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A B S T R A C T

Intravascular imaging in percutaneous coronary interventions can be an invaluable tool in the treatment of
coronary artery disease. It is of significant interest to provide molecular imaging contrast that is complementary
to structural contrast provided by optical coherence tomography (OCT) and intravascular ultrasound imaging
(IVUS). In this study, we developed a dual-modality intravascular imaging probe comprising a commercial OCT
catheter and a high sensitivity fiber optic ultrasound sensor, to provide both photoacoustic (PA) and OCT
imaging. With PA imaging, the lateral resolution varied from 18 μm to 40 μm; the axial resolution was con-
sistently in the vicinity of 45 μm. We demonstrated the clinical potential of the probe with 2-D circumferential
PA and OCT imaging, and with multispectral PA imaging.

Intravascular (IV) imaging is widely used to guide treatment of
coronary artery disease (CAD) [1]. Optical coherence tomography
(OCT), also known as optical frequency domain imaging (OFDI), can
provide valuable information about plaque composition and features
which convey risk of plaque rupture, thereby guiding the deployment of
intracoronary stenting. OCT has spatial resolution that is sufficiently
high to visualise individual cells in plaque, such as macrophages [2],
but it can often be challenging to measure lipid plaque burden due to
the limited imaging depth in tissue (typically 1–1.5 mm). Moreover,
OCT does not provide positive molecular contrast for lipid, so that lipid-
rich plaque can frequently be devoid of contrast. In contrast, optical
spectroscopy can provide detailed information about plaque composi-
tion. Infrared spectroscopy, Raman spectroscopy, and near infrared
fluorescence molecular imaging have been shown to provide clinically-
relevant information, but in general they do not allow for signals to be
resolved in depth [3]. This limitation of some spectroscopic methods
can be prominent when assessing lipid plaque burden. Photoacoustic
(PA) imaging, in which ultrasound (US) waves are generated in tissue
using pulsed excitation light, can provide depth-resolved intravascular
imaging with molecular contrast for lipids, at depths of up to 4mm [4].
As such, PA imaging has strong potential as an imaging modality
complementary to OCT. Dual modality approaches combining PA and

OCT have been demonstrated for non-invasive imaging applications
[5–7].

Performing both PA and OCT imaging with probes suitable for
human coronary arteries presents significant miniaturization chal-
lenges. Several types of PA probes have been considered to date [8–14].
Typically, miniature PA catheters capable of providing volumetric
images for intravascular imaging are realized by integrating optical
fibers for excitation light delivery with single-element piezoelectric
ultrasound (US) transducers. For circumferential imaging, rotational
scanning of the excitation light can be achieved by proximal rotation of
the excitation fiber [15] or by distal end rotation of a 45° reflective
mirror [16]. All-optical PA probe designs with endoscopic imaging
capabilities, comprising micro-rings [17] and π-shifted FBGs [18] for
ultrasound detection, were previously demonstrated. An all-optical IV
imaging probe that provided both PA and OCT, which included the use
of an integrated MMF for PA excitation light delivery and a fiber optic
heterodyne interferometer for ultrasound detection [19], was also de-
monstrated. Optical ultrasound detection in photoacoustics/optoa-
coustics was recently reviewed by Dong et al. [20] and Wissmeyer et al.
[21].

Fiber-optic (FO) US sensors based on high-finesse Fabry-Pérot (F-P)
cavities present several advantages in this context. As demonstrated
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recently [22,23], they provide high sensitivity (noise equivalent pres-
sure of ca. 10 Pa in a 20MHz measurement bandwidth) and wide
bandwidths (40MHz). Their miniature sizes are ideally suited for in-
travascular imaging. Here, we report the development of a fiber-optic
IV imaging probe that provides both OCT and PA imaging. Our probe
consists of a commercial OCT IV catheter and an integrated fiber optic
US sensor with a high-finesse F-P cavity. We present an initial de-
monstration of its capabilities to perform 2-D circumferential imaging
and multispectral photoacoustic imaging with stent and synthetic
phantoms.

Photoacoustic excitation light was provided by a wavelength-tun-
able dye laser pumped by a frequency doubled Q-switched Nd:YVO4

laser (Elforlight, UK). This laser is tunable over the range of 560 to
610 nm; its pulse repetition frequency was set to 2.8 kHz. Light was
coupled into single mode fiber (SMF) using a precision fiber coupling
fixture (F-915, Newport Corporation, USA) for delivery into to the OCT
catheter. After coupling, the pulse energy varied from 50 nJ to 120 nJ
across the wavelength range. A commercial OCT IV catheter (DragonFly
OPTIS imaging catheter, St Jude Medical Ltd., UK) and console
(ILLUMEN OPTIS, St Jude Medical Ltd., UK) was used for both PA and
OCT imaging. This catheter (outer diameter: ca. 1 mm; total length: ca.
2 m) comprised a SMF and distal-end optics to focus and deflect the
light into tissue (ca. 102.5° to catheter axis), which were encapsulated.
This optical assembly was rotated within the fluid-filled outer tube of
the catheter. The OCT catheter had a nominal axial resolution of 15 μm
and a lateral resolution of ca. 25 μm [24]. The PA excitation light had a
fluence ranging from 40 to 100mJ/cm2 across the wavelength range of
the pulsed laser.

Reception of photoacoustically-generated ultrasound was per-
formed with a fiber optic sensor, which comprised an SMF (outer dia-
meter: 250 μm) with a plano-concave F-P cavity at the distal end. The F-
P cavity comprised a transparent polymer sandwiched between multi-
layer dielectric coatings, as previously described [25]. The sensor used
for studies in this paper had a noise equivalent pressure of ca. 40 Pa, as
measured with a calibrated planar transducer operating at 3.5MHz
with a 20MHz bandwidth. The sensor had an estimated detection
bandwidth of 27MHz (−6 dB bandwidth: 3–30MHz). Its sensitivity is
nearly omni-directional across this frequency range, which allows it to
receive ultrasound waves that are perpendicular to the SMF axis. In-
terrogation light for the fiber optic ultrasound (FO US) sensor was
provided by an external cavity wavelength-tunable CW laser with a
tuning range of 1500 nm–1630 nm (Tunics T100S-HP, Yenista, France).
Reflected light from the F-P cavity at the distal end of the fiber was
received via an optical circulator by a photo-receiver system with low-
and high-frequency outputs. The former, which was digitized at 16 bits
with a sampling rate of 250 kS/s (PCI-6323, National Instruments, UK),
was used to measure the interference transfer function of the F-P cavity
and to adjust the interrogation wavelength to the optimum bias wa-
velength of the F-P cavity. The high-frequency output, which was di-
gitized at 8 bits with a sampling rate of 250 MS/s and a bandwidth of
125MHz (PCI-5114, National Instruments, UK), was used to measure
the PA time series (Fig. 1a). Averaging (25–50 times) across consecutive
PA time series was performed for noise reduction.

The FO US sensor was positioned adjacent to the OCT catheter
(Fig. 1b). Its buffer layer was affixed to the outer tube using sealing wax
and epoxy. At the distal end, where the buffer layer had been removed,
there was a small gap between the cladding of the FO US sensor and the
outer tube of the OCT catheter (ca. 125 μm). The FO US sensor was
aligned so that photoacoustic excitation light emerged from the distal
optics of the OCT catheter slightly proximal to the F-P cavity (ca.
50 μm). The maximum diameter of the OCT-PA dual probe, which
comprised the OCT catheter and the FO US sensor was 1.25mm. The
encapsulated SMF and distal-end optics rotated to perform circumfer-
ential imaging, whilst the FO US sensor was stationary. Rotation was
performed with a motorized rotation stage (PRM1/MZ8, Thorlabs, UK)
at the proximal end, with a custom built stator and rotor mounts. The

data acquisition and synchronized control of the motorized rotation
was performed with custom LabVIEW (National Instruments, UK)
script.

The spatial resolution (PA) of the probe was estimated using opti-
cally absorbing line phantoms. For lateral resolution measurements, a
carbon fiber (outer diameter: 7 μm) was imaged by translating the
probe, with the probe oriented so that the translation axis and the ex-
citation light beam were both perpendicular to the fiber. The lateral
resolution was taken as the full width at half maximum (FWHM) of the
maximum PA pressure time series signal received at each translation
position, as estimated with Gaussian fits. With the wire positioned at
depths (relative to the FO US sensor) that ranged from 0.5mm to
2.5 mm, the lateral resolution varied from 18 μm to 40 μm (Fig. 2a). For
axial resolution measurements, a tungsten wire (outer diameter: 27 μm)
was imaged. The envelope of the PA time series signal was obtained and
the FWHM, converted to distance (speed of sound: 1485m/s), was
taken as the axial resolution. The tungsten wire was preferable for axial
resolution measurements as ringing artefacts were visually absent, but
its outer diameter was too large for lateral resolution measurements.
The average axial resolution across the depth range of 0.7–2.7 mm was
45 μm, with a maximum variation of ± 3.5 μm (Fig. 2a).

The PA signal strength varied with the angle of the photoacoustic
excitation light beam relative to the FO US sensor, θ. To estimate this
variation, a circular absorbing line phantom was used. This phantom
was a black silicone cylinder with an inner diameter of 6mm. The probe
was positioned such that the FO sensor was at the centre of the cylinder,
and imaging was performed with rotational scans (Fig. 2b). Each depth
scan in an image was acquired with averaging across 50 consecutive PA
time series; the magnitudes of Hilbert-transformed averaged PA time
series were displayed on a linear scale in Cartesian coordinates. When
the excitation light beam was directly in front of the FO US sensor
(θ=0°), photoacoustically generated ultrasound waves had a direct
path to this sensor. In contrast, when the excitation light beam was in
the opposite direction (θ=180°), the ultrasound waves received by the
FO US sensor had an indirect path that included propagation within the
acoustically heterogeneous OCT catheter. Whilst PA signal was ob-
served for all angles, the strength was lowest in the vicinity of θ=180°.
The signal-to-noise ratio (SNR), varied from a minimum of 30 to a
maximum of 316. The highest SNR values were obtained at angles in
the vicinity of θ=90° and θ=270°, where the fluence of excitation
light at the inner surface of the cylinder may have been higher than that
when θ=0° due to the offset between the centre of the cylinder and the
OCT catheter axis. An expanded coronary stent was clearly visible with
PA imaging (Fig. 2c). The stent (Xience Pro, Abbott, UK) had a post-
expansion diameter of 3.6 mm and a strut thickness of 125 μm. The
probe was positioned inside the stent, offset from the centre. Stent
struts were visible at all angles, albeit with differences in PA signal
strength that were consistent with those observed with the cylinder
phantom. With stent imaging, each PA time series was filtered in the
Fourier domain to compensate for the frequency-dependence of the FO
US sensor sensitivity. This was done by choosing the time-series signal
from one of the struts with relatively high SNR (from θ=270° region)
and taking the Fast Fourier Transform of this signal as the reference to
normalize the each time-series data in the Fourier domain.

A vascular phantom with inclusions was used to demonstrate mul-
tispectral PA imaging. This phantom comprised PDMS with 0.2% TiO2

to simulate the optical scattering of vascular tissue [26]. A wall-less
cylindrical cavity with an inner diameter of 3.15mm was created by
withdrawing an acrylic tube after PDMS curing. Along the length of the
cavity, two polymer micro-capillary tubes (ID/OD: 500/600 μm) to
mimic inclusions were positioned. Aqueous solutions were injected into
the tubes served as PA contrast agents: methylene blue (ca. 1.1 g/L) in
one tube, and India ink (ca. 0.9 mL/L) in the other. The cavity and both
inclusions were clearly apparent with OCT imaging (Fig. 3a). Due to
strong optical absorption, a shadow was apparent beyond the inclusion
with India ink. For PA imaging, the probe was positioned close to the
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centre of the cavity and the images were acquired with different ex-
citation light wavelengths (λexc) that ranged from 565 nm to 605 nm.
Both inclusions were apparent at all PA excitation wavelengths. PA
signal artefacts beyond the inclusions were apparent, which may have
originated from non-uniform frequency response of the FO US sensor;
the filtering performed for stent imaging did not have an appreciable
effect for the vessel phantom and therefore it was not used. There were
prominent differences in the wavelength-dependencies of the PA signal
amplitudes obtained from the two inclusions. In particular, there was a
two-fold increase in the PA signals obtained from the Methylene blue
inclusion across the measured wavelength range (cf. a 3-fold increase in
the optical absorption coefficient, as measured spectrophotometrically),
whereas the PA signals obtained from the India ink inclusion were
nearly constant.

In summary, we demonstrated an all-optical, dual modality in-
travascular probe using a commercial OCT IV catheter and a high
sensitivity fiber optic F-P cavity US sensor. To the authors’ knowledge,
this is the first demonstration that a OCT catheter, including both the
distal-end light-focusing optics and the proximal-end rotary compo-
nents, can deliver excitation light for PA imaging. The use of a high
sensitivity fiber optic US detector preserves the all-optical design of the
probe; it leads to a minimal increase in lateral dimensions and does not
hinder the OCT operation. Moreover, optical fibers confer immunity to
electromagnetic interference, which can be important in the cardiac
catheterisation room [27]. This probe was shown to provide lateral PA
resolution that is similar to that of OCT imaging (18 μm–40 μm) and
high PA axial resolution (ca. 45 μm). As with OCT, the optical focus is
the governing factor for the lateral resolution of photoacoustic imaging;
the frequency response of the ultrasound detector determines the axial
resolution. The excitation light wavelength used for this study is outside
the operational range of single-mode telecommunications fiber, which
has a cut-off wavelength at ca. 1250 nm. As a result, there is multimode
propagation of the excitation light in the wavelength range used for the
current study that could increase the focused spot size of the PA ex-
citation beam and thereby decrease the lateral resolution. The probe is
likely to have a better lateral resolution with excitation wavelengths
closer to the single mode operation range of the OCT fiber, for example
at the lipid absorption wavelength of 1210 nm. One limitation of the
current probe configuration is that a stationary fiber optic ultrasound
receiver results in shielding of the PA waves by the OCT catheter for

certain excitation angles. As a result, the detected PA signal amplitude
varies relatively with respect to the receiving angle in the rotation
plane. In future versions of the probe, an additional US sensor posi-
tioned diametrically opposite to other could eliminate the shielding
effect. The rotational scanning speed of the probe in the current design
is greater than 4 rotations per minute (rpm), which is limited by the
speed of the motorized rotation stage. This could be significantly im-
proved with the use of a commercial fiber optic rotatory joint, which
can have a nominal rotation rate of 10,000 rpm, provided that the pulse
repetition frequency of the excitation laser source was sufficiently high.
Greater excitation light energies could be delivered through the inner
cladding of a double clad fibre, leveraging advances in dual modality
OCT/fluorescence imaging [28].

Further development of the console and probe are required to en-
able in vivo lipid imaging. As recently reviewed by Li and Chen [29],
excitation light sources of 1210 and 1720 nm have been found to be
useful for providing lipid contrast [30–33], but an excitation light
source at one of these wavelengths with a sufficiently rapid repetition
rate and pulse energy for real-time imaging has proven elusive. For PA
probes, optimizing catheter design has been the focus of several studies
[11–14], and identifying a protective sheath material that is transparent
to PA and US signals has emerged as a one of the primary challenges
[34]. The inclusion of OCT as an additional probe modality could im-
pose even more stringent demands on the sheath material to minimise
distortion of the OCT beam, if a single sheath were to encapsulate both
the OCT probe and the FO sensor. The addition of intravascular ultra-
sound imaging capabilities to this probe could be valuable to provide
structural contrast at depths significantly greater than those of OCT.
These capabilities could potentially be added with a fiber optic ultra-
sound transmitter, leveraging recent advances in optical ultrasound
generation with nanocomposites [35] and in vivo demonstrations [36].
The ability of the probe presented here to distinguish between different
absorbing chromophores, by judicious choice of excitation wavelength
(s), suggest that combined photoacoustic and OCT imaging could be a
powerful tool to obtain functional, depth-resolved information on
plaque and lipid pools inside the depth of the vessel wall to improve
stent placement.

Fig. 1. (a) Schematic of the console for the dual-modality photoacoustic (PA) and Optical Coherence Tomography (OCT) probe. PA light excitation delivery and OCT
imaging are performed with an optical fiber within a commercial OCT catheter, and optical ultrasound reception is performed with a fiber optic ultrasound sensor. (b)
A microscope image of the distal end of the probe, with a schematic overlay showing PA excitation light and corresponding PA ultrasound waves generated from an
absorbing target within a vessel wall. The red spot is from a test laser at 632 nm. In this image, the polymer encapsulation of the OCT catheter was removed for
clarity. PC: personal computer; DAQ: data acquisition; VHF: high frequency voltage output; VLF: low frequency voltage output. SMF: single-mode fiber; FO US sensor:
fiber-optic ultrasound sensor.
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Fig. 2. (a) Photoacoustic (PA) axial and lateral resolution of the probe esti-
mated in the depth range from 0.5 to 2.5 mm. (b) A 2D PA circumferential
image of an absorbing circular line phantom, with the signal-to-noise ratio
(SNR) at different angular positions indicated. (c) A 2D PA image of a coronary
stent. All of the struts are visible; those in the ultrasonic shadow of the OCT
catheter (arrows) have lower signal intensities. A micrograph (inset) of the stent
shows the position of the imaging plane (red dashed line). Images (b) and (c)
are displayed on linear scales.

Fig. 3. (a) OCT image of the vascular phantom with two inclusions within the
wall: methylene blue (MB) within one tube and India ink (II) in another. b) A
2D photoacoustic (PA) circumferential image of the phantom at an excitation
wavelength (λexc) of 565 nm. c) The PA amplitude wavelength dependencies for
the dyes (MB & II) estimated from PA images of the phantom acquired at
multiple wavelengths in the range from 565 nm to 605 nm.
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