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Neurons are highly complex and polarised cells that must overcome a series

of logistic challenges to maintain homeostasis across their morphological

domains. A very clear example is the propagation of neurotrophic signalling

from distal axons, where target-released neurotrophins bind to their receptors

and initiate signalling, towards the cell body, where nuclear and cytosolic

responses are integrated. The mechanisms of propagation of neurotrophic sig-

nalling have been extensively studied and, eventually, the model of a ‘sig-

nalling endosome’, transporting activated receptors and associated complexes,

has emerged. Nevertheless, the exact nature of this organelle remains elusive.

In this Review, we examine the evidence for the retrograde transport of neu-

rotrophins and their receptors in endosomes, outline some of their diverse

physiological and pathological roles, and discuss the main interactors, mor-

phological features and trafficking destinations of a highly flexible endosomal

signalling organelle with multiple molecular signatures.
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Where trafficking meets signalling
How to propagate a retrograde signal

The complexity and high polarisation of neurons

impose a mighty challenge for the precise and timely

delivery of material to different subcellular compart-

ments, which is needed for differentiation and homeo-

static control. Proper function of the nervous system

relies on the ability of neurons to integrate events

occurring across their different domains to regulate

their metabolism, excitability, and morphology [1–3].
A very clear example of this challenge is how neu-

rotrophic factors secreted by target cells are sensed by

axon terminals, and how their signals are propagated

towards the cell body to have an impact on gene

expression, synapse formation, dendritic branching,

survival, or targeted cell death [4].

Neurotrophins constitute a family of homodimeric

ligands that includes nerve growth factor (NGF),

brain-derived neurotrophic factor (BDNF), neu-

rotrophin-3 (NT3), and neurotrophin-4/5 (NT4/5).

They bind two different types of receptors, tropomyo-

sin-related kinase receptors (Trk) and the p75 neu-

rotrophin receptor (p75NTR). Trk receptors bind

specific neurotrophins; TrkA binds preferentially

NGF, TrkB binds BDNF and NT-4/5, and TrkC
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binds NT-3. When activated, they promote cell sur-

vival, axonal growth, and dendritic branching through

their interaction with specific neurotrophins and down-

stream activation of signalling cascades, comprising

phosphoinositide 3-kinase (PI3K)-Akt pathway, mito-

gen-activated protein kinases (MAPKs) and phospholi-

pase C-gamma (PLCc) [5]. In contrast, p75NTR binds

all neurotrophins with similar affinity, as well as their

unprocessed forms called proneurotrophins, and other

ligands [6]. Due to its lack of intracellular catalytic

activity, p75NTR depends on ligand-induced recruit-

ment of adaptors and coreceptors to exert a wide

range of diverse functions, such as potentiating TrkA

prosurvival pathways, synergising with sortilin to

induce cell death, or interacting with NogoR to induce

growth cone collapse [7–9].
Propagation mechanisms of retrograde neurotrophic

signalling have been extensively studied. Rita Levi-

Montalcini observed that radiolabelled NGF accumu-

lates in sympathetic ganglia after subcutaneous or

systemic injection, suggesting that the ligand is actively

transported from the periphery to neuronal somata

[10]. In a follow-up study, Hendry and colleagues

demonstrated in 1974 that iodinated NGF injected

into the interior eye chamber is taken up by the sym-

pathetic terminals, retrogradely transported to the

superior cervical ganglion in a process requiring micro-

tubules, and accumulates in cell bodies for up to 16 h

[11].

The discovery that, after ligand-induced internalisa-

tion, TrkA and TrkB receptors are rapidly transported

from axon terminals to soma [12,13], together with the

evidence showing that receptors engage specific sig-

nalling pathways from postendocytic compartments

[14,15], enabled the formulation of the ‘signalling

endosome’ hypothesis, coined by the group of William

Mobley [16,17]. According to this model, internalised

receptors together with their cargos are transported in

specialised endosomes, where they are able to interact

with different signalling molecules to regulate local

events in axon and dendrites, as well as long distance

effects in the cell body, including gene expression [18].

In the last 20 years, extensive research using in vitro

compartmentalised cultures and in vivo models, high-

resolution fluorescence microscopy, electron micro-

scopy and biochemistry, has permitted the detailed

analysis of retrograde signalling carriers distribution,

composition, and function. Two methodological

approaches have particularly furthered our under-

standing of these organelles. The first is the use of

time-lapse fluorescence microscopy to follow endo-

somes, analyse their biogenesis, the frequency and

speed of retrograde transport, and how the latter is

affected under pathological conditions [19–23]. Second,
subcellular fractionation, as well as affinity purification

methods targeting retrograde signalling carriers, has

shed light on their molecular signatures, including the

machinery that regulate their transport, specific orga-

nelle markers, transported receptors, and associated

signalling complexes [24–27].

Axonal transport machinery and retrograde

signalling

The retrograde transport of neurotrophins and their

receptors relies on the polarised distribution of micro-

tubules in axons. Axonal microtubules are uniformly

oriented with their plus-end facing towards the distal

axon. Distal dendrites display a similar orientation of

microtubule, whereas a mixed distribution can be

found in proximal dendrites [28,29]. Molecular motor

complexes recognise the lattice of this organised micro-

tubule array and drive directional transport, with most

kinesins moving cargoes towards the microtubules

plus-end and cytoplasmic dynein towards the minus-

end [30]. Based on the directionality of their move-

ment, the retrograde axonal neurotrophic signalling

therefore depends on cytoplasmic dynein transport

[31]. The dynein complex is formed by six components,

each of them present as dimers: the dynein heavy

chain (DHC), the intermediate chains (DIC), the light

intermediate chains (DLIC), and three light chains

(DLC). The dynein complex interacts with the dyn-

actin complex, which is necessary for dynein activity

[32]. Signalling endosomes carrying activated TrkA

associate with the neuron-specific variant DIC-1B [33],

and upon NGF or BDNF stimulation, DIC is phos-

phorylated by ERK1/2, a kinase-activated downstream

to Trk receptors, promoting the recruitment of the

cytoplasmic dynein complex to signalling endosomes

[34]. Signalling endosomes also associate with the

DLC Tctex1, although it is presently unclear whether

this process is activity-dependent [35]. In cortical neu-

rons, TrkB-containing endosomes use the dynein adap-

tor Snapin, which interacts with DIC and recruits the

dynein complex. In a Snapin knockout model, the ret-

rograde transport of TrkB is reduced, negatively

affecting BDNF signalling in the soma [36]. However,

the finding that axonal transport of TrkB is not com-

pletely abolished in neurons lacking Snapin indicates

that multiple adaptors recruit cytoplasmic dynein on

signalling endosomes.

To trigger the neurotrophic retrograde signalling,

Trk receptors first need to reach the axonal tip. The

delivery of TrkB from the soma to the distal axon

depends on kinesin-1, which binds to a complex
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constituted by collapsin response mediator protein 2,

Slp1 and Rab27B, in cultured hippocampal neurons

[37]. Alternatively, TrkB can also associate in the

same cellular model to c-Jun NH2-terminal kinase-

interacting protein 3 (JIP3), which directly binds kine-

sin-1 light chain, and mediates the anterograde trans-

port of TrkB in axons, but not in dendrites [38]. In

sensory neurons, the anterograde transport of TrkA is

carried out in Rab3-positive carriers by the kinesin-3

family member, KIF1A. Dorsal root ganglia (DRGs)

from a Kif1a+/� mouse model exhibit progressive

TrkA-positive sensory neuron loss, and develop sen-

sory neuropathy [39].

The transport of signalling endosomes also

requires an intact actin cytoskeleton. For instance, in

motor neurons in culture, the trafficking of signalling

endosomes labelled with a nontoxic fragment of the

tetanus toxin (HCT), is impaired after treatment with

Latrunculin B, an inhibitor of actin polymerisation.

In agreement with this, the retrograde transport of

these endosomes relies on the coordination between

cytoplasmic dynein and myosin Va [40]. The afore-

mentioned study takes advantage of an interesting

feature of the tetanus toxin (TeNT); namely, that

TeNT and its binding fragment HCT are transported

in axonal neurotrophic signalling endosomes [22,41].

Therefore, fluorescent versions of these bacterial pro-

teins are excellent tools to monitor axonal transport

of neurotrophins and their receptors [42]. TeNT is

not the only virulence factor or pathogen trans-

ported in this way, in fact, the signalling endosome

pathway is a main portal for neurotrophic viruses

and virulent factors targeting the central nervous sys-

tem [43].

Axonal transport and signalling endosome dynamics

are coordinated by Rab GTPases, which are master

regulators of intracellular membrane trafficking. They

function as molecular switches, cycling between an

active, GTP-bound, and an inactive, GDP-bound

states. Since their intrinsic GTPase activity is very low,

the active state is promoted by guanine nucleotide

exchange factors (GEFs) and the inactive state is medi-

ated by GTPase-activating proteins (GAPs) [44]. Dur-

ing the Rab cycle, Rab GTPases change their cellular

distribution, with the GTP-bound state thought to

associate to the membrane of the target organelle,

whilst the GDP-bound state remains cytosolic,

although evidence for a GTP-independent membrane

recruitment is emerging [45]. A subset of Rab interac-

tors binds preferentially to the GTP-bound state, act-

ing as downstream effectors of the Rab activation

cascade. Interestingly, some of the Rab effectors are

GEFs or GAPs of other Rabs, enabling the interaction

between different organelles and the progression of

cargoes from one to another [46].

Upon internalisation, neurotrophin receptors are

sorted to the endocytic pathway, therefore Rab

GTPases regulating the endocytic network are pivotal

for neurotrophic signalling. Rab5 is a main determi-

nant of early endosome identity, regulating their motil-

ity and homotypic fusion, while Rab7 controls the

maturation of late endosomes, their trafficking, and

fusion to lysosomes, among other functions [47]. In

the endocytic pathway, Rab5 recruits Vps34, a lipid

kinase that generates phosphatidylinositol-3 phosphate

(PtdIns(3)P), and Rabaptin-5, which in turn stabilise

the Rab5 GEF Rabex-5, generating a Rab5-GTP posi-

tive feedback loop. Rabex-5 and PtdIns(3)P are

required for the association of Mon1, and the Mon1-

Ccz1 complex to early endosomes. This complex has

been shown to act as Rab7 GEF, and together with

the Rab5 effector homotypic fusion and sorting com-

plex (HOPS), recruits Rab7 to the endosomal mem-

brane. Additionally, Mon1 interrupts the Rab5

positive feedback loop, enabling the exchange of Rab5

for Rab7 [48]. This process is known as Rab conver-

sion and contributes to the mechanism by which early

endosomes mature into late endosomes [49]. Rab con-

version also exemplifies how Rab GTPases define the

identity of subcellular compartments [50]. Which Rab

GTPases, GEFs, GAPs, and effectors characterise the

retrograde signalling carriers is one of the key aspects

defining their identity and will be discussed below.

The subcellular localisation of neurotrophin recep-

tors is crucial for the proper regulation of their down-

stream signalling. In this regard, neurotrophic

signalling controls the trafficking of its own receptors.

An example of this can be found during migration of

cerebellar granule cell precursors (GCPs), which occurs

along a BDNF gradient. In response to this gradient,

activated TrkB receptors carried by signalling endo-

somes accumulate at the leading edge of GCPs, which

is oriented towards the BDNF source. TrkB phospho-

rylation induces the release of BDNF from GCPs, gen-

erating an autocrine loop and amplifying the BDNF

gradient [51]. It has also been shown that in cultured

hippocampal neurons stimulated with BDNF, acti-

vated TrkB receptors interact with the transmembrane

protein retrolinkin, driving endocytosis of phosphory-

lated TrkB (pTrkB) and sorting to early endosomes

positive for the Rab5 effector APPL1 [52]. Retrolinkin

also recruits endophilin A1 to these signalling endo-

somes, which allows the downstream activation of

ERK1/2 and boosts dendritic outgrowth [52]. Den-

dritic branching is also regulated by BDNF in hip-

pocampal neurons, where activated TrkB accumulates
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in Rab11-positive recycling endosomes. BDNF-

triggered TrkB activation raises the levels of Rab11-GTP

in dendrites, increasing both the size and the number

of stationary recycling endosomes. As a consequence,

TrkB levels in dendrites are increased, sensitising neu-

ron to BDNF and promoting dendritic branching [53].

Neurotrophic signalling regulates multiple processes,

and neurotrophin receptors exhibit different destina-

tions. The maintenance of cellular homeostasis and sur-

vival rely on the ability of neurons to coordinate the

journey of these receptors in the endocytic pathway and

their sorting after reaching the cell body. In this review,

we will briefly present the different cellular roles of ret-

rograde neurotrophic signalling and some key examples

of pathological dysfunction in neurodegenerative dis-

eases. We will then discuss the identity of the signalling

endosome, its composition, and destinations.

Retrograde neurotrophic signalling in
physiology and pathology

Physiological roles

The regulation of neuronal survival was the first func-

tion originally described for neurotrophic factors, and

is intrinsically linked to their discovery [54]. During

their studies monitoring neuronal death during embry-

onic development in chick embryos, Viktor Ham-

burger and Rita Levi-Montalcini observed that after

removal of the wing bud, massive neuronal degenera-

tion takes place in the brachial ganglion innervating

the ipsilateral side, at the time when axonal projections

reach their targets. They concluded that ‘adequate con-

nections with the periphery are necessary for the main-

tenance of sensory neurons’ [55]. These set of

experiments gave rise to the neurotrophic factor the-

ory, which states that during development, neurons are

overgenerated, hence in order to survive, they compete

for target-derived trophic factors that are supplied in

limited availability [56]. Further experiments led to the

isolation of NGF as the factor-promoting survival and

maintenance of sympathetic neurons [57,58]. Knockout

mice models confirmed those observations, and

expanded the neurotrophic factor theory to other

members of the neurotrophic family. For instance,

NGF and TrkA null mice show an extensive reduction

in total neuron number in DRGs and trigeminal gan-

glion after birth, with almost complete absence of sym-

pathetic ganglia after 10 days [59,60]. BDNF and

TrkB knockout models exhibit overt neuronal loss in

the vestibular ganglion, as well as moderate but signifi-

cant neuronal death in DRGs [61,62]. Finally, NT3

null models revealed a marked reduction in

proprioceptive DRG neurons, with a concomitant

impairment of muscle spindle development [63], a role

that is independent of NT3 signalling through TrkC

[64]. At the molecular level, internalisation and retro-

grade trafficking of the NGF/TrkA complex are

required for the promotion of neuronal survival [65].

Distal NGF stimulation of DRGs or sympathetic neu-

rons in compartmented cultures triggers the phospho-

rylation and activation of the transcription factor

cAMP response element-binding protein (CREB) in

the cell body, [66,67]. Phosphorylated CREB induces

the expression of the antiapoptotic protein Bcl-2, and

in this way promotes neuronal survival [68]. NGF/

TrkA retrograde signalling, acting through ERK5, also

promotes the expression and activation of the tran-

scription factor MEF2D, which in turn drives the

expression of Bcl-w, another member of the bcl-2 fam-

ily with antiapoptotic activity [69,70]. Interestingly,

upon target innervation, NGF enhances the expression

of TrkA in sympathetic neurons, establishing a posi-

tive feedback loop that enhances prosurvival sig-

nalling, and at the same time releasing BDNF and

NT4, which act as paracrine apoptotic cues that

induce death of neighbouring cells through p75NTR

[71].

In addition to promoting neuronal survival, the retro-

grade neurotrophic signalling also regulates other cellu-

lar processes, including the control of axonal growth.

NGF triggers axon elongation when applied to distal

axons of sympathetic neurons, whereas NGF with-

drawal induces axon collapse even if it is kept in the

somatic compartment [72]. In knockout models, the

analysis of the effect of neurotrophins on axonal growth

requires the ability to discern phenotypic changes inde-

pendently of their survival roles. This daunting task has

been achieved by studying NGF- and TrkA-deficient

mice in a Bax�/� background, in which sympathetic

and DRG neurons overcome cell death in spite of the

absence of NGF/TrkA signalling. In these models, some

sympathetic innervations are completely absent, while

others are partially spared, or not changed at all; this

marked heterogeneity depends on the target organs and

their different requirements for NGF-dependent sympa-

thetic innervation [73]. Accordingly, the superficial cuta-

neous innervation of DRG neurons is absent; however,

the projections targeting the dorsal horn of the spinal

cord are preserved [74]. Specific transcription factors

acting downstream of NGF regulate axon growth inde-

pendent of survival effects; this is the case of nuclear

factor of activated T cells, serum response factor, and

early growth response 3 [75–77].
In addition to retrograde signalling, NGF-dependent

axon elongation also requires local signalling, such as
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the activation of PI3K at the growth cone, which inac-

tivates glycogen synthase kinase 3 beta (GSK3ß) and

regulates cytoskeletal dynamics through the micro-

tubule plus-end binding protein adenomatous polypo-

sis coli (APC) [78]. Interestingly, both NGF and NT3

promote axon growth in sympathetic neurons through

TrkA; however, the effect of NT3 is restricted to prox-

imal elongation across the vasculature, whilst distal

elongation and target innervations depend on NGF.

This spatially controlled regulation is determined by

the distinct TrkA signalling triggered by NT3 and

NGF, since NT3 is unable to induce TrkA internalisa-

tion and signalling from endosomal compartments

[79]. Conversely, TrkA activation by NGF induces the

calcineurin-dependent dephosphorylation of dynamin

1, which in turn mediates TrkA endocytosis, a crucial

step necessary for the induction of axon growth [80].

Dendritic growth and synapse maintenance are also

regulated by retrograde neurotrophin signalling. Quan-

titative morphometric analysis has shown that superior

cervical ganglion neurons innervating larger targets

elaborate more complex dendritic arborisations [81],

and after axonal crush, their dendrites accumulate

large varicosities in the distal segment, altering their

morphology [82]. In addition, in vivo NGF stimulation

in mice increases sympathetic neurons dendritic length,

branching, and number of primary dendrites [83].

Nerve growth factor-TrkA signalling also modulates

synapse formation and maintenance. Indeed, a sub-

population of NGF-TrkA signalling endosomes origi-

nated in distal axons of postganglionic neurons, are

retrogradely transported into dendrites, where TrkA-

dependent MAPK activity induces postsynaptic density

clustering. Activation of TrkA in axonal signalling

endosomes is also essential for the maintenance of

synapses between pre- and postganglionic neurons,

both in vitro and in vivo [84,85]. Taken together, the

control of target innervation, and synapse formation

and maintenance, exemplify how retrograde neu-

rotrophic signalling regulates network formation in the

nervous system, a topic reviewed elsewhere [86,87].

An additional role of neurotrophic signalling is the

regulation of phenotypic specification of neurons. For

example, in double Bax�/�/TrkA�/� mice, peptidergic

nociceptors that failed to innervate distal targets do

not express markers of their lineage, such as calcitonin

gene-related peptide and substance P [74]. Although

the fate of this neuronal population is unclear, the

absence of markers suggests a role of NGF on its phe-

notypic differentiation. NGF also regulates the pheno-

typic differentiation of nonpeptidergic nociceptors. In

this cell population, Ret, the coreceptor for glial-

derived neurotrophic factor (GDNF), is expressed

upon NGF stimulation. Ret induces the expression of

the GDNF coreceptors GFRa1 and GFRa2, as well

as other genes characteristic of the nonpeptidergic lin-

eage. In the same neuronal subtype, NGF triggers the

ERK1/2 pathway downstream to TrkA, and induces

the expression of CBFb, a cofactor of the Runx family

of transcription factors, which upon binding to Runx1,

promotes the nonpeptidergic nociceptor fate [88,89].

An example from the central nervous system is the

phenotypic differentiation of basal forebrain choliner-

gic neurons. When their projections innervating the

hippocampus are transected, thus inhibiting the target-

derived supply of NGF, these neurons stop the expres-

sion of cholinergic markers, such as choline acetyl

transferase, as well as the neurotrophin receptors

p75NTR and TrkA. Although originally considered as

evidence of cholinergic degeneration, the number of

neurons remains unaltered and there is no evidence for

neuronal apoptosis, suggesting that in this model,

NGF is required for maintenance of phenotypic differ-

entiation, but not for neuronal survival [90].

Strong evidence linking neurotrophin signalling to

local protein synthesis and RNA transport is starting to

emerge. For instance, Impa1 mRNA is transported and

translated in the axon in a NGF-dependent manner, in

sympathetic neurons grown in compartmentalised cul-

tures. Impa1 is one of the most abundant axonal tran-

scripts, and its product (myoinositol monophosphatase-

1) is a key enzyme in the inositol pathway, which con-

trols the cellular levels of phosphatidilinositol [91].

NGF also promotes the transport of lamin B2 and Bcl-

w mRNAs (Lmnb2 and Bcl2 l2) towards the axon. Both

mRNAs are cotransported in RNA granules assembled

by the RNA-binding protein SFPQ. In this pathway,

SFPQ acts downstream to NGF/TrkA, and its role is

necessary for neurotrophin-dependent axon viability

[92]. However, it is unclear whether these functions

require the retrograde transport of signalling endo-

somes, or if they rely on local signalling. On the other

hand, the NGF-triggered delivery of b-actin mRNA to

the axon in cultured adult DRG neurons is dependent

on retrograde signalling. This process requires the PI3K

and MAPK pathways, and is impaired by the dynein

inhibitor EHNA [93]. Further studies are, however,

needed to characterise the role of the retrograde neu-

rotrophic signalling on mRNA transport and local

translation, both in axons and dendrites.

Roles in pathology

Neurotrophins and their receptors have been involved

in the pathogenesis of a variety of diseases, including

psoriasis [94], allergies [95], and cancer [96,97].

3619FEBS Letters 592 (2018) 3615–3632 ª 2018 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

D. Villarroel-Campos et al. The signalling endosome’s disguises



However, given their crucial role in neuronal home-

ostasis, deregulation or impairment of axonal trans-

port of neurotrophin signalling endosomes is a

common feature in many neurodegenerative condi-

tions. Here, we present some examples highlighting the

deficits in retrograde signalling in pathology, whilst a

comprehensive coverage of this topic can be found

elsewhere [20,98].

Alzheimer’s disease is a progressive neurodegenera-

tive disorder characterised by memory loss and cogni-

tive decline. The molecular hallmarks of this

pathology include accumulation of extracellular pla-

ques containing amyloid beta (Ab) oligomers, and

intracellular neurofibrillary tangles [99]. Ab oligomers

reduce the transport of endosomes carrying BDNF-

GFP, through a mechanism replicated by the inhibi-

tion of the deubiquitinating enzyme UCH-L1 [100]. In

addition, increased expression of amyloid precursor

protein or its proteolytic fragment C99 upregulates

Rab5 activity, inducing enlargement of Rab5-positive

endosomes and reduced retrograde axonal transport of

NGF in basal forebrain cholinergic neurons, which

leads to cholinergic neuronal degeneration [101,102].

In this regard, clinical trials involving NGF gene deliv-

ery have been carried out, showing evidence of a

trophic response (i.e. cholinergic axonal sprouting)

that was detectable even 10 years after treatment [103].

Huntington’s disease is caused by a polyglutamine

(polyQ) expansion in huntingtin (Htt), and manifests

with progressive cognitive, motor, and behavioural

impairments that eventually become fatal [104].

Although the multifaceted functions of wild-type Htt

are still matter of debate, it has been shown to form a

complex with huntingtin-associated protein 1 and the

dynactin subunit p150Glued [105]. This complex is

required for the retrograde transport of BDNF, a pro-

cess inhibited by polyQ-Htt, which leads to loss of

neurotropic support and consequent neuronal toxicity

[106]. In agreement with this model, expression of

polyQ-Htt reduces the retrograde transport of TrkB-

BDNF complexes in dendrites of striatal neurons

[107]. In addition, reduction of wild-type Htt expres-

sion inhibits the retrograde transport of Rab7-positive

vesicles in Drosophila larval axons [108].

Amyotrophic lateral sclerosis (ALS) is a progressive

neurodegenerative disease affecting upper and lower

motor neurons, which leads to muscle denervation and

wasting, paralysis and death [109]. The pathomecha-

nisms at the basis of this disease are diverse; however,

axonal transport defects are considered among the ear-

liest disease phenotypes [21]. One of the most charac-

terised models of familial ALS is a mouse strain

expressing a mutant form (G93A) of human

superoxide dismutase 1 (SOD1) [110]. Cultured pri-

mary motor neurons derived from SOD1G93A mice

present altered retrograde transport of signalling endo-

somes with fewer carriers, higher number of pauses,

and oscillatory movements [111]. This was confirmed

in vivo, starting at presymptomatic stages of disease

[19,112]. Interestingly, the defects in retrograde axonal

transport in ALS precede the alterations reported in

anterograde transport [113,114] as well as other cellu-

lar pathological phenotypes, suggesting that alterations

in retrograde transport may be a direct cause of this

pathology, rather than a consequence. Interestingly, a

form of familial early-onset ALS is caused by muta-

tions in the Rab5 GEF Alsin [115]. Alsin loss of func-

tion deregulates the trafficking along the

endolysosomal pathway in cultured motor neurons

[116], and interferes with the transport of TrkB and

insulin-like growth factor 1 receptor in cortical and

cerebellar granule neurons [117].

Charcot-Marie-Tooth disease (CMT) is the most

common inherited peripheral neuropathy, affecting

both sensory and motor nerves [118]. CMT type 2B is

caused by mutations in Rab7 that lead to a decreased

nucleotide affinity and unregulated nucleotide

exchange, without affecting its hydrolytic activity.

These Rab7 mutants resemble the constitutively active

Rab7Q67L; they exhibit enhanced interaction with a

subset of Rab7 effectors, and are abnormally retained

on target membranes [27,119]. CMT-related Rab7

mutants affect the directionality of movement of

Rab7-positive endosomes, as well as the transport of

carriers containing TrkA in NGF-stimulated DRG

cultures [120]. The dynamics of Rab7-positive endo-

somes is also altered in Drosophila and zebrafish

CMT2B disease models, where a reduction of the

pausing time has been reported for the Rab7 L129F,

N161T, and V162M mutants [121,122]. The possibility

that the impairment in axonal transport of NGF con-

stitutes a more general pathological mechanism for

other CMT subtypes has been recently explored in a

study showing a reduction of velocity and an increase

in pausing of retrograde NGF in a GarsP234KY/+

model of CMT2D [123].

A new organelle or a master of
disguise?

Formation and molecular signatures

From a biogenesis perspective, the retrograde sig-

nalling carriers are unequivocally endosomes: they

originate from the plasma membrane when neu-

rotrophins bind their receptors and trigger their
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endocytosis (Fig. 1A,A’]). Internalisation of receptors

is crucial not only for long distance propagation of

neurotrophic effects, but also for engaging intracellular

interactors enabling the activation of distinct signalling

pathways [15,124]. It is critical for local effects relying

on the accumulation of signalling molecules at specific

locations, as in the case of synaptic assembly sites,

branching points on neurites and the leading edge of a

migrating precursor [51,53,84,85,125].

Specific mechanisms of internalisation have proved

to be particularly important for generating intracellular

compartments with distinct signalling capabilities.

Using PC12 cells and DRG neurons, the group of Wil-

liam Mobley observed that upon NGF stimulation,

recruitment of clathrin to the plasma membrane was

increased, and TrkA receptors were rapidly endocy-

tosed and sorted to small peripheral organelles together

with NGF. Isolation of these endocytic vesicles showed

that they were enriched in phosphorylated receptors

together with clathrin heavy chain and its AP2 adaptor.

Different signalling molecules, including PI3K, PLCc
and ERK1/2, were also present in the same samples

[26]. However, Halegoua and colleagues subsequently

showed that clathrin-dependent endocytosis accounted

for only a fraction of internalised receptors in PC12

cells and DRGs, whilst a larger proportion was gener-

ated from macropinocytosis. They showed that sorting

of TrkA to signalling carriers depends on the Rho-

GTPase Rac and the macropinocytic adaptor Pincher.

These markers characterise a particular type of posten-

docytic organelle that, in contrast to signalling endo-

somes containing EGF receptors, was protected from

lysosomal degradation [126–128]. Interestingly, the

mechanism of internalisation varies depending on the

nature of the receptor, type of neuron, and ligand con-

centration. In this regard, Deinhardt and colleagues

have shown that in primary motor neurons NGF stim-

ulates the internalisation of p75NTR and its targeting to

the fast retrograde transport route by a mechanism ini-

tiated by the recruitment of p75NTR to clathrin-coated

invaginations, which relies on dynamin, but not AP2 or

AP180 adaptors [129].

After endocytosis, receptors are sorted to early

endosomes characterised by the presence of the

GTPase Rab5 (Fig. 1B,B’). Independent lines of evi-

dence suggest that Rab5-positive early endosomes are

the most likely source of retrograde signalling endo-

somes. Mobley and coworkers have extensively charac-

terised the ability of TrkA receptors to recruit specific

signalling molecules to early endosomes, which regu-

late cellular responses, such as neurite outgrowth, in

PC12 cells and DRG neurons [130,131]. They used

isolated sciatic nerve to show that, after several hours

of exposing the distal part of the nerve to NGF, sig-

nalling molecules including Rap1, PI3K, phosphory-

lated ERK1/2 and p38 were enriched in proximal

sections of the axon, together with p75NTR, phospho-

rylated-TrkA receptors and the early endosome mark-

ers Rab5 and EEA1 [25]. In addition, quantum

dots-labelled NGF internalised at DRG axon was

found in organelles positive for TrkA, phosphorylated

ERK1/2 and Rab5b [132].

The protein APPL1 is a Rab5 effector that has been

shown to regulate the sorting of a subpopulation of

early endosomes lacking EEA1 [133,134]. The group

of David Kaplan has shown that TrkA interacts with

APPL1, suggesting that a specific pool of early endo-

somes can function as signalling endosomes. TrkA,

APPL1, and GIPC1, a scaffolding protein that pro-

motes trafficking of APPL1 vesicles to early endo-

somes, were found in endosomal fractions, particularly

in axons of superior cervical ganglia neurons [135].

Notwithstanding the important role of early endo-

somes in the biogenesis and sorting of neurotrophin

receptor-containing carriers to the retrograde transport

route, Deinhardt et al. found that, in spinal cord

motor neurons, these organelles are characterised by

the presence of Rab7 (Fig. 1C). By using HCT to label

retrogradely transported endosomes, our laboratory

has been able to describe a trafficking route shared by

NGF, BDNF, p75NTR, and TrkB [41,129]. Upon cla-

thrin-dependent endocytosis, these cargoes are sorted

sequentially first to a Rab5-positive organelle that

shows oscillatory movement in axons, and then to a

Rab7-positive compartment undergoing fast retrograde

transport. In motor neurons, the initial sorting to an

early endosome is a required step to reach fast retro-

grade axonal carriers, as was demonstrated by using

dominant-negative mutants of Rab5. Moreover, the

axonal trafficking of Rab5 and Rab7 was shown to be

similar in DRG neurons [41].

Importantly, the presence of Rab7 does not appear

to target these organelles to degradation. During mat-

uration from late endosomes to lysosomes, the vAT-

Pase drives the acidification of the endosomal lumen,

providing the optimal environment for full cathepsin

activity and promoting the dissociation of ligands from

their receptors. The surprising finding that the vAT-

Pase is largely excluded from this compartment sug-

gests that these organelles do not belong to the

degradative pathway [136]. Interestingly, similar Rab7-

positive retrograde organelles are involved in the trans-

port of the P2X3 receptor in both motor and DRG

neurons [137].
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It is not clear whether Rab5-positive axonal orga-

nelles have different degrees of mobility in other neu-

ronal types. In hippocampal neurons, for example, it

has been shown that a substantial amount of Rab5 is

retrogradely transported, although its transport is not

very progressive [138]. However, when Zhou and col-

leagues followed fluorescent TrkB in the axon of corti-

cal neurons, most of the receptor was in Rab7-positive

organelles and relied on Snapin to interact with DIC,

thus engaging in retrograde axonal movement [36].

Moreover, when HCT-containing endosomes were

purified from mouse embryonic stem cell-derived

motor neurons using paramagnetic iron beads at dif-

ferent time points after endocytosis, the amount of

Rab5 associated to signalling endosomes progressively

decreased, whilst Rab7 increased about 50% from 10

to 60 min upon internalisation, which is consistent

with a sequential transit of the cargoes through
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Fig. 1. Retrograde neurotrophic signalling organelles and their main

destinations after arrival to the cell body. Different types of

signalling endosomes and their cellular destinations have been

displayed on the top of a camera lucida trace of a mouse primary

motor neuron in culture. The type of carriers and their sequential

trafficking steps emerge from evidence collected using diverse

experimental models, such as sensory, sympathetic, and motor

neurons. Whether they are all present in every neuronal subtype is

currently unknown. After being released by the target tissue, NGF

and BDNF bind to TrkA (A) and TrkB (A’) respectively, triggering

their phosphorylation and internalisation. TrkA-NGF (B) and TrkB-

BDNF (B’) complexes enter the endocytic pathway and reach the

early endosome, an organelle characterised by the presence of

Rab5. Retrograde transport of Rab5-positive carriers of TrkA-NGF

complex has been shown (thick arrow in B). Activated receptors

are then sorted into a late endosome compartment (C),

characterised by the presence of Rab7. This compartment can

undergo retrograde axonal transport towards the soma, or progress

along the endolysosomal route maturing into a multivesicular body

(MBV; D), which contains both Rab7 and CD63. MVBs can also

transport both receptor-ligand complexes to the cell soma. In

addition, autophagosomes have also been reported as retrograde

carriers for TrkB-BDNF (E). We have not included the origin of the

autophagosome in the axonal tip, since it is still a matter of debate.

After signalling endosomes reach the soma, there are sorted into a

variety of destinations. Several lines of evidence indicate that

neurotrophin receptors are delivered to somatic MVBs (F). TrkB-

BDNF in MVBs or single-membrane vesicles can be either

delivered to the plasma membrane or targeted to lysosomes for

degradation (G). A subpopulation of TrkA-NGF positive cargoes has

been shown to be transported into dendrites (H), where it

regulates synapse formation and maintenance. TrkA-NGF

complexes can also be recycled to the soma plasma membrane,

where they might activate na€ıve TrkA receptors (I) and induce their

recruitment to the anterograde axonal transport route in Rab11-

positive organelles (J). The activity of the endoplasmic reticulum-

resident phosphatase PTP1B is required to ensure that no activated

TrkA is sorted into axons. In parallel, a pool of newly synthesised

TrkA receptor is anterogradely transported in secretory vesicles

characterised by the presence of Rab27, CRMP2 and Slp1 (K).
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Rab5- and Rab7-positive compartments [24]. Since the

maturation of early endosomes to late endosomes

depends on the switch between Rab5 and Rab7 [49],

these apparently controversial observations may be

explained by the presence of a maturation gradient

along the axon, which depends on the neuronal type

and signalling context. In the work of Debaisieux and

colleagues, other Rabs were also found associated to

the purified retrograde carriers, suggesting that sub-

populations of Rab7- and Rab5-positive organelles

bearing specific small Rab GTPases may constitute

alternative pathways with distinct function(s) [24].

Consistent with this hypothesis, it has been reported

that the GTPase Rab11, generally associated to recy-

cling cargoes directed to the plasma membrane, is also

cotransported in TrkA-containing retrograde carriers

in sympathetic neurons [139,140].

An alternative hypothesis about the nature of the

retrograde signalling carriers is that they are multi-

vesicular bodies (MVBs; reviewed in [141]). These mul-

tiple-membrane organelles (Fig. 1D) belong to the

endolysosomal system [142] and have been shown to

act as specialised transport organelles as well as a

main source of exosomal vesicles [143]. The possibility

that MVBs may serve as retrograde carriers of acti-

vated neurotrophin receptors has been explored for

almost four decades and it is based on the notion that

specific cytoplasmic microenvironments are preserved

in the lumen of the MVB. This would allow a snap-

shot of the signalling molecules present at the axon

terminal at any particular time to be captured, trans-

ported, and made available in the soma [141]. Recent

evidence has strengthened the putative role of MVBs

in targeting neurotrophin receptors to particular desti-

nations. Consistent with the work showing that

Pincher-mediated internalised TrkB was sorted to

MVBs in the soma of superior cervical ganglia neurons

[126], the Bronfman group found that a pool of inter-

nalised p75NTR is sorted to a compartment positive for

CD63, a marker of MVBs, for its release in exosomes

[144]. Recently, Ginty’s group reported the first evi-

dence using live-cell imaging that CD63 and TrkA are

cotransported in retrograde carriers in the axon of

sympathetic superior cervical ganglion neurons. Inter-

estingly, the majority of axonal Rab5-positive orga-

nelles exhibited short-range bidirectional movement or

were immobile, whereas Rab7-organelles were most

frequently retrograde. These organelles were positive

for Lamp1, CD63, and RILP, and contained not only

phosphorylated TrkA, but also other signalling mole-

cules, including phosphorylated PLCc. This group pro-

posed that, after an initial sorting of the receptors to

early endosomes in axon terminals, these transport

organelles mature to MVBs that require Rab7 and its

effectors, such as RILP, to engage retrograde trans-

port. Some of the receptors would be exposed to the

cytoplasm on the limiting membrane, helping to define

the destination of these carriers, whereas the majority

of receptors would be protected in the intraluminal

vesicles. At their arrival in the cell body, MVBs would

disassemble, originating single-membrane vesicles with

signalling potential [145]. However, it is unlikely that

RILP is the only downstream effector of Rab7 respon-

sible for the coordination of retrograde transport,

since a dominant-negative mutant of RILP fails to

alter the dynamics of HCT-positive retrograde carriers

in spinal cord motor neurons (G. Schiavo, unpublished

results).

Other groups have suggested that a closely related

organelle, the autophagosome, is the main retrograde

carrier (Fig. 1E). Similarly to the MVBs, autophago-

somes are multimembrane organelles involved in the

degradation of a variety of organelles and cytoplasm

[146]. However, autophagosomes are generated by a

distinct mechanism involving the elongation of a

nucleating membrane to isolate a portion of cytoplasm

or a specific organelle. A constitutive, nondegradative

role has been suggested for autophagosomes by Erika

Holzbaur and her group, who showed that in hip-

pocampal neurons the generation of autophagosomes

occurs most frequently at axon terminals, and it is

independent of nutrient deprivation. These distally

generated autophagosomes undergo retrograde trans-

port and are not acidified until they reach the proxim-

ity of the cell body [147]. A distinctive marker of this

compartment is the protein LC3b, which participates

in the elongation of the nascent phagophore. Recent

work from the team of Volker Haucke using cortical

and hippocampal neurons has shown that AP2l inter-

acts with LC3b and regulates the retrograde transport

and maturation of autophagosomes via a mechanism

independent of its established role as a clathrin adap-

tor. pTrkB is found in AP2l- and LC3b-positive orga-

nelles and a knockout mouse of AP2l exhibited a

decrease in both the retrograde transport of TrkB and

dendritic complexity [148].

These partially conflicting observations point to an

intrinsic diversity in the molecular nature of retrograde

signalling carriers, whose relative abundance may be

finely regulated depending on the neuronal type, devel-

opmental stage or signalling, and activity context.

Complexity of membranes

An important morphological feature to help us to dis-

tinguish whether the retrograde signalling carriers are
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endosomes, autophagosomes or MVBs is their single-

or multiple-membrane nature. Early studies on the

generation of signalling endosomes in PC12 cells

showed that after Pincher-mediated macroendocytosis,

TrkA receptors were rapidly associated to MVBs [128].

Interestingly, when subcellular fractionation was used

to isolate NGF-containing postendocytic organelles in

PC12 cells, TrkA and p75NTR were found in different

populations of endosomal vesicles, translucent and

electron dense, respectively. However, a small propor-

tion of both receptors was also in MVBs [149]. More

recently, it has shown that 120 min after NGF-induced

internalisation, around 40% of p75NTR is localised to

MVBs, from which it can be released via an exosome-

mediated pathway [144].

Quantitative electron microscopy has played a key

role to unravel the pleiotropic nature of retrograde sig-

nalling endosomes in neurons. The group of Campenot

took advantage of a compartmentalised culture of

sympathetic neurons to show that 125I-NGF inter-

nalised in axons for 8–10 h was found in a variety of

compartments, including smooth ER, small translucent

vesicles, mitochondria, lysosomes, and MVBs [72,150].

The majority of the signal (37%) was associated to

lysosomes, which accounted for 10% of the fractional

area of the cell. Interestingly, MVBs were the most

densely labelled organelles, concentrating a 6.7% of

signal in just 0.4% of the area of the cell [150]. Consis-

tently, when the group of von Bartheld studied the ret-

rograde transport of BDNF in motor hypoglossal

neurons in vivo, they found that a large proportion of

the BDNF was arriving to the soma and dendrites in

MVBs [151]. Crucially, when they examined axonal

MVBs, they realised that organelles with multiple

membranes were devoid of radiolabelled neurotrophic

factors. In fact, most of the autoradiographic signal

detected in axonal samples had no direct apposition

nor spatial relationship with any observable organelles,

suggesting that neurotrophins were associated to small

vesicles that were masked by the autoradiographic pre-

cipitate. This observation was confirmed by using

quantum dot-conjugated BDNF [152].

Evidence showing that multiple-membrane orga-

nelles are a common destination for retrogradely trans-

ported neurotrophic factors in the soma and dendrites

appears to be consistent between cell lines and neu-

ronal types, including superior cervical ganglia and

hippocampal neurons [126–128] and embryonic stem

cells-derived motor neurons [153]. Whether the sig-

nalling complexes are transported in multiple-mem-

brane organelles along the axon, however, is less clear

from ultrastructural studies. Whereas the cited work of

Altick and colleagues dismissed MVBs as retrograde

carriers of neurotrophic factors [152], other authors

have suggested a clear role for them. For example, the

Meunier’s team has used cholera toxin B subunit

(CTB) in hippocampal neurons to label neurotrophic

factor-transporting organelles after axonal stimulation

with BDNF in microfluidic devices, and found CTB-

positive multiple-membrane organelle aligned with

other single-membrane vesicles in the axon [154].

Working with a different in vivo model, the group of

Hendry has proposed that MVBs are the main carriers

of retrograde NGF and its receptors in sympathetic

neurons [155].

Altogether, these findings suggest that neurotrophic

signalling complexes are transported along the axon in

organelles of different membrane complexity depend-

ing on the type of neuron, the nature of the neu-

rotrophin and its concentration. An interesting

possibility is that there is a gradual assembling of

endocytic vesicles into multiple-membrane organelles

as they move from the axon ending towards the cell

body. Supporting this hypothesis, a recent study from

Ye and colleagues has shown using that TrkA recep-

tors appear to be mainly in single-membrane vesicles

soon after internalisation in axonal tips of sympathetic

neurons, whilst they are found predominantly in

MVBs upon arrival to the proximal axon and cell

body [145]. Interestingly, the study of Altick in motor

neurons also identified axonal MVBs as highly

dynamic organelles and showed an example of vesicu-

lar fusion/fission in an axonal MVB [152].

Alternatively, based on the observation that MVBs

contain a large proportion of retrogradely transported

NGF accumulating in the soma [150], it can be

hypothesised that MVBs are not transporting orga-

nelles, but are the end destination where signalling

endosomes are targeted either to terminate the signal

or to release the receptors in the extracellular medium

via exosomes. Whether the formation of multiple-

membrane structures occurs in the axon of a particular

subpopulation of neurons or it is restricted to the cell

body, constitutes an important open question to be

addressed to clarify the nature of these axonal retro-

grade carriers and their dynamics.

Multiple destinations

What initially emerged as an answer for the problem

of the propagation of neurotrophic signalling from the

axon terminal to the soma is now becoming a more

sophisticated matter: the spatiotemporal regulation of

neurotrophic signalling in different domains of a living

neuron at a particular stage of differentiation and

under a certain physiological context.
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The prevalent destination of the neurotrophic signal

at any given time is probably the axon terminal. In

sympathetic neurons, it is estimated that less than

10% of internalised TrkA is targeted to the retrograde

transport route [156,157], while the reminder pool

recycles back to the terminal surface [158]. Concentra-

tion of ligand and receptor at the axon terminal has

been shown to be crucial to increase the sensitivity to

neurotrophins and promote axon growth, either by

local recycling of receptors or the recruitment of

anterogradely transported TrkA [139]. Whether or not

this is also true for p75NTR, it is currently not clear.

Nevertheless, it has been recently shown that after

treatment of sympathetic neurons with NGF, TrkA

receptors acting through the PI3K signalling pathway

mediate the Arf6-dependent fusion of intracellular

vesicles containing p75NTR to the plasma membrane,

rapidly increasing its levels at the cell surface, and

enhancing the sensitivity of neurons to NGF [159].

Retrogradely transported receptors that arrive to the

soma have been proven to drive gene expression, sur-

vival, dendritic plasticity, and synaptic maintenance

[36,70,84,160]. Many retrograde carriers containing

activated receptors are going to persistently signal

from late endosomes or other organelles until they fuse

to lysosomes, as shown in Fig. 1F. Nevertheless, some

of the functions in dendrites require the integrated

control of local and global signalling, a matter that

has been recently addressed by the Ginty’s group by

showing that in sympathetic neurons, a pool of retro-

gradely transported signalling endosomes were found

in dendrites (Fig. 1G) and in close proximity to

synapses [84]. Importantly, the majority of these orga-

nelles (~ 80%) remained mobile, whilst the soma-

bound endosomes are less dynamic, suggesting that

these organelles are different [84]. Recent work from

the group of Bettina Winckler explored the hetero-

geneity of retrograde signalling endosomes after their

arrival to the cell body. These authors showed that,

both in cultured neurons and in vivo, TrkA receptors

labelled at the distal axon are found in somatic orga-

nelles that were positive for a variety of endosomal

markers, including Rab7, Rab11, and EEA1. At

molecular level, they found that a large proportion of

the retrogradely transported TrkA in dendrites was

targeted to the cell surface either in the soma or den-

drites, prior to being sorted to different populations of

endosomes [140]. This novel sorting mechanism may

regulate the different outputs of activated receptors,

leading to dendrite-to-nucleus signalling [161] or local

actions (e.g. dendrite branching [125]).

Finally, it is also possible that receptors that have

been transported from the axonal tip to the soma are

targeted to anterograde transport [162]. It had been

previously shown that neurotrophic signalling origi-

nated from distal axons can promote anterograde

Trans-cytosis of TrkA and TrkB receptors from the cell

body, increasing sensitivity to ligand at the axon termi-

nal [139,163]. Recent work from the group of Rejji

Kuruvilla showed that in sympathetic neurons, a popu-

lation of retrogradely transported TrkA is inserted on

the plasma membrane at the soma (Fig. 1H), where

they can promote phosphorylation and endocytosis of

resident receptors. Once internalised, TrkA receptors

are dephosphorylated by the PTP1B phosphatase

before being transported anterogradely to the axon ter-

minal (Fig. 1I), suggesting a mechanism that allows

retention of the phosphorylated pool of receptors in

the somato-dendritic compartment, where they can

engage persistent signalling, whereas only inactive

receptors are sent back to the axon to regulate distal

neurotrophin sensitivity. Importantly, conditional dele-

tion of PTP1B in NGF+/� mice reduced axonal TrkA

levels, neuron survival and target innervation, empha-

sising the relevance of this mechanism in vivo, espe-

cially under limited availability of NGF [162].

Given the diversity of destinations, and the cellular

and functional outputs of retrograde signalling carri-

ers, an important unaddressed question is whether the

molecular signatures acquired during the biogenesis of

these organelles determine their final destination, or

whether the diversification of these carriers occurs at

their arrival in the cell body as a function of distinct

signalling contexts.

Concluding remarks: diversity matters

It is clear from the evidence herein presented that a

variety of axonal retrograde signalling carriers, which

differ in their molecular composition, are found in

neurons. They are also diverse in terms of biogenesis

and membrane complexity – some of them have been

characterised as conventional endosomes, whilst others

have been described as MVBs or autophagosomes.

These diverse observations can be explained at least

in part by differences in experimental models, for

example, the combination of receptors expressed by

different neuronal types, and the specific neurotrophic

factor under investigation. Results may be obtained

from the same cellular type but at different stages of

neuronal maturation, or focussing on different areas

of axon and dendrites. In addition, multiple

approaches have been used to label and monitor the

dynamics of signalling endosomes: radioactive and/or

fluorescent neurotrophins, antibodies binding the

receptors, toxin fragments and viruses that share the
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same transport route of the neurotrophic factors, to

mention a few. Although these different scenarios are

likely to contribute to the different results accumulat-

ing in the literature, the studies discussed in this review

reveal an intrinsic heterogeneity in the organelles car-

rying neurotrophic signals along the axon. Whether

these organelles are separated compartments with

specific cellular destinations and functions, or whether

they are just different maturation stages of a highly

dynamic and flexible network of intracellular mem-

brane-bound vesicles remain to be addressed.

Altogether, we believe that the available data tend

to disregard the idea of signalling endosomes as an

entirely new class of organelles with distinctive molecu-

lar signatures. Rather, they indicate that trafficking of

neurotrophin receptors exploits multiple routes to

ensure not only efficient and flexible communication

between distal portions of axons and the cell body,

but also a precise regulation of the spatiotemporal

dynamics and compartmentalisation of signalling cas-

cades. In this regard, one of the biggest challenges is

to explain the diversity of destinations of the retro-

grade signalling endosomes after arrival to the soma.

The implementation of new tools for live imaging of

axonal transport in intact tissue [164], as well as the

possibility of purifying and performing quantitative

proteomics of subpopulations of retrograde carriers,

shall be critical to reveal the differences in cargoes,

adaptors, and signalling molecules that characterise

different functional subpools, and to resolve the mech-

anisms of their assembly and disposal.
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