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Abstract  21 

Understanding the uptake of a drug by diseased tissue, and the drug’s subsequent 22 

spatiotemporal distribution, are central factors in the development of effective targeted 23 

therapies. However, the interaction between the pathophysiology of diseased tissue and 24 

individual therapeutic agents can be complex, and can vary across tissue types and across 25 

subjects. Here, we show that the combination of mathematical modelling, of high-resolution 26 

optical imaging of intact and optically cleared tumour tissue from animal models, and of in 27 

vivo imaging of vascular perfusion predicts the heterogeneous uptake, by large tissue 28 

samples, of specific therapeutic agents, as well as their spatiotemporal distribution. In 29 

particular, by using murine models of colorectal cancer and glioma, we report and validate 30 

predictions of steady-state blood flow and intravascular and interstitial fluid pressure in 31 

tumours, of the spatially heterogeneous uptake of chelated gadolinium by tumours, and of 32 

the effect of a vascular disrupting agent on tumour vasculature.  33 



 

 

Introduction 34 

Mathematical modelling of biological tissue is increasingly used to better understand 35 

complex biological phenomena, such as the development of disease.1 This developing 36 

paradigm of computational experimentation can enable subtle interventions to be 37 

performed in a manner that would be challenging or impossible in a conventional 38 

experimental setting. In this study we present a framework for performing realistic 39 

computational experiments that naturally incorporates the variability and heterogeneity 40 

found between biological samples. It allows large tissue samples to be imaged and treated 41 

as living specimens, by combining cutting-edge optical and in vivo imaging techniques with 42 

mathematical modelling. We have named our framework REANIMATE (REAlistic Numerical 43 

Image-based Modelling of biologicAl Tissue substratEs) (see Figure 1 for an overview 44 

diagram). 45 

Optical imaging of cleared tissue can provide three-dimensional data detialing complex, 46 

interacting structures (such as blood vessel networks, cell nuclei, etc.), which can be 47 

explored, across entire organs,2,3 and at resolutions of a few microns,4 by using 48 

fluorescently-labelled probes that bind to specific strutures. Our use of large, high resolution 49 

structural images in computaitonal simulations, rather than relying on small, isolated 50 

samples or synthetically-generated substrates, is a key development, and has required the 51 

development of new image anaysis and computational modelling approaches. Furthermore, 52 

by incoproating in vivo imaging (in particular, magnetic resonance imaging (MRI)), 53 

REANIMATE can incorporate quantitative measurements. 54 

Capturing the physiological variation in complete tissue specimens is particularly useful in 55 

tumors, which can be highly heterogeneous, both between tumor types, tumor deposits and 56 

even within individual tumors.5 This results in substantial differences in, for example, drug 57 

delivery, oxygenation and gene expression,6 with associated differences in therapeutic 58 

response and resistance. Effective therapy normally requires drugs to be delivered to the 59 

site of disease, at as high a concentration as possible, but avoiding signficant toxicity effects 60 

in healthy tissues, whilst sub-optimal exposure can limit treatment efficacy, induce 61 

exposure-mediated resistance mechanisms,7 or even stimulate tumor growth.8  62 

This complex physiological-pharmacological landscape requires careful analysis in order to 63 

be fully understood. The numerical modelling component of REANIMATE consists of two 64 

steps: first, a solution is sought from a set of coupled fluid dynamics models that describe 65 



 

 

steady-state vascular and interstitial fluid transport; second, the steady-state solution (or set 66 

of solutions) is used to parameterise a time-dependent model that describes the vascular 67 

and interstitial uptake of exogenously administered material. This can be used, for example, 68 

to model the heterogenous pharmacokinetics of drug or imaging contrast agents, or delivery 69 

of individual particles (e.g. T-cells, antibodies), and terms can be introduced to describe drug 70 

targetting and metabolism. 71 

For the predictions made by our, or any, computational experiments to be confidently 72 

accepted, careful experimental validation must be performed. As a first evaluation, we have 73 

used REANIMATE to: 1) study the spatially heterogeneous uptake of a gadolinium-based MRI 74 

compound (which allowed us to compare numerical modelling solutions with ground-truth 75 

in vivo data); and 2) investigate the effect of the vascular disrupting agent (VDA) Oxi4503 on 76 

tumor vasculature. These results provided a rich, three-dimensional framework for probing 77 

spatially heterogeneous tumor drug delivery and treatment response.  78 

Results 79 

Preparation of tissue substrates for mathematical modelling 80 

We began the development of the REANIMATE framework by studying SW1222 and LS174T 81 

human colorectal carcinoma tumors, implanted subcutaneously on the flank of 82 

immunocompromised mice. These tumor types have been extensively studied, by our group 83 

and others, with SW1222 tumors displaying greater cell differentiation, more uniform 84 

vasculature and greater perfusion than LS174T tumors.9-15 Tumors of each type (n=5 of each) 85 

were grown subcutaneously in mice for 10 to 14 days, and then administered fluorescently-86 

labelled lectin (AlexaFluor-647) via a tail vein, in order to fluorescently label vascular 87 

structures in the tumors.2 Following a circulation time of 5 minutes, tumors were resected, 88 

optically cleared with benzyl-alcohol / benzyl-benzoate (BABB), and imaged, intact, with 89 

optical projection tomography (OPT).16  90 

Depending on the size of the tumor, our OPT images exhibited a variable background 91 

autofluorescence signal, with a decrease in signal intensity towards the centre due to less 92 

effective optical clearing. This was corrected by subtracting a three-dimensional Gaussian-93 

filtered copy of the data, to normalise variations in signal intensity. Blood vessels were then 94 

segmented from OPT images using Frangi filtering17 and thresholding, and converted into 95 

graph format with a skeletonisation algorithm. These spatial graphs consisted of nodes 96 



 

 

(branch points) and vessel segments, and were typically composed of 30,000 to 200,000 97 

nodes. Examples of segmented, whole-tumor blood vessel networks from example LS174T 98 

and SW1222 tumors are shown in Figure 2.  99 

We compared vessel architecture from SW1222 and LS174T tumors against previously 100 

published data (obtained using a range of imaging techniques, and principally derived from 101 

our own published studies), which showed that vessel architecture was preserved during 102 

tissue clearing, and that our image processing algorithms accurately reproduced vessel 103 

networks (see sections 1.2 and 1.2  in the Supplementary Information). 104 

REANIMATE steady-state simulation in subcutaneous colorectal carcinoma xenografts 105 

Our next aim was to use whole-tumor blood vessel networks as the substrate for simulations 106 

of steady-state fluid dynamics. Our mathematical model comprised of coupled intravascular 107 

and interstitial compartments, with exchange mediated by vascular permeability and 108 

described by Starling’s Law. Blood flow and interstitial delivery were modelled using 109 

Poiseuille flow and Darcy’s law, respectively, and the model was optimised over the entire 110 

tumor through the prescription of the pressure boundary conditions at peritumoral 111 

boundary vessels. We performed our initial simulations on a set of LS174T and SW1222 112 

colorectal adenocarcinoma xenografts.  113 

As shown in the summary of simulated parameter values in Supplementary Table 1, 114 

solutions to our mathematical model predicted significant differences between SW1222 and 115 

LS174T tumors, in blood flow, blood velocity and vessel wall sheer stress, which are 116 

consistent with their known characteristics. Example spatial distributions of each of these 117 

REANIMATE parameters are shown in Figure 3, in which vascular parameters (blood flow 118 

and pressure) are displayed as colored vessel segments and interstitial parameters 119 

(interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and perfusion) as overlaid color 120 

fields. Results are shown for example LS174T (Figure 3a-e) and SW1222 tumors (Figure 3f-j).  121 

Key to the interpretation of these results was our ability to compare them directly with 122 

equivalent in vivo imaging data (in this case arterial spin labelling magnetic resonance 123 

imaging (ASL-MRI)), which can be used to quantify perfusion, noninvasively.9 Perfusion is a 124 

measure of the rate of delivery of fluid to biological tissue, and is dependent on blood flow, 125 

vascular permeability and interstitial density, amongst other factors.18 Comparisons of ASL-126 

MRI in vivo measurements and REANIMATE predictions are shown in Figures 3c (LS174T) 127 

and 3h (SW1222), which shows a clear correspondence between the two data types. 128 



 

 

Statistical analysis revealed no significant differences between predicted and measured 129 

perfusion values (p<0.01, Kolmogorov-Smirnov). Scatter plots of both measurements are 130 

shown in Supplementary Figures 1a and b, which revealed a significant correlation between 131 

the two measurements (LS174T, r2 = 0.82, p<0.001; SW1222 r2 = 0.89, p<0.001; Pearson 132 

test). Likewise, in both in vivo measurements and simulations, perfusion was distributed 133 

heterogeneously throughout the tumors, with markedly raised values at the periphery of 134 

both types of colorectal tumor. This spatial distribution is characteristic of solid tumors, 135 

particularly subcutaneous xenograft models.19 However, some regional differences were 136 

also evident between simulated and ASL perfusion values, but which could have been 137 

caused by errors in either value, and/or errors in the spatial registration of the two types of 138 

data. 139 

Both in vivo measurements and simulations showed that SW1222 tumors were better 140 

perfused than LS174T tumors, which is again consistent with the results of previous 141 

studies.20 However, perfusion at the centre of SW1222 tumors was much greater than in 142 

LS174T tumors, both in simulations and in vivo data. On average, we found that simulated 143 

perfusion values in LS174T tumors matched those measured in vivo with MRI (0.18 ± 0.07 144 

and 0.19 ± 0.08 mL g-1 min-1) for simulated and in vivo measurements, respectively), whilst 145 

SW1222 estimates were slightly larger, but of the same order as in vivo measurements (0.33 146 

± 0.18 and 0.73 ± 0.03 mL g-1 min-1). 147 

REANIMATE also predicted elevated interstitial fluid pressure in both tumor types, with 148 

typical values in the range 12 to 25 mm Hg in the center of tumors, and which declined 149 

towards the periphery. This, again, is consistent with the known characteristics of these 150 

types of tumor, and no significant difference was measured between LS174T and SW1222 151 

tumors.21 However, in both tumor types, IFP was not uniformly distributed, but instead 152 

varied by up to 10 mm Hg within the center of individual tumors. IFP was raised at the 153 

location of perfused vasculature, producing intratumoral advection effects (as can be seen in 154 

the interstitial velocity images in Figures 3e and 3j). These results agree with previous 155 

measurements of IFP and IFV from our own laboratory, in which mean IFP was measured to 156 

be 16 ± 5 mm Hg in LS174T tumors and 13 ± 2 in SW1222 tumors, for a tumor volume of 0.1 157 

cm3.21  158 

As our optimisation procedure for the assignment of pressure boundary condition has a 159 

potentially large number of solutions, we sought to determine the variability observed in 160 

vascular pressure predictions across multiple simulation runs. This experiment is described 161 



 

 

in the Supplementary Information, and from which we found that the mean standard 162 

deviation of vascular pressure predictions, across simulation runs, was 0.25 mm Hg and 0.49 163 

mm Hg in LS174T and SW1222 tumors, respectively. This is much smaller than the variability 164 

associated with spatial heterogeneity within the tumors (8.8 and 9.2 mm Hg, respectively). 165 

REANIMATE stead-state simulation in an orthotopic murine glioma model 166 

In order to evaluate the generalisability of the REANIMATE framework, we next applied it to 167 

data from orthotopic murine glioma tumors, derived from the murine GL261 cell line. At 20 168 

days following the injection of glioma cells into the brain, tumors were resected from mice 169 

with a section of normal cortex tissue attached. Segmented tumor and cortex vessels are 170 

shown in Figure 4a, with brain vessels labelled in blue and tumor vessels in red.   171 

As with colorectal tumors, steady-state vascular and interstitial REANIMATE fluid flow 172 

solutions were generated, which are shown in Figures 4b to 4f. The simulations predicted 173 

raised interstitial fluid pressure within the tumor (mean, 16 ± 10 mm Hg), and a mean 174 

interstitial perfusion of 1.3 ± 0.5 mL min-1 g-1.  Comparison of these simulation results with in 175 

vivo measurements using ASL-MRI (shown in Figure 4d) revealed a good correspondence, 176 

with a mean measured tumor perfusion of 1.1 ± 0.7 mL min-1 g-1, and equivalent spatial 177 

distribution (hyperperfused periphery and central hypoperfusion). A scatter plot of the data 178 

is shown in Supplementary Figure 1c, which revealed a significant correlation between the 179 

two measurements (r2 = 0.91, p<0.001, Pearson test). 180 

Compared with subcutaneous tumors, REANIMATE predicted orthotopic gliomas to have a 181 

more uniform central IFP, which varied within a range of ±4 mm Hg. IFV was correspondingly 182 

low in the centre (<0.01 µm s-1), and high at the periphery (indeed, much higher than in 183 

subcutaneous tumors (17 ± 4 µm s-1)). No measurements of IFP or IFV exists in the literature 184 

to compare these data against, presumably due to the technical challenges associated with 185 

their measurement in deep-seated tumors. 186 

In combination, these results demonstrate that mathematical modelling of fluid dynamics 187 

using optical image data from cleared tumor tissue as a substrate, is both feasible and 188 

provides quantitative predictions of vascular perfusion that are in keeping with experimental 189 

results. Therefore our next step was to use the steady-state flow predictions to 190 

parameterise a time-dependent model to simulate the delivery of exogenously-administered 191 

material. 192 



 

 

REANIMATE prediction of Gd-DTPA delivery 193 

As a first evaluation, we chose to model the dynamics of chelated gadolinium (Gd-DTPA), a 194 

widely used MRI contrast agent with well-studied pharmacokinetics, and directly compare 195 

them with in vivo measurements. Gd-DTPA can be thought of as a proxy for a non-196 

metabolised therapeutic agent. Time-dependent simulations were calculated using a 197 

‘propagating front’ algorithm, that used steady-state solutions to mimic the physical delivery 198 

of material, both via vascular flow and by diffusion across blood vessel wall and through the 199 

interstitium.  200 

To provide ground-truth data for comparison, and to generate new modelling substrates, we 201 

performed in vivo experiments to measure the delivery of a bolus of Gd-DTPA in a set of 202 

LS174T (n=5) and SW1222 (n=6) tumors, using a dynamic contrast-enhanced (DCE) MRI 203 

sequence (Figure 5). Following these measurements, mice were culled via cervical 204 

dislocation. We resected and set two tumors aside (one LS174T and one SW1222) for 205 

processing within the REANIMATE framework.  206 

Here, steady-state simulations were performed as described above, and were used as the 207 

basis for time-dependent delivery simulations. The influence of each vessel network inlet 208 

was modelled independently, and an algorithm was developed that monitored a 209 

propagating front through the network. Exchange between the vascular and interstitium 210 

was cast in a finite element framework, with vessel permeability (to Gd-DTPA flux) initially 211 

fixed at 1×10-6 cm s-1.22,23 The interstitium was modelled as a continuum with a constant cell 212 

volume fraction (fc = 0.8 24). Gd-DTPA does not cross the cell membrane,25 and so Gd-DTPA 213 

concentration ([Gd]) was scaled by the fractional volume of the extra-cellular space, and we 214 

assumed a constant diffusion through the interstitium (D = 2.08×10-4 mm2 s-1 26). Both in vivo 215 

measurements and simulations had a duration of 12 minutes, with a temporal resolution of 216 

16 seconds. Simulations were driven by a bi-exponential vascular input function, taken from 217 

the literature.27 Initially, 1% of the entire dose of the input function was partitioned across 218 

all tumor inlets, weighted by the inflow rate for the individual inlet. 219 

REANIMATE intravascular and interstitial Gd-DTPA delivery predictions were rendered as 220 

videos (see Supplementary Video 1 and Supplementary Video 2). Virtual sections from an 221 

LS174T tumor are also shown in Figure 5a, which revealed a prolonged, peripheral 222 

enhancement pattern, which is typical of the tumor type 20. In Figure 5b we show plots of 223 

contrast agent uptake, in which the greyscale coloring of each curve represents distance 224 

from the tumor edge (darkest at the edge, lightest in the centre). These reveal a highly 225 



 

 

heterogeneous enhancement pattern, with decreasing concentration for increasing 226 

proximity to the tumor centre. Conversely, we found that SW1222 tumors enhanced with 227 

Gd-DTPA much more rapidly and homogeneously, with a peak enhancement at around 4 228 

minutes, followed by a washout phase (see Supplementary Figure 2).  229 

REANIMATE solutions describing Gd-DTPA delivery were analysed in the same manner as 230 

experimental data, i.e. as a function of distance from the tumor periphery. Simulations were 231 

performed in two stages: the first estimated Gd-DTPA enhancement using the initialisation 232 

parameter values defined above (the naïve solution); the second stage used modified 233 

parameter values, based on iteratively minimising the disparity between simulated and in 234 

vivo data.  235 

Our naïve analysis underestimated the magnitude of contrast enhancement in LS174T 236 

tumors, but still reflected their spatial heterogeneity, with the S0 parameter decreasing with 237 

distance from the tumor periphery. The enhancement rate parameter, r1, provided a good fit 238 

to in vivo data, but did not reflect its increasing value at the tumor centre. To account for 239 

this, we increased the mean vascular permeability to 0.9×10-6 cm s-1 at the periphery, with a 240 

linear increase to 1.1×10-6 cm s-1 in the centre, which provided a better accordance with in 241 

vivo data (see Supplementary Figure 3). For the SW1222 tumor naïve simulation, contrast 242 

agent uptake was overestimated, but homogeneously distributed, reflecting what was found 243 

in vivo. The rate of enhancement was also much greater than in vivo. We therefore 244 

uniformly decreased vascular permeability to 0.75×10-7 cm s-1 in the second simulation, 245 

which then provided a good accordance with in vivo data (p<0.01, Kolmogorov-Smirnov). 246 

Scatter plots of the data, shown in Supplementary Figure 1d, also revealed a significant 247 

correlation (r2 = 0.92, p<0.001, Pearson). 248 

We can therefore conclude from these experiments that REANIMATE can provide good 249 

estimates of the delivery of Gd-DTPA, but which can be further improved by in vivo 250 

measurements. 251 

Dual-fluorophore optical imaging of response to Oxi4503 treatment 252 

Using our optimised Gd-DTPA delivery data, we went on to investigate the ability of 253 

REANIMATE to model drug uptake and response to treatment. This required the 254 

development of a dual-fluorophore imaging technique that allowed measurements of tumor 255 

vascular structure at two separate time points to be encoded. We chose to model vascular 256 

targeting therapy, due to its rapid, well-characterised mechanism of action, which can be 257 



 

 

captured with in vivo MRI 28. The acute effects of VDAs have been well-documented, using 258 

histology,29,30 MRI 31 and in vivo confocal microscopy,32 which have demonstrated rapid 259 

vascular shutdown and extensive vessel fragmentation within the first 60 minutes to 24 260 

hours of administration. This causes decreased perfusion, especially in the central part of 261 

the tumor,31,33 and an associated increase in hypoxia and cell death.33 In this study, we 262 

investigated a single dose of Oxi4503, at 40 mg kg-1. 263 

Our dual-fluorophore method allowed us to characterise blood vessel structure at two 264 

separate time points, by administering fluorescently-labelled lectin (AlexaFluor-568) just 265 

prior to injecting Oxi4503, and then a second lectin 90 minutes later (AlexaFluor-647). Our 266 

rationale was that vessels occluded by Oxi4503, and were no longer perfused, would be 267 

labelled by only the first fluorophore; vessels that remained perfused following therapy 268 

would be labelled with both fluorophores. As a validation of our results, in vivo arterial spin 269 

labelling (ASL) MRI was also performed on a subset of tumors (n=3 of each tumor type). 270 

Mice, each bearing an LS174T or SW1222 tumor, were randomly assigned to treatment 271 

(Oxi4503, 40 mg kg-1) or control groups (administered saline). Figure 6a shows example 272 

volume renderings of dual-stained vessel networks, in which vessels were colored blue if co-273 

labelled with both fluorescent lectins (i.e. vessels that were perfused both pre- and at 90 274 

minutes post-Oxi4503 administration) or green if perfusion was evident pre-treatment but 275 

had been removed at 90 minutes. See Supplementary Video 3 for a three-dimensional 276 

rendering of the data.  277 

Figures 6b to 6d document the effect of Oxi4503 on the geometry of LS174T and SW1222 278 

vessel networks. Figure 6b shows a graph comparing the mean distance of blood vessels 279 

from the centre of each tumor type, pre- and post-treatment with Oxi4503. This plot shows 280 

that, for LS174T tumors, vessel that became non-perfused with Oxi4503 (i.e. vessels 281 

rendered in green) were generally located in the centre of tumors, whereas SW1222 282 

displayed a more distributed and localised pattern of perfusion loss. In Figure 6c we show a 283 

plot of the number of graphical nodes within each cluster that became isolated by this loss 284 

of perfusion, which was significantly different between LS174T and SW1222 tumors 285 

(LS174Ts displayed much larger clusters (P<0.01)). This further demonstrates the 286 

fragmented nature of the SW1222 tumors’ response to Oxi4503.  287 

To ensure that these changes in vascular geometry were induced by the action of Oxi4503, 288 

blood volume was measured pre- and post-Oxi4503 and compared against control groups 289 

that received saline only. As can be seen in Figure 6d, Oxi4503 induced a significant decrease 290 



 

 

in both tumor types (P<0.01), but in control tumors, no significant change was found 291 

(p>0.05). 292 

REANIMATE simulations of response to Oxi4503 293 

Having identified significant differences between SW1222 and LS174T tumors in their 294 

vascular structural response to Oxi4503, we next aimed to use REANIMATE to simulate 295 

changes in tumor perfusion and IFP induced by Oxi4503, to attempt to further explore these 296 

differences. Figures 7a-c show the results of REANIMATE simulations of vascular flow, IFP 297 

and interstitial perfusion in an example LS174T tumor, pre- and post-Oxi4503. Each reveals a 298 

spatially heterogeneous response to the drug, with both increases and decreases in 299 

perfusion and IFP observed within the same tumors, representing a redistribution of flow in 300 

response to localised vascular occlusion.  301 

These trends were replicated in in vivo ASL data (example images are shown in Figure 7d) 302 

which measured a significant decrease in median tumor perfusion of 9.8% (from 0.61 to 0.55 303 

mL min-1 g-1, p<0.05) in LS174T tumors, but which was accompanied by a significant increase 304 

in the 90th percentile perfusion value (from 2.48 to 2.64 mL min-1 g-1, P<0.01). Our 305 

REANIMATE simulations also predicted a decrease in IFP of 4.5 mm Hg, but accompanied by 306 

an increase of 3.6 mm Hg in the 90th percentile. These results demonstrate a complex 307 

redistribution of flow caused by the vascular disrupting agent at this early time point, which 308 

we sought to better understand. In SW1222 tumors, in vivo measurements of perfusion and 309 

IFP did not significantly change. Moreover, the fragmented nature of dual-labelled 310 

fluorescence images meant that post-Oxi4503 steady-state simulations could not be 311 

performed in SW1222 tumors. 312 

Our first REANIMATE computational experiment aimed to simulate the uptake of Oxi4503, 313 

using a similar approach as taken for Gd-DTPA uptake simulations, but over a longer 314 

duration (90 minutes, with a temporal resolution of 10 seconds). Oxi4503 has a molar mass 315 

of 332.35 g mol-1 (approximately one third that of Gd-DTPA), so, using the Stoke-Einstein 316 

relation, D was set at 7.37×10-5 mm2 s-1. Systemic pharmacokinetics for Oxi4503 were taken 317 

from the literature, 34 and expressed as an exponential decay function (Equ. 15). Both 318 

intravascular and interstitial drug concentrations were simulated, and results are shown in 319 

Figure 8a (see, Supplementary Video 4 for a four-dimensional representation). As with Gd-320 

DTPA experiments, Oxi4503 uptake was spatially heterogeneous. 321 



 

 

We then used these REANIMATE simulations of Oxi4503 uptake to test two hypotheses: 1) 322 

that vessels that receive the greatest Oxi4503 exposure are more likely to become non-323 

perfused; 2) that network geometry differences between tumor types could influence their 324 

response to VDA therapy. 325 

To test the first hypothesis, we compared vessels from our dual-labelled datasets that had 326 

lost perfusion post-Oxi4503 (i.e. were labelled with just one fluorphore), with their 327 

simulated exposure to Oxi4503, as predicted by REANIMATE. The box graph in Figure 8b 328 

displays the result of this analysis, in which nodes connecting only non-perfused (‘green’) 329 

vessels had a signficantly lower exposure to Oxi4503 than nodes connecting a mixture of 330 

non-perfused and perfused (‘blue’) vessels (P<0.05). Similarly, Figure 8c and 8d show the 331 

location of perfused and non-perfused vessels and the cumulative exposure to Oxi4503 at 90 332 

minutes post-administration, which shows non-perfused regions with low Oxi4503 333 

exposure; on average non-perfused vessels exhibited a signficantly lower simulated 334 

exposure than vessels that remained perfused (2.0 compared with 3.8 mM min m-2 335 

(p<0.001)). These results are inconsistent with our first hypothesis, that perfusion loss would 336 

be associated with greater Oxi4503 exposure, and so the hypothesis was rejected. This lead 337 

us to next evaluate our second hypothesis, and investigate differences in the vascular 338 

architecture of the two tumor types. In particular, we evaluated the functional connectivity 339 

of the two tumor types. 340 

Functional (or logical) connectivity and redundancy measures describe the connectedness of 341 

individual vessel networks, following pathways of decreasing fluid pressure. Specifically, 342 

redundancy was measured by N, the mean number of viable alternative pathways for each 343 

node if the shortest path (based on flow velocity) were occluded, and r, the average 344 

additional distance that would be travelled. Connectivity was defined as the sum of the 345 

number of nodes upstream and the number of nodes downstream of a given node, divided 346 

by the total number of nodes in the network.  347 

Figures 9a and b show histograms comparing log(C) and r measurements in LS174T and 348 

SW1222 tumors. These data revealed that SW1222 tumors had significantly greater vascular 349 

connectivity than LS174T tumors (C = 0.15 ± 0.06 and 0.06 ± 0.05, respectively) (P<0.01). 350 

They also display greater redundancy, with N = 1.9 ± 0.9 and 1.5 ± 0.7 and r = 1.02 ± 0.02 and 351 

1.04 +/- 0.05, for SW1222 and LS174T tumors, respectively. Regional connectivity was also 352 

mapped, with examples shown in Figures 9c (LS174T tumor) and d (SW1222 tumor), in 353 

which nodes are scaled and color-coded according to their connectivity measure. These 354 



 

 

clearly show the greater connectivity evident in this example SW1222 tumor, than in the 355 

LS174T tumor. 356 

Referring back to the definitions of connectivity and redundancy above, these results 357 

suggest that, in LS174T tumors, vessels that become non-perfused due to targeting by a high 358 

concentration of Oxi4503 can cause large vascular territories downstream to become non-359 

perfused, due to their lack of connectivity. In SW1222 tumors, loss of perfusion can be 360 

compensated for by rerouting flow through alternative routes, thanks to their high 361 

redundancy. This explaination, which requires further evaluaiton, would explain the 362 

different pattern of response observed in SW1222 and LS174T tumors, with LS174T tumors 363 

showing large regions of perfusion loss in dual-fluorophore data (particularly in their core), 364 

whilst SW1222 show a more distributed pattern with flow loss in individual vessels. 365 

Discussion 366 

Computational modelling of cancer has a relatively long history,35-39 and has provided 367 

valuable improvements in our understanding of the development and treatment of cancer. 368 

As noted by Altrock, Liu and Michor, “the power of mathematical modelling lies in its ability 369 

to reveal previously unknown or counterintuitive physical principles that might have been 370 

overlooked or missed by a qualitative approach to biology”.39 Successes have been found in 371 

a range of areas, from modelling the dynamics of mutation acquisition40 to multiscale 372 

modelling of the interaction between tumor cells and their microenvironment.41 Previous, 373 

seminal studies have combined experimental and numerical approaches to study the 374 

relationship between tumor microstructure and the delivery of therapeutic agents.36,37,42 A 375 

key observation from this work was that the chaotic organisation of tumor blood vessels, 376 

their highly permeable vessel walls and missing or non-functioning lymphatics can result in 377 

elevated interstitial fluid pressure (IFP) and limited blood flow. Both of these effects, 378 

alongside high cell density and thick extracellular matrix, can conspire to limit the delivery of 379 

systemically administered therapeutic agents, and can therefore act as a source of 380 

therapeutic resistance.43  381 

Whilst these principles are well established, the complex manner in which these phenomena 382 

can interact and vary within real-world tumors, and how individual drugs of different sizes 383 

and physico-chemical properties are distributed, is not well understood. This points to a 384 

critical need for better understanding of drug delivery to solid tumors, which could, at least 385 

in part, help to address the pharmaceutical industry’s current low approval rate for new 386 



 

 

cancer therapies, for which the influence of delivery is often an overlooked factor44,45. 387 

Equally, this knowledge could provide improvements in the clinical management of the wide 388 

range of tumor types encountered in the clinic and enable treatments to be more effectively 389 

personalised. This is an example of an area in which we believe our REANIMATE framework 390 

will find wide application.  391 

In this study, we introduced and provided a first demonstration of the application of 392 

REANIMATE, which is a large-scale, three-dimensional imaging, modelling and analysis 393 

framework, which uses data from optical imaging of cleared tissue 16,46,47 to produce realistic 394 

substrates for computational modelling of fluid dynamics in the tumor microenvironment, 395 

optionally guided by in vivo imaging data. We applied REANIMATE to imaging data from 396 

murine models of colorectal cancer and glioma to simulate: 1) steady-state fluid dynamics 397 

(blood flow, intravascular and interstitial fluid pressure); 2) uptake of the MRI contrast agent 398 

Gd-DTPA; and 3) uptake and response to vascular-targeting treatment (Oxi4503). Our results 399 

demonstrated the feasibility and accuracy of this whole-tissue approach to numerical 400 

modelling, which allows computational experiments to be performed on real-world tumors. 401 

A key advantage of this approach is the ability to directly compare modelling solutions with 402 

experimental measurements from the same tumors. 403 

Whilst, in principle, any number of physiological phenomena could be incorporated into the 404 

REANIMATE framework, we have initially focussed on modelling intravascular and interstitial 405 

delivery. This used well-established biophysical models, but on a larger scale than has 406 

previously been undertaken, and using real-world vascular networks. A justification for 407 

simulations at this scale is provided by the multi-scale interactions evident in tumor fluid 408 

dynamics. For example, elevated IFP is maintained via a whole-tumor distribution of both 409 

vascular perfusion and interstitial drainage; likewise, perfusion is spatially heterogeneous, 410 

meaning that one tumor sub-region can be very different to another.  411 

Previous studies have used mathematical modelling approaches to study tumor blood and 412 

interstitial flow, and have often focussed on their associated spatial heterogeneity.48 For 413 

example, Baxter and Jain 36,42 described raised, homogeneous interstitial fluid pressure at 414 

the centre of tumors, which drops precipitously at the tumor periphery. This result was 415 

based, in part, on simulations of spherical, spatially-homogeneous tumor vasculature. 416 

Numerous studies have subsequently incorporated more realistic vasculature into models 417 

stemming from Baxter and Jain’s work, such as synthetically-generated vascular networks,49-418 
53 using micro-CT data from microvascular casts to model intravascular blood flow,54 or using 419 



 

 

subnetworks from tumors, derived from imaging data.55-57 Synthetically-generated 420 

vasculature, using angiogenesis models, have been used to formulate hypotheses on the 421 

delivery of chemotherapeutics58,59, investigate the impact of tumor size on 422 

chemotherapeutic efficacy60 and to investigate the effect of dynamic vasculature61 and the 423 

structure and morphology of vascular networks62 on drug delivery.  424 

REANIMATE builds on and extends this work by including simulation substrates from 425 

complete, real-world tumors, in three spatial dimensions, which are guided by and 426 

compared against in vivo measurements. In this initial demonstration, we focussed on the 427 

vasculature of colorectal xenograft models, which we imaged by labelling with fluorescent 428 

lectin, allowing blood and interstitial flow to be explicitly simulated in realistic networks. We 429 

treated the interstitium as a continuum, but future generations of the framework could 430 

include additional structural elements such as cell membranes and nuclei, by 431 

multifluorescence labelling. Indeed, there is significant potential for extending and 432 

enhancing REANIMATE in other pathologies, to allow more in-depth computational 433 

experiments to be performed. 434 

A key advantage of REANIMATE is its ability to compare model predictions with 435 

experimental measurements from the same tumors. We found a good correspondence 436 

between our predictions of vascular perfusion and delivery of Gd-DTPA, and those from in 437 

vivo imaging, both in their magnitude and spatial distribution. Perfusion was predicted to be 438 

signficantly greater in SW1222 tumors than in LS174T tumors, which reflects the results of in 439 

vivo arterial spin labelling measurements, and was highly heterogenous, with flow 440 

concentrated at the periphery of both tumor types. Conversely, Gd-DTPA uptake was more 441 

heterogeneous in LS174T than SW1222 tumors, both in in vivo MRI measurements and 442 

simulations (with minimal parameter optimisation).  443 

Through its use of real-world, whole tumor substrates, REANIMATE undetakes modelling at 444 

a whole-tissue scale. In many organs, this would enable pressure boundary conditions to be 445 

defined in a straightforward manner, potentially by directly measuring inlet and outlet 446 

pressures. However, subcutaneous tumor xenograft models normally exhibit a large number 447 

of small feeding vessels, and so explicitly measuring and deifning pressure boundary 448 

conditions in this context is challenging. Our pressure boundary condition optimisaiton 449 

procedure was a pragmatic solution to this problem, and enabled the use of target average 450 

pressures. We found that the variability of pressure predictions (from which all other 451 

parameters are ultimately derived), was much lower than the variability associated with 452 



 

 

spatial heterogeneity within the tumor. However, this approach could still provide a source 453 

of error and, whilst our model solutions agreed well with experimental measures, better 454 

approaches could doubtless be developed. For example, as suggested above, the use of 455 

tumors with a small number of well-defined inlet and outlet vessels, with measurable 456 

pressures, would be advantagous, and the use of complete tumor vascular networks would 457 

enable such an approach to be realised. 458 

In summary, the results of this study show that, by adding realistic, whole-tumor 459 

microstructure, with its inherent heterogeneity, accurate predictions for tumor fluid 460 

dynamics and material delivery to be made. These results are important as Gd-DTPA can be 461 

thought of as a proxy for delivery of a (non-metabolised) drug, enabling the accuracy of 462 

REANIMATE delivery predictions to be verified. Indeed, REANIMATE could easily be modified 463 

to include terms for metabolism, and acute response by the microenvironment could be 464 

modelled by modifying cell density terms. This could therefore allow panels of drugs to be 465 

assessed, with different delivery characteristics, to predict candidates that are most (or 466 

least) likely to achieve a therapeutic response. 467 

To further investigate this ability, we used REANIMATE to study the response of our 468 

colorectal xenografts to Oxi4503 treatment, and showed that structural connectivity and 469 

redundancy in colorectal tumor xenograft model vascular networks can introduce different 470 

responses to the vascular-targeting agent Oxi4503. SW1222 tumors, with their greater 471 

connectivity and redundancy, are more able to resist loss of flow in individual vessels, by 472 

rerouting flow via local pathways, whereas there is much greater potential for LS174T 473 

tumors to lose perfusion in large downstream subnetworks. These results reflect those that 474 

we have previously observed in vivo when assessing the response of colorectal metastases 475 

to Oxi4503 treatment in the liver,9 in which the magnitude of the response decreased with 476 

increasing distance of individual tumors from major blood vessels. From a computational 477 

modeling perspective, these results are also important, as they demonstrate a mechanism 478 

through which tumors can become resistant to drug therapies, and which manifests via 479 

complex interactions across large regions within a tumor, or across whole organs.  480 

These results each demonstrate the important potential role for large, realistic tumor 481 

simulations, of the form developed here with REANIMATE. The detailed insights generated 482 

in this study could not have been made with conventional two-dimensional analysis of 483 

histological sections, or in vivo experiments that lack the spatial resolution and functional 484 

information to access this information, and demonstrates a key strength of the REANIMATE 485 



 

 

approach. We anticipate that REANIMATE will enable us to further study and understand 486 

complex interactions between biological phenomena, allowing new insights into key 487 

challenges in cancer research. Whilst the limitations to drug delivery caused by the 488 

physiological structuring of tumors have been well-studied,48,63 REANIMATE could enable a 489 

better understanding of limitations in tumor drug delivery in individual tumors (and how this 490 

can be mediated) 36,64 and the development of resistance to therapy via physical (rather than 491 

biochemical) mechanisms.65 Moreover, if applied to biopsy samples, or resected, intact 492 

tumors (or tumor deposits), could provide useful insights into treatment stratification in the 493 

clinic. 494 
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Code availability 517 
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and available under BSD licence: https://github.com/CABI-SWS/reanimate. Code used to 519 

model tumor fluid dynamics in C++ is also available in a separate GitHub repository: 520 

https://psweens.github.io/VF_NatureBioEng/  521 

Materials and Methods 522 

Tumor xenograft models 523 

All experiments were performed in accordance with the UK Home Office Animals Scientific 524 

Procedures Act 1986 and UK National Cancer Research Institute (NCRI) guidelines.66 8-10 525 

week old, female, immune-compromised nu/nu nude mice (background CD1) were used 526 

throughout this study (Charles River Laboratories). Human colorectal adenocarcinoma cell 527 

lines (SW1222 and LS147T) were cultured in complete media (Minimum Essential Medium 528 

Eagle with L-Glutamine (EMEM) (Lonza, Belgium) + 10% fetal bovine serum (Invitrogen, UK)) 529 

in a ratio 1:20 (v/v) and incubated at 37 °C and 5% CO2. To prepare for injection, cells were 530 

washed with DPBS and detached with trypsin-EDTA (7-8 min, 37 °C, 5% CO2). A 100 µl bolus 531 

of 5x106 cells was injected subcutaneously into the right flank above the hind leg. Tumor 532 

growth was measured daily with callipers, for between 10 to 14 days.  533 

Orthotopic glioma models 534 

Female, 8 week old, C57BL/6 mice were injected with 2x104 GL261 mouse glioma cells. Mice 535 

were anesthetized with 4% isoflurane in an induction box and then transferred to a 536 

stereotactic frame (David Kopf Instrument, Tujunga, CA), where anaesthesia was delivered 537 

through a nose cone and maintained at 2%. The head was sterilised with 4% chlorhexidine 538 

and the skin was cut with a sterile scalpel to expose the skull. Coordinates were taken using 539 

a blunt syringe (Hamilton, 75N, 26s/2”/3, 5 μL): 2mm right and 1mm anterior to the bregma, 540 

corresponding to the right caudate nucleus. A burr hole was made using a 25-gauge needle. 541 

The Hamilton syringe was lowered 4mm below the dura surface and then retracted by 1mm 542 



 

 

to form a small reservoir. 2x104 GL261 cells were injected in a volume of 2 μL over two 543 

minutes. After leaving the needle in place for 2 minutes, it was retracted at 1 mm/min. The 544 

burr hole was closed with bone wax (Aesculap, Braun) and the scalp wound was closed using 545 

Vicryl Ethicon 6/0 suture.  546 

Fluorescent labelling of tumor vasculature and perfusion fixation 547 

Lectin (griffonia simplicifolia) bound to either Alexa-647 (Thermo Fisher Scientific, L32451) or 548 

Alexa-568 (Thermo Fisher Scientific, L32458) was injected intravenously (i.v.) and allowed to 549 

circulate for 5 minutes, prior to perfuse fixation, to allow sufficient binding to the vascular 550 

endothelium.2  551 

To prevent blood clot formation within the vasculature, mice were individually heparinized 552 

by intraperitoneal (i.p.) injection (0.2 ml, with 1000 IU ml-1). Mice were terminally 553 

anaesthetized by i.p. injection of 100 mg kg-1 sodium pentobarbital (Animalcare, Pentoject) 554 

diluted in 0.1 ml phosphate buffered saline (PBS). Once anaesthesia was confirmed, surgical 555 

procedures for intracardial perfusion were performed for systemic clearance of blood. PBS 556 

(30 ml, maintained at 37 °C) was administered with a perfusion pump (Watson Marlow, 557 

5058) at a flow rate of 3 ml/min to mimic normal blood flow. After the complete drainage of 558 

blood, 40 ml of 4% paraformaldehyde (PFA, VWR chemicals) was administered. Harvested 559 

tumors were stored for 12 hours in 4% PFA (10 ml total volume, at 4 °C). 560 

Treatment with Oxi4503 561 

Following 10 to 14 days of growth, mice were randomly assigned to treatment (Oxi4503, 562 

n=6) and control (saline) groups, with n=3 SW122 and n=3 LS174T in each. Treated groups 563 

were injected i.v. with 100 µg lectin-AlexaFluor 647 diluted in sterile saline at neutral pH 564 

(100 µl) containing 1 mM CaCl2, followed by administration of OXi4503 (40 mg kg-1, 4 mg ml-565 
1). Control mice were injected with 100 µl saline. After 2 hours, all mice were injected i.v. 566 

with 100 µg lectin-AlexaFluor 568 diluted in sterile saline at neutral pH (100 µl) containing 1 567 

mM CaCl2. 5 minutes after injection mice were culled and underwent perfuse-fixation, as 568 

described above. 569 

Optical clearing and imaging 570 

Following perfuse-fixation, tumors were resected and rinsed three times in PBS, for 10 571 

minutes each, prior to clearing, to remove residual formaldehyde and avoid over-fixation.67 572 

After PBS rinsing, harvested tumors were optically cleared with BABB (1:2 benzyl alcohol: 573 



 

 

benzyl benzoate).68 Our BABB clearing preparation consisted of dehydration in methanol for 574 

48 hours followed by emersion in BABB for 48 hours.16 575 

Fluorescently-labelled tumor vasculature in cleared tissue was visualized with optical 576 

projection tomography (OPT, Bioptonics, MRC Technologies, Edinburgh). Lectin-AlexaFluor 577 

647 was imaged using a filter set with excitation range 620/60 nm, and emission 700/75 nm. 578 

For vessels labelled with lectin-AlexaFluor 568, a filter set with excitation 560/40 nm and 579 

emission LP610 nm was used. Measurements were performed with an exposure time of 580 

1600-2000 ms for lectin-AlexaFluor 647 and of 270-600 ms for lectin-AlexaFluor 568, which 581 

was varied according to sample size. The rotation step was 0.45 degrees. The final resolution 582 

ranged from 4.3 μm to 8 μm, depending on the sample size.69  583 

OPT data were reconstructed with Nrecon (Bruker, Ettlingen, Germany). Misalignment 584 

compensation was used to correct misalignment during projection image acquisition, in 585 

order to reduce tails, doubling or blurring in the reconstructed image. Depth of correction 586 

for ring artefact reduction was 4 and defect pixel masking was 50% for all scans.  587 

Image processing and vessel segmentation 588 

Reconstructed OPT data were used to generate whole-tumor blood vessel networks. Firstly, 589 

a three-dimensional Gaussian filter with a width of 50 pixels (corresponding to a physical 590 

size of 300 µm, greater than the largest vessel diameter) was applied. The filtered data were 591 

subtracted from the original data to remove background variations in autofluorescence. A 592 

three-dimensional Frangi filter was then applied (Matlab, MathWorks, Natick, MA) to 593 

enhance vessel-like structures.17 The response to the filter was thresholded to segment 594 

blood vessels from background. Skeletonisation of these thresholded data was performed in 595 

Amira (Thermo Fisher Scientific, Hillsboro, OR), which also converted the data into graph 596 

format (i.e. nodes and segments with associated radii). To ensure that vessel structures 597 

were accurately represented, 2D sections from the original image data were swept through 598 

reconstructed 3D networks (in Amira), with visual inspection used to for an accordance 599 

between vessel location and thickness, and the location of fluorescence signal. 600 

Mathematical model of steady-state tissue fluid dynamics 601 

Blood flow through the segmented vascular network was modelled by Poiseuille’s law, using 602 

empirically-derived laws for blood viscosity (assuming constant network haematocrit) and 603 

following the established approach developed in 70,71 and applied to numerous tissues (for 604 



 

 

example mesentery,72,73 muscle,74 cortex,75 and tumours54,76). This model assumes 605 

conservation of flux at vessel junctions to define a linear system to solve for the pressures at 606 

nodal points in the network (from which vessel fluxes are calculated using Poiseuille). 607 

Boundary conditions on terminal nodes in the network were estimated using the 608 

optimisation method of Fry et al.,73 which matches the network solution to target mean 609 

shear stress and pressure values.  610 

The approach of Fry et al.73 requires a proportion of boundary conditions to be applied to a 611 

microvascular network. However, neither flow or pressure measurements were obtained in 612 

individual vessels in vivo for our tumor networks. As such, an optimisation procedure was 613 

employed to induce a physiological pressure drop (55 to 15 mmHg for both LS147T and 614 

SW1222 simulations) across peritumoral boundary vessels in a network.77 Consistent with 615 

previous studies,78,79 33% of internal nodes were assigned zero flow with all remaining 616 

boundary nodes determined using the optimisation algorighm of Fry et al. 73. This procedure 617 

was repeated until simulations ensured physiologically realistic tissue perfusion when 618 

compared to that gathered in vivo using ASL MRI.  619 

The network flow solution was coupled to an interstitial fluid transport model, adapting the 620 

approach taken in Secomb et al. 80 to model oxygen delivery to tissue. The interstitium is 621 

modelled as a porous medium using Darcy’s law,  622 

࢛  =  p, [1]∇ߢ−

subject to p  pI as |x|  ∞. Here, u is the volume-averaged interstitial blood velocity 623 

(IFV), p is the interstitial fluid pressure (IFP), pI is the target IFP, and κ is the hydraulic 624 

conductivity of the interstitial tissue. Starling’s law is used to describe fluid transport across 625 

the endothelium, from the vessels into the interstitium:  626 

ݍ  = .	ܵܮ (Δp − σΔΠ), [2] 

where, q is the fluid flux across the endothelium, Lp  is the hydraulic conductance of the 627 

vessel wall, S is the surface area of the vasculature, σ is the oncotic reflection coefficient 628 

and, Δp and ΔΠ fluid and oncotic pressure gradients between the vasculature and tissue. 629 

To solve the model computationally, we discretized the tumor vasculature into a series of M 630 

sources of strength qs,j so that the conservation of mass equation is modified to  631 

 −κ∇ଶ = ∑ ࢞)ߜ(ݔ)௦,ݍ − ெୀଵ(࢞ , [3]

where xj and qs,j are the spatial coordinates and (unknown) strength at xj of source j, 632 



 

 

respectively, and δ(x-xj) is the three-dimensional delta function. An axisymmetric Greens 633 

solution, G(r) where r =|x – xj|, was sought for equation 3 subject to the boundary condition 634 
that to  → |࢞| ூ as → ∞, motivated by distributing the delta function ࢞)ߜ −  uniformly 635 (࢞

over a sphere of finite radius r0j  (set to the radius of blood vessel j), the solution to equation 636 

3 may be approximated by 637 

ܩ = ۔ۖەۖ
ଷିቆೝೕೝబೕቇమ଼గబೕۓ , ݎ ≥ ଵସగೕݎ , ݎ <         [4] 638ݎ

where rij =|xi – xj|  is the distance between sources i,j ∈ M. The corresponding interstitial 639 

fluid pressure (IFP)  at source i may be approximated by 640 

  = ூ + ∑ ௦,ேୀଵݍܩ , for ݅ ∈  [5] .ܯ

Assuming flux of fluid across the wall of vessel i, qv,I , is continuous yields 641 

௩,ݍ  = ௩,݈ݎߢߨ2− ∑ ∇ெୀଵ  ௦,.  [6]ݍܩ

Starling’s law, equation 2, can be written in the form 642 

௩,  = , − ௩,ݍܭ − Π,)ߪ − Π௩,), for ݅ ∈ ,ܯ [7] 

where pv,i and Πv,i are the blood and oncotic pressure at the vessel wall, pb,i and Πb,i is the 643 

intravascular blood pressure in the absence of diffusive interstitial fluid transfer (calculated 644 
using the Poiseuille flow model) and oncotic pressure, and qv,i is the rate of fluid flow per 645 

unit volume from blood vessel i to the interstitium. The intravascular resistance to fluid 646 

transport, is defined by K = 1 / Lp S.  647 

Equations 5, 6 and 7 were combined to form a dense linear system, which was solved to give 648 

the IFP field throughout the tissue. Parameter values for the complete mathematical model 649 

are shown in Supplementary Table 2.  650 

Mathematical model of time-dependent vascular and interstitial transport 651 

A ‘propagating front’ (PF) algorithm was developed to describe the transport of solute (e.g. a 652 

drug) through the tumor vessel network and interstitium. This model considers the 653 

timescale for delivery of a drug, on which the flow problem is assumed to be steady (the 654 

timescales for drug transport by advection and diffusion are much faster than those for 655 

vascular adaption, which would contribute to a non-steady flow solution). A vascular input 656 

function was first defined, which describes the time-dependent delivery of the drug 657 

concentration into the network, and which then propagates throughout the network 658 



 

 

according to the network topology and flow solution. The influence of each vessel network 659 

inlet was modelled independently and each solution linearly superimposed, allowing the 660 

algorithm to be parallelised. 661 

Each node was assigned a set of values, J describing the ratio of the flow in each vessel 662 

segment connected to the node (F), to the total inflow into the node (Fin). Flow values were 663 

taken from the steady-state model defined above. The J values were propagated through 664 

the network, following pathways with decreasing vascular pressure. Using velocities from 665 

the steady-state solution, delays (d) were also assigned to each vessel segment. Vessel 666 

segments attached to each node were catergorised as outflows (negative pressure gradient) 667 

or inflows (positive pressure gradient). Time-dependent drug concentration in the kth 668 

outflowing vessel segment (Ck(t)) was modelled as 669 

(ݐ)ܥ  = ܬ ∑ ݐ)ܥ − ݀)ேୀଵ , [8] 

where Cj(t) is the concentration in the jth inflowing vessel segment and N is the total number 670 

of inflowing vessel segments. 671 

Interstitial delivery was cast in a forward finite difference framework, in which vessels were 672 

considered as radial emitters. Points were gridded on concentric cylinders, regularly spaced 673 

around the vessel segment (with spacing ranging from 10 to 100 µm). Exchange of the drug 674 

across the vessel wall and diffusion through the interstitium were modelled as 675 

ାଵܥ  (ݎ) = (ݎ)ܥܣ + ࢣ ቀܥ௩ −  ቁ, [9](ݎ)ܥ

ାଵ௩ܥ  = ∑ ܥ)ࢣ − ௩)ேୀଵܥ , [10] 

where ܥାଵ  is the interstitial concentration at the jth time point (at a radial distance r from 676 

the vessel) and ܥ௩ is the vascular concentration. Interstitial velocity and pressure were not 677 

used in the time-dependent model, for simplicity, but could be incorporated in future 678 

studies, which could be particularly relevant for simulating the delivery of large molecules. 679 

The coefficient A is a two-dimensional square matrix of dimension n, where n is the number 680 

of radial positions in the interstitial finite difference calculation, h is their radial separation 681 

and k is the spacing between time steps: 682 

ܣ  = ێێۏ
1ۍێ − ߣ2 ߣ 0 0 0 ߣ0 1 − ߣ2 ߣ 0 0 00 ߣ 1 − ߣ2 ߣ 0 0⋱0 0 0 0 ߣ 1 − ۑۑےߣ2

 [11] ېۑ

ߣ  = ℎଶ݇ܦ 	 [12] 



 

 

Here D is the diffusion coefficient of the agent under investigation. Following each finite 683 

difference step, interstitial diffusion solutions were regridded to a course 64×64×64 matrix 684 

(approximately 100 µm isotropic resolution) for storage. During regridding, molar quantities 685 

were converted to molar concentration, with the parameter ࢣ controlling the transport 686 

across the vessel wall, 687 

߁  =  ܸܵܳ݊ [13]ܮ

in which, for small molecules, transport was assumed to be diffusive, and pressure terms 688 

were assumed to be negligible. 689 

Measurement of vessel network functional connectivity and redundancy 690 

The mean number of viable alternative pathways, N, for each node if the shortest path 691 

(based on transit time – i.e. incorporating flow velocity) was occluded was used to define the 692 

redundancy of tumor vessel networks, alongside r, the average additional distance that 693 

would be travelled.81 Connectivity was defined as the sum of the number of nodes upstream 694 

and the number of nodes downstream of a given node, divided by the total number of nodes 695 

in the network. All three measures reflect functional connectivity (i.e. following pathways 696 

with decreasing vascular pressure from steady-state fluid dynamics simulations), and were 697 

estimated from vessel networks using algorithms written in-house in Python 2.7.  698 

Simulation of Gd-DTPA delivery 699 

The systemic pharmacokinetics for Gd-DTPA in mice, following an i.v. bolus injection, were 700 

modelled as a biexponential decay: 701 

௩ܥ  (ݐ) = ܽଵ݁ିభ௧ + ܽଶ݁ିమ௧  [14] 

with a1 = 2.55 mM, m1 = 8×10-2 s-1, a2 = 1.2 mM and m2 = 1×10-3 s-1.27 702 

Measurement of vessel network functional connectivity and redundancy 703 

The mean number of viable alternative pathways, N, for each node if the shortest path 704 

(based on transit time – i.e. incorporating flow velocity) was occluded was used to define the 705 

redundancy of tumor vessel networks, alongside r, the average additional distance that 706 

would be travelled.81 Connectivity was defined as the sum of the number of nodes upstream 707 

and the number of nodes downstream of a given node, divided by the total number of nodes 708 

in the network. All three measures reflect functional connectivity (i.e. following pathways 709 



 

 

with decreasing vascular pressure from steady-state fluid dynamics simulations), and were 710 

estimated from vessel networks using algorithms written in-house in Python 2.7.  711 

Simulation of Gd-DTPA delivery 712 

The systemic pharmacokinetics for Gd-DTPA in mice, following an i.v. bolus injection, were 713 

modelled as a biexponential decay: 714 

௩ܥ  (ݐ) = ܽଵ݁ିభ௧ + ܽଶ݁ିమ௧ [14] 

with a1 = 2.55 mM, m1 = 8×10-2 s-1, a2 = 1.2 mM and m2 = 1×10-3 s-1.27 715 

Simulation of Oxi4503 delivery 716 

Oxi4503 systemic pharmacokinetics were modelled as a single exponential function, of the 717 

form  718 

௩ܥ  (ݐ) =  ௫݁ିோభ/మ௧  [15]ܥ

with R1/2 = 3.1×10-5 s-1 and Cmax = 7.7 µM.34 This assumed a mouse mass of 25 g and injection 719 

dose of 40 mg kg-1. 720 

Dynamic contrast-enhanced MRI 721 

Gadolinium-DTPA (Magnevist, Bayer, Leverkusen, Germany) was injected as a bolus into 722 

mouse tail veins, using a power injector (Harvard Instruments, Cambourne, UK). We injected 723 

5 mL kg-1 over a period of 5 seconds, which was initiated at 90 seconds after the start of a 724 

dynamic, spoiled gradient-echo sequence (TE, 2.43 ms; TR, 15 ms; flip angle 20°; 5 slices; 725 

slice thickness 0.5 mm; matrix size, 128×128; FOV, 35×35 mm; temporal resolution 16 s; 726 

total duration 15 minutes). The change in signal intensity induced by contrast agent was 727 

calculated by subtracting the mean signal from the first 5 frames from the acquisition. 728 

Signal intensity was converted to gadolinium concentration, via the change in longitudinal 729 

relaxation rate R1 and contrast agent relaxivity (c1 fixed at 2.9 mM-1 s-1): 730 

(ݐ)ܥ  = ܴଵ(ݐ) − ܴଵܿଵ  
 [16] 

R1(t) was estimated from the theoretical change in spoiled gradient-echo signal magnitude.82 731 

R10 was the mean, pre-enhancement R1, which was estimated from a Look-Locker multi-732 



 

 

inversion time acqusition,83 acquired prior to the dyunamic sequence (TE, 1.18 ms; inversion 733 

time spacing, 110 ms; first inversion time, 2.3 ms; 50 inversion recovery readouts).  734 

Contrast agent uptake data were fitted to a phenomenological model of the form 735 

(ݐ)ܥ  = ܵ(1 − ݁ିభ(௧ି௧బ))݁ିమ(௧ି௧బ) [17] 

where S0, r1, r2 and t0 were fitted parameters. Fitting was performed in Python 2.7 (leastsq 736 

algorithm from the scipy package). 737 

Arterial spin labelling MRI 738 

We acquired arterial spin labeling (ASL) data with a flow-sensitive alternating inversion 739 

recovery (FAIR) Look-Locker ASL sequence, with a single-slice spoiled gradient echo readout 740 

(echo time, 1.18 ms; inversion time spacing, 110 ms; first inversion time, 2.3 ms; 50 741 

inversion recovery readouts; 4 averages).9,83 Regional perfusion maps were calculated as 742 

described by Belle et al. (38), with an assumed blood-partition constant of 0.9. 743 

Statistics 744 

Differences between groups were tested for significance with the non-parametric, two-sided 745 

Wilcoxon rank sum test (Python 2.7, scikit package). P < 0.05 was considered significant. All 746 

summary data are presented as mean ± SD. 747 
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Figure Captions 1019 

Figure 1. The REANIMATE pipeline for in vivo and ex vivo imaging of intact tumors and 1020 

performing three-dimensional computational fluid mechanics simulations. After in vivo 1021 

imaging (1), which can be performed longitudinally during tumor growth, tumors are 1022 

resected and optically cleared (2), to render tumors transparent for three-dimensional 1023 

fluorescence imaging. Optical images are processed to segment fluorescently-labelled 1024 

structures within the tumor microenvironment (3) (in this case, blood vessel networks), 1025 

which are reconstructed in 3D graph format (nodes and connecting segments, each with a 1026 

radius corresponding to the size of the blood vessel). These geometrical data become the 1027 

substrate for computational fluid dynamic models to estimate steady-state blood flow and 1028 

interstitial transport (4) and time-dependent numerical modelling of drug delivery (5). All of 1029 

these data can then be used to perform in silico experiments (e.g. assessing the 1030 

heterogeneous delivery of drugs or contrast agents), which can be compared with in vivo 1031 

experiments in the same tumor models, or even the same mice. In this study, REANIMATE is 1032 

used to study the action of a vascular disrupting agent (Oxi4503) in two models of human 1033 

colorectal carcinoma. 1034 

Figure 2. Three-dimensional blood vessel networks, segmented from optical imaging data 1035 

acquired from complete colorectal carcinoma xenografts, and reconstructed in graphical 1036 

format (diameters scaled according to their measured values). a) and b) show reconstructed 1037 

networks from LS174T and SW1222 tumors, respectively, with inset panels showing 1038 

zoomed-in regions. The two tumor types displayed significant differences in vascular 1039 

architecture, as well as intra-tumor spatial heterogeneity. c) and d) show example LS174T 1040 

vessel networks overlaid on raw image data. A good accordance can be seen between 1041 

hyper-intense vessel structures in the image data and graphical format vessels. 1042 

Figure 3. REANIMATE, steady-state simulation results example LS174T (a-e) and SW1222 (f-j) 1043 

colorectal adenocarcinoma xenografts. (a, f) Three-dimensional visualisations of whole-1044 

tumor blood vessel networks, colored according to vessel radius, blood flow and 1045 

intravascular pressure. (b, g) Three-dimensional rendering of REANIMATE interstitial fluid 1046 

pressure predictions, in the same tumor as in (a, f), overlaid on the blood vessel network 1047 

(grey). (c, h) Example in vivo measurements of tumor perfusion, acquired in a single slice 1048 

through the tumor, using arterial spin labelling MRI (left) and the REANIMATE predicted 1049 

perfusion from a single slice (with vessel structures overlaid in grey). Scatter plots comparing 1050 

ASL measurements of perfusion and REANIMATE predictions are shown in Supplementary 1051 



 

 

Figures 1a and b, respectively. (d, i) and (e, j) show REANIMATE predictions of interstitial 1052 

fluid pressure and interstitial fluid velocity, respectively, in the same two-dimensional slice 1053 

as in (c, h).  1054 

Figure 4. REANIMATE simulations of steady-state fluid dynamics (vascular and interstitial) in 1055 

an orthotopic murine glioma model (GL261). a) Segmented blood vessel networks, showing 1056 

tumor vessels (red) and normal brain vessels (blue). The tumor was connected to the brain 1057 

via several large feeding vessels at the interface between the two tissues. b) The results of 1058 

REANIMATE vascular simulations, with vessel network color-coded for vessel radius, vascular 1059 

pressure and blood flow. c) A three-dimensional rendering of REANIMATE interstitial fluid 1060 

pressure predications, with blood vessel network overlaid. d) Comparison of in vivo 1061 

perfusion measurements with ASL-MRI and REANIMATE predictions. A scatter plot 1062 

comparing ASL measurements of perfusion and REANIMATE predictions is shown in 1063 

Supplementary Figure 1c. A complete slice through the brain is shown for ASL-MRI, with the 1064 

tumor outlined with a black, dashed line. REANIMATE perfusion predictions show a slice 1065 

through the tumor. (e) and (f) show REANIMATE predictions for interstitial fluid pressure 1066 

and interstitial fluid velocity, respectively. 1067 

Figure 5. REANIMATE simulation of Gd-DTPA (an MRI contrast agent) delivery to an example 1068 

LS174T tumor, compared with uptake measured in vivo with DCE-MRI. (a) Gd-DTPA 1069 

enhancement in a slice through the tumor, measured/simulated over 13 minutes. (b) Mean 1070 

Gd-DTPA concentration as a function of time, for REANIMATE (left) and in vivo data (right). 1071 

Each curve shows the average uptake at a fractional distance between the perimeter and 1072 

centre of mass of the tumor.  (c) Plot of a line profile through the tumor, at 13 minutes, 1073 

corresponding to the black lines shown in (a). (d) A histogram of Gd-DTPA concentrations at 1074 

13 minutes (also shown as a scatter plot in Supplementary Figure 1d).  1075 

Figure 6. Dual-fluorophore, optical imaging of the response of colorectal carcinoma models 1076 

(LS174T and SW1222) to treatment with a vascular disrupting agent (Oxi4503), at baseline 1077 

and 90 minutes post-dosing. Tumors were injected with lectin labelled with the first 1078 

fluorophore (AlexaFluor-568) prior to administration of 40 mg kg-1 of Oxi4503, to label all 1079 

blood vessels in the tumors. 60 minutes later, to assess the acute and heterogeneous effects 1080 

of Oxi4503, a second lectin labelled with a different fluorophore (AlexaFluor-647) was 1081 

injected, to label vessels that remained perfused. (a) Whole-tumor blood vessel networks, 1082 

colored according to whether they remained labelled following Oxi4503 (dual-labelled, blue) 1083 

or were no longer perfused (single-labelled, green). OPT signal intensity images are also 1084 



 

 

shown. (b) Box plot showing the distance of single- and dual-labelled vessels from the tumor 1085 

periphery and (c) the size of single-labelled clusters in both tumor types. (a-c) show that 1086 

LS174T tumors lost large vascular regions at their centre, whereas SW1222 tumors showed a 1087 

more distributed pattern of perfusion loss, distributed throughout the tumor. (d) Box plot of 1088 

blood volume measurements from dual-labelled Oxi4503 and control-treated tumors. Blood 1089 

volume significantly reduced (p=0.0002, two-sided Wilcoxon rank sum) in both SW1222 and 1090 

LS174T tumors when treated with Oxi4503, whereas there was no significant difference in 1091 

control tumors. In box plots, bar-ends define the range of the data, box-ends the inter-1092 

quartile range, and central bars are median values; asterisks denote statistically significant 1093 

differences (p<0.01, two-sided Wilcoxon rank sum). 1094 

Figure 7. Results of REANIMATE simulations of blood flow, perfusion and interstitial fluid 1095 

pressure (IFP), in an LS174T tumor, at baseline (top row) and 90 minutes post-Oxi4503 1096 

treatment (middle row). Images showing the change in perfusion in vivo, measured with 1097 

arterial spin labelling MRI, are also shown, alongside histograms of each parameter (bottom 1098 

row). Small changes in each parameter were observed, which were heterogeneously 1099 

distributed throughout the tumor, both in simulations and in vivo. 1100 

Figure 8. REANIMATE simulation predictions of Oxi4503 delivery and treatment response. (a) 1101 

Maps of whole-tumor intravascular and interstitial (tissue) delivery of Oxi4503 from baseline 1102 

to 90 minutes post-dosing. (b) Box plot of simulated Oxi4503 exposure in branch points 1103 

connecting single-labelled only, dual-labelled only or a mixture of single- and dual-labelled 1104 

vessels at 90 minutes post-Oxi4503 delivery. A significantly lower exposure to Oxi4503 was 1105 

found in in single-labelled vessels, as denoted by an asterisk (p=0.004, two-sided Wilcoxon 1106 

rank sum). Bar-ends define the range of the data, box-ends the inter-quartile range, and 1107 

central bars are median values. (c-f) A 1 mm-thick slice through an LS174T vessel network, 1108 

showing (c) the location of dual- and single-labelled vessel segments, (d) simulated Oxi4503 1109 

exposure (intravascular and interstitial), (e) intravascular distance from an inlet node and (f) 1110 

their connectivity score. Yellow arrows show the location of examples of single-label 1111 

clusters, which are associated with a larger intravascular distance from an inlet, lower node 1112 

connectivity and mixed (both high and intermediate) Oxi4503 exposure. 1113 

Figure 9. Connectivity analysis of whole-tumor blood vessel networks. Frequency 1114 

distributions of a) ln(C) (node connectivity) and b) redundancy distance ratio, r, 1115 

demonstrating clear distinctions in the distributions for the two colorectal carcinoma 1116 

xenograft models (SW1222 and LS174T). c,d) Tumor blood vessel networks, with nodes 1117 



 

 

scaled according to vessel connectivity; the larger the node, the greater the connectivity, for 1118 

an LS174T tumor (c) and SW1222 tumor (d). 1119 
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