
+ f1(B) + Lm

f1(T )

2κ2
+ Lm

GR & TEGR

f = f(T,L
m)

f = f(−T
+B

,Lm
)

f =
T

2κ2
+ f(B,Lm)

f = f1(B) + f2(B)Lmf =
f1(

◦
R)

2κ2
+ f2(

◦
R)Lm f =

f1(T )

2κ2
+ f2(T )Lm

f2(T ) = 1

f1(
T )

= T

f1(B) = 0

f1( ◦
R) = ◦

R

f2(
◦
R) = 1 f2(B) = 1

Figure 5.2: Relationship between f(T,B,Lm) and other gravity theories.



6
f (Tax, Tten, Tvec, B) gravity

Chapter Abstract

This chapter introduces new classes of modified Teleparallel gravity models based on

an action constructed to be a function of the irreducible parts of torsion f(Tax, Tten, Tvec),

where Tax, Tten and Tvec are squares of the axial, tensor and vector components of tor-

sion, respectively. This is the most general (well-motivated) second order Teleparallel

theory of gravity that can be constructed from the torsion tensor. Different particular

second order theories can be recovered from this theory such as new General Rel-

ativity, conformal Teleparallel gravity or f(T ) gravity. Additionally, the boundary

term B can also be incorporated into the action. By performing a conformal trans-

formation, it is shown that the two unique theories which have an Einstein frame

are either the Teleparallel equivalent of General Relativity or f(−T + B) = f(
◦
R)

gravity, as expected.

6.1 Torsion decomposition and other Telepar-

allel gravity theories

An interesting approach of modifying Teleparallel gravity was considered in the late

1970s (Hayashi & Shirafuji, 1979) called New General Relativity. In this model the

167
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torsion tensor is decomposed into its three irreducible components, namely

Tλµν =
2

3
(tλµν − tλνµ) +

1

3
(gλµvν − gλνvµ) + ελµνρa

ρ , (6.1)

where

vµ = T λλµ , (6.2)

aµ =
1

6
εµνσρT

νσρ , (6.3)

tλµν =
1

2
(Tλµν + Tµλν) +

1

6
(gνλvµ + gνµvλ)−

1

3
gλµvν , (6.4)

are three irreducible parts with respect to the local Lorentz group, known as the

vector, axial, and purely tensorial torsions, respectively. One can then square these

three pieces to construct the following scalars,

Tten = tλµνt
λµν =

1

2

(
TλµνT

λµν + TλµνT
µλν
)
− 1

2
T λλµTν

νµ , (6.5)

Tax = aµa
µ =

1

18

(
TλµνT

λµν − 2TλµνT
µλν
)
, (6.6)

Tvec = vµv
µ = T λλµTν

νµ . (6.7)

Using these three scalars, one can construct new classes of Teleparallel modified

theories. Hayashi & Shirafuji (1979) introduced New General Relativity theory where

a linear functional of these squared quantities were considered. This action then reads

SNGR =

ˆ [
1

2κ2

(
a0 + a1Tax + a2Tten + a3Tvec

)
+ Lm

]
e d4x (6.8)

where the four ai are arbitrary constants. The number a0 can be interpreted as the

cosmological constant. Clearly, by choosing the following constants

a1 =
3

2
, a2 =

2

3
, a3 = −2

3
, (6.9)



Chapter 6. f(Tax, Tten, Tvec, B) gravity 169

one can recover the scalar torsion, yielding

T =
3

2
Tax +

2

3
Tten −

2

3
Tvec . (6.10)

Then, for the special case where the constants are chosen as (6.9), one can recover

the standard Teleparallel equivalent of General Relativity action. Recently, there

has been an increased interest in conformal gravity models that have many attractive

features, see for instance Mannheim (2006). As it turns out, it is possible to construct

conformal gravity in the Teleparallel framework leading to conformal Teleparallel

gravity (Maluf & Faria, 2012). This model has second order field equations, which

are much simpler than those of the usual Weyl gravity based on the square of the

conformal Weyl tensor. The action of this model is taken to be quadratic in the

torsion scalar

SCTG =

ˆ [
1

2κ2
T̃ 2 + Lm

]
e d4x , (6.11)

where the scalar

T̃ =
3

2
Tax +

2

3
Tten (6.12)

was introduced. It should be noted that this theory takes the same scalars from the

New General Relativity action (6.8), with coefficients a1 = 3/2, a2 = 2/3, a3 = 0.

Then, this theory is constructed without the vectorial part of torsion and therefore,

it not possible to construct TEGR directly from its action. It is interesting to note

the absence of the vector torsion in the action. We will return to this observation

in Sec 6.4. This model combines some elements of f(T ) gravity and New General

Relativity. New General Relativity and conformal Teleparallel gravity consider the

Lagrangian to be a function of torsion only and do not include its derivatives, as a
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result of which the equations of motion are always second order. Let us also mention

that in Chervova & Vassiliev (2010), a similar action coming from 3-dimensional

Cosserat elasticity (see Cosserat et al. (1909)) was studied where only the axial

part of torsion was considered. This theory is then conformally invariant under the

rescaling of the 3-dimensional metric gµν by an arbitrary positive scalar function. The

authors found if a 3-dimensional space is assumed to be a elastic continuum medium

which only experience rotations, in its stationary regime, the equations are equivalent

to the Weyl equations (massless Dirac equation). In Cosserat elasticity, torsion is

usually called dislocation tensor and it is related to the rotational deformations of

the medium (Boehmer et al., 2011). Then, there is an interesting analogy between

Cosserat elasticity and Teleparallel gravity.

6.2 New class of modified Teleparallel grav-

ity models

Many Teleparallel models discussed before, except for new General Relativity and

Teleparallel conformal gravity, assume the torsion scalar to take the same form as

in the Teleparallel equivalent of General Relativity. While this is well-motivated by

the fact that the General Relativity limit is easily achievable, these are not the most

general models one can consider. The main objective of this chapter is to review Ba-

hamonde et al. (2017b) where there was introduced a new modified Teleparallel

theory that would naturally include many Teleparallel models and allow us to anal-

yse their general properties.

Inspired by f(T ) gravity and the approach put forward in (6.8), one can then gen-

eralise this action to an arbitrary function of the three irreducible torsion pieces.
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Hence, let us consider the following action

Sf(Tax,Tten,Tvec) =

ˆ [
1

2κ2
f(Tax, Tten, Tvec) + Lm

]
e d4x , (6.13)

which naturally includes all previous models. Since the torsion pieces only contain

first partial derivatives of the tetrad, the resulting field equations will be of second

order. Variations of this action with respect to tetrad fields yield,

δSf(Tax,Tten,Tvec) =

ˆ [ 1

2κ2

(
fδe+ efTaxδTax + efTvecδTvec + efTtenδTten

)
+ δ(eLm)

]
d4x , (6.14)

where fTax = ∂f/∂Tvec, fTvec = ∂f/∂Tvec and fTten = ∂f/∂Tten. In the following

section, the variations of each piece will be presented and then the field equations of

this model. It should be noted that in Bahamonde et al. (2017b), there was presented

the case where the spin connection is different to zero, but in this thesis, the field

equations in the pure tetrad formalism will be presented.

6.3 Variations and field equations

6.3.1 Variations of Tvec and Tax

Straightforwardly, variations of the vector torsion with respect to the tetrad yields,

efTvecδTvec = efTvecδ(v
ivi) = 2vifTvecδT

λ
λ
i = 2evcfTvecδ

[
Eλ
bE

ν
c T

b
λν

]
, (6.15)
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where vi was expressed with Latin indices for convenience. If F is any function, it

can be proved that by taking of FδT bρσ with respect to tetrads, one obtains

FδT bρσ = F
[
δba(δ

ν
ρδ

µ
σ − δνσδµρ )

]
∂ν(δe

a
µ) = −∂ν

(
F (δνρδ

µ
σ − δνσδµρ )

)
δebµ + b.t. (6.16)

Here, the term b.t. represents boundary terms. It should be noted that δνρ = eaρE
ν
b δ

b
a,

so that in general the term ∂λδ
ν
a = ∂λ(E

µ
a δ

ν
µ) 6= 0. By using the above expression,

δEσ
m = −Eσ

nE
µ
mδe

n
µ and neglecting boundary terms, (6.15) becomes

efTvecδTvec = −2
[
efTvec

(
vcT βac + vβva

)
+ ∂λ

(
efTvec(v

βEλ
a − vλEβ

a )
)]
δeaβ . (6.17)

Now, let us find the variations corresponding to the axial part. To do that, let us

rewrite the axial torsion as follows

ai =
1

6
εibcdT

bcd =
1

6
εib

cdEρ
cE

σ
dT

b
ρσ , (6.18)

from where the variations with respect to tetrads follow straightforwardly

efTaxδ(aia
i) = 2eaifTaxδai , (6.19)

= −2

3

[
εib

cdefTaxa
iEβ

c T
b
ad + ∂ν

(
eεia

cdfTaxa
iEν

cE
β
d

)]
δeaβ . (6.20)

6.3.2 Variations of Tten

It is useful to rewrite the tensorial torsion as

tλµν = Tλµν + Vλµν , (6.21)
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where

Tλµν =
1

2
(Tλµν + Tµλν) , Vλµν =

1

6
(gνλvµ + gνµvλ)−

1

3
gλµvν . (6.22)

One can then straightforwardly rewrite Tten as

Tten = TλµνT λµν −
1

2
vµv

µ , (6.23)

and then the corresponding variations with respect to the tensorial part yields

efTtenδTten = efTtenδ(TλµνT λµν)−
1

2
efTtenδ(vµv

µ) . (6.24)

The first term can be rewritten as

TλµνT λµν =
1

2
(ηcbg

ραgσβ + Eα
b E

ρ
c g

σβ)T bρσT
c
αβ , (6.25)

and then after using (6.16) and (6.17), one can compute in a fairly complicated but

straightforward way the variations with respect to the tensorial part, yielding

efTtenδTten = −efTten
(

2T baσTb
βσ + T βρσT

ρ
a
σ + TαρaT

ρ
α
β − T βaivi − vβva

)
δeaβ

−∂ν
[
efTten

(
T βνa − T νβa − 2Ta

βν − vβEν
a + vνEβ

a

)]
δeaβ . (6.26)

6.3.3 Field equations

We derived the field equations following the pure tetrad approach to Teleparallel

theories, where the Teleparallel spin connection is vanishing. The theory is in this

case manifestly invariant under general coordinate transformation but non-covariant

under local Lorentz transformations. One can work in the particular frame where

the spin connection vanishes, which is always possible on account of the pure gauge
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character of the Teleparallel spin connection. One then naturally loses local Lorentz

covariance Li et al. (2011) and must restrict considerations to the case of good tetrads,

which need to be calculated following the method of Ferraro & Fiorini (2011a);

Tamanini & Boehmer (2012). For sake of deriving the field equations, both methods

yield the same result.

By adding up (6.17), (6.20) and (6.26) and using fδe = efEa
βδe

β
a , one finally

arrives at the field equations of the new classes of Teleparallel theories of gravity,

namely

2efTvec

(
vcT βac + vβva

)
+ 2∂λ

(
efTvec(v

βEλ
a − vλEβ

a )
)

+
2

3
εib

cdefTaxa
iEβ

c T
b
ad

+
2

3
∂ν

(
eεia

cdfTaxa
iEν

cE
β
d

)
+efTten

(
2T baσTb

βσ+T βρσT
ρ
a
σ+TαρaT

ρ
α
β−T βaivi−vβva

)
+ ∂ν

[
efTten

(
T βνa − T νβa − 2Ta

βν − vβEν
a + vνEβ

a

)]
= 2κ2eT βa . (6.27)

6.3.4 Inclusion of parity violating terms and higher-

order invariants

Action (6.13) is sufficiently general to include all previously known models of mod-

ified Teleparallel models with second order field equations that do not introduce

additional fields. For sake of completeness of our approach, let us discuss further

viable generalizations to obtain models with second order field equations that are

possible in this Teleparallel framework.

One can recall here that three invariants (6.5)–(6.7) are the most general, quadratic,

parity preserving, irreducible torsion invariants (Hayashi & Shirafuji, 1979). If one

relaxes the requirement of parity preservation, we have two new quadratic parity

violating invariants which are (Hayashi & Shirafuji, 1979)

P1 = vµaµ , and P2 = εµνρσt
λµνtλ

ρσ . (6.28)
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One can then naturally consider a straightforward generalization of the gravity La-

grangian in the following way

L =
e

2κ2
f(Tax, Tten, Tvec, P1, P2) , (6.29)

and derive the corresponding field equations.

The Lagrangian (6.29) is the most general Lagrangian taken as a function of

all invariant quadratics in torsion. However, since one considers the Lagrangian to

be an arbitrary non-linear function, one can also consider higher order invariants

obtainable in this framework. For an illustration, let us consider the two invariant

quartic torsion terms

S1 = tλµνvλaµvν , S2 = tλµνaλvµaν . (6.30)

It is obvious that one can construct a large number of such higher-order invariants.

It should be remarked that S1 is a pseudo-scalar while S2 is a true scalar under

spatial inversions. In principle, one can include all of them in the Lagrangian and

the resulting field equations will be still of the second order. The derivation of

the corresponding field equations is rather straightforward using previous results,

but becomes increasingly involved with an increasing number of allowed invariants

in the Lagrangian. Therefore, one should exercise caution and consider only well-

motivated terms in the Lagrangian. This is the reason why we primarily focus

on Lagrangian (6.13), which can be considered to be general enough to include all

previous models, allowing the analysis of some of their generic properties, and still

have rather manageable field equations.
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6.3.5 Inclusion of the boundary term and deriva-

tives of torsion

Another possible extension of the model (6.13) is to include the derivatives of tor-

sion. This results in theories with higher-order field equations, which start to be

increasingly complicated when adding further terms. Therefore, one should again

exercise caution and consider only those derivative terms that are well-motivated.

One of such well-motivated terms is the so-called boundary term (see Chap. 5),

that can be rewritten in terms of the vectorial part of torsion as follows

B =
2

e
∂µ(evµ) . (6.31)

The boundary term is key in understanding the differences of f(T ) and f(
◦
R) gravity.

For instance, one of the features of f(T ) gravity is that the field equations are of

second order while the f(
◦
R) gravity field equations are of 4th order. It is precisely

the boundary term B which contains second derivatives of the tetrads which, after

using integration by parts twice, gives the 4th order parts of the field equations seen

in f(
◦
R) gravity.

One can then include the boundary term and consider the Lagrangian

L =
e

2κ2
f(Tax, Tten, Tvec, B) . (6.32)

As will be seen in the following section, this Lagrangian naturally appears in the

analysis of conformal transformations of the model. The corresponding field equa-

tions will be given by (6.27) with an addition of terms corresponding to the variation

of the boundary term. The new contribution would be the same as adding the terms

coming from the variations computed in Eq. (5.14).
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6.4 Conformal transformations

6.4.1 Basic equations

It is interesting to study this theory under conformal transformations and the result-

ing issues of coupling in the Jordan and Einstein frames. The first paper which dealt

with conformal transformations in modified Teleparallel theories was Yang (2011). In

that paper, the author showed that it is not possible to have an equivalent Einstein

frame in f(T ) gravity. Thus, for example, it is not possible to constraint f(T ) gravity

using post-Newtonian parameters from a scalar field equivalent theory. Therefore,

it would be interesting to analyse if this characteristic is also valid for new general

classes of Teleparallel theories. Let us now consider the conformal transformation

properties of the theory given by the action (6.13). Let us introduce the label (index)

A = 1, . . . , 4, and then introduce two sets of four auxiliary fields φA and χA. This

allows us to rewrite the action as

S =
1

2κ2

ˆ [
f(φA) + χ1(Tax − φ1) + χ2(Tten − φ2) + χ3(Tvec − φ3)

+ χ4(B − φ4)
]
e d4x . (6.33)

Variations with respect to χA yield the four equations

φ1 = Tax , φ2 = Tten , φ3 = Tvec , φ4 = B . (6.34)

Additionally, varying with respect to φA one arrives at

χA =
∂f(φB)

∂φA
:= FA . (6.35)
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Therefore, action (6.33) can be rewritten as

S =
1

2κ2

ˆ [ 4∑
B=1

FB(φA)φB − V (φA)
]
e d4x , (6.36)

where the energy potential

V (φA) =
4∑

B=1

φBFB(φA)− f(φA) (6.37)

was defined. Next, let us apply a conformal transformation to the metric

ĝµν = Ω2(x)gµν , ĝµν = Ω−2(x)gµν , (6.38)

where Ω is the conformal factor. When conformal transformations are applied at the

level of the tetrad, one obtains

êaµ = Ω(x)eaµ , Êµ
a = Ω−1(x)Eµ

a , ê = Ω4e . (6.39)

Using these transformations one finds that the torsion tensor transforms as

T̂ ρµν = T ρµν + Ω−1(δρν∂µΩ− δρµ∂νΩ) . (6.40)

Hence it is possible to verify that

Tax = Ω2T̂ax , (6.41)

Tten = Ω2T̂ten , (6.42)

Tvec = Ω2T̂vec + 6Ωv̂µ∂̂µΩ + 9ĝµν(∂̂µΩ)(∂̂νΩ) , (6.43)

B = Ω2B̂ − 4Ωv̂µ∂̂µΩ− 18∂̂µΩ∂̂µΩ +
6

ê
Ω∂̂µ(êĝµν ∂̂νΩ) . (6.44)



Chapter 6. f(Tax, Tten, Tvec, B) gravity 179

This shows that the irreducible torsion pieces Tax and Tten transform very simply,

they are multiplied by the conformal factor Ω2.

6.4.2 Minimal and non-minimal couplings

Using the above relationships, action (6.36) takes the following form

S =
1

2κ2

ˆ [
F1(φA)Ω−2T̂ax + F2(φA)Ω−2T̂ten + F3(φA)

(
Ω−2T̂vec + 6Ω−3v̂µ∂̂µΩ

+ 9Ω−4ĝµν(∂̂µΩ)(∂̂νΩ)
)

+ F4(φA)
(

Ω−2B̂ − 4Ω−3v̂µ∂̂µΩ− 18Ω−4∂̂µΩ∂̂µΩ

+
6

ê
Ω−3∂̂µ(êĝµν ∂̂νΩ)

)
− Ω−4V (φA)

]
ê d4x . (6.45)

From here one can see that if F4(φA) = 0, or in other words, if the function does

not depend on the boundary term B, it is not possible to eliminate all the terms

related to T̂ µ in order to obtain a non-minimally coupled theory with Ti or a theory

minimally coupled to the torsion scalar (an Einstein frame). Integrating by parts

the two terms B̂ and the term (6Ω/ê)∂̂µ(ê ĝµν ∂̂νΩ), one can rewrite the above action

as follows

S =
1

2κ2

ˆ [
F1(φA)Ω−2T̂ax + F2(φA)Ω−2T̂ten + F3(φA)Ω−2T̂vec

+ 2Ω−2v̂µ
(

3F3(φA)Ω−1∂̂µΩ− ∂µF4(φA)
)

+ 9F3(φA)Ω−4ĝµν(∂̂µΩ)(∂̂νΩ)

− 6Ω−3(∂µΩ)∂µF4(φA)− Ω−4V (φA)
]
ê d4x . (6.46)

Now, let us study the case where one eliminates all the couplings between the scalar

field and T̂ µ (or equivalently B̂). To do that, one must impose the following constraint

3F3(φA)Ω−1∂µΩ− ∂µF4(φA) = 0 . (6.47)
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It should be remarked that ∂µ = ∂̂µ was used in the above equation. By taking

derivatives ∂ν to this equation and then by substituting back into (6.47), one can

find the following condition

∂νF3(φA)∂µF4(φA) = ∂µF3(φA)∂νF4(φA) , (6.48)

which expressed in terms of the initial function f(φA) reads

∂2f(φA)

∂φ3∂φC

∂2f(φA)

∂φ4∂φB
=
∂2f(φA)

∂φ3∂φB

∂2f(φA)

∂φ4∂φC
. (6.49)

Here, the chain rule was used to evaluate

∂νFB(φA) = ∂νφC
∂2f(φA)

∂φB∂φC
. (6.50)

In general, Eq. (6.49) is a system of sixteen differential equations. However, this

reduces to six because the involved second order partial derivatives commute. How-

ever, these six equations are not all linearly independent. One can show that, in fact,

only three of them are linearly independent, namely

f (0,0,1,1)(φA)2 = f (0,0,0,2)f (0,0,2,0)(φA) , (6.51)

f (0,1,1,0)(φA)f (0,0,0,2)(φA) = f (0,0,1,1)(φA)f (0,1,0,1)(φA) , (6.52)

f (1,0,1,0)(φA)f (0,1,0,1)(φA) = f (0,1,1,0)(φA)f (1,0,0,1)(φA) . (6.53)

It should be recalled here that φA = {Tax, Tten, Tvec, B} and superscripts denote dif-

ferentiation (e.g. f (0,0,1,1) = ∂2f/∂(TvecB) or f (0,1,0,1) = ∂2f/∂(TtenB) or f (0,0,0,2) =

∂2f/∂B2). One can directly see that for the special case where f = f(3
2
Tax + 2

3
Tten−

2
3
Tvec, B) = f(T,B), the second and third equations are automatically satisfied and

only (6.51) is needed to eliminate all the couplings between the scalar field and T̂ µ.
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This result is consistent with Eq. (91) reported in Wright (2016) where the f(T,B)

case was studied.

If one is interested in finding a theory where the scalar field is minimally coupled

to the torsion scalar (in the Einstein frame) one must impose

Ω2 = −2

3
F1(φA) = −3

2
F2(φA) =

3

2
F3(φA) . (6.54)

Additionally, the conditions (6.51)–(6.53) must also hold to eliminate the couplings

with T̂ µ. By solving these equations, we directly find that the Einstein frame is

recovered if

f(Tax, Tten, Tvec, B) = f
(
−3

2
(−3

2
Tax −

2

3
Tten +

2

3
Tvec +B)

)
= f

(
−3

2
(−T +B)

)
= f

(
−3

2

◦
R
)

= f̃(
◦
R) , (6.55)

which is f̃(
◦
R) gravity. As expected, the unique theory with an Einstein frame is

either the Teleparallel equivalent of General Relativity or f(
◦
R) gravity. From these

computations, one can understand better why modified Teleparallel theories of grav-

ity do not have an Einstein frame formulation. It can be noticed that Tax and Tten

transform in a simple way under conformal transformations and the problematic term

which creates this issue comes from the term Tvec. This is not possible to see directly

if one starts with f(T ) gravity. Furthermore, the boundary term B is a derivative

of the vectorial part (not the other pieces), so that only theories which contain B

might remove the problematic terms coming from the conformal transformations in

Tvec. In principle, one could have speculated that it is possible to remove those new

problematic pieces with other kind of theories (not just f(
◦
R) gravity), but as was

shown here, this is not possible for other theories different than f(−T + B) = f(
◦
R)

gravity or TEGR gravity. Let us finish this section mentioning that other transfor-

mations (such as disformal transformations) have not been studied in full detail in
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modified Teleparallel theories of gravity. It could be an interesting approach to find

if other types of transformations could give rise to an Einstein frame.

6.5 Connection with other theories

In this chapter, a new modified Teleparallel theory of gravity was studied which

generalises and includes all of the most important and well-motivated second order

field theories that can be constructed from torsion. In this theory, instead of con-

sidering a linear combination of the irreducible parts of torsion, a function of them

f(Tax, Tten, Tvec) is proposed in the action. Additionally, the possibility for the func-

tion to depend on the boundary term B was also studied, allowing the theory to have

an f(
◦
R) gravity limiting case. Now, one can recover some well-known theories and

this section is devoted to classifying them. Starting with this general theory, Fig. 6.1

shows a classification of the various theories which can be constructed and their re-

lationships. The most relevant theories in the present discussion are highlighted in

boxes. Let us begin with f(Ti, B) gravity. This theory is an arbitrary function of

the three torsion pieces and the boundary term but could be generalised further, as

discussed in Section 6.3.4. It is a large class of theories which contains many of the

most studied modified gravity (metric and Teleparallel) models as special cases. As

one can see, new General Relativity (NGR), conformal Teleparallel gravity (CTG),

f(T ) and f(
◦
R) gravity and other well-known theories are part of this approach. Two

models which have not been studied so far and might be interesting from a theoret-

ical point of view are f(T̂ ), which corresponds to a modified conformal Teleparallel

theory of gravity and f(TNGR) which has a clear connection to standard General

Relativity.
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f(T,B) f(
◦
R) GR or TEGR

NGR

f(Ti, B) f(Ti) f(TNGR) f(T )

f(T̃ ) CTG

f = f(−T +B) f(
◦
R) =

◦
R

f = f(T,B)

f = f(Ti) f = f(TNGR)

a1 = 3
2
, a2 = −a3 = 2

3

f(T ) = T

f = TNGR

a1
=

3
2
, a2

= −a3
=

2
3

a1 = 3
2

a2 = 2
3

a3 = 0
f(T̃ ) = T̃ 2

Figure 6.1: Relationship between f(Ti, B) and other gravity theories. In this diagram
T is the scalar torsion, Ti = (Tax, Tten, Tvec), TNGR = a1Tax +a2Tten +a3Tvec represents

the scalar coming from the new General Relativity theory and T̃ = 3
2
Tax + 2

3
Tten is

the scalar coming from the conformal Teleparallel theory. The abbreviations NGR,
CTG and TEGR mean new General Relativity, Teleparallel conformal gravity and
Teleparallel equivalent of General Relativity, respectively.
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Chapter Abstract

A possible Teleparallel Gauss-Bonnet contribution is being presented with the aim

of formulating an extended Teleparallel modified theory of gravity. The possible

coupling of gravity with the trace of the energy-momentum tensor is also taken

into account. This is motivated by the various different theories formulated in the

Teleparallel approach and the metric approach without discussing the exact relation-

ship between them. The connection between different theories is clarified with this

formulation. The Teleparallel equivalent of modified Gauss-Bonnet gravity can be

recovered from this theory.

7.1 Gauss-Bonnet term

The principal aim of this chapter is to review the work by Bahamonde & Böhmer

(2016), where there was presented an extended modified Teleparallel theory of gravity

by taking into account the Gauss-Bonnet term and its Teleparallel equivalent. The

Gauss-Bonnet scalar is one of the so-called Lovelock scalars Lovelock (1971) which

only yields second order field equations in the metric. In more than four dimensions,

the study of the Gauss-Bonnet term is quite natural. In four dimensions, on the other

hand, the Gauss-Bonnet term can be written as a total derivative and its integral

over the manifold is related to the topological Euler number.

184
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The Teleparallel equivalent of the Gauss-Bonnet term was first considered in

Kofinas et al. (2014); Kofinas & Saridakis (2014) who studied a theory based on the

function f(T, TG) where TG is a Teleparallel Gauss-Bonnet term. As is somewhat

expected, TG differs from its Teleparallel equivalent by a divergence term. Hence, as

in modified General Relativity, it is possible to formulate modified theories based on

the Gauss-Bonnet terms or its Teleparallel equivalent in such a way that both theories

are physically distinct. The link between these theories comes from the divergence

term which needs to be taken into account when establishing the relationship between

the different possible theories.

Teleparallel geometries have been well-understood for many decades. Perhaps

more surprising is the fact that the Gauss-Bonnet term was not studied in this

context until quite recently (Kofinas & Saridakis, 2014). The Gauss-Bonnet term is

a quadratic combination of the Riemann tensor and its contractions given by

◦
G =

◦
R

2 − 4
◦
Rµν

◦
R
µν +

◦
Rµνκλ

◦
R
µνκλ , (7.1)

which plays an important role of connecting geometry to topology. It is well known

that the addition of the Gauss-Bonnet to the Einstein-Hilbert action does not affect

the field equations of General Relativity, provided one works in a four dimensional

setting. This fact implies that the topology of the solutions is unconstrained. In more

than four dimensions, the addition of the Gauss-Bonnet term affects the resulting

gravitational field equations.

Following the procedure outlined in Sec. 3.4, one can again compute the (com-

plete) Gauss-Bonnet term using the connection (2.53) and decompose this result

into a Levi-Civita part and an additional part depending on torsion only. Under-

standably, this process is quite involved. It can be shown, see Kofinas & Saridakis

(2014); Gonzalez & Vasquez (2015), that the Gauss-Bonnet term can be expressed
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in a fashion similar form to (3.36) which simply reads

◦
G = −TG +BG . (7.2)

The Teleparallel Gauss-Bonnet term TG is given by

TG = (Ka
i
eKb

ejKc
k
fKd

fl − 2Ka
ijKb

k
eKc

e
fKd

fl + 2Ka
ijKb

k
eKf

elKd
f
c+

2Ka
ijKb

k
eKc,d

el)δabcdijkl , (7.3)

where commas denote differentiation so that Kc,d
el = ∂dKc

el, and δabcdijkl is the gen-

eralised Kronecker delta which in four dimensions is equivalent to δabcdijkl = εabcdεijkl.

This term depends on the contortion tensor and its first partial derivatives, and it

is quartic in contortion. This is expected as curvature in general is quadratic in

contortion, and the Gauss-Bonnet term is itself quadratic in curvature.

On the other hand, the Gauss-Bonnet boundary term BG reads

BG =
1

e
δabcdijkl ∂a

[1

2
Kb

ij
◦
R
kl
cd +Kb

ijKc
k
fKd

fl
]
. (7.4)

The above formula was obtained by converting the calculus of forms provided in Ko-

finas & Saridakis (2014) to a tensorial form in four dimensions. The above expression

was first presented in this form in Bahamonde & Böhmer (2016). Equivalently, by

using (2.55) with Rλ
αµν =

•
Rλ

αµν = 0, one can relate
◦
Rλ

αµν with Kα
µν and then the

term BG can be rewritten depending only on the contortion tensor as follows

BG =
1

e
δabcdijkl ∂a

[
Kb

ij
(
Kc

kl
,d +Kd

m
cKm

kl
)]
. (7.5)

It should be noted that it was also used the fact that spacetime indices can be trans-

formed into Latin ones using
◦
Ri

jkl = Eα
j E

µ
kE

ν
l e

i
λ

◦
Rλ

αµν . When discussing the Telepar-



Chapter 7. f(T,B, TG, BG, T ) gravity 187

allel equivalent of General Relativity in the pure tetrad formalism, one touched upon

the issue of Lorentz covariance. As before, in the pure tetrad formalism, it is clear

that for instance TG cannot be a Lorentz covariant scalar. To see this, one notes that

the final term in the definition (7.3) contains a partial derivative. Therefore this term

will contribute second partial derivatives of the local Lorentz transformations which

cannot be cancelled by any other term in TG. Since the Gauss-Bonnet term
◦
G is a

Lorentz covariant scalar, these second derivative terms must be cancelled by terms

coming from BG. Consequently the combination −TG + BG is the unique Lorentz

covariant combination which can be constructed. This fact becomes important when

considering modified theories of gravity based on the Teleparallel equivalent of the

Gauss-Bonnet scalar.

In the following some simple examples of the Gauss-Bonnet term and its Telepar-

allel equivalent will be presented.

7.1.1 Example: FLRW spacetime with diagonal

tetrad

Let us begin with the FLRW metric

ds2 = dt2 − a(t)2 (dx2 + dy2 + dz2)

(1 + k
4
r2)2

(7.6)

and the diagonal tetrad given by

eaµ = diag
(

1,
a(t)

1 + (k/4)(x2 + y2 + z2)
,

a(t)

1 + (k/4)(x2 + y2 + z2)
,

a(t)

1 + (k/4)(x2 + y2 + z2)

)
, (7.7)
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using spatial Cartesian coordinates. It is straightforward to verify that

◦
G = −24

k

a2

ä

a
− 24

ä

a

ȧ2

a2
, (7.8)

TG = 24
ä

a

ȧ2

a2
− 2k

k

a2

ä

a
(x2 + y2 + z2) , (7.9)

BG = −24
k

a2

ä

a
− 2k

k

a2

ä

a
(x2 + y2 + z2) . (7.10)

These three quantities display some of the key properties important in this context.

Firstly, one notes that TG and BG depend on the Euclidean distance from the origin

while the Gauss-Bonnet term
◦
G is independent of the Cartesian coordinates. The

unique linear combination −TG +BG is independent of position. Secondly, in case of

a spatially flat universe, these terms are absent and the term BG identically vanishes.

The terms depending on the spatial coordinates can be changed by working with a

different tetrad, or in other words, these terms are affected by local Lorentz trans-

formations. In the context of extended or modified Teleparallel theories of gravity,

tetrads (7.7) should be avoided. The construction of a suitable static and spheri-

cally symmetric tetrad in f(T ) gravity, for instance, is rather involved, see Ferraro

& Fiorini (2011b). In general the choice of a suitable parallelisation is a subtle and

non-trivial issue (Ferraro & Fiorini, 2015). Finding a tetrad for which TG and BG

are both independent of the spatial coordinates is a rather involved task, however,

following the approach in Secs. 4.3.2 and 4.3.3, it will be shown that a tetrad with

this property can be constructed. Before doing so, we discuss another example with

different symmetry properties.

7.1.2 Example: static spherically symmetric space-

time – isotropic coordinates

In this example we consider static and spherically symmetric spacetimes and work

with isotropic coordinates (t, x, y, z) to avoid coordinate issues with the tetrads. Let
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us choose

eaµ = diag
(
A(r), B(r), B(r), B(r)

)
, (7.11)

where r =
√
x2 + y2 + z2 is the Euclidean distance from the origin.

The metric then takes the isotropic form

ds2 = A(r)2dt2 −B(r)2(dx2 + dy2 + dz2) . (7.12)

The first three quantities of interest
◦
R, T and B are given by

◦
R = − 1

B2

(4

r

A′

A
+

8

r

B′

B
+ 2

A′

A

B′

B
− 2

B′2

B2
+ 2

A′′

A
+ 4

B′′

B

)
, (7.13)

T = − 1

B2

(
4
A′

A

B′

B
+ 2

B′2

B2

)
, (7.14)

B = − 1

B2

(4

r

A′

A
+

8

r

B′

B
+ 6

A′

A

B′

B
+ 2

A′′

A
+ 4

B′′

B

)
. (7.15)

Here, primes denote derivation with respect to the radial coordinate r and dots with

respect to time t. A direct calculation verifies that indeed
◦
R = −T +B as expected.

Next, the explicit forms of
◦
G, TG and BG are given by

◦
G = − 8

B4

( 2

r2

A′

A

B′

B
− 2

r

A′

A

B′2

B2
− 3

A′

A

B′3

B3
+

2

r

A′′

A

B′

B
+
A′′

A

B′2

B2

+
2

r

A′

A

B′′

B
+ 2

A′

A

B′B′′

B2

)
, (7.16)

TG =
8

B4

(2

r

A′

A

B′2

B2
− 3

A′

A

B′3

B3
+
A′′

A

B′2

B2
+ 2

A′

A

B′B′′

B2

)
, (7.17)

BG = − 8

B4

( 2

r2

A′

A

B′

B
− 4

r

A′

A

B′2

B2
+

2

r

A′′

A

B′

B
+

2

r

A′

A

B′′

B

)
, (7.18)

which indeed satisfies the required identity
◦
G = −TG + BG. It should be observed

that the expressions are considerably more complicated than in the previous case.

The tetrads used in (7.7) and (7.11) serve as simple examples which are useful to

compute the relevant quantities.
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7.1.3 Example: FLRW spacetime – good tetrad

Let us next consider FLRW metric in spherical coordinates given by

ds2 = dt2 − a(t)2
[ 1

1− kr2
dr2 + dΩ2

]
, (7.19)

where a(t) is the scale factor of the universe and k = {0,±1} is the spatial curvature

which corresponds to flat, close and open cosmologies, respectively. This section will

generalise the calculations shown in Sec. 4.3.3 where only the flat case was considered.

The simplest tetrad field which yields the above metric is the diagonal one given

by

eaµ = diag
(

1,
a(t)√

1− kr2
, a(t)r, a(t)r sin θ

)
. (7.20)

However, when this tetrad is used in f(T ) gravity it implies an off-diagonal field

equation which is highly restrictive, namely the condition fTT = 0. Such a theory is

equivalent to General Relativity and hence not a modification. In order to avoid this

issue, one can follow the procedure outlined in Ferraro & Fiorini (2011a); Tamanini

& Boehmer (2012) (described also in Sec. 4.3.2) which allows for the construction of

tetrads which result in more favourable field equations. As it was done in Sec. 4.3.2,

let us perform a 3-dimensional rotation which gives us a new rotated tetrad (7.20)

given by

ēaµ = Λa
be
b
µ . (7.21)

Then, the rotated tetrad for FLRW in spherical coordinates for any spatial curvature

takes the following form
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eaµ =



1 0 0 0

0 a cosφ sin θ√
1−kr2 −ra(cos γ sinφ+ cos θ cosφ sin γ) ra sin θ(sinφ sin γ − cos θ cosφ cos γ)

0 a sin θ sinφ√
1−kr2 ra(cosφ cos γ − cos θ sinφ sin γ) −ra sin θ(cos θ cos γ sinφ+ cosφ sin γ)

0 a cos θ√
1−kr2 ra sin θ sin γ ra cos γ sin2 θ


.

(7.22)

Next, let us focus on the non-flat case k 6= 0, since the Gauss-Bonnet boundary term

BG = 0 and hence directly
◦
G = −TG when k = 0. By using the rotated tetrad (7.22),

the torsion scalar T and the boundary term B becomes

T =
4

a2

(√1− kr2

r2

[
rγ′ cos γ + sin γ

]
+

1

r2

)
− 6

ȧ2

a2
− 2

k

a2
, (7.23)

B =
4

a2

(√1− kr2

r2

[
rγ′ cos γ + sin γ

]
+

1

r2

)
− 6

ä

a
− 12

ȧ2

a2
− 8

k

a2
. (7.24)

In order to have T and B position independent, one must choose our function γ to

satisfy

√
1− kr2

[
rγ′ cos γ + sin γ

]
+ 1 = 0 . (7.25)

For an open universe k = −1 gives us the following function

γ(r) = − arcsin [arcsinh(r)/r] , (7.26)

where the constant of integration was set to zero. Using this choice of γ ensures

that the first terms in (7.23) and (7.24) disappear thereby making T and B time

dependent only. Therefore, the rotated tetrad (7.21) with k = −1 and the function

γ given by (7.26) is a “good tetrad” in the sense of Tamanini & Boehmer (2012).
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Independently of the choice of tetrad, one always obtains the usual Ricci scalar

◦
R = −T +B = 6− ä

a
− 6

ȧ2

a2
− 6

k

a2
. (7.27)

Moreover, by using this rotated tetrad one finds that the Gauss-Bonnet terms are

also independent of r, one can verify that

TG = 8
ä

a

(
3H2 − 1

a2

)
, (7.28)

BG = 16
ä

a3
, (7.29)

and hence the Gauss-Bonnet term in an open universe becomes

◦
G = −TG +BG = −24

ä

a

(
H2 − 1

a2

)
. (7.30)

On the other hand, for the closed FLRW universe (k = +1), one finds that the

function γ has to be of the form

γ(r) = − arcsinh
(√

1 + r2
)
. (7.31)

This yields

TG = 24
ä

a

(
H2 − 1

a2

)
, (7.32)

BG = −48
ä

a3
, (7.33)

with the Gauss-Bonnet term given by

◦
G = −TG +BG = −24

ä

a

(
H2 +

1

a2

)
. (7.34)
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7.2 Modified Teleparallel theory: Gauss-

Bonnet and trace extension

We are now ready to discuss the general framework of modified theories of gravity

and their Teleparallel counterparts. In principle, the following approach could be

applied to any metric theory of gravity whose action is based on objects derived

from the Riemann curvature tensor. Any such theory can in principle be re-written

using the torsion tensor thereby allowing for a Teleparallel representation of that

same theory.

7.2.1 Action and variations

Let us now consider the framework which includes the Teleparallel Gauss-Bonnet

and the classical Gauss-Bonnet modified theories of gravity. Inspired by the above

discussion, one can define the action

Sf(T,B,TG,BG) =

ˆ [
1

2κ2
f(T,B, TG, BG) + Lm

]
e d4x , (7.35)

where f is a smooth function of the scalar torsion T , the boundary term B, the

Gauss-Bonnet scalar torsion TG and the boundary Gauss-Bonnet term BG.

Variations of the action (7.35) with respect to the tetrad gives

δSf(T,B,TG,BG) =

ˆ [ 1

2κ2

(
fδe+ efBδB + efT δT + efTGδTG + efBGδBG

)
+δ(eLm)

]
d4x . (7.36)

The first three terms above, fδe, efBδB and efT δT , are the same terms derived

before in Eqs. (5.3), (5.4) and (5.14) respectively. In the following sections, the

remaining two variations which depend on TG and BG will be presented.
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7.2.1.1 Variation of BG

The Gauss-Bonnet boundary term is given by

BG =
1

e
εijklε

bcda∂a

[1

2
Kb

ij
◦
R
kl
cd +Kb

ijKc
k
fKd

fl
]
, (7.37)

or equivalently

BG =
1

e
∂µ(eEµ

aB
a
G) , (7.38)

where the vector Ba
G

Ba
G = εijklε

bcda
(1

2
Kb

ij
◦
R
kl
cd +Kb

ijKc
k
fKd

fl
)

(7.39)

was introduced. Using the relationship between the contortion tensor and the Rie-

mann tensor, this means Eq. (2.58), and recalling that in four dimensions εijklε
bcdµ =

δbcdµijkl , the above term (7.39) can be rewritten as

Ba
G = δabcdijkl Kb

ij
(

(Kc
kl),d +Kd

m
cKm

kl
)
. (7.40)

Considering variations of the function f(T,B, TG, BG) with respect to the tetrad

fields, the contribution of BG becomes

efBGδBG =
[
e∂µ(fBG)(Eµ

aB
β
G − E

β
aB

µ
G)− efBGBGE

β
a

]
δeaβ − eEµ

a∂µ(fBG)δBa
G ,

(7.41)

where fBG = ∂f(T,B, TG, BG)/∂BG, boundary terms were neglected and,

δEσ
m = −Eσ

nE
µ
mδe

n
µ and δe = eEβ

a δe
a
β were used. The final term in the above equation
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reads

eEµ
a∂µ(fBG)δBa

G = P b
ijδKb

ij − δmbcdijkl eE
β
d ∂m(fBG)Kb

ij(∂aKc
kl)δeaβ , (7.42)

where again boundary terms were neglected and for simplicity the following tensor

was introduced

P b
ij = eEµ

m∂µ(fBG)
{(

(Kc
kl),d +Kd

p
cKp

kl
)
δmbcdijkl + ηpjδ

mdpb
qckl Kd

qcKi
kl

+δmpcdklij Kp
klKd

b
c

}
− δacbdklij ∂σ

(
eEσ

dE
µ
a∂µ(fBG)Kc

kl
)
. (7.43)

It should be noted that from (7.42), one notices that the term δKb
ij needs to be

expressed as a variation with respect to the tetrad δeaβ. Therefore, one can firstly

compute how an arbitrary tensor Db
ijδKb

ij changes its form in this context. This

formula will be useful for computing P b
ijδKb

ij and is also needed when computing

the variations of TG in the next section.

Recall the contortion and torsion tensors, respectively

Kb
ij =

1

2

(
T ib

j − T jbi + Tb
ij
)
, (7.44)

T ibh = Eµ
b E

ν
h

(
∂µe

i
ν − ∂νeiµ

)
. (7.45)

Beginning with (7.44), one obtains that

Db
ijδKb

ij = Db
[ij]δKb

[ij] =
1

2

(
Db

i
h −Dh

i
b +Di

[bh]
)
δT ibh =

1

2
Ci

bhδT ibh , (7.46)

where for simplicity the tensor

Ci
bh = Db

i
h −Dh

i
b +Di

[bh] = −Cihb , (7.47)
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was introduced. This tensor needs to be skew-symmetric in its last two indices since

δT ibh is skew-symmetric in this pair.

Next, by using (7.45) and neglecting boundary terms one finds

Db
ijδKb

ij =
[
∂µ

(
Ca

bhEµ
hE

β
b

)
+ T iabE

β
hCi

bh
]
δeaβ . (7.48)

Equivalently, by using (7.47), one can find explicitly that for any specific tensor Di
bh,

the transformation from Db
ijδKb

ij to terms with δeaβ will be

Db
ijδKb

ij =
[
∂µ

(
(Db

a
h −Dh

a
b +Da

[bh])Eµ
hE

β
b

)
+ T iabE

β
h (Db

i
h −Dh

i
b +Di

[bh])
]
δeaβ .

(7.49)

Now, if one changes Db
ij → P b

ij, one obtains the useful equation

P b
ijδKb

ij =
[
∂µ

(
(P b

a
h − P h

a
b + Pa

[bh])Eµ
hE

β
b

)
+ T iabE

β
h (P b

i
h − P h

i
b + Pi

[bh])
]
δeaβ .

(7.50)

Finally, if one replaces (7.50) in (7.42) and then replaces that expression in (7.41),

one finds the variations of the Gauss-Bonnet boundary term with respect to the

tetrad. This is given by

efBGδBG = −
[
∂µ

(
(P b

a
h − P h

a
b + Pa

[bh])Eµ
hE

β
b

)
+ T iabE

β
h (P b

i
h − P h

i
b + Pi

[bh])

−δmbcdijkl eE
β
d ∂m(fBG)Kb

ijKc
kl
,a + e∂µ(fBG)(Eβ

aB
µ
G − E

µ
aB

β
G)

+efBGBGE
β
a

]
δeaβ , (7.51)

where P b
ij is explicitly given by Eq. (7.43).
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7.2.1.2 Variation of TG

For simplicity, TG can be split into four parts as follows

TG = (Ka
i
eKb

ejKc
k
fKd

fl − 2Ka
ijKb

k
eKc

e
fKd

fl + 2Ka
ijKb

k
eKf

elKd
f
c

+2Ka
ijKb

k
eKc

el
,d)δ

abcd
ijkl ,

= TG1 + TG2 + TG3 + TG4 , (7.52)

where TG1, TG2, TG3 and TG4 are the first, second, third and fourth term of the

right-hand sides, respectively. Variations of the TG(i), i = 1, 2, 3, 4 contributions with

respect to the tetrad can be expressed as

efTGδTG = efTG(δTG1 + δTG2 + δTG3 + δTG4) . (7.53)

Here, fTG stands for the partial derivative of f(T,B, TG, TB) with respect to TG. The

first, second and third term can be computed without difficulty, yielding

δTG1 =
[
Kbj

eKc
k
fKd

flδabcdiekl +Kb
e
iKc

k
fKd

flδbacdejkl +Kc
k
eKb

efKdj
lδcbadkfil

+Kd
f
eKb

elKc
k
iδ
dbca
flkj

]
δKa

ij , (7.54)

δTG2 = −2
[
Kb

k
eKc

e
fKd

flδabcdijkl +Kb
keKcjfKd

flδbacdkeil +Kc
efKb

k
iKdj

lδcbadefkl

+Kd
flKb

k
eKc

e
iδ
dbca
flkj

]
δKa

ij , (7.55)

δTG3 = 2
[
Kb

k
eKf

elKd
f
cδ
abcd
ijkl +Kb

keKfj
lKd

f
cδ
bacd
keil +Kf

elKb
k
iKd

a
cδ
fbcd
elkj

+Kd
fmKb

k
eKi

elηjcδ
dbca
fmkl

]
δKa

ij . (7.56)

For the final term efTGδTG4, one needs to be careful since one needs to integrate by

parts and hence needs to change ∂d to ∂d = Eµ
d ∂µ. Therefore, one needs to compute
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the following term

efTGδTG4 = 2efTGδ
[
Ka

ijKb
k
eKc

el
,d

]
δabcdijkl = 2efTGδ

[
Eµ
dKa

ijKb
k
e∂µ(Kc

el)
]
δabcdijkl .

(7.57)

By ignoring boundary terms, these terms become

efTGδTG4 = 2
[
efTG

(
Kb

k
eKc

el
,dδ

abcd
ijkl +Kb

keKcj
l
,dδ

bacd
keil

)
−δcbadelkj ∂µ

(
eEµ

d fTGKc
elKb

k
i

)]
δKa

ij

−2efTGδ
mbcd
ijkl E

β
dE

µ
aKm

ijKb
k
e∂µ(Kc

el)δeaβ . (7.58)

Now, by adding (7.54)-(7.56) and (7.58) one finds

efTGδTG =
[
efTGX

a
ij − 2δcbadelkj ∂µ

(
eEµ

d fTGKc
elKb

k
i

)]
δKa

ij

−2efTGδ
mbcd
ijkl E

β
dKm

ijKb
k
eKc

el
,aδe

a
β , (7.59)

where the following tensor

Xa
ij = Kbj

eKc
k
fKd

flδabcdiekl +Kb
e
iKc

k
fKd

flδbacdejkl +Kc
k
eKb

efKdj
lδcbadkfil

+Kd
f
eKb

elKc
k
iδ
dbca
flkj − 2Kb

k
eKc

e
fKd

flδabcdijkl − 2Kb
keKcjfKd

flδbacdkeil

−2Kc
efKb

k
iKdj

lδcbadefkl − 2Kd
flKb

k
eKc

e
iδ
dbca
flkj + 2Kb

k
eKf

elKd
f
cδ
abcd
ijkl

+2Kb
keKfj

lKd
f
cδ
bacd
keil + 2Kf

elKb
k
iKd

a
cδ
fbcd
elkj + 2Kd

fcKb
k
eKi

elηmjδ
dbma
fckl

+2Kb
k
eKc

el
,dδ

abcd
ijkl + 2Kb

keKcj
l
,dδ

bacd
keil , (7.60)

was introduced. It can be shown easily that this long expression is also equivalent to

Xa
ij =

∂TG
∂Ka

ij
=

∂TG1

∂Ka
ij

+
∂TG2

∂Ka
ij

+
∂TG3

∂Ka
ij

+ 2δfbcdmnklKc
el
,d

∂

∂Ka
ij

[
Kf

mnKb
k
e

]
. (7.61)
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Next, for simplicity the tensor

Y b
ij = efTGX

b
ij − 2δcabdelkj ∂µ

(
efTGE

µ
dKc

elKa
k
i

)
, (7.62)

will be introduced to rewrite Eq. (7.59) as

efTGδTG = Y b
ijδKb

ij − 2efTGδ
mbcd
ijkl E

β
dKm

ijKb
k
eKc

el
,aδe

a
β . (7.63)

Finally, by using equation (7.49), one can change δKa
ij to δeaβ by changing Da

ij to

Y a
ij. Doing that, one finally finds that the variations with respect to the TG part is

efTGδTG =
[
∂µ

(
(Y b

a
h − Y h

a
b + Ya

[bh])Eµ
hE

β
b

)
+ T iabE

β
h (Y b

i
h − Y h

i
b + Yi

[bh])

−2efTGδ
mbcd
ijkl E

β
dKm

ijKb
k
eKc

el
,a

]
δeaβ , (7.64)

where Y b
ij is explicitly given by Eq. (7.62).

7.2.2 Equations of motion and FLRW example

Let us now find the equation of motion of the full model with TG and BG contribution.

By replacing (5.4), (5.3), (5.14), (7.51) and (7.64) into (7.36) and then by setting

δSf(T,B,TG,BG) = 0, one finds

∂µ

(
(P b

a
h − P h

a
b + Pa

[bh])Eµ
hE

β
b

)
+ T iabE

β
h (P b

i
h − P h

i
b + Pi

[bh])

−δmbcdijkl eE
β
d ∂m(fBG)Kb

ijKc
kl
,a + e∂µ(fBG)(Eβ

aB
µ
G − E

µ
aB

β
G) + efBGBGE

β
a

−∂µ
(

(Y b
a
h − Y h

a
b + Ya

[bh])Eµ
hE

β
b

)
− T iabEβ

h (Y b
i
h − Y h

i
b + Yi

[bh])

+2efTGδ
mbcd
ijkl E

β
dKm

ijKb
k
eKc

el
,a + 2eEβ

a

◦
�fB − 2eEσ

a

◦
∇β

◦
∇σfB + eBfBE

β
a

+4e
[
(∂µfB) + (∂µfT )

]
Sa

µβ + 4∂µ(eSa
µβ)fT − 4efTT

σ
µaSσ

βµ − efEβ
a = 2κ2eT βa .

(7.65)
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The field equations are very complicated, however, when considering a homogeneous

and isotropic spacetime, they simplify considerably and can be presented in closed

form. Comparison of these equations with previous results serves as a good consis-

tency check of these calculations.

Let us now consider flat FLRW, where the field equations for the f(T,B, TG, BG)

theory are given by

3H2
(
3fB + 2fT − 4H2fTG

)
+ 3Ḣ

(
fB − 4H2fTG

)
− 3HḟB + 12H3ḟTG +

f

2
= κ2ρ ,

H2
(

9fB + 6fT + 4f̈TG

)
+ Ḣ

(
3fB + 2fT − 12H2fTG + 8HḟTG

)
+ 2HḟT

+ 8H3ḟTG − 12H4fTG − f̈B +
f

2
= −κ2p .

Here, for simplicity, it was considered that the matter is a standard perfect fluid

with energy density ρ and isotropic pressure p. One should make explicit that

ḟB = fBBḂ + fBT Ṫ + fBTGṪG + fBBGḂG using the chain rule, so that dot denotes

differentiation with respect to cosmic time. Remark that in flat FLRW, BG = 0 and

then, it does not appear in the equations. As was discussed in Sec. 5.2, to recover

modified Gauss-Bonnet gravity theory with the standard metric signature notation

(ηab = diag(−+ ++)), one needs to change T → −T , B → −B and TG → −TG. In

other words, since this thesis is based in the standard Teleparallel signature notation

ηab = diag(+−−−), one needs to change f(T,B, TG, BG) = f(+T −B,+TG−BG) =

f(−
◦
R,−

◦
G) to recover the corresponding equations in standard signature notation in

the modified Gauss-Bonnet gravity theory. Then, to recover the standard notation,

derivatives change as follows

fT → fR , fB → −fR , fTG → fG , fBG → −fG , (7.66)
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where fR = ∂f/∂
◦
R and fG = ∂f/∂

◦
G. Doing this, gives us

−3(H2 + Ḣ)
(
fR + 4H2fG

)
+ 3HḟR + 12H3ḟG +

f

2
= κ2ρ , (7.67)

−H2(3fR − 4f̈G)− Ḣ(fR + 12H2fG − 8HḟG) + 2HḟR + 8H3ḟG

−12H4fG + f̈R +
f

2
= −κ2p . (7.68)

These equations match those reported in Cognola et al. (2006); Kofinas et al. (2014)

which serves as a good consistency check of our field equations in the Teleparallel

formulation.

Let us now consider a close FLRW spacetime (k = +1) where the rotated tetrad is

given by Eq. (7.22) with γ equal to (7.31). In this case, the modified FLRW equations

become

3H2(3fB + 2fT − 4H2fTG) + Ḣ(3fB − 12H2fTG)− 3HḟB

+12H3ḟTG +
12

a2

[
(H2 + Ḣ)(2fBG + fTG)−H(2ḟBG + ḟTG)

]
+
f

2
= κ2ρ , (7.69)

H2(9fB + 6fT + 4f̈TG) + Ḣ(3fB + 2fT − 12H2fTG + 8HḟTG)

+
2

a2

[
6(H2 + Ḣ)(2fBG + fTG)− fT − 4f̈BG − 2f̈TG

]
+2HḟT + 8H3ḟTG − 12H4fTG − f̈B +

f

2
= −κ2p . (7.70)

In the close FLRW case, BG = −48ä/a3 6= 0 so that this term now contributes to

the equations. By setting f(T,B, TG, BG) = f(+T − B,+TG − BG) = f(−
◦
R,−

◦
G),

one then recovers the Gauss-Bonnet equations f(
◦
R,
◦
G) with the standard metric

signature notation in a close universe (k = +1) which are given by

−3(H2 + Ḣ)(fR + 4H2fG) + 3HḟR + 12H3ḟG

−12

a2

[
(H2 + Ḣ)fG −HḟG

]
+
f

2
= κ2ρ , (7.71)
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−H2(3fR − 4f̈G)− Ḣ(fR + 12H2fG − 8HḟG) + 2HḟR + 8H3ḟG

−12H4fG + f̈R −
2

a2

[
6(H2 + Ḣ)fG + fR − 2f̈G

]
+
f

2
= −κ2p . (7.72)

Finally let us consider the Einstein static universe where all dynamical variables are

assumed to be constants which give

f = 2κ2 ρ0 , f − fR
4

a2
0

= −2κ2 p0 . (7.73)

For the choice f(
◦
R,
◦
G) =

◦
R + κ2 g(

◦
G), one notes that

◦
R = 6/a2

0 and
◦
G = 0 in this

case. The field equations reduce simply to

6

a2
0

+ κ2 g(0) = 2κ2 ρ0 , ⇔ 3

a2
0

= κ2 ρ0 −
κ2

2
g(0) , (7.74)

6

a2
0

+ κ2 g(0)− 4

a2
0

= −2κ2 p0 , ⇔ − 1

a2
0

= κ2 p0 +
κ2

2
g(0) , (7.75)

which are exactly the k = +1 equations reported in Boehmer & Lobo (2009), pro-

viding a second consistency check. It should be noted that the rotated tetrad used

for this calculation proves computationally very challenging.

7.2.3 Energy-momentum trace extension and con-

nection with other theories

Let us now consider the above framework and include the trace of the energy-

momentum tensor to the action (7.35). This gives the extended action

Sf(T,B,TG,BG,T ) =

ˆ [
1

2κ2
f(T,B, TG, BG, T ) + Lm

]
e d4x , (7.76)
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where additionally f is a function of the trace of the energy-momentum tensor T =

Eβ
aT aβ . As before Lm denotes an arbitrary matter Lagrangian density. One can define

the energy-momentum tensor as

T aµ =
1

e

δ(eLm)

δEµ
a

, (7.77)

and assume that the matter Lagrangian only depends explicitly on the tetrads and

its derivatives and does not depend on the connection independently. The energy-

momentum tensor is then given by

T aµ = −2eaµLm − 2
(∂Lm

∂Eµ
a

)
. (7.78)

Variations of the action (7.76) with respect to the tetrad gives one additional term,

namely

efT δT = efT (4Ωβ
a + T βa )δeaβ , (7.79)

Ωβ
a =

1

4
ebα

(δT αb
δeaβ

)
= T βa +

3

2
Eβ
aLm −

1

2
ebα

( ∂2Lm

∂eaβ∂e
b
α

)
. (7.80)

This completes the statement of the field equations.

Let us finish this chapter with a discussion of the relationship between the various

modified theories of gravity which are governed by the function f(T,B, TG, BG, T ).

In the pure tetrad formalism, in general these are fourth order theories which violate

local Lorentz covariance. Therefore, these theories are quite different from General

Relativity in many ways. However, for a particular choice of this function, one is able

to recover General Relativity or its Teleparallel equivalent. Therein lies the power

of this approach, namely one can recover the two equivalent formulations of Gen-

eral Relativity using a single unified approach. This in particular clarifies the roles

of the total derivative terms present in our framework. As was shown in Chap. 5,
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by considering the function f(T,B) one can formulate the Teleparallel equivalent of

f(
◦
R) gravity and identify those parts of the field equations which are part of f(T )

gravity, the second order part of the equations which is not locally Lorentz invariant.

In analogy to this, one can also make the relationships between various modified

theories of gravity clear which are based on the Gauss-Bonnet term and also the

trace of the energy-momentum tensor.

The top left corner of Fig. 7.1 refers to f(T,B, TG, BG) gravity, the most general the-

ory one can formulate based on the four variables. One can think of the top entries

as the Teleparallel row and the bottom as the metric row. The arrows indicate the

specific choices that have to be made in order to move from one theory to the other.

If one now includes the trace of the energy-momentum tensor to this approach, things

get slightly more complicated as the number of possible theories increases quite dra-

matically. Fig. 7.2 visualises the entire set of possible theories. Now, the left half

of the figure corresponds to the metric approach while the right half corresponds to

the Teleparallel framework. The four main theories of the previous discussions are

highlighted by boxes. Many of these theories were considered in isolation in the past

and their relationship with other similarly looking theories was only made implicitly.

One should also point out that the representation of these theories is only one of

the many possibilities and moreover, Fig. 7.2 is incomplete. There are many more

f(T,B, TG, BG) f(T, TG) f(T )

f(
◦
R,

◦
G) f(

◦
R) GR or TEGR

f = f(−T +B,−TG +BG)

f = f(T, TG) f = f(T )

f = f(−T +B)

f = T

f =
◦
R

Figure 7.1: Relationship between f(T,B, TG, BG) and other gravity theories.
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theories one could potentially construct which we have not mentioned so far. The

diagram was constructed having in mind those theories which have been studied in

the past.

In constructing the diagram, one also made the interesting observation that the

theory based on the function f(
◦
R, T ) should be viewed as a special case of the

Teleparallel gravity theory f(T,B). To see this, simply recall the principal identity

◦
R = −T + B which shows that the special choice f(−T + B, T ) is the Teleparal-

lel equivalent of f(
◦
R, T ) theory and also that the Teleparallel framework should be

viewed as the slightly more natural choice for this theory. Additionally, the theory

f(
◦
R, T ) is based on two different connections which is somehow a problematic ap-

proach.

A short list of the most important theories is written in Table 7.1 with accompa-

nying references for the interested reader, mainly focusing on the primary sources

or reviews where such theories were considered. Of the many possible theories

f(T,B, TG, BG, T )

f(
◦
R,

◦
G) f(T,B, T ) f(T, TG)

f(
◦
R, T ) f(T, T )

f(
◦
R) f(T,B) f(T )

GR or TEGR

f = f(−T +B,−TG +BG) f = f(T,B, T ) f = f(T, TG)

f = f(
◦
R) f = f(T )f = f(T,B)

f = f(−T +B, T )

f = f(
◦
R) f = f(T )

f = f(T, T )

f = f(−T +B) f = f(T )

f = Tf =
◦
R

Figure 7.2: Relationship between f(T,B, TG, BG, T ) and other gravity theories.
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Theory Some key references

f(
◦
R) Reviews Sotiriou & Faraoni (2010) & De Felice & Tsujikawa (2010)

f(T ) Ferraro & Fiorini (2007), and review by Cai et al. (2016)

f(T,B) Bahamonde et al. (2015)

f(
◦
R, T ) Myrzakulov (2012)

f(
◦
R,
◦
G) Nojiri et al. (2005)

f(T, TG) Kofinas & Saridakis (2014) & Kofinas et al. (2014)

f(
◦
R, T ) Harko et al. (2011)

f(T, T ) Harko et al. (2014a)

Table 7.1: Short list of previously studied theories covered by the function
f(T,B, TG, BG, T ).

one could potentially construct from f(T,B, TG, BG, T ), one identified some which

might be of interest for future studies. Clearly, there are many theories which do

not have a general relativistic counter part like f(B, TG, BB, T ) since no theory in

this class can reduce to General Relativity. However, it is always possible to consider

such a theory in addition to General Relativity by considering for instance a theory

based on T + f(B, TG, BG, T ). For a function linear in its arguments this yields the

Teleparallel equivalent of General Relativity.

It is also useful to make explicit the limitations of the current approach. In essence,

one is dealing with modified theories of gravity which are based on scalars derived

from tensorial quantities of interest, for instance, the Ricci scalar or the trace of the

energy-momentum tensor. However, theories containing the square of the Ricci ten-

sor or theories containing the term
◦
RµνT µν are not currently covered. In principle,

it is straightforward though to extend our formalism to such theories. In case of the

quantity
◦
RµνT µν , one would have to recall Eq. (2.58) with Rµν =

•
Rµν = 0, so that,

◦
Rµν can be expressed in the Teleparallel setting, something that also has not been

done yet. Likewise, one could also address quadratic gravity models (Deser & Tekin,

2003) which contain squares of the Riemann tensor and use Eq. (2.55). Theories de-
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pending on higher order derivative terms also require a separate treatment (Otalora

& Saridakis, 2016).

The current approach is entirely based on the torsion scalar T which is motivated

by its close relation to the Ricci tensor. However, in principle one could follow the

approach done in Chap. 6 and decompose the torsion tensor into its three irreducible

pieces and construct their respective scalars. This would allow us to study a larger

class of models based on those three scalars and the boundary term.

For many years now, an ever increasing number of modifications of General Relativity

have been considered. This chapter focused only on theories where the gravitational

field can either be modelled using the metric of the tetrad. Hence, all types of metric

affine theories where the metric and the torsion tensor are treated as two indepen-

dent dynamical variables were excluded. It would be almost impossible to present

a visualisation that also encompasses all those theories. Even this would represent

only a fraction of what is referred to as modified gravity. It would still exclude higher

dimensional models, Einstein-Aether models, Hořava-Lifshitz theory and many oth-

ers. It is also interesting to note that f(
◦
R) gravity for instance can be formulated as

a theory based on a non-minimally coupled scalar field. Hence, many of the theories

in Fig. 7.2 might also have various other representations which in turn might be

connected in different manners.



8
Teleparallel non-local theories

Chapter Abstract

Even though it is not possible to distinguish General Relativity from Teleparallel

gravity using classical experiments, it could be possible to discriminate between

them by quantum gravitational effects. These effects have motivated the introduc-

tion of non-local deformations of General Relativity, and similar effects are also

expected to occur in Teleparallel gravity. This chapter is devoted to studying non-

local deformations of Teleparallel gravity along with cosmological solutions. Along

this track, future experiments probing non-local effects could be used to test whether

General Relativity or Teleparallel gravity give the most consistent picture of gravi-

tational interaction. Additionally, a further generalised non-local theory of gravity

is introduced which, in specific limits, can become either the curvature non-local or

Teleparallel non-local theory. Using the Noether symmetry approach, it is found

that the coupling functions coming from the non-local terms are constrained to be

either exponential or linear in form, which in some non-local theories are needed in

order to achieve a renormalisable theory.

8.1 Teleparallel non-local gravity

GR tells us that gravitational interaction is described by the curvature of torsion-less

spacetimes. On the other hand, TEGR describes gravity by the torsion of spacetime,

208
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so that the curvature picture is not necessary. Even though these two approaches

are fundamentally different, they produce the same classical field equations. Thus,

both theories predict the same dynamics for classical gravitational systems, and so

classical gravitational experiments cannot be used to test them. In other words, they

are equivalent at classical level.

However, because these theories are conceptually different, they are expected to

produce different quantum effects. An important remark is in order at this point.

One can deal with TEGR only at the classical level because it produces the same

classical field equations as GR. Considering quantum effects and non-locality, it

is improper to speak of the equivalence of the two theories since they could be

fundamentally different.

Even though there does not exist a fully developed quantum theory of gravity,

there are various proposals for quantum gravity, and a universal prediction from

almost all of these approaches seems to be the existence of an intrinsic extended

structure in the geometry of spacetime (Das & Vagenas, 2008), and such an ex-

tended structure would be related to an effective non-local behaviour for spacetime

(Modesto, 2016; Modesto & Shapiro, 2016). For example, in perturbative string the-

ory, it is not possible to measure spacetime below string length scale, as the string

is the smallest available probe. As it is not possible to define point-like local struc-

tures, string theory produces an effective non-local behaviour (Eliezer & Woodard

(1989); Calcagni & Modesto (2014); Calcagni et al. (2016). Similarly, there is an

intrinsic minimal area in loop-quantum gravity (Major & Seifert, 2002), and this

extended structure is expected to produce a non-local behaviour. It can be argued,

from black hole physics, that any theory of quantum gravity should present intrinsic

extended structures of the order of the Planck length, and it would not be possible

to probe the spacetime below this scale. In fact, the energy needed to probe the

spacetime below this scale is more than the energy needed to form a mini black hole
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in that region of spacetime (Maggiore, 1993).

Thus, quantum gravitational effects produce effective extended structures in

spacetime that would lead to non-locality (Das & Vagenas, 2008). Hence, it can

be argued that the first order corrections from quantum gravity will produce non-

local deformations of GR (Elizalde & Odintsov, 1995; Modesto et al., 2011), and this

will, in turn, produce a non-locality in cosmology. The effect of non-local deforma-

tions in cosmology could be a straightforward explanation for cosmic acceleration

(see for example Jhingan et al. (2008); Deffayet & Woodard (2009)).

Furthermore, the non-locality induced by GR deformations could be used to

describe the transition from radiation to the matter dominated era if it is consistently

constrained with the observations.

As non-locality is produced by first order quantum gravitational effects, it is ex-

pected that they would also occur in Teleparallel gravity. Unlike the standard local

classical dynamics, the behaviour of such non-local effects could be very different in

Teleparallel gravity and GR, and they can be used to experimentally discriminate

between these two theories. Therefore, it is interesting to study the non-local defor-

mation of both GR and Teleparallel gravity. Even though the non-local deformation

of GR has been extensively studied, the non-local deformation of Teleparallel gravity

has recently been introduced in Bahamonde et al. (2017c,d). Thus, this chapter is

devoted to review the latter references related to non-local Teleparallel gravity.

At present, the non-local Teleparallel gravity satisfies all the existing cosmolog-

ical experimental constraints, and can explain phenomena that are explained using

non-local deformations of GR. However, as the non-local Teleparallel gravity is fun-

damentally different from non-local deformation of GR, future experiments can be

used to verify which of these theories is the correct theory of gravity. Thus, the

action for General Relativity SGR, can be corrected by a non-local terms SGRNL due

to quantum corrections, and so the quantum corrected non-local GR can be written
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as (Deser & Woodard, 2007)

S1 = SGR + SGRNL . (8.1)

Similarly, the standard classical action of TEGR, STEGR, can be corrected by a

non-local term due to quantum corrections STEGRNL, and so the quantum corrected

non-local Teleparallel gravity can be written as (Bahamonde et al., 2017d)

S2 = STEGR + STEGRNL . (8.2)

It is not possible to experimentally differentiate between SGR and STEGR, but the

quantum corrections to these theories SGRNL and STEGRNL are very different. Thus,

it is experimentally possible to discriminate between S1 and S2. It may be noted

that as in the non-local GR case, the non-local correction to Teleparallel gravity

is motivated by quantum gravitational effects, and it is not arbitrary added to the

original action.

It may be noted that non-local Teleparallel formalism could be a better approach

to study quantum gravitational effects. This is due to the fact that TEGR does not

require the equivalence principle to be formulated (see Sec. 3.5), and it has been

argued that quantum effects can cause the violation of the equivalence principle

(Seveso & Paris, 2017). Furthermore, a violation of the equivalence principle can

be related to a violation of the Lorentz symmetry (Wang et al., 2016), and the

Lorentz symmetry is also expected to be broken at the UV scale in various approaches

to quantum gravity, such as discrete spacetime (’t Hooft, 1996), spacetime foam

(Amelino-Camelia et al., 1998), among others. In our approach, the pure tetrad

formalism will be used. In this formalism, the torsion tensor does not transform

covariantly under local Lorentz transformations. Hence, the torsion scalar also is not

covariant under local Lorentz transformations. In standard Teleparallel gravity where
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just a linear combination of the scalar torsion is considered in the action STEGR, the

theory becomes quasi-local Lorentz invariant, or invariant up to a boundary term.

However, when one is considering modifications of Teleparallel theories of gravity,

such as f(T ) gravity or in our case non-local Teleparallel gravity, the theory is no

longer local Lorentz invariant. The loss of this covariance in Teleparallel theories

might be an interesting behaviour on quantum scales.

8.1.1 Action and field equations

In this section, a non-local deformation of Teleparallel gravity will be presented

along with the field equations of the model. Adopting the formalism developed for

non-local deformations of GR (Deser & Woodard, 2007), one can write a non-local

deformation for Teleparallel gravity as

STeleparallel−NL =
1

2κ2

ˆ
d4x e(x)T (x)

[
f(G[T ](x)) + 1

]
+

ˆ
d4x e(x)Lm (8.3)

= STEGR +
1

2κ2

ˆ
d4x e(x)T (x)f

( ◦
�−1T )(x)

)
+ Sm , (8.4)

where f is an arbitrary function which depends on the retarded Green function

evaluated at the torsion scalar1, Lm is any matter Lagrangian,
◦
� ≡ ∂ρ(eg

σρ∂σ)/e is

the scalar-wave operator, and G[f ](x) is a non-local operator which can be written

in terms of the Green function G(x, x′) as

G[f ](x) = (
◦
�−1f)(x) =

ˆ
d4x′ e(x′)f(x′)G(x, x′) . (8.5)

Furthermore, like the non-local corrections to the GR, these non-local corrections

to the Teleparallel gravity are also motivated from quantum gravitational effects. It

can be noted that, as for non-local GR, the Green function is evaluated at the Ricci

scalar
◦
R, in non-local Teleparallel gravity, the Green function is evaluated at the

1Quantum effects such as the Planck constant have been absorbed in the definition of this
function
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torsion scalar T .

It is worth noticing that unlike GR which produces the same equations of motion

as the TEGR, the non-local deformation of GR is different from the non-local defor-

mation of Teleparallel gravity. The latter comes from the fact that
◦
R = −T + B,

where B is the boundary term so that SGR (which is constructed by
◦
R) and STEGR

(which is constructed by T ) produces the same field equations. However, the non-

local terms
√
−g

◦
Rf1(

◦
�−1

◦
R) and eTf2(

◦
�−1T ) coming from the non-local actions

SGRNL and STEGRNL, will produce different field equations even for the case where

f1 =
◦
�−1

◦
R and f2 =

◦
�−1T . This happens since the boundary term B, which is the

difference between T and
◦
R, produces a contribution in the variational process in

non-local terms. This fact is in the same spirit as was discussed in the other chapters

(see for example Chap. 5).

Now by a variation with respect to the tetrad, one obtains

δSTeleparallel−NL = δSTEGR +
1

2κ2

ˆ [
Tf(G[T ])δe+ ef(G[T ])δT + e Tδf(G[T ])

]
d4x

+

ˆ
d4xδ(eLm) . (8.6)

The first two terms in the integrand are easily computed since they are similar to

the terms in f(T ) gravity, giving us

ef(G[T ])δT = −4
[
e(∂µf(G[T ]))Sa

µβ + ∂µ(eSa
µβ)f(G[T ])

−ef(G[T ])T σ µaSσ
βµ
]
δeaβ , (8.7)

Tf(G[T ])δe = eTf(G[T ])Eβ
a δe

a
β . (8.8)

The last term e Tδf(G[T ]) in (8.6) is new and therefore, it will be computed here.

This term can be written as
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eTδf(G[T ]) = eTδf
( ◦
�−1T

)
= eTf ′(G)

( ◦
�−1δT −

◦
�−1(δ

◦
�)

◦
�−1T

)
(8.9)

= −e
◦
�−1(Tf ′(G))δ

(∂µ(egµν∂ν)

e

) ◦
�−1T

+e
◦
�−1(Tf ′(G))δT . (8.10)

Let us now work out the second term on the right-hand side since the variation of

F (e)δT is well-known for any function F (e) which depends on the tetrad. Now, if

one expands the first term, one obtains

−e
◦
�−1(Tf ′(G))δ

(∂µ(egµν∂ν)

e

) ◦
�−1T = (

◦
�−1Tf ′(G))Tδe

−
◦
�−1(Tf ′(G))∂µ(δ(egµν∂ν))

◦
�−1T , (8.11)

= TG[Tf ′(G)]δe

+ ∂µ(G[Tf ′(G)])(∂νT )
(
gµνδe+ eδgµν

)
,

(8.12)

where
◦
� ×

◦
�−1T = T was used and boundary terms were neglected2. Now, if one

takes into account that δe = eEβ
a e

a
β and δgσρ = −(gσβEρ

a + gρβEσ
a )δeaβ, one can

expand the above term yielding

−e
◦
�−1(Tf ′(G))δ

(∂µ(egµν∂ν)

e

) ◦
�−1T = e

[
∂µ(G[Tf ′(G)])(∂νT )

(
gµνEβ

a − 2gβ(µEν)
a

)
+TG[Tf ′(G)]Eβ

a

]
δeaβ . (8.13)

Therefore, variations of the non-local term is

eTδf(G[T ]) = e
[
TG[Tf ′(G)]Eβ

a + ∂µ(G[Tf ′(G)])(∂νT )
(
gµνEβ

a − 2gβ(µEν)
a

)]
δeaβ

+eG[Tf ′(G)]δT . (8.14)

2× here denotes the function composition so that
◦
�×

◦
�−1f = f .
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Therefore, by adding (8.7), (8.8) and (8.14) and using the TEGR field equations,

one can find the non-local Teleparallel gravity field equations that can be written as

4
[
Sa

µβ∂µ +
1

e
∂µ(eSa

µβ)− T σ µaSσ βµ − T Eβ
a

][
f(G[T ]) + G[Tf ′(G)]

]
− ∂ρ

(
G[Tf ′(G)]

)
(∂σT )

(
gσρEβ

a − 2gβ(ρEσ)
a

)
− 4

e
∂µ(eSa

µβ) + 4T σ µaSσ
βµ

+ TEβ
a = 2κ2T βa . (8.15)

In the next section, Teleparallel non-local cosmology will be introduced and studied.

8.2 Teleparallel non-local cosmology

Since the non-local field equations are difficult to use, it is easier to first rewrite the

non-local action (8.4) in terms of two scalar fields φ and θ. This approach is in the

same spirit as was done in Nojiri & Odintsov (2008). Doing this, one has

STeleparallel−NL =
1

2κ2

ˆ
d4x e

[
T (f(φ) + 1)− ∂µθ∂µφ− θT

]
+ Sm . (8.16)

Now by varying the above action with respect to φ and θ one obtains φ =
◦
�−1T and

◦
�θ = −f ′(φ)T , respectively. By varying this non-local action with respect to the

tetrads, one obtains

2(1− f(φ) + θ)

[
e−1∂µ(eSa

µβ)− Eλ
aT

ρ
µλSρ

βµ − 1

4
Eβ
aT

]
− 2∂µ(θ − f(φ))Eρ

aSρ
µβ

− 1

2

[
(∂λθ)(∂λφ)Eβ

a − (∂βθ)(∂aφ)− (∂aθ)(∂
βφ)
]

= κ2T βa . (8.17)

These equations are straightforward to obtain (see Sec. 4.4.2 where a similar action

was used). It should be noted that by introducing these scalar fields, one is localising

the nonlocal field equations given by (8.15). Let us study non-local cosmology from

the field equations (8.17). Let us assume a flat FLRW cosmology with the tetrad in



Chapter 8. Teleparallel non-local theories 216

Euclidean coordinates eaβ = diag(1, a(t), a(t), a(t)), and write the FLRW metric as

ds2 = dt2−a(t)2(dx2+dy2+dz2) for a spatially flat spacetime. Thus, the cosmological

field equations can be written as

3H2(1 + θ − f(φ)) =
1

2
θ̇φ̇+ κ(ρm + ρΛ) , (8.18)

(1 + θ − f(φ))(3H2 + 2Ḣ) = −1

2
θ̇φ̇+ 2H(θ̇ − ḟ(φ))− κ(pm + pΛ) , (8.19)

where dots represent differentiation with respect to the cosmic time and it was as-

sumed that the matter is described by the energy density of standard matter ρm and

an energy density related to a cosmological constant ρΛ. The equations for the scalar

fields can be written as

−6H2f ′(φ) + 3Hθ̇ + θ̈ = 0 , (8.20)

3Hφ̇+ 6H2 + φ̈ = 0 . (8.21)

These equations describe a non-local model of Teleparallel cosmology. One can take

into account constraints on them from recent cosmological data. If one assumes

f(φ) = Aenφ, where A and n are constants, the dynamics of the model given by

the system (8.18)-(8.21) can be tested. In order to constrain the free parameters of

the model, SNe Ia (type Ia supernovae) + BAO (baryon acoustic oscillations) + CC

(cosmic chronometers) + H0 were used in Bahamonde et al. (2017d). At 1σ and 2σ

confidence levels (CL) from the joint analysis SNIa + BAO + CC + H0, it was found

the following constraints : A = −0.009713+0.017
−0.021, n = 0.02086+0.0013

−0.0208, h = 0.7127+0.013
−0.015

km/s/Mpc, ΩΛ = 0.7018+0.018
−0.02 , and Ωm0 = 0.2981+0.02

−0.018, with χ2
min = 707.4. For

further details about the data used, see Bahamonde et al. (2017d). It should be

noted that the constraints are close to the ΛCDM model, without any evidence

for non-local effects in the present analysis, which here are characterised by the
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Figure 8.1: Reconstruction of the q(z) (deceleration parameter) and j(z) (jerk pa-
rameter) from SNIa + BAO + CC + H0 data set at 1σ CL.

parameters A and n. Let us define two important cosmological parameters:

q(z) = − äa
ȧ2
, (8.22)

j(z) =

...
a

aH3
. (8.23)

Here, q(z) and j(z) are known as the deceleration parameter and the jerk parameter

respectively. The jerk parameter is a dimensionless parameter which measures the

third derivative of the scale factor with respect to the cosmic time whereas the

deceleration parameter measures the cosmic acceleration of the expansion of the

universe. They are usually expressed in terms of the redshift z. A positive j(z) with

a negative deceleration parameter q(z), gives a deceleration to acceleration transition.

In order to investigate kinematic effects, Fig. 8.1 shows the deceleration q(z) and jerk

j(z) parameters as a function of the redshift. The standard error propagation is used

using the best fit values from SNIa + BAO + CC + H0 in the reconstruction (grey

region) of both parameters. On the left panel, q(z) is shown, where the transition

from decelerated to accelerated phase occurs at z ∼ 0.6, with q0 = −0.54 ± 0.15.

As expected, q → 1/2 for high redshift. The right panel shows the jerk parameter

j(z) obtained from the joint analysis, the dotted black line (j = 1) represents the

ΛCDM model. In general, small deviations can be noted when non-local effects are

introduced, but such effects are close to the dynamics of the ΛCDM model.
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The free parameters of the non-local Teleparallel cosmology are strongly con-

strained by present cosmological data. Furthermore, since non-local GR and non-

local Teleparallel gravity are fundamentally different, it is possible that future cosmo-

logical data can be used to test which of these two proposals is the correct theory of

gravity. As these theories are fundamentally different, experiments can be performed

to distinguish each other. Here some possible experimental tests will be proposed

that could be pursued in the near future to know which is the correct theory of

gravity.

The first experiment that could be performed is based on the violation of the equiv-

alence principle, as this could only occur in non-local Teleparallel gravity. The ac-

curacy of the weak equivalence principle has been measured from the acceleration of

Beryllium and Titanium test bodies using a rotating torsion balance (Schlamminger

et al., 2008). It has been found that for acceleration a, the accuracy is of the order

∆a/a ∼ 1.8 · 10−13. The accuracy was increased to ∆a/a ∼ 2 · 10−15 using The MI-

CROSCOPE satellite Touboul et al. (2017) and in the following years, the sensitivity

will be increased even more. It is possible to use more accurate future experiments

to observe a violation of the weak equivalence principle. As such, a violation would

only occur in non-local Teleparallel gravity and it could be used as an experimental

test to know which of these theories is the correct theory of nature.

One can also test these theories by performing experiments using photon time de-

lay and gravitational red shifts measured by high energy gamma rays. Both these

non-local effects would produce different photon time delays that have been observed

by measuring the round trip time of a bounced radar beam off the surface of Venus

(Shapiro et al., 1971). This kind of experiments, performed with more precision, can

be compared with effects produced by the non-local deformation of both theories,

and any discrepancy between results could be used to discriminate between them.

Similarly, gravitational red shift could be used to distinguish between the two the-
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ories. The gravitational red shift derived by gamma rays of energy 14.4× 10−6GeV

has been measured in the Pound-Snider experiment (Pound & Snider, 1965), and

it is possible to perform similar experiments with higher energy gamma rays with

present day technology. Since non-local Teleparallel gravity and non-local GR pre-

dict different gravitational red sifting, such difference could be compared with these

more accurate experiments.

8.3 Generalised non-local gravity and cos-

mology

Let us now present a generalisation of (8.4) and standard non-local gravity described

by the scalar curvature (Deser & Woodard, 2007), which for simplicity, one can label

it as a generalised non-local Teleparallel gravity (GNTG). Its action is given by

SGNTG = STEGR +
1

2κ2

ˆ
d4x e(x) (ξT (x) + χB(x))f

(
(
◦
�−1T )(x), (

◦
�−1B)(x)

)
+

ˆ
d4x eLm . (8.24)

Here, T is the torsion scalar, B is a boundary term and f(
◦
�−1T,

◦
�−1B) is now an

arbitrary function of the non-local torsion and the non-local boundary term. The

Greek letters ξ and χ denote coupling constants. It is easily seen, that by choosing

ξ = −χ = −1 one obtains the standard Ricci scalar introduced in Deser & Woodard

(2007). From (8.5), one can directly see that the following relation is also true

◦
�−1

◦
R = −

◦
�−1T +

◦
�−1B , (8.25)

and thus, if f(
◦
�−1T,

◦
�−1B) = f(−

◦
�−1T +

◦
�−1B), the action takes the well known

form
◦
Rf(

◦
�−1

◦
R) given by the action described in Deser & Woodard (2007). Moreover,

non-local Teleparallel gravity given by the action (8.4) is recovered if χ = 0 and
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f(
◦
�−1T,

◦
�−1B) = f(

◦
�−1T ).

Since the field equations for the GNTG theory are very cumbersome, the action

(8.24) will be rewritten in a more suitable way using scalar fields, according to Nojiri

& Odintsov (2008). Specifically, the action can be rewritten introducing four scalar

fields φ, ψ, θ, ζ as follows

SGNTG = STEGR +
1

2κ2

ˆ
d4x e

[
(ξT + χB)f(φ, ϕ) + θ(

◦
�φ− T ) + ζ(

◦
�ϕ−B)

]
+

ˆ
d4x eLm ,

= STEGR +
1

2κ2

ˆ
d4x e [ (ξT + χB)f(φ, ϕ)− ∂µθ∂µφ− θT − ∂µζ∂µϕ− ζB]

+

ˆ
d4x eLm . (8.26)

By varying this action with respect to θ and ζ one obtains φ =
◦
�−1T and ϕ =

◦
�−1B

respectively. In addition, by varying this action with respect to φ and ϕ one obtains

◦
�θ = (ξT + χB)

∂f(φ, ϕ)

∂φ
, (8.27)

◦
�ζ = (ξT + χB)

∂f(φ, ϕ)

∂ϕ
. (8.28)

In the scalar representation it is not straightforward how curvature or Teleparallel

non-local gravity can be recovered. Let us explicitly recover these theories under

scalar formalism. For example, by setting ξ = −1 = −χ, f(φ, ϕ) = f(−φ + ϕ), and

θ = −ζ one obtains standard non-local curvature gravity, namely

Sstandard−NL =
1

2κ2

ˆ
d4x
√
−g
[ ◦
R +

◦
Rf(ψ)− ∂µζ∂µψ − ζ

◦
R
]

+ Sm , (8.29)

=
1

2κ2

ˆ
d4x
√
−g
[ ◦
R +

◦
Rf(

◦
�−1

◦
R)
]

+ Sm , (8.30)

where ψ = −φ + ϕ. On the other hand, the non-local TEGR is recovered if in the
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action (8.26) one chooses ξ = 1 , χ = 0, f(φ, ϕ) = f(φ) and ζ = 0. One then obtains

STeleparallel−NL =
1

2κ2

ˆ
d4x e [T (f(φ) + 1)− ∂µθ∂µφ− θT ] + Sm , (8.31)

=
1

2κ2

ˆ
d4x e

[
T
(
f(
◦
�−1T ) + 1

)]
+ Sm , (8.32)

which is equivalent as the action considered before (see Eq. (8.4)). A more general

class of theories, like T + (ξT + χB)f(
◦
�−1T ) or T + (ξT + χB)f(

◦
�−1B) can be

obtained by setting f(φ, ϕ) = f(φ) and f(φ, ϕ) = f(ϕ) respectively. Obviously, in

these cases, one can change the values of ξ and χ to obtain other couplings like

S =
1

2κ2

ˆ
d4x e

[
T +Bf(

◦
�−1T )

]
+ Sm , (8.33)

S =
1

2κ2

ˆ
d4x e

[
T + Tf(

◦
�−1B)

]
+ Sm , (8.34)

S =
1

2κ2

ˆ
d4x e

[
T +Bf(

◦
�−1B)

]
+ Sm . (8.35)

Fig. 8.2 is a comprehensive diagram representing all the theories that can be re-

covered from the action (8.26). Here, we have not considered unnatural couplings

like
◦
Rf(

◦
�−1T ) or Tf(

◦
�−1

◦
R) because

◦
R and T,B are quantities defined in different

connections, so mixed terms like
◦
Rf(

◦
�−1T ) are not natural terms to consider. The

above half part of the figure represents different non-local Teleparallel theories and

the below part of it, the standard curvature counterpart. As can be easily seen, only

TEGR and GR dynamically coincide while this is not the case for other theories

defined by T ,
◦
R and B. From a fundamental point of view, this fact is extremely

relevant because the various representations of gravity can have different dynami-

cal contents. For example, it is well known that f(T ) gravity gives second order

field equations while f(
◦
R) gravity, in metric representation, is fourth order. These

facts are strictly related to the dynamical roles of torsion and curvature and their

discrimination at fundamental level could constitute an important insight to really
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understand the nature of gravitational field (see Cai et al. (2016) for a detailed dis-

cussion).

T +Bf(φ)

T + (ξT + χB)f(φ) T + Tf(φ)
︸ ︷︷ ︸

Teleparallel non-local gravity

General theory T + (ξT + χB)f(ϕ) T +Bf(ϕ) GR or TEGR

T + Tf(ϕ)

◦
R+

◦
Rf(−φ+ ϕ)

︸ ︷︷ ︸
Standard non-local gravity

f =
f(
φ)

ζ =
ξ =

0,
χ
=
1

f = f(ϕ) θ = ξ = 0, χ = 1 f = 0

θ =
χ
=
0, ξ =

1 f =
0

f
=
0ζ = χ = 0, ξ = 1

f
=
0

f =
f(−φ+ ϕ), ξ = −χ = −1, θ = −ζ

f
=
0

Figure 8.2: Relationship between GNLG and other gravity theories. The diagram
shows how to recover the different theories of gravity starting from the scalar-field

representation of the general theory. It should be noted that φ =
◦
�−1T and ϕ =

◦
�−1B so that −φ + ϕ =

◦
�−1

◦
R. Clearly, the curvature and torsion representations

“converge” only for the linear theories in
◦
R, the GR, and in T , the TEGR.

By varying the generalised non-local action (8.26) with respect to the tetrads, one

obtains the following field equations

2(1− ξ(f(φ, ϕ)− θ))
[
e−1∂µ(eSa

µβ)− Eλ
aT

ρ
µλSρ

βµ − 1

4
Eβ
aT

]
−

− 1

2

[
(∂λθ)(∂λφ)Eβ

a − (∂βθ)(∂aφ)− (∂aθ)(∂
βφ)
]
− 1

2

[
(∂λζ)(∂λϕ)Eβ

a − (∂βζ)(∂aϕ)

− (∂aζ)(∂βϕ)
]

+ 2 ∂µ

[
f(φ, ϕ)(ξ + χ)− θ − ζ

]
Eρ
aSρ

µβ+(
Eβ
a

◦
�− Eµ

a

◦
∇β

◦
∇µ

)
(ζ − χf(φ, ϕ)) = κ2T βa . (8.36)
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Let us now take into account the tetrad eaβ = diag(1, a(t), a(t), a(t)), which repro-

duces the flat FLRW metric ds2 = dt2 − a(t)2(dx2 + dy2 + dz2). For this geometry,

the modified FLRW equations are

3H2(θ − ξf + 1) =
1

2
ζ̇ϕ̇+

1

2
θ̇φ̇+ 3H(ζ̇ − χḟ) + κ2ρm , (8.37)

(2Ḣ + 3H2)(θ − ξf + 1) = −1

2
ζ̇ϕ̇− 1

2
θ̇φ̇− ḟ(2H(ξ + 2χ) + χ)

+2H(2ζ̇ + θ̇) + ζ̈ − κ2pm , (8.38)

where ρm and pm are the energy density and the pressure of the cosmic fluid respec-

tively and dots denote differentiation with respect to the cosmic time. The equations

for the scalar fields can be written as

6H2 + 3Hφ̇+ φ̈ = 0 , (8.39)

6(Ḣ + 3H2) + 3Hϕ̇+ ϕ̈ = 0 , (8.40)

−6H2 (ξfϕ + 3χfϕ)− 6Ḣχfϕ + 3Hζ̇ + ζ̈ = 0 , (8.41)

−6H2 (ξfφ + 3χfφ)− 6Ḣχfφ + 3Hθ̇ + θ̈ = 0 , (8.42)

where the sub-indices represent the partial derivative fφ = ∂f/∂φ and fϕ = ∂f/∂ϕ.

In the following section, the Noether symmetry approach will be used to seek for

conserved quantities.

8.4 The Noether symmetry approach

Let us use the Noether symmetry approach in order to find symmetries and cos-

mological solutions for the generalised action (8.26). For simplicity, hereafter the

vacuum case will be assumed, i.e., ρm = pm = 0. It can be shown that the torsion
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scalar and the boundary term in a flat FLRW are given by

T = −6H2 , B = −18H2 − 6Ḣ , (8.43)

so that the action (8.26) takes the following form

SGNLT = 2π2

ˆ
a3dt

{
− 6

ȧ2

a2
(ξf(φ, ϕ)− θ − 1)− 6

(
2
ȧ2

a2
− ä

a

)
(χf(φ, ϕ)− ζ)

−θ̇φ̇− ζ̇ϕ̇
}
. (8.44)

Considering the procedure in Capozziello et al. (1996), one finds that the point-like

Lagrangian is given by

L = 6aȧ2(θ + 1− ξf(φ, ϕ)) + 6a2ȧ(χḟ(φ, ϕ)− ζ̇)− a3θ̇φ̇− a3ζ̇ϕ̇ . (8.45)

Let us now apply a more general formalism than was done in Sec. 5.2.1. The generator

of infinitesimal transformations is given by (Paliathanasis, 2014)

X = λ(t, xµ)∂t + ηi(t, xµ)∂i , (8.46)

where xµ = (a, θ, φ, ϕ, ζ) and the vector ηi is

ηi(t, xµ) =
(
ηa, ηθ, ηφ, ηϕ, ηζ

)
. (8.47)

In general, each function depends on t and xµ. If there exists a function h = h(t, xµ)

such that

X [1]L+ Ldλ
dt

=
dh

dt
, (8.48)

where L = L(t, xµ, ẋµ) is the Lagrangian of a system and X [1] is the first prolongation

of the vector X (Paliathanasis, 2014), then the Euler-Lagrange equations remain
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invariant under these transformations. The generator is a Noether symmetry of the

system described by L and the relative integral of motion is given by

I = λ

(
ẋµ

∂L
∂ẋµ
− L

)
− ηi ∂L

∂ẋµ
+ h . (8.49)

The set of generalised coordinates xµ = {t, a, θ, φ, ϕ, ζ} gives rise to the configuration

space Q ≡ {xµ , µ = 1, ..., 6} and the tangent space T Q ≡ {xµ, ẋµ} of the Lagrangian

L = L(t, xµ, ẋµ). Clearly, the procedure can be applied to many different models

starting from Fig. 8.2.

From Eq. (8.48), considering the general point-like Lagrangian (8.45), the full

Noether conditions give rise to 43 differential equations. However, there are 24

differential equations that can be easily solved giving us the functions

λ = λ(t) , h = h(a, θ, φ, ψ, ζ) , ηφ = ηφ(a, φ, ψ, ζ, t) . (8.50)

The remaining 19 differential equations are the followings:

6h,θ + a3ηφ,t = 0 , (8.51)

6h,ψ + a2 (aηζ,t − 6χf,ψηa,t) = 0 , (8.52)

h,φ + a2 (aηθ,t − 6χf,φηa,t) = 0 , (8.53)

h,ζ + a2 (6ηa,t + aηψ,t) = 0 , (8.54)

a (ηφ,ψ + ηζ,θ)− 6χf,ψηa,θ = 0 , (8.55)

a (ηφ,ζ + ηψ,θ) + 6ηa,θ = 0 , (8.56)

6χf,φηa,φ − aηθ,φ = 0 , (8.57)

6χf,ψηa,ψ − aηζ,ψ = 0 , (8.58)

6ηa,ζ + aηψ,ζ = 0 , (8.59)

h,a − 6a2 (χf,φηφ,t + χf,ψηψ,t − ηζ,t) + 12a(ξf − θ − 1)ηa,t = 0 , (8.60)
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6a (χf,ψηψ,θ − ηζ,θ) + 12(θ + 1− ξf)ηa,θ − a2ηφ,a = 0 , (8.61)

6χ(f,φηa,ψ + f,ψηa,φ)− a (ηθ,ψ + ηζ,φ) = 0 , (8.62)

6(χf,φηa,ζ − ηa,φ)− a (ηψ,φ + ηθ,ζ) = 0 , (8.63)

6χf,φηa,θ − a (ηφ,φ + ηθ,θ − λ,t)− 3ηa = 0 , (8.64)

6χf,ψηa,ζ − 6ηa,ψ − 3ηa − a (ηψ,ψ + ηζ,ζ − λ,t) = 0 , (8.65)

6a (χf,φηφ,φ + χf,φφηφ + χf,φηa,a + χf,ψηψ,φ + χf,φψηψ − χλ,tf,φ − ηζ,φ)

+12χf,φηa + 12(θ + 1− ξf)ηa,φ − a2ηθ,a = 0 , (8.66)

6a (χf,φηφ,ζ + χf,ψηψ,ζ − ηa,a − ηζ,ζ + λt) + 12(θ + 1− ξf)ηa,ζ

−12ηa − a2ηψ,a = 0 , (8.67)

6a (χf,φηφ,ψ + χf,φψηφ + χf,ψ (ηa,a + ηψ,ψ − λt) + χf,ψψηψ − ηζ,ψ)

+12χf,ψηa + 12(θ + 1− ξf)ηa,ψ − a2ηζ,a = 0 , (8.68)

a
(
χaf,φηφ,a − ξf,φηφ + χaf,ψηψ,a − ξf,ψηψ − 2ξfηa,a + ξλ,tf + 2θηa,a + 2ηa,a

+ηθ − aηζ,a − (θ + 1)λt

)
+ (θ + 1− ξf)ηa = 0 . (8.69)

Here commas denote partial derivatives. Clearly, being a system of non-linear partial

differential equations, the solution is not unique. This means that several Noether

symmetries can be selected according to different functions. In the next subsections,

Noether symmetries will be found in specific non-local Lagrangians. The first sub-

section will be focused on the Teleparallel non-local case where f = Tf(
◦
�−1T ) and

the second subsection will be focused on the standard non-local curvature case where

◦
Rf(

◦
�−1

◦
R).
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8.4.1 Noether symmetries in Teleparallel non-local

gravity with coupling Tf (
◦
�−1T )

8.4.1.1 Finding Noether symmetries

Let us first study the case where one recovers the Teleparallel non-local case studied

in Sec. 8.1.1. In this case, the torsion scalar T is coupled to a non-local function

evaluated at the torsion scalar, that is f(
◦
�−1T ) = f(φ). For Noether symmetries,

one needs to consider,

f(φ, ϕ) = f(φ) , χ = 0 , ξ = 1 and ζ = 0 , (8.70)

in the general action (8.26) and thus the point-like Lagrangian (8.45) becomes

L = 6a (−f(φ) + θ + 1) ȧ2 − a3θ̇φ̇ . (8.71)

From Eqs. (8.50)-(8.69), it can be immediately seen that the dependence on the

coordinates of the Noether vector components is

λ(a, θ, φ, t) = λ(t) , (8.72)

ηa(a, θ, φ, t) = ηa(a, θ, φ, t) , (8.73)

ηφ(a, θ, φ, t) = ηφ(a, φ, t) , (8.74)

ηθ(a, θ, φ, t) = ηθ(a, θ, t) , (8.75)

h(a, θ, φ, t) = h(a, θ, φ) . (8.76)

It should be remarked that there is no need to impose any assumption to find the

symmetries. Even though the system is given by 19 differential equations, one can

solve it in full generality. This computation is straightforward but lengthy so it will
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not be explicitly showed here. By solving Eqs. (8.51)-(8.69) for f , one obtains

c1f
′(φ)− c2f(φ) + c2 − c3 = 0 , (8.77)

where c1, c2 and c3 are constants. There are two non trivial solutions (f 6= constant)

to (8.77) depending on the value of c2, i.e.

f(φ) =


c7e

c2φ
c1 − c3

c2
+ 1 , c2 6= 0 ,

c7 + c3
c1
φ , c2 = 0 ,

(8.78)

where c7 is another integration constant. From (8.32), one can notice that for having

a TEGR (or GR) background we must have that c3 = c2 in the exponential form

and c7 = 0 in the linear form. The Noether vector has the following form

X = (c4 + c5t)∂t −
1

3
(c2 − c4)a∂a + (c3 + c2θ)∂θ + c1∂φ , (8.79)

and the integral of motion is

I =
[
4a2 (c2 − c4) ȧ+ 6aȧ2 (c4t+ c5)

]
(−f(φ) + θ + 1) + c6

a3c1θ̇ + a3c2(θ + 1)φ̇− a3 (c4t+ c5) θ̇φ̇ . (8.80)

8.4.1.2 Cosmological solutions

In the previous subsection the form of the function f was found to be constrained as

an exponential or a linear form of the non-local term (8.78). It can be shown that

for the linear form, there are no power-law or de-Sitter solution. Here, we will find

solutions for the exponential form of the coupling function.

As pointed out before, it is physically convenient to choose c2 = c3 in order to have
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a GR (or TEGR) background. Hence, in this section, this condition will be assumed

for the constants. For the exponential form of the function f(φ) given by (8.78), the

point-like Lagrangian (8.71) takes now the form

L = −6aȧ2
(
c7e

c3φ
c1 − θ − 1

)
− a3θ̇φ̇ , (8.81)

so that the Euler-Lagrange equations are given by

c1

(
4Ḣ(c7e

c2φ
c1 − θ − 1)− θ̇φ̇

)
+H

(
4c2c7φ̇e

c2φ
c1 − 4c1θ̇

)
+ 6c1H

2
(
c7e

c2φ
c1 − θ − 1

)
= 0 ,

(8.82)

6H2 + 3Hφ̇+ φ̈ = 0 , (8.83)

−6c2c7

c1

H2e
c2φ
c1 + θ̈ + 3Hθ̇ = 0 , (8.84)

6H2
(
−c7e

c2φ
c1 + θ + 1

)
− θ̇φ̇+ 6θH2 = 0 , (8.85)

for a, θ, φ and the energy equation, respectively. If one considers de-Sitter solution

for the scale factor,

a(t) = eH0t ⇒ H(t) = H0 ,

one immediately finds from (8.83) that

φ(t) = −2H0t−
φ1e

−3H0t

3H0

+ φ2 . (8.86)

For the sake of simplicity, φ1 = φ2 = 0 will be considered otherwise Eq. (8.84) cannot

be integrated easily. By this assumption, one can directly finds that

θ(t) = e−3H0t

(
−c7(3H0t+ 1)− θ1

3H0

)
+ θ2 , (8.87)

where θ1 and θ2 are integration constants and the branch c1 = 2c2/3 was needed to

choose, otherwise Eq. (8.82) cannot be satisfied. Hence, from (8.82) one directly see
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that θ2 = −1, giving us the following cosmological solution,

a(t) = eH0t , φ(t) = −2H0t , θ(t) = e−3H0t

(
−c7(3H0t+ 1)− θ1

3H0

)
− 1 , (8.88)

and

f(φ) = c7e
−3H0t . (8.89)

If one considers that the scale factor behaves as a power-law a(t) = a0t
p, where p is

a constant, from (8.83) one directly finds that

φ(t) =
6p2 log(t− 3pt)

1− 3p
+

φ1

1− 3p
t1−3p + φ0 , (8.90)

where φ1 and φ0 are integration constants that for simplicity, will be assumed that

are zero, otherwise (8.84) cannot be integrated directly (as was done before). By

doing this, one obtains

θ(t) =
c1t

1−3p

1− 3p
+ c2 +

c7(3p− 1)(c1 − 3c1p)

c1(1− 3p)2 − 6c2p2
(t− 3pt)

6c2p
2

c1−3c1p , (8.91)

where θ0 and θ1 are integration constants and also c1 6= 6c2p2

(3p−1)2
and p 6= 1/3 were

assumed since there are not solutions for these other two branches. By replacing

this solution into (8.82) one obtains that c2 = c1(2−9p+9p2)
6p2

and θ1 = −1 yielding the

following solution

φ(t) =
6p2 log(t− 3pt)

1− 3p
, θ(t) = c7(1− 3p)3−3pt2−3p +

θ0t
1−3p

1− 3p
− 1 , (8.92)

a(t) = a0t
p , f(φ) = c7e

(9p2−9p+2)φ
6p2 . (8.93)

As seen, the Noether symmetry approach constrained the function f to be either an

exponential or a linear one. Then, it was found that the exponential case admits both

de-Sitter and power-law solutions. Thus, the Noether symmetry approach provides
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a good tool to find cosmological solutions.

8.4.2 Noether symmetries in curvature non-local

gravity with coupling
◦
Rf (

◦
�−1

◦
R)

Let us find now Noether symmetries for the case where curvature non-local gravity

is considered. Then, the coupling
◦
Rf(

◦
�−1

◦
R) is present in the action. To recover this

case, one must set

f(φ, ϕ) = f(−φ+ ϕ) = f(ψ) , χ = 1 , ξ = −1 , θ = −ζ . (8.94)

In this way, the point-like Lagrangian (8.45) reads as follows

L = 6aȧ2(f(ψ) + θ + 1) + 6a2ȧ(f ′(ψ)ψ̇ + θ̇) + a3θ̇ψ̇ . (8.95)

and Noether condition equation (8.48), gives a system of 18 differential equations.

Also this is a special case of that presented in (8.51)-(8.69). The result is

λ(a, θ, ψ, t) = λ(t) and h(a, θ, ψ, t) = h(a, θ, ψ) , (8.96)

and the system reduces to 9 equations. However, the full system is still difficult to

solve without any assumption. A simple assumption is choosing h(a, θ, ψ) = constant.

The last two equations of Noether condition for f(ψ) are

2c2f
′(ψ) + c1f(ψ) + c1 − c3 = 0 , (8.97)

2c2f
′′(ψ) + c1f

′(ψ) = 0 . (8.98)
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and the Noether vector results to be

X = (c5 + c4t)∂t +
1

3
a(c4 − c1)∂a + (c3 + c1θ)∂θ − 2c2∂ψ . (8.99)

Eqs. (8.97) and (8.98) are easily solved and the form of f is

f(ψ) =


−1 + c3

c1
+ c6e

− c1
c2
ψ

c1 6= 0 ,

c6 + c3
2c2
ψ . c1 = 0

. (8.100)

Again, the form of the function is either exponential or linear in ψ =
◦
�−1

◦
R. This

result is very interesting since, without further assumptions than h = const., the sym-

metries give the same kind of couplings for both Teleparallel and curvature non-local

theories. These two couplings can be particularly relevant to get a renormalisable

theory of gravity. As discussed in Modesto & Rachwal (2014, 2017), the form of

the coupling is extremely important to achieve a regular theory. In particular, the

exponential coupling plays an important role in calculations. Here, the symmetry

itself is imposing this kind of coupling. In other words, it is not put by hand but

is related to a fundamental principle, i.e. the existence of the Noether symmetry.

Even though this method has only been used here to find exact solutions, it might

be possible to identify the conserved Noether quantities, which appear from first

principles for each model, to a physical real conserved quantity. However, this has

not been done before due to the increase number of new conserved charges which

appears in modified gravity. Following a similar approach as in Sec. 8.4.1.2, it is

possible to find that curvature non-local gravity admits both de-Sitter and power-

law solutions for the exponential and the linear f . For more details about those

solutions, see Bahamonde et al. (2017c).

Let us stress again one of the most important results of what was found using
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the Noether symmetry approach. It was proved that, in most physically interesting

cases, the only forms of the distortion function selected by the Noether symmetries,

are the exponential and the linear ones. According to the literature (Jhingan et al.,

2008; Nojiri & Odintsov, 2008), this is an important result, because, up to now, these

kinds of couplings were chosen by hand in order to find cosmological solutions while,

in our case, they come out from a first principle. In addition, there is a specific class

of exponential non-local gravity models which are renormalisable (see Modesto &

Rachwal (2014, 2017)). This means that the Noether symmetries dictate the form

of the action and choose exponential form for the distortion function. As discussed

in Bahamonde & Capozziello (2017) (see Sec. 5.2.1), the existence of Noether sym-

metries is a selection criterion for physically motivated models.



9
Concluding remarks

This thesis dealt with a not so well explored fundamental theory of gravity based

on a manifold with torsion but with vanishing curvature tensor. This theory is

called Teleparallel gravity (TEGR) and its field equations are equivalent to General

Relativity (GR). Perhaps, its lack of study has been related mostly from a historical

point of view since Einstein developed GR before TEGR. Since both theories have

the same equations, they can be seen as fundamental theories of gravity. The physical

interpretation of them is quite different. GR understands gravity as a deformation

of the spacetime and TEGR returns the point of view of thinking that gravity is a

force mediated by the torsion tensor. Then, even though they are equivalent on field

equations, their physical interpretations are very different.

Since it is possible to consider extensions or modifications of GR in order to

explore or solve different theoretical/observational issues, it is also possible to do it

considering Teleparallel gravity as the fundamental theory of gravity. In this thesis,

a plethora of different Teleparallel modified theories of gravity have been presented

with emphasis on constructing theories that can be physically well motivated and

also that can be somehow related to their counterpart related to modifications of

General Relativity. It is not possible to classically distinguish between GR to TEGR

since they have the same field equations but their generalisations are different. A

possible future way to distinguish between which theory of gravity describes better

our Universe is by studying modifications of TEGR (or GR) or also considering

234
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quantum approaches such as non-local effects. One powerful way to discriminate

between modified theories could be related to their validity to describe the current

cosmological observations or possible new gravitational wave detections.

One of the aims of this thesis was to try to use modified Teleparallel theories

of gravity to tackle some cosmological problems such as the dark energy problem.

It was found that similar to modifications of GR, Teleparallel modified theories are

good candidates to explain all the cosmological history of the Universe; starting

from a Big Bang, facing an inflation era, then passing from a radiation to a matter

dominated era and finally entering a dark energy dominated era. Many Teleparallel

models have been presented and they have been classified and compared with the

standard modified models. In term of cosmology, both approaches tend to be very

successful.

Let us here now try to discuss some advantages when one is working with modifi-

cations of TEGR. All Teleparallel theories of gravity are based on the scalar torsion T

which contains only first derivatives of tetrads. On the other hand, GR is based on the

Ricci scalar
◦
R which depends on second derivatives of the metric tensor. Therefore,

some Teleparallel theories are mathematically simpler than other modified theories

coming from GR. For example, f(T ) gravity is only a second order theory whereas

f(
◦
R) is a fourth order theory. Then, for example, further generalisations containing

non-minimally couplings with scalar fields (see Sec. 4.4.2) or matter (see Sec. 5.3) are

mathematically simpler in modified Teleparallel gravity than modified GR. It should

be noted that in those sections, a further generalisation was taken into account

considering couplings with the boundary term B which makes the equations more

difficult, but, in principle those theories coming from Teleparallel gravity only based

on T are mathematically simpler than the ones based with GR. Another interesting

advantage on working within Teleparallel gravity is the possibility of reconstructing

all the models coming from GR just by adding the corresponding boundary terms B
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or BG if Gauss-Bonnet terms are considered. Then, one can have a broader family of

theories of gravity when one is considering Teleparallel gravity. It should be remem-

bered again that the relationship
◦
R = −T + B is a fundamental relationship which

is derived from the Ricci theorem and then assuming that the spacetime is globally

flat. In modified GR, this is not possible since torsion tensor is identically zero and

therefore Ricci scalar cannot be related to the torsion scalar. Moreover, from the

Ricci theorem, one only obtain that the full curvature Ricci scalar is R =
◦
R, where

◦
R is the quantity computed with the Levi-Civita connection. Therefore, one cannot

extend modifications of GR in such a way that one can reconstruct/relate modifica-

tions of Teleparallel gravity such as for example f(T ) gravity or f(T,Lm) gravity. In

easy words, if one assumes GR as the fundamental theory, one cannot find for ex-

ample, theories such as f(T ) gravity or Teleparallel dark energy, but if one assumes

TEGR as the fundamental theory, one can find an equivalent Teleparallel version

of other modifications of GR such as f(
◦
R) gravity or f(

◦
R,Lm) gravity. This is of

course an advantage since all the models coming from modifications of GR can also

be reconstructed using the boundary terms. This feature was seen in all the sections

related to modified Teleparallel gravity where, it was always possible to construct

the counterpart theory coming from the GR point of view.

Another interesting advantage of TEGR and (its modifications) are that the the-

ory is based on the gauge theory of the translations. It is well known that gravity

cannot be integrated to the other three forces to create a Unified Theory of Every-

thing. However, all the remaining three forces are also based on gauge theories, so

that, in principle, TEGR could be a good candidate in order to construct modifi-

cations or generalisations in order to unify gravity with the other forces. GR on

the other hand cannot be fully written as a gauge theory, therefore, it is from its

basis written in a different language than the other forces. This of course is just

a conjecture since there does not exist a final quantum gravity theory but since
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TEGR is based on the same gauge structure as the other forces, it might be a very

good candidate for constructing quantum gravity theories. One effect that is very

common in quantum gravity is the existence of an intrinsic extended structure in

the geometry of spacetime, and such an extended structure would be related to an

effective non-local behaviour for spacetime. Then, as was seen in Chap. 8, non-local

effects are very natural if they are considered from Teleparallel gravity. This kind of

approaches seem very interesting and natural to follow for future work.

GR is based on the validity of the equivalence principle (see Sec. 2.2.1), therefore,

if this principle is violated at some scales, then GR will be ruled out at those scales.

On the other hand, another advantage about TEGR is that it is consistent with

universality but it is not needed to construct the theory. One can further consider

theories with a generalised Teleparallel force as presented in Sec. 3.5 where univer-

sality is no longer true and the theory is still consistent. This is a very interesting

approach that can be considered for future work in order to see their consequences

in modified gravity.

Only future experiments and observations will tell us about whether modifications

of GR or TEGR could be the most adequate way to understand gravity. We are facing

a very promising era in physics where much accurate data will be available with new

instruments. Gravitational waves opened a new window to discriminate or rule out

modified theories of gravity and in the following years, it will become a more powerful

tool for physicists. TEGR is now viewed by some people as an exotic gravitational

theory but this is only historical. Future experiments could help us on constraining

their modifications and possibly, in the future, TEGR will be considered as a more

natural theory than GR.



A
Conventions

This thesis works with the standard metric signature notation in Teleparallel gravity

which is ηab = diag(+ − −−). This can be a little confusing since mostly all the

literature based on GR is written in the other metric signature notation. A list of

symbols is presented in Tab. A.1. It should be noted that torsion tensor and its

contractions are denoted without a bullet above from Chapter 3 to avoid writing

them in all the quantities. In Chapter 2, torsion tensor refers to any connection.

Then, other objects constructed with the torsion tensor are also denoted without a

bullet. For example: superpotential Sαµν , contortion tensor Kµ
λ
ν or boundary term

B are denoted without a bullet above. This means that only covariant derivative and

connections can have a bullet above, meaning that they are computed with respect

to the Weitzenböck connection.
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Mathematical symbol Convention

(+−−−) Metric signature notation

Greek indices (e.g. α, β, γ, ..) running from 0, 1, 2, 3 Space-time indices

Latin indices (e.g. a, b, c, ..) running from 0, 1, 2, 3 Tangent space indices

eaµ Tetrad

Eµ
a Inverse of the tetrad

e = det(eaµ) Determinant of the tetrad

c = 1 and κ2 = 8πG Coupling gravitational constant in natural units

Ricci curvature Rµν ≡ Rλ
µλν Riemann curvature contracted first and third index

Quantities without symbols above (e.g. Rα
µ
γλ,Γ

α
µν ,∇µ, R) Quantities computed for any general connection

Quantities with ◦ above (e.g.
◦
Rα

µ
γλ,

◦
R,
◦
Γαµν ,

◦
∇µ ) Quantities computed with the Levi-Civita connection

Quantities with • above (e.g.
•
Rα

µ
γλ,

•
R,
•
Γαµν ,

•
∇µ ) Quantities computed with the Weitzenböck connection

Torsion tensor T λµν , torsion vector Tµ ≡ T λλµ Quantities computed with the Weitzenböck connection

and torsion scalar T (excepted in Chap. 2 where they refer to any connection)
◦
� ≡

◦
∇µ

◦
∇µ D’alembertian computed with the Levi-Civita connection

Tµν Energy-momentum tensor

Table A.1: List of symbols and their conventions. Exceptions of some convention
rules are written explicitly.
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Bahamonde, S., Böhmer, C. G., & Krššák, M. (2017b). New classes of modified

teleparallel gravity models. Phys. Lett., B775 , 37–43. arXiv1706.04920
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