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SUPPLEMENTARY MATERIALS AND METHODOLOGY:  

 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 
Human brain tissue samples.  Our KRONOSII series was obtained from 21 National Alzheimer’s Coordinating 

Center (NACC) brain banks and from the Miami Brain Bank as previously described (Corneveaux et al., 2010; 

Myers et al., 2007; Webster et al., 2009). Additional cohorts were obtained in the same manner as the original 

US series. Our criteria for inclusion were as follows: self-defined ethnicity of European descent (in an attempt to 

control for the known allele frequency differences between ethnic groups), neuropathologically confirmed 

Alzheimer’s disease or no neuropathology present, and age of death greater than or equal to 65. 

Neuropathological diagnosis was defined by board-certified neuropathologists according to the standard NACC 

protocols (Beekly et al., 2004). Samples derived from subjects with a clinical history of stroke, cerebrovascular 

disease, Lewy bodies, or comorbidity with any other known neurological disease were excluded. Alzheimer’s 

disease or control neuropathology was confirmed by plaque and tangle assessment with 45% of the entire series 

undergoing Braak staging (Braak and Braak, 1995).  

 The RUSH series includes deceased subjects from two large, prospectively followed cohorts maintained 

by investigators at Rush University Medical Center in Chicago, IL: the Religious Orders Study (ROS) and the 

Memory and Aging Project (MAP). The ROS cohort, established in 1994, consists of more than 1,100 Catholic 

priests, nuns, and brothers from 40 groups in 12 states who were at least 55 years of age and free of known 

dementia at the time of enrollment. The MAP cohort, established in 1997, consists of more than 1600 men and 

women primarily from retirement facilities in the Chicago area who were at least 53 years of age and free of 

known dementia at the time of enrollment. All participants in ROS and MAP sign an informed consent agreeing 

to annual detailed clinical evaluations and cognitive tests, and the rate of follow-up exceeds 90%. Similarly, 

participants in both cohorts signed an Anatomical Gift Act donating their brains at the time of death. The overall 

autopsy rate exceeds 85%. The ROS and MAP cohorts were analyzed jointly since they were designed to be 

combined, are maintained by a single investigative team, and a large set of phenotypes collected are identical 

in both studies (Bennett et al., 2012b). More detailed information regarding the two cohorts can be found in 

previously published literature (Bennett et al., 2012a). 

In both cohorts, samples were de-identified before receipt, and the study met human studies institutional 

review board and HIPPA regulations. This work is declared not human-subjects research and is IRB exempt 

under regulation 45 CFR 46. See the Acknowledgements section for a list of individual sites that contributed 

samples to this effort. See Supplemental Figure 1 for final counts and exclusions.  

 
Cell Lines.  Two different cell lines were used to assess target effects on APP and Tau pathology. The first, 

HEK293sw, was a human embryonic kidney cell line expressing an Abeta complementary DNA bearing a double 

mutation ((KM670 and 671NL; HEK293sw; gift from D. Selkoe; reference (Citron et al., 1992)). This was used to 

examine target effects on Abeta levels. These cells produce ~20 fold more Abeta than cells without the 
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mutations.  The second line was a neuroglioma cell line engineered to overexpress four repeat tau (H4-4R0N, 

gift from T. Dunkley (Azorsa et al., 2010), Phoenix, AZ). This line was used to examine Tau and Phospho-Tau 

levels. HEK293sw is maintained in Dulbecco’s modification of Eagle’s medium/F-12 (DMEM, Sigma-Aldrich, St 

Louis, MO, USA), supplemented with GlutaMAX™ (Life Technologies, Carlsbad, CA USA), 10% fetal bovine 

serum (Life Technologies, Carlsbad, CA USA), and 1X penicillin/streptomycin (500U/ml & 500ug/ml respectively; 

Life Techologies, Carlsbad, CA). H4-4R0N is maintained in DMEM, high glucose with GlutaMAX™ Supplement, 

and sodium pyruvate (ThermoFisher Scientific, Waltham, MA) plus 10% fetal bovine serum (Life Technologies, 

Carlsbad, CA) and 250ug/ml G418 sulfate (Corning incorporated, Corning, NY).   

 
METHODS DETAILS 

 
DNA sample processing and data collection. Genomic DNA samples were analyzed on the Genome-Wide 

Human SNP 6.0 Array (Affymetrix, Inc. Santa Clara, CA) according to the manufacturer’s protocols (Affymetrix 

Genome-Wide Human SNP Nsp/Sty 6.0 User Guide;Rev. 1 2007). Before the initiation of the assay, 50ng of 

genomic DNA from each sample was examined qualitatively on a 1% Tris-acetate-EDTA agarose gel for visual 

signs of degradation. Any degraded DNA samples were excluded from further analysis. Samples were 

quantitated by OD Spectrometry and diluted to 50ng/µl in reduced EDTA TE buffer (10 mM Tris HCL, 0.1 mM 

EDTA, pH 8.0). 250 ng of DNA was then aliquotted into two 96 well reaction plates and digested in either Sty or 

Nsp restriction enzymes (New England Biolabs, Inc. Ipswich, MA) for 2 hours at 37°C followed by 65°C for 20 

min. Sty and Nsp digested samples were then ligated to either the Sty 1 or the Nsp 1 adaptor (Affymetrix), 

respectively, with T4 DNA Ligase (New England Biolabs) for 3 hours at 16°C then 20 min at 70°C. The ligated 

samples were then diluted in molecular-grade water and subaliquotted into 3 (Sty) or 4 (Nsp) 96 well PCR plates. 

PCR was performed using PCR Primer 002 (Affymetrix) and Titanium Taq DNA Polymerase (Clontech, Mountain 

View, CA) with the following thermal cycling parameters: 1. 94°C for 3 min., 2. 30 cycles of 94°C for 30 sec., 

60°C for 30 sec., and 68°C for 15 sec., and 3. 68°C for 7 min. Replicate samples for all Sty and Nsp reactions 

were pooled into a single deep well plate, the DNA was bound to Agencourt AMPure beads (Beckman Coulter, 

Inc. Berea, CA), placed into MultiScreen filter plates (Millipore, Billerica, MA), washed with 75% ethanol and 

eluted with Buffer EB (QIAGEN, Valencia, CA). Purified samples were then fragmented using Fragmentation 

Reagent (Affymetrix) and incubated at 37°C for 35 minutes then at 95°C for 15 minutes. Fragmented samples 

were labeled with DNA Labeling Reagent (Affymetrix) and TdT Enzyme (New England Biolabs) at 37°C for 4 

hours followed by 95°C for 15 min. The samples were denatured at 95°C for 10 minutes and held at 49°C until 

they were loaded on to the arrays. The arrays were placed into the hybridization oven at 50 °C and 60 rpm for 

16 to 18 hours. Arrays were then washed, stained and immediately imaged on the GeneChip Scanner 3000 

(Affymetrix). 

 
Genotype quality control. Birdsuite (Korn et al., 2008)  was used to call SNP genotypes from CEL files. The 

DNA quality control pipeline was similar to that described in Anderson et al (Anderson et al., 2010). Briefly, 
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samples were checked for gender-discord with SNP calls using PLINK v1.07 (Purcell et al., 2007). Twenty-eight 

samples were removed based on gender errors. Samples were then checked for missingness and heterozygosity 

errors using PLINK v1.07 and R v3.0.2 (2013-09-25). Samples with a failure rate > 0.15 (n= 18) and a 

heterozygosity rate +/- 3 standard deviations from the mean (n=30) were removed.  Our datasets were then 

examined for whether they contained related individuals. Pedigree files were pruned using PLINK v1.07 to 

exclude SNPs with pairwise LD threshold of r2>0.5 using a sliding window of 50 SNPs and a shift of 5 SNPs at 

each step. Additionally, known regions of high LD on chromosomes 1, 2 (two regions), 3 (two regions), 5 (two 

regions), 6 (three regions), 7, 8 (three regions), 10, 11, 12 and 20 were pruned as in Anderson et al (Anderson 

et al., 2010). Samples with PIHAT scores > 0.185 were excluded as in Anderson et al (Anderson et al., 2010). 

Fourty-four samples were excluded by this criterion. Using slightly more stringent PIHAT scores (0.05) does not 

substantially change the series (final set 161 cases and 166 controls for KRONOSII and 114 cases and 119 

controls for RUSH). 

Samples were also analyzed for genetic ancestry via EIGENSOFT (Price et al., 2006). SNPs from the 

pruned pedigree files generated to determine PIHAT scores were used in the analysis of population stratification. 

The reduced sets of real data (n=1,415 KRONOSII set, N=427 RUSH set) were merged with data (n=395 

individuals) from the HapMap Phase 3 project from four ethnic populations(International HapMap et al., 2007) 

as in Anderson et al (Anderson et al., 2010). To get an idea of the ethnic ancestry structure for each set in 

comparison to Hapmap 3, the analysis did not exclude any outliers (sigma threshold equal to 100 and the number 

of principle components along which to remove outliers was set to 0). After Eigensoft analysis, graphs and output 

files were examined to determine individuals of divergent ancestry. Samples that were 6 standard deviations 

away from the average of either PC1 or PC2 in the collection of self-reported Caucasian samples were dropped 

from the analysis. A total of 25 samples were dropped in this analysis. PC1 and PC2 were retained in the 

remaining cohort and used as variables to correct both RNA and proteome profiles. 

SNPS were first assessed for missingness. SNPs where more than 90% of the cohort was not called in 

either the KRONOSII or RUSH sets were dropped. A total of 31,886 SNPs were dropped from the KRONOSII 

set and 41,350 SNPs from the RUSH set were removed. Hardy Weinberg equilibrium was examined in both 

sets. SNPs that deviated significantly from HWE at a p-value cut-off of 1XE-06 in either the affected or unaffected 

cohorts were excluded from both sets. For the KRONOSII series 1,758 SNPs were excluded and for the RUSH 

series 29,601 SNPs were excluded. The mishap test function was used to determine whether any variant had a 

highly significant pattern of non-random missingness. A total of 2,785 SNPs were dropped from the KRONOS 

set and 888 were dropped from the RUSH set. Finally, SNPs with a minor allele frequency less than 5% were 

excluded.  

Genotypes were phased with SHAPEIT v2.r790 (Delaneau et al., 2011), and missing genotypes were 

imputed with Impute2 v2.3.2 (Howie et al., 2009) using the reference panel from the 1000 Genomes Project 

Phase 3 (Genomes Project et al., 2015). Markers with high imputation quality (INFO>0.5 (Howie et al., 2009); 

minor allele frequency over 1% and Hardy-Weinberg p-value < 1XE-06 were retained for downstream analysis. 
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RNA sample processing and data collection. Briefly, frozen blocks of cortex were manually dissected from 

postmortem brain tissue, and total RNA was isolated using the RNeasy lipid tissue kit (Qiagen, Valencia, CA).  

Prior to runs RNA quality was assessed by gel visualization and RIN values.  RNA with RIN values < 6 were not 

used. Two hundred and fifty-four samples failed QC and were not run. For the remaining samples, 250ng of RNA 

was reverse transcribed into cRNA and biotin-UTP labeled using the Illumina® TotalPrep™ RNA Amplification 

Kit from Ambion, Inc. (catalogue # L-1755). cRNA was hybridized to Illumina HumanRefseq-HT-12 v3 Expression 

BeadChip (Illumina, San Diego, CA) using a Scigene Little Dipper® Automated Microarray Processor (Scigene, 

Sunnyvale, CA) which allows for parallel processing of chips for all post-hybridization procedures. Between 6 

and 111 samples were run in parallel for each hybridization.  The last channel of each chip included cRNA 

prepared from a human brain reference RNA (FirstChoice® Human Brain Reference RNA, Ambion catalogue # 

AM6052, Life Technologies, Grand Island, NY) to account for noise due to technical variability in hybridizations 

across chips. Chips were imaged using an Illumina BeadStation 500GX according to the manual (revision C). 

All expression profiles were extracted using the GenomeStudio software available from Illumina 

(http://www.illumina.com/pages.ilmn?ID=170). Samples that failed the collection QC pipeline were rerun once. 

After all reruns were completed, a total of 898 RNA samples passed QC.   

 

RNA quality control. Expression profiles were extracted and background was subtracted using the BeadStudio 

software available from Illumina. Beadstudio was also used to impute missing bead types. Prior to normalization, 

the RNA series was reduced to only those samples that had protein profiles that passed QC (see Proteomic 

quality control section below). Of the 898 RNA samples that passed QC, 754 had protein profiles. One hundred 

and twelve samples were not run due to time and cost factors, 10 RNA QC samples did not pass the peptide 

calling QC, 21 RNA QC samples had low peptide counts and 1 RNA QC sample was a peptide outlier. In total 

there were 345 KRONOSII samples (177 controls, 168 cases) and 409 RUSH samples (153 controls, 141 cases, 

115 mild cognitive impairment).  

 In our first expression quantitative trait loci experiment, we noted that hybridization date was one of the 

strongest noise variables affecting our profiles (Supplemental Figure 2 in Webster et al, 2009). An Ambion control 

was run in the last channel of each chip and profiles from these samples were used to circumvent this noise 

variable. Briefly, the geometric mean for each probe from the profiles of all of the Ambion controls used (n= 103) 

was calculated. The profile of each Ambion control sample was then divided by the vector of the geometric mean 

values to obtain a per-chip normalization factor. Profiles from the samples of interest were then corrected by 

dividing each probe profile by the normalization factor for the Ambion control that was run on the same chip. The 

LumiB function in Lumi (Du et al., 2008) was employed to force all transcript probe profiles to positive values. 

After hybridization date correction using the Ambion control, probes were filtered according to the following rules: 

1. probes with Infinite and NA values were removed (24% of probes removed); 2. probes with low signal-to-noise 

ratio, i.e. P95/P05<7 were removed (0 probes removed); 3. probes that were not detected (detection p-
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value>0.05) in more than 10% of samples in all datasets (control, late onset Alzheimer’s disease and mild 

cognitive impairment) were removed (44% of probes removed). The NEQC function of Limma (Ritchie et al., 

2015) was used for background correction and quantile normalization on filtered probe profiles.  

 To correct for potential biological or technical confounders, the contribution of every covariate of 

transcriptional variability was characterized using the variancePartition method (Hoffman and Schadt, 2016). 

This method partitions the total variance into the contribution of each variable in the experimental design (e.g. 

age, sex, batch), plus the residual variance. The sample data was adjusted for several biological covariates 

(gender, age at death and cortical region) and several methodological covariates (institute source of sample, 

post-mortem interval, detection and hybridization date). While APOE is an important covariate to consider for 

these ‘omics relationships, APOE genotype is collinear with diagnosis; therefore, corrections did not include 

APOE genotypes. The residuals from this correction were then used in downstream analysis. The residual output 

was analyzed using singular value decomposition of the expression matrices and plots were created of the first 

two explanatory vectors. None of the technical and or biological potential confounds clustered in the SVD plots, 

demonstrating that the corrections were sufficient to remove any captured variable that might skew our data. 

 

Proteomic sample processing and data collection. Tissue was placed in a 2 ml 96-deepwell plate and 1ml of 

homogenization buffer (8M Urea, 10 mM DTT in 50 mM Tris-HCl) was added. Homogenization was performed 

using a Retsch Mixer Mill MM 400 at 20 Hz for 2 minutes.  100 µL aliquots were taken from homogenized samples 

and filtered using 1.2 µm low-protein binding filter plates (Pall Life Sciences) to remove particulates. Total protein 

concentration was determined by coomassie assay. Protein concentrations were then normalized and a 

subsequent 100 µL aliquot was taken to provide 150 µg of starting material per sample. Samples were then 

incubated 1 hr at 37 °C for denaturation and reduction. Protein cysteinyl residues were alkylated with 40mM 

iodoacetamide (Sigma Aldrich) for 1 hr at 37 °C in the dark. Samples were diluted 4-fold with 50 mM NH4HCO3 

buffer prior to digestion using mass spectrometry grade trypsin (Promega) with a ratio of 1:50 (w/w). Tryptic 

digests were desalted using C18 SPEC tips (Varian). Peptides were eluted in 200 µl 80 % ACN/ 0.1 % TFA and 

lyophilized. Peptide concentrations were determined by BCA assay and adjusted to 0.5 mg/ml prior to storage 

at -80 °C until liquid chromatography–mass spectrometry analysis. Sample randomization, denaturation, 

alkylation, tryptic digestion, SPE, and normalization was carried out using a Biomek FX (Beckman Coulter) liquid-

handling robot. For quantitative measurements of relative peptide abundances, isotopic 16O/18O technique was 

applied where each sample was spiked with a reference sample derived by pooling all the samples followed by 
18O-labeling. 

  Samples were analyzed on an in-house built 4-column liquid chromatography system that allowed for 

analysis of up to 24 samples per day when employing a 60 min separation gradient. The liquid chromatography 

system was custom built using two Agilent 1200 nanoflow pumps and one 1200 capillary pump (Agilent 

Technologies, Santa Clara, CA), various Valco valves (Valco Instruments Co., Houston, TX), and a PAL 

autosampler (Leap Technologies, Carrboro, NC). Full automation was made possible by custom software that 
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allows for parallel event coordination and therefore near 100% mass spectrometry duty cycle through use of four 

analytical columns. Reversed-phase columns were prepared in-house by slurry packing 3-µm Jupiter C18 

(Phenomenex, Torrence, CA) into 35-cm x 360 µm o.d. x 75 µm i.d fused silica (Polymicro Technologies Inc., 

Phoenix, AZ) using a 1-cm sol-gel frit for media retention (Zimmer et al., 2006). Mobile phases consisted of 0.1% 

formic acid in water (A) and 0.1% formic acid in 100% acetonitrile (B) with a gradient profile as follows (min:% 

B/event); 0:0, 1.2:8, 12:12, 45:35, 58:60, 60:85. Sample injection occurred 20 min prior to beginning the gradient 

while data acquisition lagged the gradient start and end times by 10 min to account for column dead volume that 

allowed for the tightest overlap possible in multi-column operation. Multi-column operation also allowed for 

columns to be ‘washed’ (shortened gradients) and re-generated off-line without any cost to duty cycle. 

Mass spectrometry analysis was performed using an LTQ Orbitrap mass spectrometer (Thermo Scientific, 

San Jose, CA) outfitted with a custom electrospray ionization (ESI) interface. Electrospray emitters were custom 

made by chemically etching 150 um o.d. x 20 um i.d. fused silica (Wang et al., 2011). The heated capillary 

temperature and spray voltage were 250ºC and 2.2 kV, respectively. Mass spectrometry spectra (AGC 1x106) 

were collected from 400-2000 m/z at a resolution of 50k.  Instrument cleaning and any necessary maintenance 

is performed at 24 hr intervals to help control instrument drift. 

 

Proteomic quality control. Identification and quantification of peptides was performed using the accurate mass 

and time  tag approach (Zimmer et al., 2006). The accurate mass and time tag database was populated using a 

pooled sample that was fractionated offline by high-pH reversed-phase liquid chromatography (bRPLC) prior to 

Liquid chromatography-tandem mass spectrometry analysis on an LTQ-Orbitrap (Thermo Scientific) (Wang et 

al., 2011). Tandem mass spectrometry data was searched by MS-GFDB (Kim et al., 2010). Confident 

identifications were compiled along with the observed elution times to generate the accurate mass and time tag 

database. For individual study samples, Decon2LS was used for peak-picking and for determining isotopic 

distributions and charge states (Jaitly et al., 2009). Deisotoped spectral information was loaded into VIPER to 

find and match liquid chromatography–mass spectrometry features (same monoisotopic mass present in a 

number of consecutive mass spectrometry scans) to the peptide identifications in the accurate mass and time 

tag database (Monroe et al., 2007). VIPER provided an intensity report for all detected features, normalized 

liquid chromatography elution times via alignment to the database, and feature identifications. The relative 

peptide abundances in samples were assessed based on the 16O/18O ratios for detected peptide pairs, where 

natural 16O peptide abundances from different voxels were compared to the same spiked reference sample with 
18O-labeled peptides(Petyuk et al., 2007). This resulted in a list of 3,719 peptides, which mapped to 1,059 

proteins, to be used for downstream analysis.  

Peptide abundance crosstabs were exported to R and excel for further normalization procedures. All 

calculations of variance were carried out using peptide-level abundance measurements. This was done because 

peptides are the chemical entities being measured in a bottom-up proteomics experiment; thus, it was decided 

that the best measure of variability in protein targets will be peptide abundances. Finally, protein inference (Kall 
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et al., 2007; Zhang et al., 2007) and peptide rollup to gene based profiles (Milac et al., 2012; Polpitiya et al., 

2008) are active areas of research and prone to uncertainties, which could potentially impact our results in 

unanticipated ways.   

As with the transcript expression data, it was important to control for batch variation in our proteomic 

runs. Each proteomics plate contained 8 controls, for a total of 88 controls throughout the series. These controls 

were created by pooling across all samples. Peptide profiles from control samples were used to scale 

abundances per plate via a peptide-specific linear model. Further normalization involved sample-to-sample 

scaling to account for pipetting error and means-centered normalization. Data was examined to determine the 

proportion of missing peptides per sample. Samples where the peptide counts were less than twice the standard 

deviation of the peptide counts for the whole series were dropped (n=20). Peptides where the peptide was 

detected in less than 45% of controls, cases or mild cognitive impairment samples were dropped. The final set 

included 754 samples with 1,931 peptides and 618 genes. The same method was employed as was done for 

the transcript data to correct for biological and methodological confounders. Namely, we regressed expression 

profiles against the sample data for several biological and methodological covariates (biological: gender, age at 

death and cortical region; methodological: institute source of sample, post-mortem interval and a covariate based 

on the proportion of transcripts detected in each sample). The residuals from this correction were then used in 

downstream analysis.  

All processed data for analysis are available through the Laboratory of Functional Genomics website 

(http://labs.med.miami.edu/myers/LFuN/LFuN.html).  

 

Experimental design. Samples were plated such that runs included cases and controls on each array/run 

randomizing samples within each set, Additionally, a standard sample was run throughout the entire series for 

both DNA, RNA and proteomics collections to ensure quality control. See Piehowski et al for further details on 

randomization methods (Piehowski et al., 2013). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 

Differential expression analysis. The normalized transcript probe and peptide residuals were examined for 

significant differential expression using the Limma package (Ritchie et al., 2015). Differential expression was 

calculated in both KRONOSII and RUSH, comparing late onset Alzheimer’s disease confirmed samples to 

pathological controls. For the RUSH series, we also examined differential expression between mild cognitive 

impairment  samples and pathological controls; however, there were no significant effects. The mild cognitive 

impairment data was not carried forward except for our final targets, where profiles were graphed to ensure that 

mild cognitive impairment represented a mid-point between control and late onset Alzheimer’s disease states for 

these particular targets. Benjamini-Hochberg correction (5% the false discovery rate) was used to correct for 

multiple testing. 
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Expression quantitative trait loci analysis. Expression quantitative trait loci are targets where the downstream 

expression correlates in a linear fashion with upstream allele dose (Myers, 2012, 2013, 2014; Myers et al., 2007; 

Webster et al., 2009). The most parsimonious mode of action for these effects is that an allelic variant is changing 

a downstream transcription factor-binding or enhancer site, which then alters the binding of that transcription 

factor and results in linear changes in expression; therefore, we focused on recessive models with a dosage 

effect for our expression quantitative trait loci analysis. Expression quantitative trait locus  analysis was 

conducted using the Matrix eQTL R package (Shabalin, 2012). Briefly, for each microarray probe and each 

imputed SNP a linear regression was run with the normalized, non-adjusted expression levels as response 

variable and the genotypes as regressor variables. The following covariates were included in the linear 

regression: age, sex, PMI, DET, region, site, hybridization date and diagnosis. Both cis (defined as a SNP-probe 

pairs within 1Mb of each other) and trans analyses were performed. To account both for dependence between 

individual tests and for multiple testing, the expression quantitative trait loci analysis was repeated 5 times while 

permuting the sample IDs of the expression data. We then used the fdrci (Millstein and Volfson, 2013) R package 

to compute a p-value threshold corresponding to a false discovery rate of 5%. Due to the heavy computational 

load of running an expression quantitative trait loci analysis on several tens of thousands of probes and millions 

of SNPs we only performed 5 permutation runs. The fdrci package computes a confidence interval for the false 

discovery rate estimate, so that any excessive uncertainty due to the low number of permutations would be 

apparent through a large confidence interval. However, none of the confidence intervals were excessively large 

and the upper bound of the 95% confidence interval was used as the false discovery rate estimate for deciding 

the p-value threshold.   

 

Co-expression network. For each dataset (KRONOSII and RUSH) six co-expression networks were 

constructed. Co-expression networks were predicted separately using the case and control data from KRONOSII 

and RUSH for the transcript profiles only (15,297 transcripts), the peptide profiles only (1,931 peptides), and a 

multiscale network including both transcripts and peptides (17,228 targets). We built different networks for 

several reasons. First, the peptide data was ~10 fold sparser than the transcript dataset, which could affect 

results. Second, co-expression relies on pairwise correlations. Even if transcripts and peptides are acting in 

concert, due to the nature of the technical differences in collection they may not be linearly correlated. 

Additionally, peptide and transcript profiles might not be correlated for legitimate biological reasons. For example, 

peptides might be overexpressed due to a cleavage/processing change, whereas the transcript profiles will 

remain unchanged due to the fact that there is no difference in expression in late onset Alzheimer’s disease. 

APP is a good example of this effect.  

First, transcript and peptide profiles were compared using Spearman’s rank correlations. The set of 1,931 

peptides was matched to the corresponding transcript probes. For cases where there were multiple transcript 

probes per peptide or multiple peptides per transcript probe, each combination was considered. The entire 
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dataset used for comparison included 2,584 transcript probe-peptide pairs. The mean correlation is close to zero 

confirming a very low linear correlation between transcript and peptides in KRONOSII and RUSH. 

Next, coexpression networks were constructed using weighted gene co-expression network analysis 

(Langfelder and Horvath, 2008). To evaluate the weighted gene co-expression network analysis aggregate 

multiscale transcript-peptide network, the percentage of transcript probe or peptide target content was 

determined for each module. Module content was scored on a continuous scale from 0 to 1, with 0 indicating 

100% peptide content for that module and 1 indicating 100% transcript probe content. A number in between 0 

and 1 indicates hybrid transcript peptide content for that module (See Supplemental Figure 2).  

Further evaluation of the networks was performed to determine whether univariate (peptide alone, 

transcript alone) or multivariate (peptide and transcripts together) should be employed. To evaluate this model, 

the uncertainty (R, minus log-likelihood ratio) of each dataset under a univariate linear Gaussian model was 

compared to the uncertainty in the multivariate multinomial model for all pairs of targets. The uncertainty was 

normalized by dividing its value by the maximal uncertainty across all pairs of targets under each model. R, the 

minus log-likelihood ratio, was normalized by the same method. Comparisons were made using Wilcoxon-tests. 

The multivariate/multinomial model yields significantly higher rank and thus lower uncertainty than univariate 

linear models for the same set of transcript-peptide pairs plotted (p <2.2e-16). There were significant numbers 

of transcript-peptide pairs with low linear correlation under the univariate/linear model but moderate to high 

nonlinear correlation under multivariate model indicating that multinomial model can capture nonlinear 

correlations between gene and protein. We concluded that a multinomial based multivariate model is more 

suitable than methods based on correlations such as weighted gene co-expression network analysis to model 

multi-scale network of transcripts and peptides. We carried out causal network analysis based on the multinomial 

model (see Causal Predictive Network  section). 

Finally, network structures were evaluated in the aggregate models by comparing module content 

between KRONOSII and RUSH. First, each module in the four multivariate datasets KRONOSII late onset 

Alzheimer’s disease, KRONOSII control, RUSH late onset Alzheimer’s disease, RUSH control was mapped to a 

gene ontology pathway, by determining gene ontology process enrichment using GoSeq and TopGo in R. 

Processes were then compared between KRONOSII and RUSH for case datasets separately from control 

datasets. This was to get a general sense of overlap and what were the gross processes involved in late onset 

Alzheimer’s disease declines. Data is shown in Figure 3. Second, module membership was compared across 

late onset Alzheimer’s disease predictions and control predictions between KRONOSII and RUSH. Each 

pairwise comparison was considered for the late onset Alzheimer’s disease KRONOSII modules and the late 

onset Alzheimer’s disease RUSH modules. Likewise, pairwise comparisons were made between the KRONOSII 

control modules and the RUSH control modules. Comparisons were made by matching transcript probe or 

peptide target names, and the proportion of overlap was averaged considering both how many RUSH targets 

were in the corresponding KRONOSII module and how many KRONOSII targets were in the corresponding 
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RUSH modules. In this way, perfect overlap was determined rather than just one module being a subset of 

another.  

 

Module selection. The differential expression KRONOSII and RUSH datasets were used to capture a reduced 

set of key data for the multi-scale causal predictive network prediction. Reduction was performed because causal 

predictive network algorithms are computationally inefficient, since each possible 3-way relationship needs to be 

tested. Reduction was made at the transcript-level only, since the peptide dataset was already sparse and all 

peptides could be linked to a transcript path. Transcript inputs were reduced by selecting the set of aggregate 

coexpression network modules that were enriched for differentially expressed transcripts. Enrichment was 

defined by modules that had a greater proportion of differential expression hits than would be expected by 

chance, using a fisher exact test. Module selection was done separately in the KRONOSII and RUSH cohorts, 

so that these datasets remained independent replicates. Only late onset Alzheimer’s disease sets were used to 

reduce the computational space further, since enriching for differential expression targets will capture case-

control differences. There were 9 enriched modules from our KRONOSII dataset that were carried forward and 

4 enriched modules from our RUSH dataset that were used as our replicate seeding gene list.  

 

Module Expansion. After module selection, the set of targets from the enriched modules was further expanded 

by including targets within brain-specific signaling pathways that matched to the differential expression lists to 

be sure we included all key members of pathways of interest. This step was done to maximize the coverage of 

our final networks on the selected modules from the coexpression network analysis.  

Prior to expansion, the module selection transcript data was reduced to a single target probe per gene 

because the targets from the databases that were used for expansion were compiled at the gene and not at the 

transcript level; thus, the set of transcript probes had to be reduced to a single list of one target transcript probe 

per gene. For the differential expression dataset, probes were first filtered by dropping probes matching to repeat 

sequences, intergenic regions, intronic regions or unlikely to provide specific signal for any transcript. 

Additionally, probes not matching to known genomic regions or transcripts were dropped. Reduction was then 

performed using the collapseRows R function (Miller et al., 2011) from Weighted Gene Co-expression Network 

Analysis, which reduces probes matching to the same Entrez identifier by selecting the probe with the highest 

average expression across all samples. For the cis expression quantitative trait loci gene lists, the lists of cis 

expression quantitative trait loci probes were simply mapped to an Entrez ID. If there were more than one cis 

expression quantitative trait loci probe mapping to the same Entrez ID, they were collapsed to the same Entrez 

ID, using the same method as the differential expression data. Peptide data was not reduced. 

Expansion of the reduced sets was based on an enrichment network that was used to determine 

additional targets that were in the same biological pathways as the differential expression and expression 

quantitative trait loci targets lists, but were not differentially expressed or expression quantitative trait loci 

themselves. MetaCore from Thomson Reuters (v6.24) and the ConsensusPathDB (Kamburov et al., 2011; 
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Kamburov et al., 2013) databases were used to build this enrichment network. Both MetaCore and 

ConsensusPathDB contain interactions at the gene-gene, gene-protein or protein-protein level. The nodes in 

ConsensusPathDB are classified as genes, protein complex and gene families and these sets are indexed solely 

by Entrez gene IDs. The nodes in MetaCore are classified into protein and genes and these sets are indexed by 

network object IDs internal to the MetaCore database. To merge MetaCore and the ConsensusPathDB, node 

nomenclature was unified to a set of common Entrez IDs by mapping proteins in MetaCore to their corresponding 

genes; thus, while the merged network contained only gene-gene interactions, these gene-gene interactions 

represented three possibilities:  the original direct gene-gene interactions from MetaCore and the 

ConsensusPathDB, gene-protein interactions from MetaCore, or protein-protein interactions from MetaCore. 

This merged enrichment network contained interactions across a variety of human tissues. To make the network 

brain specific, we integrated the Roadmap Epigenomics Project data (Roadmap Epigenomics et al., 2015) from 

mid frontal lobe and inferior temporal lobe cell lines to predict which genes are active, repressed or bivalent 

(poised) in tissue regions relevant to this study. All nodes that were predicted to be repressed in mid frontal or 

inferior temporal cortex as well as all incoming and outgoing edges from these repressed nodes were removed 

from the enrichment network. Therefore, the remaining networks are brain-specific and involve interactions of all 

active genes in the mid frontal lobe and inferior temporal lobe respectively.  

Our reduced networks of 7,681 KRONOSII probes and 7,198 RUSH probes were expanded by the data 

from the enrichment network (24,611 targets) using pathFinder. All neighbor nodes in the enrichment network 

that were within 3-steps of the 7,681 KRONOSII or 7,198 RUSH targets were extracted from the enrichment 

network. This list of additional hits was used to pull the transcript profiles of additional targets from the KRONOSII 

and RUSH data and these were added to the 7,681 KRONOSII and 7,198 RUSH transcript sets.  The enriched 

transcript set was combined with all 1,931 peptides to form the seeding set.  

  

Multi-scale Causal Predictive Network. The co-expression networks reflect modules of highly co-regulated 

genes and proteins operating in coherent biological pathways; however, such network modules do not reflect 

the probabilistic causal information needed to identify key driver genes. Key driver analysis relies on sifting 

through layers of target relationships and it is crucial to understand direction within the networks to determine 

what are the most upstream connected nodes (Zhang et al., 2013; Zhu et al., 2012).  

A typical approach to directing networks is to use Bayesian network prediction; however, there are 

shortcomings with those models. Specifically, Bayesian networks cannot capture opposite causality, since typical 

Bayesian network approaches do not distinguish between positive and negative correlations. Therefore, for this 

screen, the Bayesian networks approach was expanded to develop a multiscale causal predictive network. The 

causal predictive network approach integrates a conventional Bayesian networks in top-down model with 

recently developed bottom-up causality inference. Causality interference addresses the problem of opposite 

causality. Recent work has demonstrated that the causal predictive network powered by bottom-up causality 

inference can deduce significantly more accurate causality than a conventional Bayesian network approach. 
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Our causal predictive network pipeline incorporated genotypes, transcript profiles, peptide profiles from 

KRONOSII and RUSH, as well as external epigenomics and signaling pathway data via our expansion 

procedures. Causal predictive networks were built separately in KRONOSII and RUSH, using only the late onset 

Alzheimer’s disease data to reduce the search space. Again, targets of importance for late onset Alzheimer’s 

disease are enriched in the inputs, since module selection included enrichment for modules that had significantly 

more differentially expressed transcripts. Two different runs were performed: one containing only module 

selection/module enrichment selected gene data (transcript set) and the other contained both module 

selection/module enrichment selected genes and the full peptide set (multi set). 

The basic procedure involved building directed edges (relationships) between nodes (allele, transcript 

and peptide data). For the aggregate builds of genes and peptides, the causal predictive networks considered 

three types of molecular interactions: 1. gene-to-peptide (gene produces protein), 2. peptide-to-gene 

(transcriptional regulation) and 3. peptide-to-peptide (protein-protein interaction). The causal predictive network 

builds were constrained to parent-child relationships (see Figure 1, step 6). The following structural constraints 

were applied:  1. Edges were initialized and fixed within the run such that parent-child relationships were 

restricted to matches (i.e. peptides could not have parents that were not their corresponding genes and vis 

versa), 2. cis-expression quantitative trait loci genes or cis-	protein quantitative trait loci peptides were fixed to 

be top nodes during structure learning. Unmatched peptide-genes pairs were allowed to have any edge 

relationship, so long as the resulting graph was directed and acyclic. The second group was only constrained 

such that cis-expression quantitative trait loci genes or cis-	protein quantitative trait loci peptides were fixed to 

be top nodes.  

To demonstrate that our multi-scale predictive network captures additional useful information and not 

random noise, several sanity checks were performed. First, the causal predictive network multi-scale network 

was approximated into single-scale networks for both transcripts and proteins to test whether integrating entities 

at the two-scale, peptide-transcript level did not distort the single-scale network structures. This was achieved 

by omitting the intermediate proteins or transcripts along any pathway. The downgraded transcript-only or 

peptide-only network structures were then overlapped with the actual multi-scale predictive network. Fisher’s 

exact tests gave no significant differences, indicating the predictions were robust. 

 Second, to examine whether the three types of molecule interactions (transcript-to-protein, protein-to-

protein, and protein-to-transcript) in the predicted multi-scale network reflected known biology pathways, the 

predicted transcript-only, and transcript-peptide causal structures were compared to the prior late onset 

Alzheimer’s disease specific signaling pathways from our enrichment network built from the MetaCore and 

ConsensusPathDB. There were no significant differences, indicating the predictions were robust. 

 

Key driver analysis. After the causal networks were predicted independently in the KRONOSII and RUSH 

datasets, key driver analysis was performed. Key drivers are targets that are predicted to have a significant 

impact on the regulatory states of other targets in the modules. Our analysis was performed using the package 
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key driver analysis in R, which takes either directed or undirected networks as well as a projection dataset as 

inputs. The goal is to determine whether the members of the projection datasets are significantly over 

represented in the networks compared to other members of the set. This methods are an improvement over link-

counting, as is done in hub gene calculations because it considers enrichments from a test set, which allows for 

hypothesis testing as well as predicting key drivers by counting links in layers of directed data (Zhang, 2013). 

Key driver analysis was performed in the causal predictive network for both the transcript-only and transcript-

plus-peptide sets. Several projection datasets were used: 1. The module enrichment set only including 

differentially expressed transcripts, 2. Each transcript module in its entirely, 3. The full differentially expressed 

transcript set, 4. All transcripts and peptides against the transcript-peptide causal network and 5. The entire 

peptide set was projected onto the transcript-peptide causal network. Analysis was performed separately in 

KRONOSII and RUSH. Significance was set to p=0.05, the h-layer neighbor expansion to k=3 and 5 permutations 

were performed to correct for multiple testing. 
 

In vitro validation: APP and MAPT cell lines. Replication-defective lentiviral particles were generated using a 

3rd generation lentiviral packaging system by Origene (Rockville, MD). Briefly, around 80% confluent HEK293T 

cells in 6 wells plates were transiently co-transfected with 1.0 μg of target open reading frame in lenti vector with 

C-terminal monomeric GFP tag (pLenti-C-mGFP, OriGene Technologies, Rockville, MD USA), and 1.2 μg of 3rd 

generation mixture of packaging plasmids.  Media was replaced 24 hours later and viral supernatants were 

collected twice at 24 hour intervals. The combined viral supernatant was centrifuged at 2000g for 5 min and 

filtered with a 0.45 micron syringe filter. Viral particles were pelleted with Peg-it (SBI, Palo Alto, CA USA) and 

resuspended in 1 ml of DPBS. 

For transduction HEK293sw were seeded at around 300,000 cells/well and H4-4R0N at 80,000 cells/well 

in 12 wells plates. Transduction was performed 24 hours later when cells reached around 80% confluence by 

adding 100μl of viral particles. Media at transduction was supplemented with Hexadimethrine bromide (Sigma-

Aldrich, St Louis, MO) at a final concentration of 8μg/ml. Cells were incubated with the viral particles at 37°C 

with 5% CO2 for 24 hours. Cells transduced with the empty vector pLenti-C-mGFP (OriGene Technologies, 

Rockville, MD USA) were used as controls. One day after transduction, cells were visualized under a fluorescent 

microscope to check for GFP expression. Media was collected every 24 hours for protein quantification. Four 

days after transduction RNA was extracted for qPCR gene expression testing. 

To determine the levels of Abeta40, Abeta42, Tau and Phospho-Tau, a Luminex 100 system was 

employed. Singleplex beads for the quantification of Tau (Total), Tau[pT181] and the Beta Amyloid peptides 

Aβ40 and Aβ42 were obtained from Life Technologies (Carlsbad, CA). For each bead assay, internally red and 

infrared dyed beads, conjugated with capture antibodies for Tau (total), Tau[pT181], Aβ40 and Aβ42 were 

incubated with the conditioned culture media from the transduction experiments and specific detector antibodies. 

Beads were then washed and incubated with R-Phycoerythrin conjugate that binds to the detector antibodies. 

Beads were washed again and analyzed using the Luminex detection system. The Luminex system uses the 
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spectral properties of the beads and the RPE fluorescence to compare against standards of known concentration 

and determine the protein concentration in the conditioned culture media. Since protein production is an ongoing 

process and can be related to cell division and growth, we performed all measurements of Abeta and Tau as a 

time-course, with multiple samplings of extracellular media. Conditioned media was sampled at 48, 72 and 96 

hours post transduction. 
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ANCILLARY DATASETS LEGENDS: 

 

Ancillary Dataset 1: Differential expression transcripts. Shown are all the transcripts in the KRONOSII (first 

tab) and RUSH (second tab) that survived multiple testing correction using Benjamini-Hochberg correction (5% 

false discovery rate). Illumina manifest (HumanHT-12_v3_0-r2-11383641_A) probe names and gene names are 

given, as well as gene names from GRC38.p13. Probe_missing_from_assembly indicates that probe is not 

currently mapped to GRC38.p13. Entrez identifiers are from NCBI and log-fold changes and adjusted p-values 

are given from the limma analysis. Adjustment is done by Benjamini-Hochberg with a 5% false discovery rate. 

Overlap between the KRONOSII and RUSH sets is given in the last column. 

 

Ancillary Dataset 2: Differential expression Peptides. Shown are all the peptides in the KRONOSII (first tab) 

and RUSH (second tab) that survived multiple testing correction using Benjamini-Hochberg correction (5% false 

discovery rate). Peptide names are given by gene name_underscore_peptide sequence. Overlap between the 

KRONOSII and RUSH sets is given in the last column. 

 

Ancillary Dataset 3: Cis Overlapping expression quantitative trait loci. Listed are the cis expression 

quantitative trait loci that overlap between KRONOSII and RUSH. Best SNP indicated the SNP with the lowest 

p-value for that transcript target. 

 

Ancillary Dataset 4: KRONOSII Transcript Co-expression Networks. Listed are the Entrez identifiers, probe 

identifiers and module labels for the co-expression network analysis for KRONOSII late onset Alzheimer’s 

disease samples (first tab) and KRONOSII controls (second tab) on the set of 15,297 transcripts. Index is a 

random number just indicating the order of probes. 

 

Ancillary Dataset 5: RUSH Transcript Co-expression Networks. Listed are the peptide identifiers and module 

labels for the coexpression network analysis for RUSH late onset Alzheimer’s disease samples (first tab) and 

RUSH controls (second tab) on the set of 15,297 transcripts. Index is a random number just indicating the order 

of probes. 

 

Ancillary Dataset 6: KRONOSII Peptide Co-expression Networks. Listed are the peptide identifiers and 

module labels for the co-expression network analysis for KRONOSII late onset Alzheimer’s disease samples 

(first tab) and KRONOSII controls (second tab) on the set of 1,931 peptides. Peptide names are given by gene 

name_underscore_peptide sequence. Index is a random number just indicating the order of probes. 

 

Ancillary Dataset 7: RUSH Peptide Co-expression Networks. Listed are the peptide identifiers and module 

labels for the co-expression network analysis for KRONOSII late onset Alzheimer’s disease samples (first tab) 
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and KRONOSII controls (second tab) on the set of 1,931 peptides. Peptide names are given by gene 

name_underscore_peptide sequence. Index is a random number just indicating the order of probes. 

 

Ancillary Dataset 8: KRONOSII multiscale Co-expression Networks. Listed are the peptide identifiers and 

module labels for the co-expression network analysis for KRONOSII late onset Alzheimer’s disease samples 

(first tab) and KRONOSII controls (second tab) on the reduced  set of 15,297 transcripts and 1,931 peptides. 

Peptide names are given by gene name_underscore_peptide sequence. Index is a random number just 

indicating the order of probes. 

 

Ancillary Dataset 9: RUSH multiscale Co-expression Networks. Listed are the peptide identifiers and module 

labels for the co-expression network analysis for RUSH late onset Alzheimer’s disease samples (first tab) and 

RUSH controls (second tab) on the reduced set of 15,297 transcripts and 1,931 peptides. Peptide names are 

given by gene name_underscore_peptide sequence. Index is a random number just indicating the order of 

probes. 
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SUPPLEMENTAL FIGURE LEGENDS: 

 

Supplemental Figure 1: Samples. Shown are the sample counts at each step of the data collection process. 

From a cohort of ~3,000 different individuals, we obtained tissue profiling on ~800 of those individuals for all 

datasets. Our biggest drops were eliminating samples for co-morbid pathology and diagnostic criteria (19% of 

the cohort dropped) and there was another major drop when RNA quality was assessed (20% of the cohort 

dropped, 72% of dropped samples were from affected tissues).
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Supplemental Figure 2: Multi-scale co-expression network and module content comparison. Plotted are 

the percentage of gene content for each module in (A) KRONOSII Alzheimer’s disease, (B) RUSH Alzheimer’s 

disease, (C) KRONOSII controls and (D) RUSH Alzheimer’s disease. The Y-axis indicates the fraction of the 

module content that is gene related, with scores of 1 indicating the module is solely comprised of transcripts and 

a score of 0 indicating the module is solely derived of peptides. 
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Supplemental Figure 3: RGS4 results. Shown in the figure are the differentially expressed transcript probe 
profiles in KRONOSII and RUSH, including late onset Alzheimer’s disease, mild cognitive impairment (RUSH) 
and controls (A), along with the levels of total RNA (B, 96 hours shown, measured as a surrogate of the level 
of cell death, all four constructs shown, left in HEK293sw cells, right in H4-4R0N cells), transcript knockdown 
for target (C, 96 hours shown, all four constructs shown, left in HEK293sw cells, right in H4-4R0N cells) and 
mRNA (D, 96 hours shown, only construct B shown, left HEK293sw cells, right H4-4R0N cells) . Construct B 
was carried forward as it had the greatest knockdown without affecting total RNA levels in both the HEK293 
and H4 lines. (E) shows the AB40 levels, (F) the AB42 levels, (G) the Total Tau levels and (H) the Phospho-
Tau levels for three repeat measures of conditioned media at 3 different time-points. Measurements are taken 
at 48, 72 and 96 hours post transduction. Bar in (A) gives the limma differential expression p-value. * = t-Test p 
value.	
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Supplemental Figure 4: PDHB results. Shown in the figure are the differentially expressed transcript probe 

profiles in KRONOSII and RUSH, including late onset Alzheimer’s disease, mild cognitive impairment (RUSH) 

and controls (A), along with the levels of total RNA (B, 96 hours shown, measured as a surrogate of the level of 

cell death, all four constructs shown, left in HEK293sw cells, right in H4-4R0N cells), transcript knockdown for 

target (C, 96 hours shown, all four constructs shown , left in HEK293sw cells, right in H4-4R0N cells) and mRNA 

(D, 96 hours shown, only construct D shown, left HEK293sw cells, right H4-4R0N cells). Construct D was carried 

forward as it had the greatest knockdown without affecting total RNA levels in both the HEK293 and H4 lines. 

(E) shows the AB40 levels, (F) the AB42 levels, (G) the Total Tau levels and (H) the Phospho-Tau levels for 

three repeat measures of conditioned media at 3 different timepoints. Measurements are taken at 48, 72 and 96 

hours post transduction. Bar in (A) gives the limma differential expression p-value. * = t-Test p value. 



Petyuk et al	

	 24	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Petyuk et al	

	 25	

Supplemental Figure 5: CCT5 results. Shown in the figure are the differentially expressed transcript probe 

profiles in KRONOSII and RUSH, including late onset Alzheimer’s disease, mild cognitive impairment (RUSH) 

and controls (A), along with the levels of total RNA (B, 96 hours shown, measured as a surrogate of the level of 

cell death, left in HEK293sw cells, right in H4-4R0N cells), and mRNA overexpression for target (C, 96 hours 

shown, left in HEK293sw cells, right in H4-4R0N cells). (D) shows the AB40 levels, (E) the AB42 levels, (F) the 

Total Tau levels and (G) the Phospho-Tau levels for three repeat measures of conditioned media at 3 different 

timepoints. Measurements are taken at 48, 72 and 96 hours post transduction. * = t-Test p value.
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Supplemental Figure 6: COMT results. Shown in the figure are the differentially expressed transcript probe 

profiles in KRONOSII and RUSH, including late onset Alzheimer’s disease, mild cognitive impairment (RUSH) 

and controls (A), along with the levels of total RNA (B, 96 hours shown, measured as a surrogate of the level of 

cell death, left in HEK293sw cells, right in H4-4R0N cells), and mRNA overexpression for target (C, 96 hours 

shown, left in HEK293sw cells, right in H4-4R0N cells). (D) shows the AB40 levels, (E) the AB42 levels, (F) the 

Total Tau levels and (G) the Phospho-Tau levels for three repeat measures of conditioned media at 3 different 

timepoints. Measurements are taken at 48, 72 and 96 hours post transduction. * = t-Test p value. 
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Supplemental Figure 7: GNA12 results. Shown in the figure are the differentially expressed transcript probe 

profiles in KRONOSII and RUSH, including late onset Alzheimer’s disease, mild cognitive impairment (RUSH) 

and controls (A), along with the levels of total RNA (B, 96 hours shown, measured as a surrogate of the level of 

cell death, left in HEK293sw cells, right in H4-4R0N cells), and mRNA overexpression for target (C, 96 hours 

shown, left in HEK293sw cells, right in H4-4R0N cells). (D) shows the AB40 levels, (E) the AB42 levels, (F) the 

Total Tau levels and (G) the Phospho-Tau levels for three repeat measures of conditioned media at 3 different 

timepoints. Measurements are taken at 48, 72 and 96 hours post transduction. * = t-Test p value. 
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