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a b s t r a c t 

In many areas of suspension mechanics, such as filled polymer fluids or household products such as toothpaste, 
the suspending fluid itself is inherently non-Newtonian and may exhibit viscoelastic properties. In this paper, we 
extend the Stokesian Dynamics formalism to incorporate a simple model of viscoelasticity by using small spheres 
as ‘beads’ in a bead–spring dumbbell (such as is found in the derivation of Oldroyd and FENE constitutive models 
for dilute polymer solutions). Various different spring laws are then tested in both small-amplitude and large- 
amplitude oscillatory shear, and their rheological behaviour is compared to continuum constitutive models. 
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. Introduction 

Suspensions of particles in fluids can be found both in nature and
s the basis of many products in industry. Blood, ceramics, paper pulp,
aint and adhesives, to name just a few, can all be characterised as
 background fluid in which small particles are distributed. A popular
imulation technique for these suspensions is Stokesian Dynamics [1] : a
icrohydrodynamic, low Reynolds number approach to modelling sus-
ensions which considers the interaction of particles with each other
gainst a Newtonian background solvent. Typically it is chosen for its
uitability for three-dimensional simulation with low calculation and
ime penalty. 

However, in many areas of suspension mechanics, the suspending
ackground fluid itself is inherently non-Newtonian and may exhibit
iscoelastic properties. A sensible step, then, is to extend the Stokesian
ynamics formalism to incorporate a simple model of viscoelasticity. As
rst seen in Binous and Phillips [2] , we do this by using small spheres
s ‘beads’ in bead–spring dumbbells. 

Having done this, we observe the performance of these dumbbell
uspensions in simulation by submitting them to oscillatory shear. Oscil-
atory rheometry, both with small-amplitude shear and large-amplitude
hear, has become a standard tool in the classification of viscoelastic flu-
ds [3] . We can compare the measurements from the simulations under
scillatory shear with established constitutive models and experimental
esults from the literature to establish the validity of this extension of
he Stokesian Dynamics method. 

Alternative simulation techniques for viscoelastic suspensions have
een developed, using finite element [4] , finite volume [5] , and fic-
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itious domain methods [6] , as well as methods which treat all sus-
ended particles as passive, allowing the fluid flow to be computed
eparately [7] . These methods require meshing a (normally periodic)
omain, which can place computational limits on the size of the do-
ain and the smallest particle size. Stokesian Dynamics does not re-

uire meshing, and so can offer larger domains, a wider choice of par-
icle sizes, flexibility with geometry —walls can be created from fixed
articles —and different imposed flows. 

In Section 2 of this paper, we summarise the theory of oscillatory
heometry and describe how we extend the Stokesian Dynamics formal-
sm to incorporate the bead–spring dumbbell model of viscoelasticity.

e then describe how we extract the rheological measurements from
ur simulations. In Section 3 , we compare the behaviour of different
pring laws under small-amplitude oscillatory shear, while in Section 4 ,
e compare different models under large-amplitude oscillatory shear. In
oth of these sections, we investigate the effect of altering the parame-
ers in the model, and compare their rheological behaviour to continuum
onstitutive models. 

. Linear rheological measurements 

.1. Theory 

Ideal rheometrical measurements are taken in simple shear, or vis-
ometric, flow, 

 = ( ̇𝛾𝑦, 0 , 0) , 𝛾̇ = 

d 𝑢 
d 𝑦 

. (1)
 (H.J. Wilson). 
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Fig. 1. Oscillatory shear flow. 

Fig. 2. A linear and nonlinear stress response to an oscillatory shear over time. 
For SAOS, we expect the former, but for LAOS, we expect the latter. 
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Fig. 3. A typical plot of G ′ and G ′′ for a viscoelastic fluid —here, the Oldroyd-B 
fluid we investigate in Section 3.2 —at different frequencies. The inverse of the 
frequency where the curves intersect, 𝜏, is described as the typical relaxation 
time of the fluid, and defines where the Deborah number, 𝐷𝑒 = 𝜔𝜏, is 1. 
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In a linear viscoelastic fluid, the stress response to this applied shear
s dictated not just by the current rate of strain, but also by historical
ate of strain, 

( 𝑡 ) = ∫
𝑡 

−∞
𝐺( 𝑡 − 𝑡 ′) ̇𝛾( 𝑡 ′) d 𝑡 ′. (2)

he function G ( t ) is the relaxation modulus of the fluid, and represents
he importance of the rate of strain from a time t ago on the current stress
n the system. Determining the form of the relaxation modulus is the
oal of linear rheology, as it allows for the classification of viscoelastic
uids. For example, a purely viscous fluid of viscosity 𝜂 has a relaxation
odulus of 𝐺( 𝑡 ) = 𝜂𝛿( 𝑡 ) , where 𝛿( t ) is the Dirac delta function, and a

inearly elastic solid has a constant relaxation modulus: 𝐺( 𝑡 ) = 𝐺 0 . 
The relaxation modulus of a fluid can be determined by applying

scillatory shear, where the shear, 𝛾, and shear rate, 𝛾̇ , are given by 

( 𝑡 ) = 𝛾0 sin ( 𝜔𝑡 ) , 𝛾̇( 𝑡 ) = 𝛾0 𝜔 cos ( 𝜔𝑡 ) , (3)

or an amplitude 𝛾0 and frequency 𝜔 . 
This can be realised in experiments by placing the fluid in a Couette

ell and rotating the inner cylinder so as to impose a shear on the fluid.
o long as the gap is narrow compared to the cylinder radii, and there
re no instabilities or shear inhomogeneities, this is equivalent to simple
hear flow ( Fig. 1 ). In practice the amplitude of the oscillation must be
mall enough so that the stress response of the fluid is also sinusoidal, i.e.
he fluid must remain in its linear regime. At these amplitudes the stress
s linear in the amplitude [3] . These tests are called small-amplitude
scillatory shear (SAOS). 

If the amplitude is increased, the stress response of a fluid may no
onger be sinusoidal. For these large-amplitude oscillatory shear (LAOS)
ests, a typical nonlinear response is demonstrated in Fig. 2 . Although
he following definitions are only defined for small-amplitude oscilla-
ory shear, their large-amplitude analogues provide useful rheological
ata [3] , as discussed in Section 4 . 

Imposing an oscillatory shear, Eq. (3) , if we stay in the linear regime
he stress can be written as [8] 

( 𝑡 ) = 𝐺 

′𝛾( 𝑡 ) + 

𝐺 

′′

𝜔 

𝛾̇( 𝑡 ) , (4)

here G ′ is the storage modulus and G ′′ the loss modulus. This form
s powerful because it splits the viscous and elastic contributions: the
torage modulus G ′ is associated with the total shear 𝛾, and thus repre-
137 
ents elasticity. The loss modulus G ′′ is associated with the instantaneous
hear rate 𝛾̇ , and thus represents viscosity. 

The two moduli G ′ and G ′′ are measured by rheologists as a function
f frequency, 𝜔 , for a wide range of viscoelastic fluids. A typical example
s shown in Fig. 3 . The inverse of the frequency where the two curves
ntersect, 𝜏 = 1∕ 𝜔 intersect , is described as the typical relaxation time of
he fluid. This parameter allows us to nondimensionalise Eq. (3) [9] ,
riting the imposed shear as 

( 𝑡 ) = 

Wi 

De 
sin 

(
De 

𝑡 

𝜏

)
, (5) 

here the Deborah number, 𝐷𝑒 = 𝜏𝜔, is the ratio of the relaxation time
o the oscillation period, and the Weissenberg number, 𝑊 𝑖 = 𝜏𝛾0 𝜔, is
he ratio of viscous forces to elastic forces. However, since determining
requires us to have already determined G ′ and G ′′ , we choose not to
ondimensionalise the equations in this way. 

.2. System details for simulations 

In this paper we perform oscillatory simulations on a sample of New-
onian fluid with dumbbells suspended in it. We implement the dumb-
ells in Stokesian Dynamics as pairs of small spheres (with radius 𝑎 = 1
n our choice of units), a variable distance apart, with a force between
he two. We place our dumbbells in a periodic box of side length 150
nits. The dumbbells are constrained to lie in a plane, 2 units deep, so
hat our simulations are carried out on a monolayer of particles. The
ethod remains three-dimensional. 

To stop the dumbbells contracting to zero length in an otherwise
uiescent flow, the dumbbells are given a natural length of 𝐿 = 20 , with
hich they are initialised. We later vary the number of dumbbells in

he sample, but unless otherwise stated, we use an area concentration
f 10%. The suspension undergoes eight shear periods, with the number
f timesteps per period ranging from 80 to 1200, depending on the fre-
uency and amplitude of shear; see discussion in Section 3.2 . The final
hear period is used for our analysis; and we use the ensemble average
f three independent solutions. 

The use of dumbbells in Stokesian Dynamics was first seen in Bi-
ous and Phillips [2] , where a relationship was formulated between the
umbbells’ velocities and the forces exerted on them. In our implemen-
ation for small-amplitude oscillatory shear, we go further by letting
eads interact with each other through lubrication, allowing us to exam-
ne concentrated suspensions. No non-hydrodynamic forces on the beads
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Fig. 4. Lissajous curves for a linearly elastic solid, viscoelastic fluid, and purely 
viscous fluid. The eccentricity of the orbit gives an indication as to the balance 
between viscous and elastic effects. By fitting an ellipse to the data, accurate 
measures of 𝜎0 and 𝛿 can be found. 
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ere found to be necessary. In our implementation for large-amplitude
scillatory shear, we do not include bead–bead interactions as the high
mplitudes at insufficiently small large timesteps give the potential for
umerical instabilities. This is discussed further in Section 4.6 . 

We also develop the use of Stokesian Dynamics for rheology by intro-
ucing a background shear rate, 𝙀 ∞, to our fluid. This is a convenient
ay to impose shear flow on the sea of dumbbells through the back-
round shear, 

 

∞ = 

1 
2 
(
𝛁 𝒖 ∞ + ( 𝛁 𝒖 ∞) 𝖳 

)
= 

1 
2 

⎛ ⎜ ⎜ ⎝ 
0 𝛾̇ 0 
𝛾̇ 0 0 
0 0 0 

⎞ ⎟ ⎟ ⎠ . (6)

he beads are assumed to be torque-free, and so bead interactions are
onsidered only up to the level of forces. Stresslets from the dumbbells
re calculated from the forces on the beads. 

.3. Extraction of rheological measurements from simulations 

To measure the moduli, G ′ and G ′′ , we need to be able to extract the
uid stress from the simulation. In laboratory rheometrical tests, the
uid stress is extracted from the force experienced by the walls of the
heometer. We can measure this stress indirectly by first considering the
otal force on a volume, V , of fluid, with boundary 𝜕V , which is given
y 

 𝑉 = ∬𝜕𝑉 

𝞼 ⋅ 𝒏 d 𝑆, (7)

here 𝞼 is the stress in the fluid and n is the unit normal. We want to
easure the force on an imaginary upper wall. Given our sample is a

ingle layer of spheres of radius a , the depth of this upper wall is 2 a .
ence the force on the imaginary upper walls is 

 𝐹 𝑉 ) 𝑖 = 𝜎𝑖 3 2 𝑎𝐿 𝑊 

, (8)

here L W 

is the box width. 
The total stress (per unit monolayer volume), 𝞼, in a Newtonian fluid

ith N suspended particles of area fraction c is [10] 

𝑖𝑗 = − 𝑝𝛿𝑖𝑗 + 2 𝜂𝐸 

∞
𝑖𝑗 + 

𝑐 

2 𝜋𝑎 3 𝑁 

∑
𝛼

𝑆 𝛼𝑖𝑗 , (9)

here we are summing over the stresslets, 𝙎 , on the fluid by the par-
icles, indexed by 𝛼. Note that c /2 𝜋a 3 N is the reciprocal of the fluid
olume. 

The deviatoric stresslet on the fluid by a spherical particle, 𝛼, at x 𝛼

ith a force distribution, f , upon it is given by 

 

𝛼
𝑖𝑗 = 

1 
2 ∫𝑆 𝛼

[
( 𝑦 𝑖 − 𝑥 𝛼𝑖 ) 𝑓 𝑗 + ( 𝑦 𝑗 − 𝑥 𝛼𝑗 ) 𝑓 𝑖 − 

2 
3 
𝛿𝑖𝑗 ( 𝑦 𝑘 − 𝑥 𝛼

𝑘 
) 𝑓 𝑘 

]
d 𝑆 𝒚 . (10)

reating the dumbbell as two point particles a vector distance Δx apart
nd with a force difference F , the stresslet on the fluid is given by 

 𝑖𝑗 = − 

1 
4 

[
Δ𝑥 𝑖 𝐹 𝑗 + Δ𝑥 𝑗 𝐹 𝑖 − 

2 
3 
𝛿𝑖𝑗 Δ𝑥 𝑘 𝐹 𝑘 

]
. (11)

Calculating the stress in the fluid this way removes the requirement
or physical walls on which to measure the stress. We have also per-
ormed measurements with fixed walls, and with wall-imposed motion,
nd found that the results are all in good agreement. In the next section,
e show the results of these tests for various spring laws to validate this
ethod as a way to simulate viscoelastic background fluids. 

Having measured the stress, we can extract G ′ and G ′′ in at least two
ays. For small-amplitude oscillatory shear, the stress response is also

inusoidal, but delayed by a phase shift, 𝛿, 

( 𝑡 ) = 𝜎0 sin ( 𝜔𝑡 + 𝛿) . (12)

e can extract G ′ and G ′′ from this by using the sine sum identity: 

( 𝑡 ) = 𝜎0 sin ( 𝜔𝑡 ) cos 𝛿 + 𝜎0 cos ( 𝜔𝑡 ) sin 𝛿 (13)

= 

𝜎0 cos 𝛿
𝛾0 

𝛾( 𝑡 ) + 

𝜎0 sin 𝛿
𝛾0 𝜔 

𝛾̇( 𝑡 ) . (14)
138 
omparison with Eq. (4) gives 

 

′ = 

𝜎0 
𝛾0 

cos 𝛿; 𝐺 

′′ = 

𝜎0 
𝛾0 

sin 𝛿. (15)

The phase shift, 𝛿, and amplitude of the stress response, 𝜎0 , are easily
easured by plotting the stress response against the strain of the system.
hese plots are Lissajous curves (sometimes Lissajous–Bowditch curves)
11] , and they provide a useful way of describing the viscoelasticity of
 fluid. In a linearly elastic solid, 𝜎 = 𝐺 0 𝛾. This corresponds, as can be
een in Fig. 4 , to a straight-line Lissajous curve. Meanwhile, in a purely
iscous fluid, 𝜎 = 𝜂𝛾̇, i.e. 

= 𝜂𝛾0 𝜔 cos ( 𝜔𝑡 ) = 𝜂𝛾0 𝜔 sin 
(
𝜔𝑡 + 

𝜋

2 

)
. (16)

his corresponds to an upright ellipse (or even a circle). Fluids that ex-
ibit both viscous and elastic effects have a slanted elliptical orbit some-
here in between these two extremes. For simulators, plotting the Lis-

ajous curve is useful because we can fit an ellipse to the data, allowing
s to take accurate measures of 𝜎0 and 𝛿. 

For SAOS, Lissajous curves are always ellipses, possibly tilted, cen-

red at the origin. This can be verified by substituting 𝛾̇ = 𝛾0 𝜔 

√ 

1 − 𝛾2 ∕ 𝛾2 0 
nto Eq. (4) and rearranging, giving 

1 
𝐺 

′′2 𝛾2 0 

𝜎2 − 

2 𝐺 

′

𝐺 

′′2 𝛾2 0 

𝛾𝜎 + 

𝐺 

′2 + 𝐺 

′′2 

𝐺 

′′2 𝛾2 0 

𝛾2 = 1 ∶ (17)

he form of a tilted ellipse. 
In a LAOS test, we once again apply an oscillatory shear, but this

ime we find that for these large amplitudes, 𝛾0 , the stress response is
ot a pure sine function; instead it is nonlinear, as in Fig. 5 a. With small-
mplitude shear, we were able to define G ′ and G ′′ as rheological prop-
rties of the fluid we were sampling. The non-sinusoidal stress response
lso provides a fingerprint for the fluid, giving us not just equivalents to
 ′ and G ′′ , but also additional information about the nonlinearity. LAOS

ests can therefore be used to provide diagnostic information, allowing
s to classify viscoelastic fluids [12] : see Section 4.1 . 

We can test a sample to find the extent of the linear regime —to find
ow large ‘large’ has to be in LAOS —by performing a G ′ and G ′′ sweep
n the shear amplitude for a fixed frequency. In the linear regime, these
oduli do not depend on the amplitude of oscillation, but at larger

mplitudes, they do. Fig. 6 confirms this for our Hookean dumbbell
olution, tracking a fixed frequency over a range of amplitudes. For
 more solid definition of ‘large’, some recent literature has defined
AOS for polymeric liquids as operating for 𝛾0 > 1 [9] . In the nondi-
ensional terms introduced in Eq. (5) , the nonlinear regime is reached
hen the Weissenberg number, Wi , —the ratio of viscous forces to elas-

ic forces —is not small and when the strain amplitude, Wi / De , is also
ot small [13] . 

So far, however, G ′ and G ′′ have only been defined for SAOS, so we
rst have to find their LAOS analogues. We do this by presenting the
tress response as a Fourier series [3] , 

( 𝑡 ) = 

∞∑
𝑛 =1 , 
𝑛 odd 

𝜎𝑛 sin ( 𝑛𝜔𝑡 + 𝛿𝑛 ) , (18)
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Fig. 5. Two different ways of viewing the nonlinearity of the stress response in to oscillatory shear in (a). 

Fig. 6. An amplitude sweep of our Hookean dumbbell solution: for a fixed fre- 
quency ( 𝜔 = 10 𝜋∕3 , 𝐷𝑒 = 0 . 56 ), at low amplitudes, G ′ and G ′′ (here, normalised 
by their values at amplitude 0.1) are independent of amplitude, but at higher 
amplitudes, this changes. This sweep test allows us to find the linear regime 
region. 
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here the first term is exactly the response from linear viscoelasticity,
q. (12) . Note that the summation is over odd frequencies because the
mposed stress is odd. We can split up this expression for 𝜎( t ) in the way
e did before, to write 

( 𝑡 ) = 𝛾0 

∞∑
𝑛 =1 , 
𝑛 odd 

[
𝐺 

′
𝑛 ( 𝜔, 𝛾0 ) sin ( 𝑛𝜔𝑡 ) + 𝐺 

′′
𝑛 ( 𝜔, 𝛾0 ) cos ( 𝑛𝜔𝑡 ) 

]
. (19)

n the literature, the first order terms 𝐺 

′
1 and 𝐺 

′′
1 are those which are

ypically given: these are the LAOS analogues of G ′ and G ′′ and are often
alled just that. 
139 
We can extract the 𝐺 

′
𝑛 and 𝐺 

′′
𝑛 terms from the measured stress by

aking its discrete Fourier transform: a technique known as FT-rheology.
An important caveat we have so far neglected is that it is not given

hat the stress response to large-amplitude oscillatory shear should be
eriodic —sometimes described as the fluid reaching ‘alternance’ [9] .
s collated by Khair [13] , experiments on polymer melts and colloidal
els have found stress responses to LAOS which are only quasiperiodic
14] or indeed completely aperiodic [15,16] . However, in our numerical
xperiments, we do find periodic stress responses. 

. Small-amplitude oscillatory shear 

As we perform oscillatory simulations, we show here that different
orce laws on the dumbbells correspond to different fluid models: some
y design, and some by observation. 

.1. Newtonian: No dumbbells 

The trivial case we should check is the empty Newtonian fluid. As
an be seen from Eq. (4) , for a Newtonian fluid, 𝐺 

′ = 0 and 𝐺 

′′ = 𝜔𝜂.
alculations of these moduli using the stresslet method will certainly
gree with these figures, as it follows algebraically from Eqs. (9) and
11) . 

.2. Oldroyd-B model: Hooke’s law 

The simplest force law we can apply to our dumbbells is Hooke’s
aw: 

 = − 𝑘 𝒙 , (20)

or an extension x and spring constant k . 
The Oldroyd-B model [17] of a viscoelastic fluid is typically rep-

esented by a system of equations which govern the evolution of the
onstitutive equation in time. As it is, in fact, derived from a system of a
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Fig. 7. The storage and loss moduli, G ′ and G ′′ , for an Oldroyd-B fluid. There is 
good agreement between the theoretical (dashed line) and experimental values. 
At high frequencies, measurements of G ′′ at low frame rates (dotted line) diverge 
from the theoretical values, but increasing the frame rate (solid line) solves this. 
Parameters are as in Section 2.2 . 
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Fig. 8. The storage and loss moduli, G ′ and G ′′ , for Hookean dumbbells at con- 
centrations of 10%, 20% and 40%. Higher concentrations lead to proportionally 
higher readings. The relaxation time, 𝜏, is unaffected by the increase in concen- 
tration, providing the same mapping from frequency to Deborah number for all 
concentrations. 

Fig. 9. Left: The storage and loss moduli, G ′ and G ′′ , for Hookean dumbbells 
with spring constants 𝑘 = 1 , 2 and 4. Arrows point in the direction of increas- 
ing k . At low frequencies, G ′′ is independent of k , converging to G 𝜔𝜏 (dotted 
line), and G ′ ∼1/ k ; but at high frequencies, G ′ , G ′′ ∼ k . Note that the crossover 
frequency 1/ 𝜏 (vertical dashed line) moves proportionally to the right as k in- 
creases. Right: Plotted against Deborah number and scaled by k , the different 
graphs of G ′ and G ′′ collapse onto each other. 
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ewtonian background fluid with bead-and-spring dumbbells, it should
rovide a theoretical validation of our rheological measurements. 

It can be derived from the model [8] that under SAOS, its storage
nd loss moduli are 

 

′ = 

𝐺𝜔 

2 𝜏2 

1 + 𝜔 

2 𝜏2 
, 𝐺 

′′ = 𝜂𝜔 + 

𝐺𝜔𝜏

1 + 𝜔 

2 𝜏2 
. (21)

ere, G is a constant proportional to the spring constant, 𝐺 = 𝑘𝑚, where
 is the number of dumbbells per unit volume, and 𝜏 is the relaxation

ime of the dumbbell, 𝜏 = 3 𝜋𝑎𝜂∕2 𝑘 . 
Since we are interested in the contribution from the dumbbells,

ather than the solute, we choose to plot G ′′ without the viscosity com-
onent. Along with the shape of the graphs of G ′ and G ′′ , then, this also
llows us to compare some extracted constants: G is the asymptote of G ′
s 𝜔 →∞, and 𝜏 = 1∕ 𝜔 is the crossover point of G ′ and G ′′ . 

These theoretical curves are plotted in Fig. 7 (dashed lines) with the
onstants G and 𝜏 extracted from the simulation (solid lines). There is
xcellent shape agreement throughout, which is as we would expect.
owever, to attain this agreement requires very fine timestep resolu-

ion in the simulation. At relatively large timesteps (40 timesteps per
scillation, dotted lines), we see good agreement for all G ′ and at low
requencies in G ′′ . However, high frequencies give higher readings of G ′′
han expected. To match the theoretical readings requires much smaller
imesteps (1000 per oscillation in Fig. 7 , solid lines). We find measure-
ents at our highest frequency in Fig. 7 converge to the theoretical value
ith an error of 𝐸( 𝑁 𝑡 ) = 2 . 62 𝑁 

−0 . 866 
𝑡 , for N t timesteps per oscillation. 

This sensitivity at high frequencies is because the sample acts almost
ntirely elastically in this region: the Lissajous plot is almost a (diagonal)
traight line. Determining the phase difference between the maximum
tress and maximum strain therefore requires very high resolution, even
hen using the Fourier transform method of finding the moduli. 

ffect of concentration. Fig. 8 shows plots of G ′ and G ′′ for dumbbell
rea concentrations of 10%, 20% and 40%. Doubling the concentration
eads to readings for G ′ and G ′′ which are, on average, twice as large. At
ow concentrations, this is in line with what we expect from Eq. (21) ,
ince G is proportional to the concentration of dumbbells. At higher
oncentrations, we might expect that the dumbbells would interact in
 way so as to not lead to a proportional increase in G ′ and G ′′ . This
omplication does not appear to happen, at least up to 𝑐 = 40% . 
140 
ffect of spring constant. Fig. 9 shows plots of G ′ and G ′′ for spring con-
tants of 𝑘 = 1 , 2 and 4. The dependence on k is a playoff between G ∼ k

nd 𝜏 ∼1/ k . Summarised: 

low 𝜔 high 𝜔 

𝐺 ′ ∼ 𝜔 ∕ 𝑘 𝑘 

𝐺 ′′ ∼ 𝜔 𝑘 2 ∕ 𝜔 

This is explained by the right-hand figure of Fig. 9 , where the plots
f G ′ / k and G ′′ / k against the Deborah number, 𝐷𝑒 = 𝜔𝜏, collapse onto
ach other. This collapse is to be expected from the definitions of G ′ and
 ′′ for an Oldroyd-B fluid, Eq. (21) , nondimensionalised, 

 

′ = 

𝐺 𝐷𝑒 2 

1 + 𝐷𝑒 2 
, 𝐺 

′′ = 

𝐺 𝐷𝑒 

1 + 𝐷𝑒 2 
(22) 

describing G ′′ without the viscosity component), recalling that G ∼ k . 
Furthermore, noticing that 𝜏 ∼1/ k , we see that for any constant c , 

 

′( 𝑐𝜔, 𝑘 ) = 𝑐 𝐺 

′( 𝜔, 𝑘 ∕ 𝑐 ) , (23a) 
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Fig. 10. Left: The storage and loss moduli, G ′ and G ′′ , for Hookean dumbbells 
show a strong dependence on the natural dumbbell length, here 10, 20, and 40 
units. Increasing the dumbbell length leads to increases in the measurements. 
Right: Plotted against Deborah number and scaled by L 2 , the different graphs 
of G ′ and G ′′ collapse onto each other. 

𝐺

 

a  

t  

o  

(  

o

E  

a  

i  

t  

d  

l

𝒙  

f
 

l  

l  

t  

G

 

b  

s  

t  

c

𝑆  

T  

r  

t  

L  

g
 

r  

t  

r  

c

E  

0  

a  

e  

j

Fig. 11. The force response to extension for Hookean, FENE and inverse 
Langevin (which FENE is an approximation to) dumbbells. SAOS experiments, 
such as we are doing here, stay in the small-amplitude regime where the differ- 
ence is negligible. 
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′′( 𝑐𝜔, 𝑘 ) = 𝑐 𝐺 

′′( 𝜔, 𝑘 ∕ 𝑐 ) . (23b) 

This can be seen in the left-hand figure of Fig. 9 : with the logarithmic
xes, doubling the spring constant is equivalent to a shift of the curve
o the right by a factor of 2 and a shift upwards by a factor of 2. In
ther words, the effect of changing the spring constant is reproduced
with appropriate scaling factor) by simply changing the frequency of
scillation. 

ffect of natural length of dumbbell. In the Oldroyd-B model, the ide-
lised dumbbells have a natural length set by the strength of the Brown-
an motion, which we are not including. To stop the dumbbells con-
racting to zero length, then, we specify a natural length, L , for our
umbbells. Hooke’s law then applies to the extension , x , from the natural
ength, 

 = Δ𝒙 − 

𝐿 Δ𝒙 |Δ𝒙 | , (24)

or a dumbbell with end-to-end vector Δx . 
The impact of this imposed natural dumbbell length on G ′ and G ′′ is

ess clear. Fig. 10 shows the measurements of G ′ and G ′′ for three natural
engths: 10, 20, and 40 units, where lengths are nondimensionalised so
hat the dumbbell beads have radius 1. At high frequencies, both G ′ and
 ′′ appear to scale as L 2 ; whereas at low frequencies, it is less clear. 

Some clarity is found by plotting G ′ and G ′′ against the Deborah num-
er, 𝐷𝑒 = 𝜏𝜔, where in the right-hand figure of Fig. 10 , they are seen to
cale directly as L 2 . This is not altogether surprising: Eq. (11) shows that
he dumbbell stresslet contribution, from which the total fluid stress is
alculated, behaves as 

 ∼ Δ𝑥 Δ𝐹 . (25)

he dumbbell length Δx is dominated in the small-amplitude oscillatory
egime by the natural dumbbell length L , and the force is proportional to
he extension. The extension due to the background flow also scales as
 , since dumbbells beads which are further apart feel a greater velocity
radient. Hence the stresslet behaves as L 2 , which is what we observe. 

The irregular scaling for low frequencies in the left-hand graph de-
ives from how the relaxation time of the dumbbells, 𝜏, depends on
he natural length. Although this appears to decrease linearly (in this
egime) for increasing natural length, the reason for this remains un-
lear. 

ffect of amplitude. The plots of G ′ and G ′′ for oscillation amplitudes of
.1, 0.2 and 0.4 are indistinguishable from each other. The moduli G ′
nd G ′′ are shown to be independent of amplitude, which is what we
xpect from Eq. (21) . We will see in Section 4 how we can use this as a
udge of when we are in the small-amplitude regime. 
141 
.3. FENE dumbbells 

A limitation of using Hooke’s law to model polymers is that real
olymers have a maximum length. Furthermore, in extensional flow,
ookean dumbbell models can predict negative viscosities at sufficiently
igh strain rates [ 18 , p. 44]: a clearly unphysical result. Both these
roblems are often fixed by using a finitely extensible nonlinear elas-
ic model, or FENE model. This force law is governed by 

 = 

− 𝑘 𝒙 

1 − 𝑥 2 ∕ 𝓁 2 
, (26) 

here 𝓁 is the maximum extension of the dumbbell and 𝑥 = |𝒙 |. More
han just being a ‘fix’, it is a close approximation to a force law derived
or polymer deformation from molecular arguments [ 19 , p. 428, eq. B-
]. This law, the inverse Langevin force law, has the form 

 = −3 𝑘  

−1 
(
𝑥 

𝓁 

)
𝒙̂ ,  ( 𝑥 ) = coth ( 𝑥 ) − 

1 
𝑥 
, (27)

here 𝒙̂ is a unit vector in the extension direction, and the factor of
 allows us to use the same spring constant as the Hookean and FENE
odels [ 20 , p. 14]. Fig. 11 shows the similarity. 

Although there are analytically derivable forms of G ′ and G ′′ for
ENE dumbbells [21] in small-amplitude shear, as illustrated in Fig. 11 ,
ENE (and inverse Langevin) dumbbells in SAOS stay in the mostly
ookean regime. This leads to indistinguishable G ′ and G ′′ readings. 

. Large-amplitude oscillatory shear 

Since in the small-amplitude cases, many spring laws reduce to
ooke’s law, we continue our investigation by performing large-
mplitude oscillatory shear (LAOS) experiments. In most industrial op-
rations, deformation of fluids is large and fast, and therefore outside
he linear regime. 

.1. Classifying fluids with LAOS 

Hyun et al. [12] (with further discussion in Hyun et al. [3] ) outlined
our types of behaviour for G ′ and G ′′ in a LAOS amplitude sweep, shown
n Fig. 12 , which allow us to classify viscoelastic fluids. These classes are:

• Type I (strain thinning): Both the elastic and viscous moduli de-
crease with increased amplitude. The mechanism behind this is at-
tributed to entanglement of polymer chains. At low amplitudes, the
chains remain entangled, but at high amplitudes, the chains untan-
gle as they are stretched, aligning in the flow direction. This reduces
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Fig. 12. Four types of behaviour for normalised G ′ and G ′′ in a LAOS amplitude 
sweep, reproduced from Hyun et al. [12] : Type I, strain thinning; Type II, strain 
hardening; Type III, weak strain overshoot; Type IV, strong strain overshoot. 
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Fig. 13. Two ways of measuring alignment for dumbbell vectors Δx point- 
ing in different directions: signed, where 0°≤ 𝜃 < 180°, and unsigned, where 
0°≤ 𝜃 < 90°. 
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the local drag, decreasing the viscous modulus. As the chains ex-
tend, they reach their maximum length, reducing the elastic modu-
lus. Most polymer solutions and melts display this behaviour [12] . 

• Type II (strain hardening): Both the elastic and viscous moduli
increase with increased amplitude. The mechanism behind this is
attributed to strong interactions between segments of the fluid. As
the amplitude of oscillation is increased, these segments interact in
a way to increase resistance to flow. For example, polymer chains
crossing can form microstructure which inhibits further deformation
in the flow direction. Many biological gels —Hyun et al. [3] give
the examples F-actin, fibrin and collagen —exhibit this behaviour,
as well as PVA/Borax (polyvinyl alcohol/sodium borate) solutions
[22] . 

• Type III (weak strain overshoot): Both the elastic and viscous mod-
uli eventually decrease with increased amplitude, but the viscous
modulus initially increases. The mechanism here is a combination
of the previous two types: initially weak microstructure is formed
which resists flow, but after a critical shear amplitude, the structure
is destroyed and the chains align in the flow direction, aiding flow.
This feature is common in soft, glassy materials: concentrated emul-
sions, suspensions and pastes among other examples [3] . 

• Type IV (strong strain overshoot): Both the elastic and viscous
moduli eventually decrease with increased amplitude, although they
both initially increase. The mechanism here is the same as Type III,
but with stronger intermolecular interaction (but not as strong as
in Type II). This behaviour is seen in associative polymer solutions
[23] . 

This classification of complex fluids looks solely at the behaviour of
he first harmonic, which makes it a simple method for experimental use
s it can be typically done with standard rheological equipment (using
ourier Transform analysis) without the need to collect full stress data.
owever, as we have seen, LAOS is typified by the non-sinusoidal stress

esponse: to capture more information about the sample, other classifi-
ations exist which measure the contributions of higher harmonics. 
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One such test we will use here is measuring the contribution of the
hird harmonic relative to the first harmonic, 

 ( 𝛾0 ) = 

1 
𝛾2 0 

√ 

𝐺 

′
3 ( 𝛾0 ) 

2 + 𝐺 

′′
3 ( 𝛾0 ) 

2 √ 

𝐺 

′
1 ( 𝛾0 ) 

2 + 𝐺 

′′
1 ( 𝛾0 ) 

2 
, (28)

s first described by Hyun and Wilhelm [24] . (The factor of 1∕ 𝛾2 0 at the
ront is due to the tendency of the n th harmonic to be proportional to
he n th power of the amplitude, at small amplitudes.) 

They found that the behaviour of Q ( 𝛾0 ) as the shear amplitude in-
reases was different for different fluid samples: for monodisperse lin-
ar polystyrene melts, it decreases, but for comb polystyrene melts, it
ncreases. Concluding that Q was somehow related to polymer topology,
hey went no further. Nonetheless, by its definition, higher values of Q
orrespond to increased nonlinear effects, and thus we will find it useful
s a measurement of these. 

A final measurement we can take, given that we have all the par-
icle position data, is the degree of alignment of the dumbbells in the
hear direction. Alignment of dumbbells in the flow direction can affect
lasticity in that direction, and we can quantify how much by looking
t the angle the dumbbells make with the shear direction: we call this
he mean dumbbell pitch . There are two options to measure the angle
rom each dumbbell vector Δx , as shown in Fig. 13 . One option is to
easure dumbbells leaning into the shear as distinct from dumbbells

eaning away from the shear —we call this the signed mean pitch, 

± = mean 
{ 

cos −1 
( 

Δ𝒙 |Δ𝒙 | ⋅ 𝒊̂ sgn 
( [ 

Δ𝒙 |Δ𝒙 | × 𝒊̂ 

] 
𝑧 

) ) } 

, (29)

here ̂𝒊 is the unit vector parallel to the shear, and this gives a pitch of
°≤ 𝜃 < 180°. In a well-mixed solution, the mean signed dumbbell pitch
hould be 90°. 

The other option is measure pitch by how far each dumbbell is away
rom being horizontal —we call this the unsigned mean pitch, 

= mean 
{ 

cos −1 
( |||| Δ𝒙 |Δ𝒙 | ⋅ 𝒊̂ ||||

) } 

, (30)

here taking the inverse cosine of the absolute value of the dot product
ives the smallest angle between the two vectors, 0°≤ 𝜃 < 90°. In a well-
ixed solution, the mean unsigned dumbbell pitch should be 45°. 

The two measurements, signed and unsigned, show us something
ifferent: for example, if we consider two dumbbells with signed pitches
f 10° and 170°, their signed mean is 90°, whereas their unsigned mean is
0°. The signed measure shows that there is no left–right bias, whereas
he unsigned measure shows that the dumbbells lie almost parallel to
he shear direction. 

Fig. 14 shows the mean dumbbell pitch, signed and unsigned, for
ookean dumbbells over two cycles of shear at different amplitudes.
or both measurements, the suspension starts well-mixed. As the sus-
ension is sheared, the mean pitch decreases, as to be expected; larger
mplitudes lead to larger decreases. Larger amplitudes also lead to flat-
er plots at the edge of the shear. 
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Fig. 14. Mean dumbbell pitch for Hookean dumbbells ( 𝑘 = 2 , 𝐿 = 20 ) over two cycles of shear at different amplitudes. The arrow points in the direction of increasing 
amplitude, from 𝛾0 = 0 . 8 to 102.4, doubling each time. System details as in Section 4.2 . 

Fig. 15. Measuring the heights of the peaks and troughs in fig. 14 b across am- 
plitudes, we can describe the alignment of the dumbbells. 
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Both subfigures appear to show that the dumbbell pitches return to
 well-mixed state at the middle and end of every shear cycle. This in-
icates that alignment is not permanently altered by the applied shear.
his is quantified in Fig. 15 , where we describe alignment as a function
f shear amplitude by measuring the peaks or troughs of the unsigned
143 
ean dumbbell pitch in Fig. 14 b, following the initial shear cycle. In
his figure, we can use the peaks near a shear angle of 3 𝜋, when the
ystem is sheared least, or the troughs near a shear angle of 7 𝜋/2, when
he system is sheared most, to give a good measure for a given ampli-
ude. We see from the slight decrease in the peaks in Fig. 15 that large
mplitudes are, in fact, leading to some small alignment bias parallel to
he shear direction. 

As seen, LAOS tests are good indicators of the microstructure of the
uid, with particular sensitivity to molecular interaction and the shape
nd entanglement of polymers. Here we shall see the LAOS response to
ur bead-and-spring suspensions for varying parameters. 

.2. System details for LAOS simulations 

Recall, from Section 2.2 , that we are considering a periodic sample
f the dumbbell suspension, with a square periodic box of side length
50 (recall that in these dimensionless units, the dumbbell beads have
adius 1) and 10% area concentration. The natural dumbbell length is set
t 𝐿 = 20 . Although in SAOS we considered bead–bead interactions, for
AOS we neglect these, given the potential for numerical instabilities
t large amplitudes with insufficiently small timesteps. We run these
imulations at 1200 RK4 timesteps per shear period. We discuss this
urther in Section 4.6 . 

.3. Oldroyd-B model: Hooke’s law 

We start by examining dumbbells with their extension obeying
ooke’s law, Eq. (20) . A true Oldroyd-B fluid should have a linear shear

tress response at both small and large amplitudes. 

ffect of spring constant. Fig. 16 shows the change in some rheometrical
roperties of our suspension after changing the spring constant, k . This
s equivalent to changing the frequency of oscillation, 𝜔 , through the
xtension of the relationship we found in Section 3.2 for SAOS, 

 

′
𝑛 ( 𝑐𝜔, 𝑘 ) = 𝑐 𝐺 

′
𝑛 ( 𝜔, 𝑘 ∕ 𝑐 ) , (31a) 
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Fig. 16. An amplitude sweep of our Hookean dumbbell solution with five different spring constants, 𝑘 = 0 . 25 , 0.5, 1, 2, 4, corresponding to 𝐷𝑒 = 4 . 48 , 2.24, 1.12, 
0.56, 0.28 respectively. 
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′′
𝑛 ( 𝑐𝜔, 𝑘 ) = 𝑐 𝐺 

′′
𝑛 ( 𝜔, 𝑘 ∕ 𝑐 ) . (31b)

Hence this is also equivalent to changing the Deborah number, 𝐷𝑒 =
𝜏. 

Subfigure (c) shows G ′ and G ′′ , which are normalised in (a) and (b)
n the smallest amplitude. Subfigure (e) shows the nonlinearity param-
ter Q , defined in Eq. (28) . Looking first at subfigure (e), we see that Q
ncreases sharply as the amplitude decreases. This is in contrast to G ′ and
 ′′ , which converge at this limit. However, we should not worry: as seen

n the analysis of the theoretical fluid models in Section 4.5 , this exact
144 
henomenon is an artefact of the timestep size. The measurement of Q
s always worst at the smallest amplitudes, for as we head into the lin-
ar regime, the higher harmonics contribute less, and our measurements
re therefore less precise. In particular, Q is inversely proportional to the
mplitude squared, and this can lead to measurements for 𝛾0 ≲1 which
re less reliable. The theoretical discussion in Section 4.5 shows that de-
reasing the timestep size by two decades leads to readings for Q which
onverge to the measurements already seen at the current timestep size
or 𝛾 ≈1. 



A.K. Townsend, H.J. Wilson Journal of Non-Newtonian Fluid Mechanics 261 (2018) 136–152 

Fig. 17. An amplitude sweep of our Hookean dumbbell solution with three different natural lengths for the dumbbells, at 𝐷𝑒 = 0 . 56 . 
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This observation of Q aside, we also see that increasing the ampli-
ude decreases the nonlinearity, and it is mostly unchanged by changes
n the spring constant. Subfigure (f) demonstrates this with Lissajous
urves for the high amplitude of 𝛾0 = 25 . 6 : all the curves, despite having
ifferent ‘widths’, are propeller-shaped, with the same concavity. The
ifferent widths in the curves are physically explained by considering
hat stronger dumbbell springs require more applied shear to deform
hem. 

The aforementioned concavity is described by Gilbert and Giacomin
25] as ‘wrong convexity’, which they found for De ≳1. Wrong convexity
s not observed experimentally [26] . 

The mean alignment of the dumbbells is measured in subfigure (d):
hanging the spring constant is shown to not have any great effect, al-
hough there is the slightest demonstration at the highest amplitudes
hat increasing the spring constant leads to stronger alignment at the
oments of maximum shear rate (the peaks). 

Looking at the normalised values of G ′ and G ′′ in subfigures (a) and
b), we see that both moduli ultimately decrease at high amplitudes,
howing strain thinning, as particles align at the edge of the shear cy-
le. However, increasing the spring strength takes the suspension from
 Type I, where we see mostly only strain thinning, to a hybrid Type
–Type IV, where G ′ sees an initial increase as the strain amplitude is
ncreased, before eventually decreasing. This initial increase in G ′ , the
lastic modulus, makes sense: as we increase the amplitude, the elastic
orces in the system do more work. 
a  

145 
We only observe a ‘bump’ in G ′ for spring constants k ≳1. Above
his value, the size of the bump appears to be proportional to the spring
onstant. Below this value, we just see G ′ decreasing, although there
s a turning point at k ≈0.25: for passive dumbbells ( 𝑘 = 0 ), we would
xpect flat G ′ ( 𝛾0 ) profiles, so for small enough spring constants, G ′ starts
o decrease less. Thus the spring constant has two effects: to alter the
ize of the bump, and to alter the amount of strain thinning. 

Interestingly, the transition stage of a bump in G ′ but not in G ′′ is not
ne of the four explicit types labelled by Hyun et al. [12] : the bump is
iscussed in Section 4.6 . 

The raw measurements in subfigure Fig. 16 (c) show that the viscous
odulus, G ′′ , increases for higher spring constants. However, at low am-
litudes, the elastic modulus, G ′ , initially shifts upwards with increasing
mplitude before shifting downwards again: readings for k are close to
eadings for 1/ k . This is only seen at low amplitudes, though: at high
mplitudes, the overshoot in G ′ , which grows for increased spring con-
tant, is large enough so that G ′ only shifts upwards for increased spring
onstant. 

ffect of natural length. In Fig. 17 , we see G ′ and G ′′ for dumbbells of
ifferent natural lengths, L . Again as in SAOS, since the natural length
f the dumbbell is a required physical parameter, but not part of the
ldroyd-B model, the effect of increasing it on the rheological param-
ters is quite complicated. If we first look at subfigure (d), though, the
onlinearity parameter Q has at least one point to make: at the largest
mplitudes, there is not much difference between the samples. This
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Fig. 18. An amplitude sweep of our Hookean dumbbell solution at two different dumbbell concentrations, at 𝐷𝑒 = 0 . 56 . 

m  

u  

n
 

l  

d  

l  

e
 

f  

a  

r

E  

c  

i  

s  

b
 

b  

a  

w  

h  

s  

d  

t  

i

4

 

p  

d  

c

E  

s  

b  

f  

‘  

a  

w  

s  

p  

s
 

A  

t  

i  
akes sense: at the largest amplitudes, the differences between the nat-
ral lengths is comparatively small. For mid-sized amplitudes, shorter
atural lengths display less nonlinearity. 

Looking at subfigure (a), as seen for SAOS, increasing the natural
ength leads to increases in the readings for G ′ and G ′′ . The normalised
ata in (b) shows a slightly larger bump in G ′ for higher dumbbell
engths: larger lengths have greater exposure to the shear, which could
xplain this. The viscous modulus, G ′′ , is unchanged. 

The alignment of the three samples, in subfigure (c), are initially dif-
erent. This difference is maintained at the peaks, but the plots converge
t the troughs. The trend of slightly decreasing peak measurements, al-
eady identified in previous test cases, is also seen here. 

ffect of concentration. We see in Fig. 18 an amplitude sweep for con-
entrations of 𝑐 = 10% and 20%. Large-amplitude effects begin to kick
n at amplitudes of around 𝛾0 = 2 . Looking at subfigure (b), both suspen-
ions again lie somewhere between Types I and IV, as we see a upward
ump in G ′ before decreasing, yet G ′′ stays constant until decreasing. 

As we saw in the frequency sweep, subfigure (a) shows that dou-
ling the concentration leads to readings for G ′ and G ′′ which are, on
verage, twice as large. This remains true in the nonlinear regime as
ell, with the normalised plot, (b), showing similar readings for the
igher concentration. This makes some sense: we are seeing simply the
um of forces from twice as many dumbbells. Similarly, the measure of
umbbell alignment in (c) shows very little difference between concen-
146 
rations, and the nonlinearity reading in (d) also shows little difference
n nonlinearity between the two solutions. 

.4. FENE dumbbells 

In small oscillations, as we have seen in Section 3.3 , dumbbells ex-
eriencing a finitely extensible nonlinear elastic force, Eq. (26) , are in-
istinguishable from Hookean dumbbells, as the applied shear does not
ause the spring to extend outside of its mostly linear regime. 

ffect of maximum extension. At larger shear amplitudes, we begin to
ee distinctions between the different FENE models and Hookean dumb-
ells, although they are slight. Fig. 19 shows the readings for G ′ and G ′′
or four samples: Hookean dumbbells (essentially FENE dumbbells with
maximum extension’ 𝓁 = ∞), and then FENE dumbbells with 𝓁 = 40 , 20
nd 10. These values are chosen following preliminary simulations, in
hich we found that the maximum extension of Hookean springs with

pring constant 𝑘 = 2 , undergoing oscillatory shear at the largest am-
litude, is no larger than 50. In each case, the Deborah number is the
ame. 

Until 𝛾0 ≳10, there is not a great difference in the G ′ and G ′′ plots.
fter that, we see that the shorter maximum extensions break away from

he Hookean measurements, with G ′ decreasing faster for shorter max-
mum extensions, and G ′′ decreasing faster for larger maximum exten-
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Fig. 19. An amplitude sweep of Hookean dumbbells, FENE dumbbells with 𝓁 = 80 and FENE dumbbells with 𝓁 = 40 , at 𝐷𝑒 = 0 . 56 . 
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ions. The nonlinearity parameter, Q , displays greater nonlinearity at the
maller maximum extensions, while the mean dumbbell pitch is mostly
nchanged. 

.5. LAOS with fluid models 

Several fluid models are derived from idealised dumbbell suspen-
ions. We now compare the analytically-derived large-amplitude be-
aviour of these models with our LAOS simulations. For Hookean dumb-
ells, the appropriate model is the aforementioned Oldroyd-B model,
nd for FENE dumbbells we have the FENE-P and FENE-CR models. 

The rheological behaviour of these models at large amplitudes can
e derived from their governing equations, which for all three have the
orm 

 ⋅ 𝒖 = 0 , (32a) (
𝜕 𝒖 

𝜕𝑡 
+ 𝒖 ⋅ 𝛁 𝒖 

)
= 𝛁 ⋅ 𝞼, (32b) 

respectively, the continuity and momentum equations, together mak-
ng up the Navier–Stokes equations —and the constitutive equation, 

= − 𝑝 𝙄 + 2 𝜂𝙀 + 𝐺𝑓 ( 𝑅 ) 𝘼 , (32c)

here the evolution of the elastic or polymeric contribution to the stress
ensor, 𝘼 , is given by 

 + 

𝜏

𝑓 ( 𝑅 ) 

∇ 
𝘼 = 𝑔( 𝑅 ) 𝙄 . (32d)
147 
The parameter 𝜏 is the relaxation time of the dumbbells, as intro-
uced in Section 3.2 , and the functions f ( R ) and g ( R ) depend on which
odel we pick. In all cases, 𝑅 

2 = tr ( 𝘼 ) . The parameter G is proportional
o the spring strength and dumbbell concentration. In the constitutive
quation, 𝙀 is once again the symmetric part of the velocity gradient
ensor, and 𝙄 is the identity tensor. 

It is the extra contribution to the stress from the dumbbells, the poly-
eric stress 𝞼𝑝 = 𝐺𝑓 ( 𝑅 ) 𝘼 , which makes this different to the Newtonian
uid model: indeed, if 𝑓 ( 𝑅 ) = 0 , Eqs. (32a) to (32c) are the governing
quations for a Newtonian fluid. 

The evolution of this dumbbell stress contribution is given in Eq.
32d) , where the upper-convected time derivative of this tensor is given by

∇ 
 = 

𝜕𝘼 

𝜕𝑡 
+ ( 𝒖 ⋅ 𝛁 ) 𝘼 − 𝘼 ⋅ 𝛁 𝒖 − ( 𝛁 𝒖 ) 𝖳 ⋅ 𝘼 . (33)

erived in Oldroyd [17] , this is the material derivative appropriate for
 line element which rotate and stretches with the fluid. That is to say,
or a infinitesimal line element d 𝓵, advecting passively in the flow, the
erived tensor d 𝓵 d 𝓵 has 

∇ 
d 𝓵 d 𝓵 ) = 𝟬 . (34)

he dumbbell stress contribution comes from the failure of the dumb-
ells to deform with the fluid elements. 
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The functions f ( R ) and g ( R ) for each model are given by [27] 

ewtonian: 𝑓 ( 𝑅 ) = 0 , (35)

ldroyd-B: 𝑓 ( 𝑅 ) = 1 𝑔( 𝑅 ) = 1 , (36)

ENE-P: 𝑓 ( 𝑅 ) = 

1 
1 − 𝑅 

2 ∕ 𝓁 2 
𝑔( 𝑅 ) = 

𝜏

𝑓 ( 𝑅 ) 
, (37)

ENE-CR: 𝑓 ( 𝑅 ) = 

1 
1 − 𝑅 

2 ∕ 𝓁 2 
𝑔( 𝑅 ) = 1 , (38)

here 𝓁 is the maximum dumbbell extension. 
Suppose we now apply oscillatory xy -shear, Eqs. (1) and (3) . To find

he rheological parameters, we need to find the xy term of the stress
ensor, 𝜎xy , which by Eq. (32c) depends on A xy and R ( = 

√
𝐴 𝑥𝑥 + 𝐴 𝑦𝑦 ).

he evolution equation of 𝘼 , Eq. (32d) , can be rearranged and written
ut as 

𝜕 

𝜕𝑡 

( 

𝐴 𝑥𝑥 𝐴 𝑥𝑦 

𝐴 𝑥𝑦 𝐴 𝑦𝑦 

) 

− 

( 

𝛾̇𝐴 𝑥𝑦 0 
𝛾̇𝐴 𝑦𝑦 0 

) 

− 

( 

𝛾̇𝐴 𝑥𝑦 𝛾̇𝐴 𝑦𝑦 

0 0 

) 

= − 

𝑓 ( 𝑅 ) 
𝜏

( 

𝐴 𝑥𝑥 − 𝑔( 𝑅 ) 𝐴 𝑥𝑦 

𝐴 𝑥𝑦 𝐴 𝑦𝑦 − 𝑔( 𝑅 ) 

) 

. (39)

We therefore have to solve this coupled system of evolution equa-
ions. In the Oldroyd-B case, when 𝑓 ( 𝑅 ) = 𝑔( 𝑅 ) = 1 , we can solve this
ystem explicitly [8] . Otherwise we can do so using a numerical ODE
olver. 

Taking the solutions for A xx , A xy , A yy , then, we construct the solution
or 𝜎xy and pass this stress through the same process described at the
eginning of this section to find G ′ , G ′′ , their higher harmonics and Q ,
or a chosen frequency, as functions of amplitude. 
Fig. 20. An amplitude sweep of the FENE-P model, w

148 
ldroyd-B fluid. The polymeric stress, 𝞼𝑝 , is derived from the forces on
he dumbbells, which in the models come from Stokes drag, Brownian
otion and the spring force, F . If the dumbbell length is given by R , the
olymeric stress is given by 

𝑝 = ⟨𝑹 𝑭 ⟩, (40)

here the angle brackets ⟨ · ⟩ represent some form of averaging over
ll the dumbbells. We can write the Hookean force law, Eq. (20) , as
 = 𝐺 𝑹 . Therefore the polymeric stress is given by 

𝑝 = 𝐺⟨𝑹 𝑹 ⟩ =∶ 𝐺𝘼 , (41)

hich evolves as in Eq. (32d) with 𝑓 ( 𝑅 ) = 𝑔( 𝑅 ) = 1 . 
The expressions for G ′ and G ′′ in an Oldroyd-B fluid, Eq. (21) , are

erived from explicitly solving Eq. (39) with 𝑓 ( 𝑅 ) = 𝑔( 𝑅 ) = 1 . Observe
hat these expressions have no dependence on amplitude: not surprising,
iven that Hookean dumbbells have no natural lengthscale. 

For a true Oldroyd-B fluid, then, G ′ ( 𝛾0 ) and G ′′ ( 𝛾0 ) should be con-
tant while, Q ( 𝛾0 ) should be zero throughout, given that the higher har-
onics 𝐺 

′
3 and 𝐺 

′′
3 are zero. Given that our simulations with Hookean

umbbells show nontrivial rheological parameters, these must be af-
ected by something else. 

ENE-P fluid. We can write the FENE force laws for the dumbbells, Eq.
26) , as 

 = 𝐺𝑓 ( 𝑅 ) 𝑹 , 𝑓 ( 𝑅 ) = 

1 
1 − 𝑅 

2 ∕ 𝓁 2 
. (42)

he force law is no longer linear, making us unable to describe its evo-
ution in a closed form. Approximations are therefore needed. 

In the FENE-P model, developed by Bird et al. [28] after inspiration
rom Peterlin [29] , the force function f ( R ) is replaced by the force due
ith 𝓁 = 40 and 𝐷𝑒 = 0 . 56 ( 𝑘 = 2 and 𝜔 = 10 𝜋∕3 ). 
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Fig. 21. Normalised G ′ and G ′′ and the nonlinearity parameter, Q , compared 
for our FENE simulations and the FENE-P and FENE-CR models, all with 𝓁 = 40 , 
𝐷𝑒 = 0 . 56 . 
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o the average dumbbell length, f ( ⟨R ⟩). Hence the force law is linearised
s 

 = 𝐺𝑓 ( ⟨𝑅 ⟩) 𝑹 , (43)

nd the polymeric stress contribution becomes 

𝑝 = 𝐺𝑓 ( ⟨𝑅 ⟩) ⟨𝑹 𝑹 ⟩ = 𝐺𝑓 ( 𝑅 ) 𝘼 , (44)

here 𝑅 

2 = tr ( 𝘼 ) . This evolves as in Eq. (32d) with 𝑔( 𝑅 ) = 𝜏∕ 𝑓 ( 𝑅 ) , and
ives a shear-thinning viscosity. 

The resultant rheometric plots are seen in Fig. 20 . Subfigure (a)
hows both G ′ and G ′′ decreasing, in the style of a Type I fluid. A com-
arison with the simulation measurements can be seen in Fig. 21 a. The
ecrease in G ′′ matches well, similar to what we see in our simulations,
ut the behaviour of G ′ at moderate amplitudes is different: the model
redicts no bump in this regime, although it does decrease at a similar
ate following this. 

The Lissajous curve in Fig. 20 b shows the evolution from a linear
esponse at small amplitudes, to a flattened ellipse, to a flag-shape at
he highest amplitudes. 

The nonlinearity parameter, Q , in Fig. 20 c, decreases for increased
mplitude, but we can see that the results at low amplitudes are very
ensitive to timestep size. These are interesting when compared to the
imulation measurements in Fig. 21 b. In the comparison figure, Q with
he FENE-P model matches the simulation well at the highest ampli-
Fig. 22. An amplitude sweep of the FENE-P model for

149 
udes. However, the overall shape observed in the simulation, with the
ip at moderate amplitudes, is similar to the overall shape for the FENE-
 model at low resolutions. Increasing the resolution gives convergence
o a flat profile for low amplitudes, which is what we would expect,
iven the convergence of G ′ and G ′′ here. This confirms that what we
ee for Q in the simulation at low amplitudes is noise, and nothing more
ubstantial. 

Changing the dumbbell concentration or spring law (and hence G )
imply scales the stress response, in agreement with the experiments in
ig. 18 , where we change the concentration, but in contrast to Fig. 16 ,
here we change the spring constant. In the latter case we saw higher

pring constants leading to larger G ′ bumps, and the absence of this
ere is the largest difference between what we see in simulations and
he FENE-P model. 

Changing the frequency or maximum extension in Fig. 22 leads to
ore interesting regimes. Increasing the frequency leads to faster de-

reases in G ′ but the creation of a bump in G ′′ : the Type III regime. This
s the opposite of what we see in the simulations, Fig. 16 , where increas-
ng the frequency —equivalent to reducing the spring constant —reduces
oth G ′ and G ′′ . Increasing the maximum extension makes the dumbbells
ore Hookean, leading to a more linear response. For G ′′ , this agrees
ith our FENE suspensions, Fig. 19 , although again we do not see the
ump in G ′ . 

ENE-CR fluid. The FENE-CR model, developed by Chilcott and Rallison
30] , makes an artificial change to the evolution of 𝘼 , Eq. (32d) , setting
( 𝑅 ) = 1 . This keeps the steady shear viscosity constant. 

Fig. 23 shows the rheometrical measurements which come from solv-
ng the governing equations. In subfigure (a), G ′ decreases with in-
reased amplitude, whereas G ′′ rises slowly. The Lissajous plot in subfig-
re (b) shows the form of the nonlinear response at higher amplitudes,
orphing from an ellipse to a rounded rectangle, before experiencing

inks towards the edge of shear. The nonlinearity parameter, Q , in sub-
gure (c) shows a familiar pattern, again decreasing at higher ampli-
udes. 

Looking back at the comparison in Fig. 21 a, this fits our simulation
easurement worse, given that G ′′ does not decrease. Of course, this is

o be expected: the simulations show the suspension to be shear-thinning
nd this model is designed explicitly to have a constant viscosity. 

The response of the FENE-CR model to changes in spring constant,
oncentration, frequency and maximum dumbbell extension is mostly
imilar to the FENE-P model: there is still a bump in G ′′ at higher fre-
uencies. 
 different frequencies and maximum extensions. 
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Fig. 23. An amplitude sweep of the FENE-CR model, with 𝓁 = 40 , 𝑘 = 2 and 𝜔 = 10 𝜋∕3 . 

Fig. 24. An amplitude sweep of the FENE-CR model for different frequencies and maximum extensions. 
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.6. Comparison of simulations and fluid models 

Despite tentative matching of G ′′ between our simulations and the
ENE-P model, none of the continuum models show the bump in G ′
hat we see in our simulations. The bump is a robust feature at high
pring constants which we also observe in fully 3D simulations of our
uspensions. 
150 
Furthermore, the bump is also found in both the presence and ab-
ence of hydrodynamic interactions between the particles. In our LAOS
imulations we ignore hydrodynamic interactions between beads since
e are primarily interested in the dumbbell beads as markers, and also

ince insufficiently small timesteps can cause numerical instabilities in
tokesian Dynamics. Fig. 25 verifies the suitability of this approxima-
ion, demonstrating that G ′ and G ′′ amplitude sweeps where long-range
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Fig. 25. Amplitude sweep for G ′ and G ′′ for Hookean dumbbells with 𝐷𝑒 = 
0 . 56 , where particles interact through far-field hydrodynamics using the Rotne–
Prager–Yamakawa tensor. The G ′ bump is visible. Sweep undertaken at reduced 
resolution of 120 RK4 timesteps per oscillation, compared to the usual 1200, 
due to increased computational intensity. 
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Fig. 26. Clockwise Lissajous curves at amplitudes of 𝛾0 = 102 . 4 for our Hookean 
dumbbell suspension with 𝐷𝑒 = 0 . 56 , 𝐿 = 20 , as described in Section 2.2 . 
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ydrodynamic interactions are included, here using an Rotne–Prager–
amakawa potential [31,32] when particles overlap, also display the G ′
ump. 

We observed first in Fig. 16 that the Lissajous curves of the sheared
uspension display ‘wrong convexity’ as described in Gilbert and Gia-
omin [25] , i.e., that there is an inflection point in the upper branch
f the curve occupying the first quadrant. We see from Fig. 26 a that
t high amplitudes, the Lissajous curve has a propellor shape, display-
ng stationary points near the neutral shear position which are not seen
n real-world experiments [26] . In a shear cycle of the simulations, as
he suspension is initially sheared, the dumbbells stretch but resist this
tretch by pulling their endpoints together under the spring force. As
he suspension is then returned to its neutral position, the dumbbells
re compressed, and given their natural length, the dumbbells resist
his compression by pushing their endpoints apart. The strength of this
push’ increases with spring constant, not just because of the increased
trength of the spring force, but also because stronger spring dumbbells
ave a smaller extension at the extreme of the shear cycle, just before
ompression begins. 

This pushing behaviour distinguishes our simulations from the fluid
odels. We can remove the stresslets derived from pushing dumbbells
ig. 27. Total system stress over the first unit of shear, where the Hookean dumbbell
orce is 𝑘 = 2 . In particular, notice that the stress response is no longer periodic. 

151 
o produce the Lissajous curve in Fig. 26 b, However, this is unlikely to
e the cause of the G ′ bump, since we find that at all amplitudes, the
alue of the shear for which the maximum stress is obtained, and the
alue of the stress when the maximum shear is obtained, both of which
efine G ′ (recall Eq. (15) ), remain mostly the same. 

Our Hookean springs are given a natural length since alternative
ookean spring models, for example giving the dumbbells a zero natural

ength, or keeping a nonzero natural length but specifying that below
his natural length the dumbbell produces no internal force, produce
umbbells which contract to zero length quickly, even in strong shear
ow. Fig. 27 shows the resultant stress in the fluid for zero-natural

ength dumbbells over two units of shear, where the dumbbells are
laced in with extensions of Δ𝑥 = 20 . Even at low spring strengths, we
nd the same pattern: dumbbells contract quickly to zero length, reduc-

ng the stress in the fluid to almost zero. In particular, the stress response
s no longer periodic, and we cannot describe it using G ′ and G ′′ . 

Again recalling Fig. 16 , wrong convexity is seen for all spring con-
tants, whereas the G ′ bump is only seen for spring forces k ≳1: it
s therefore unlikely that wrong convexity causes the G ′ bump. With
maller spring forces, the behaviour of G ′ and G ′′ matches the FENE-P
odel better. Simply, we may not be finding agreement with our an-

lytical models because the spring forces we are applying may be un-
hysically large. 

. Conclusions 

By placing simple bead-and-spring dumbbells, with various force
aws, into a suspension, we are able to show that the resulting suspen-
ion behaves as a viscoelastic fluid. We have shown that we can tune
he degree of viscoelasticity by tuning certain parameters in these force
aws. 

In Section 2 , we have developed Stokesian Dynamics to allow us
o include these force laws easily, and then been able to measure the
s have zero natural length, starting with extensions of Δ𝑥 = 20 . Here the spring 
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heological behaviour of the simulated suspensions. We have been able
o do so using two techniques, neither of which require the addition of
hysical walls to be placed into the system. 

Our small-amplitude tests in Section 3 confirmed that the dumbbell
uspension behaved as an Oldroyd-B fluid, and we showed the effect
f changing the parameters in the model. Our large-amplitude tests in
ection 4 showed that in the absence of any interparticle forces, other
han the spring laws, the dumbbell solution behaves as a strain thinning
uid. With stronger spring constants, the solution exhibits a strong strain
vershoot. We were also able to quantify the degree of nonlinearity in
ur suspension, introducing a measure of dumbbell alignment, and how
his depends on the parameters in the spring law. In particular, we have
hown that in all cases, increasing the shear amplitude led to decreased
onlinearity. We also compared the measurements from our dumbbell
uspensions with established non-Newtonian, constitutive laws, show-
ng the parameter values at which we find agreement and disagreement.

This lays good groundwork for further studies using Stokesian Dy-
amics, confirming that if we added larger particles, we would be able
o model a suspension in a viscoelastic fluid. 
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