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Abstract

More than 20 genetic loci have been associated with risk for Alzheimer’s disease (AD), but 

reported genome-wide significant loci do not account for all the estimated heritability and provide 

little information about underlying biological mechanisms. Genetic studies using intermediate 

quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power 

to identify variants that may not pass the stringent multiple test correction in case–control studies. 

Endophenotypes also contain additional information helpful for identifying variants and genes 

associated with other aspects of disease, such as rate of progression or onset, and provide context 

to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of 

amyloid beta (Aβ42), tau, and phosphorylated tau (ptau181) levels in cerebrospinal fluid (CSF) 

from 3146 participants across nine studies to identify novel variants associated with AD. Five 

genome-wide significant loci (two novel) were associated with ptau181, including loci that have 

also been associated with AD risk or brain-related phenotypes. Two novel loci associated with 

Aβ42 near GLIS1 on 1p32.3 (β = −0.059, P = 2.08 × 10−8) and within SERPINB1 on 6p25 (β = 

−0.025, P = 1.72 × 10−8) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 × 

10−2), disease progression (GLIS1: β = 0.277, P = 1.92 × 10−2), and age at onset (SER-PINB1: β 
= 0.043, P = 4.62 × 10−3). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) 

affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that 

SERPINB1 influences AD through an Aβ-associated mechanism. Analyses of known AD risk loci 

suggest CLU and FERMT2 may influence CSF Aβ42 (P = 0.001 and P = 0.009, respectively) and 

the INPP5D locus may affect ptau181 levels (P = 0.009); larger studies are necessary to verify 

these results. Together the findings from this study can be used to inform future AD studies.

Keywords

Alzheimer’s disease; Endophenotype; Cerebrospinal fluid biomarkers; Genome-wide association 
study
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Introduction

More than five million Americans suffer with Alzheimer’s disease (AD), the most common 

neurodegenerative disease leading to progressive cognitive decline, and this number 

continues to increase as there are currently no effective methods to treat or prevent disease. 

Several genome-wide association studies (GWAS) have identified at least 24 loci containing 

common variants associated with AD risk [37, 39, 48, 56]. AD is a complex disease that is 

highly heritable, with an estimated heritability as high as 79% in twin studies [31] and 

genetic variance analyses estimate >53% of the variance in AD status can be explained by 

common variants (minor allele frequency, MAF > 1%) [64]. Polygenic studies have 

illustrated the genetic complexity underlying AD; recent studies using polygenic risk scores 

(PRS) calculated by combining the small effects of independent SNPs associated with AD 

risk (P < 0.5) provided AD risk prediction accuracy, as measured by area under the receiver 

operating curve (AUC) > 0.74, which is near the maximum AUC (0.82) [22, 23]. These 

studies indicate many genetic loci combine to increase risk for AD, most of the genetic risk 

loci are tagged by common variants (MAF > 1%), and that these loci, individually, have 

small effects on disease. These findings reveal that most AD risk variants have not passed 

the strict significance threshold required for multiple-test correction in GWAS, even in large 

studies such as the landmark study by the International Genomics of Alzheimer’s Project 

(IGAP), involving more than 74,000 total individuals, which identified 11 novel loci 

associated with AD risk [48]. It is also important to note that most AD susceptibility loci 

identified in these GWAS are gene-dense regions and many significantly associated SNPs 

are non-coding (intronic or intergenic), making it difficult to determine which genes are 

involved or how identified variants influence these genes. Studies integrating alternative 

phenotypes, gene expression, and other omics data are important for understanding the 

underlying biology of AD.

There is significant evidence that AD pathology is present several years before the onset of 

clinical symptoms [25, 26, 41, 55]. Consequently, AD case–control GWAS can be 

confounded by the presence of preclinical “controls”. Case– control-based GWAS are also 

limited to identifying genetic associations for disease risk; results from these studies do not 

provide information about other aspects of disease such as age at onset (AAO) or disease 

progression, or information about underlying biological mechanisms involved in 

pathogenesis. Endophenotypes are quantitative traits strongly associated with disease that 

also share genetic architecture with disease; therefore, genetic studies of endophenotypes are 

a powerful approach to identify loci associated with complex traits without many of the 

limitations of case–control studies. Cerebrospinal fluid (CSF) amyloid-beta1–42 (Aβ42) and 

phosphorylated tau (ptau181) are well-established AD endophenotypes [7, 13–15]. CSF 

ptau181 levels are elevated in AD cases and positively correlate with the number of 

neurofibrillary tangles, while CSF Aβ42 levels are lower in cases and correlate negatively 

with plaque load [43, 59, 72]. Increased CSF ptau181 is predictive for cognitive decline and 

progression from mild cognitive impairment to AD [2, 16]. Some genetic variants associated 

with AD also influence CSF levels of ptau181, Aβ42, or both [13, 44]. We previously 

performed GWAS of CSF tau, ptau181, and Aβ42 on 1269 participants (591 cases, 687 

controls) and identified four genome-wide significant loci associated with tau and ptau181, 
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including a novel locus that also associated with AD risk, tangle pathology, and cognitive 

decline [13]. This study has been expanded more than twofold to 3146 participants across 

nine cohorts with CSF and genome-wide genotype data (Table 1), providing additional 

power to identify more novel loci associated with ptau181, Aβ42, and AD.

Methods

Ethics statement

The Institutional Review Boards of all participating institutions approved the study and 

research was carried out in accordance with the approved protocols. Written informed 

consent was obtained from participants or their family members.

Cohort descriptions

CSF tau, ptau, and Aβ42 were measured in 3146 individuals from nine different studies. 

There were 805 individuals (29.34% cases) enrolled in studies at the Charles F. and Joanne 

Knight Alzheimer’s Disease Research Center (Knight ADRC), 787 individuals (more than 

71% cases) from Alzheimer’s Disease Neuroimaging Initiative (ADNI; 390 from ADNI1 

and 397 from ADNI2), 184 individuals (5.43% cases) from BIOCARD: Predictors of 

Cognitive Decline Among Normal Individuals (BIOCARD), 105 individuals (no AD status) 

from Saarland University in Homburg/Saar, Germany (HB), 433 individuals (22.17% cases) 

from Mayo Clinic (MAYO), 293 individuals (all cases) from Skåne University Hospital, 

Sweden (SWEDEN), 164 (62.8% cases) from studies at Perelman School of Medicine at the 

University of Pennsylvania (UPENN), and 375 (33.33% cases) from studies at the 

University of Washington (UW). Table 1 shows the demographic data for each study. 

Clinical assessments, CSF collection, and proteins were measured by each site. Clinical 

dementia rating (CDR) was available for 86% of the total data set. The CDR is a five-point 

scale used to describe the overall dementia severity for each individual (no dementia = 0, 

very mild = 0.5, mild = 1, moderate = 2, and severe = 3). Individuals with CDR = 0 were 

categorized as controls, cases were defined as individuals with CDR > 0.

Genotyping and imputation

Samples were genotyped with the Illumina 610 or Omniexpress chip. Stringent quality 

control (QC) criteria were applied to each genotyping array separately before combining 

genotype data. The minimum call rate for single nucleotide polymorphisms (SNPs) and 

individuals was 98% and autosomal SNPs not in Hardy–Weinberg equilibrium (P < 1 × 

10−6) were excluded. X-chromosome SNPs were analyzed to verify sex identification. 

Unanticipated duplicates and cryptic relatedness (Pihat ≥ 0.25) among samples were tested 

by pairwise genome-wide estimates of proportion identity-by-descent, and when a pair of 

identical or related samples was identified, the sample from Knight ADRC or with a higher 

number of variants that passed QC was prioritized. EIGENSTRAT [61] was used to 

calculate principal components. APOE ε2, ε3, and ε4 isoforms were determined by 

genotyping rs7412 and rs429358 using Taqman genotyping technology as previously 

described [14, 15, 44]. The 1000 Genomes Project Phase 3 data (October 2014), SHAPEIT 

v2.790 [18], and IMPUTE2 v2.3.2 [40] were used for phasing and imputation. Individual 

genotypes imputed with probability <0.90 were set to missing and imputed genotypes with 
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probability ≥0.90 were analyzed as fully observed. Genotyped and imputed variants with 

MAF < 0.02 or IMPUTE2 information score <0.30 were excluded, leaving 7,358,575 

variants for analyses.

Data normalization for statistical analyses

Prior to combining data for analyses, CSF levels of tau, ptau, and Aβ42 were log10-

transformed to approximate a normal distribution and the mean from each data set was 

standardized to zero to account for the different platforms used by different studies to 

measure protein levels. There were no significant differences in the transformed and 

standardized values for the different studies. Study, age, sex, and the first two principal 

components were identified as confounding factors by stepwise regression analyses for each 

protein and corrected for in applicable analyses.

Experimental design and data modeling

Studies by our group, and others, have demonstrated that when there is GWAS data available 

for all samples, a one-stage GWAS of combined data from both stages of a two-stage GWAS 

provides more power to identify genetic association than analyzing the groups separately, 

despite the fact that the one-stage GWAS requires a more stringent threshold to determine 

significance [13–15, 19, 70]. To maximize the power in our analyses, we performed a one-

stage joint-GWAS. The CSF levels were measured with different platforms and at different 

sites, consequently the raw values could not be combined. Instead, the raw values were 

log10-transformed to approximate a normal distribution within each separate study and 

centralized by each study mean. We have used this approach in previous studies and 

demonstrated that it is an effective way to correct for study differences [13, 19]. We also 

performed analyses to ensure the results were not confounded by any study bias; to 

determine if the top hits were being driven by any individual study, we analyzed each dataset 

separately and performed meta analyses. The directions of effect for the genome-wide 

significant signals for Aβ42 and ptau181 were consistent across studies when analyzed 

separately and results from meta-analyses of the individual studies were consistent with the 

joint results even after removing cohort from previous study (Supplementary Figs. 1–3).

Alternative mixed model method to normalize Aβ42

Since CSF levels of Aβ42 are lower in AD cases than controls, begin decreasing prior to 

clinical symptom onset [25, 26, 43, 59, 72], and the studies in this dataset varied in 

proportion of cases to controls, we wondered if a mixture modeling approach would be more 

appropriate for standardizing the data between studies instead of centering on the mean of 

each study. This method was successfully used previously to classify AD cases in two 

independent cohorts with at least 94% sensitivity [17]. Mixture modeling is a statistical 

method for estimating subpopulations within an overall group; in this case we assumed two 

normally distributed subgroups within each dataset representing individuals with low Aβ42, 

therefore likely to be AD cases or preclinical, and with high Aβ42, likely to be cognitively 

normal controls. Using an expectation–maximization algorithm, we calculated estimated 

means, standard deviations, and subgroup proportions for each study. Based on the 

assumption of two univariate normal distributions within each study we obtained two 

estimated means (µ1 and µ2), two estimated standard deviations (σ1 and σ2), and two 
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estimated mixing proportions (λ1 and λ2). We used these results to calculate the intersection 

of the estimated Gaussian curves using the following formula (Eq. 1):

(1)

analyte, including study, age, sex, and the first two principal components as covariates in the 

default model [11]. The genomic inflation factor was λ = 1.02 for ptau181 and λ = 1.03 for 

tau and Aβ42 (Supplementary Fig. 7). There were no novel genetic associations identified 

for CSF tau levels (Supplementary Fig. 8 and Supplementary Table 2) but we did identify 

novel associations for ptau181 and Aβ42 (Figs. 1, 2; Table 2; Supplementary Tables 3, 4). 

Conditional analyses were conducted to identify additional independent signals in a locus by 

adding the SNP with the smallest P value as a covariate into the default regression model 

and testing all remaining regional SNPs for association (Supplementary Figs. 9, 10). AD 

status, CDR, APOE alleles, APOE ε4 carrier status, Aβ42, or ptau181 levels were corrected 

for in additional analyses to determine the effects of these phenotypes on the genetic 

associations (Supplementary Fig. 11 and Supplementary Table 5–Supplementary Table 8). 

The combined dataset was stratified by AD status and cases and then centered the log10-

transformed Aβ42 levels to the intersection of the curves instead of the means for each study 

(Supplementary Table 1). CSF Aβ42 thresholds have been determined previously for both 

ADNI (192 pg/mL) [69] and ADRC (500 pg/mL) [25]; the calculated intersects were 

comparable to these values (182 and 548 pg/mL, respectively, Supplementary Table 1). The 

density plots of the estimated subpopulations for each study ft the overall distributions 

reasonably well, but after accounting for AD status the model did not appear significantly 

different than standardizing to the overall mean (Supplementary Figs. 4, 5). There was no 

difference between the two methods in a single variant analysis of the mixed model 

standardized CSF Aβ42 levels and the levels centered at the study mean (Supplementary Fig. 

6).

The intersect was log10-transformed and subtracted from the log10-transformed values of 

Aβ42 (Supplementary Figs. 4, 5 and Supplementary Table 1). When the singlevariant 

analysis was repeated using these normalized values for Aβ42, the results were comparable 

to those from the mean normalized values (Supplementary Fig. 6). Therefore, to be 

consistent, we used the mean normalized values in all analyses.

Association testing

The additive linear regression model in PLINK v1.9 [11] was used for single-variant 

analyses for each controls were analyzed separately for single-variant associations 

(Supplementary Table 8). Statistical significance for the single-variant analyses was based 

on the commonly used threshold from Bonferroni correction of the likely number of 

independent tests in genome-wide analyses (P < 5 × 10−8). Manhattan plots and regional 

association plots were created using the R package qqman v0.1.2 [74] and LocusZoom v1.3 

[62], respectively.
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Meta-analyses

To test for potential systematic differences between the datasets, each study was analyzed 

separately for the most significant SNPs from the joint analyses. Covariates were age, sex, 

and the first two principal components. Meta-analyses of the results from the separate 

datasets were performed using METAL (version released 2011-03–25) [80]. The METAL 

default analysis scheme was used with sample size and beta for each SNP taken into account 

when combining P values across studies. For the genome-wide significant signals, the nine 

studies showed consistent direction of effect individually, and meta-analysis results were 

consistent with the joint results (Supplementary Figs. 1, 2). After removing the samples that 

comprised the previously published study [13], the meta-analysis results remained consistent 

with the joint results (Supplementary Fig. 3). Forest plots were generated using the R 

package rmeta v2.16.

Association with AD risk, progression, AAO

Results from independent analyses of different cohorts for AD risk [48], AAO (personal 

communication: Huang & Goate), and disease progression were analyzed to determine 

whether loci associated with CSF tau, ptau181, and Aβ42 were also associated with other AD 

phenotypes. Results for the most significantly associated SNPs for CSF tau, ptau181, and 

Aβ42 are reported here from the largest previously published two-stage meta-analysis of 

GWAS for AD risk consisting of a total 25,580 cases and 48,466 controls [48], and a 

recently published genome-wide survival analysis of AAO consisting of 39,855 individuals 

(personal communication: Huang & Goate). To determine disease progression in an 

independent cohort of 1530 individuals, we utilized the CDR Sum of Boxes (CDR-SB) 

which has been demonstrated to accurately stage dementia severity [57, 58]. Overall CDR is 

derived from scores in six individual categories (boxes) of memory, orientation, problem 

solving, community involvement, involvement in home and hobbies, and personal care; 

CDR-SB is a sum of the six boxes which provides a semi-continuous measure of 

symptomatic AD dementia from 0 (cognitively normal) to 18 (the most severe dementia). 

Disease progression from longitudinal studies at ADNI (n = 728) and Knight ADRC (n = 

802) was modeled as the change in CDR-SB per year, adjusting for age, sex, baseline CDR, 

follow-up time, level of education, site, and PCs (Supplementary Table 9). Samples with ≥3 

clinical assessments over 1.5 years after being diagnosed with AD were selected for the 

analysis and a mixed-model repeated measure framework was used to account for 

correlation between repeated measures in the same individual. We selected the appropriate 

optimal variance–covariance structure that minimizes the Akaike Information Criterion for 

testing the null model AR1 [14].

Functional annotation

All SNPs below the suggestive significance threshold (P = 1 × 10−5) were taken forward for 

functional annotation using ANNOVAR version 2015-06–17 [77] and examined for potential 

regulatory functions using RegulomeDB v1.1 [8] and HaploReg v4.1 [78]. The search tools 

on the Genotype-Tissue Expression (GTEx) Analysis Release V6, dbGaP Accession 

phs000424.v6.p1 portal [33], data from the Brain eQTL Almanac (Braineac) [73] analyzed 

with the R package MatrixEQTL [68], and the Blood eQTL browser [79] were utilized to 
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determine if genome-wide significant SNPs were reported eQTLs. The Brain RNA-Seq 

database (http://web.stanford.edu/group/barres_lab/brainseqMariko/brainseq2.html) was 

mined to determine if genes of interest were expressed in the brain and in which cell types 

[84].

Summary data-based mendelian randomization

To prioritize the putative causal variant from the ptau181 and Aβ42 associated variants, we 

used the Summary data-based Mendelian Randomization (SMR) method which tests the 

functional association between gene expression levels (measured by probes) and a trait (such 

as CSF protein levels) through the regression of estimated effect sizes [85]. Based on the 

assumptions of Mendelian randomization, any gene–trait association identified in this 

analysis should be free of confounding from non-genetic factors. To distinguish causality of 

a single variant on both gene expression and the trait vs linkage of two distinct genetic 

variants in LD with one affecting expression and one affecting the trait, the SMR method 

uses a heterogeneity (HEIDI) test. For the SMR analysis, we utilized the estimates of SNP 

effects on gene expression from summary data of a large-scale eQTL study with gene 

expression measured in peripheral blood (Blood eQTL browser) [79] and gene expression 

data from Cardiogenics measured in macrophages [35]. There were 3000 SNPs present in 

both the blood eQTL data and the GWAS results so the statistical significance threshold was 

defined (based on Bonferroni correction) as P < 1.67 × 10−5 for the associations between 

eQTL in blood and CSF GWAS loci. Focusing on the SERPINB1 gene region (from the 6p 

terminal to 10 Mb after the defined SERPINB1 transcription region) in the macrophage 

eQTL data, there were 4336 SNPs; therefore, the statistical significance threshold was 

defined as P < 1.15 × 10−5. The HEIDI threshold was set at P > 0.05 to be conservative; 

since the null hypothesis is that there is only one causal variant, a P > 0.05 indicates the 

variant that passed the SMR test is the causal variant.

Genetic variance estimation

The Genome-wide Complex Trait Analysis (GCTA) v1.25.2 tool [82] was used to estimate 

the proportion of phenotypic variance explained by the common (MAF > 0.02) imputed and 

genotyped autosomal variants. The restricted maximum likelihood (REML) analysis was 

performed on the log10-transformed standardized analyte values adjusted for age and gender 

with the first two principal components as covariates. Results are reported in Supplementary 

Table 10.

Since it was reported that estimated h2 may be biased if causal variants are enriched in areas 

with lower or higher LD than average [81], we also used GCTA to calculate segment-based 

LD scores (segment length = 200 kb) for all SNPs in the REML analysis and plotted the 

number of SNPs from the single-variant analyses of Aβ42 and ptau181 with P < 1 × 10−5 

(Supplementary Fig. 12). Since the most significantly associated SNPs showed LD 

heterogeneity, and the method can be applied to imputed GWAS data, we used the LD- and 

MAF-stratified genomic-REML (GREML-LDMS) method [81] in GCTA to estimate h2 for 

each LD quartile and calculate a total h2 estimate (Supplementary Table 10). The GCTA-

GREML power calculator (http://cnsgenomics.com/shiny/gctaPower) [76] was used to 

calculate the power of the REML and GREML-LDMS analyses with the actual sample sizes, 
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estimated h2, α = 0.05, and genetic variance = 2 × 10−5 as parameters (Supplementary Table 

10).

Polygenic risk score

PRS were calculated using a weighted sum of the AD risk alleles reported by IGAP [48]. 

Weights for SNPs outside the APOE region were calculated by transforming the reported 

odds ratios by a base-2 logarithm. Proxy SNPs were utilized if the reported SNPs were 

unavailable in our data or did not pass QC; proxies were selected with the highest R2 and D’ 

values to the reported IGAP SNP in our genetic data and in 1000 Genomes. Since APOE has 

a large effect on AD risk and CSF protein levels, we calculated a default PRS without 

APOE. The effects of APOE genotype on AD risk are not additive, so APOE genotypes 

were weighted by the effects reported previously for each genotype (ε2/ε2 OR = 0.6, ε2/ε3 

OR = 0.6, ε2/ε4 OR = 2.6, ε3/ε4 OR = 3.2, ε4/ε4 OR = 14.9) [29]. The SNPs that 

composed the PRS are listed in Supplementary Table 11. The PRS were calculated (with and 

without APOE genotype) using the score function in PLINK v1.90b3.42 [11], including the 

no-mean-imputation option to ensure scores would not be imputed for missing genetic data. 

The resulting mean score per allele was multiplied by the allele count to generate a total 

PRS.

Results

Reproduction of previously reported associations with CSF Aβ42, tau, and ptau181

As reported previously, the most significant variant associated with CSF levels of Aβ42, tau, 

and ptau181 was a proxy SNP for APOE ε 4 (r2 = 0.726, D’ = 1), rs769449[A] (Aβ42 β = 

−0.117, P = 9.02 × 10−47; tau β = 0.082, P = 1.95 × 10−16; ptau181 β = 0.091, P = 2.56 × 

10−18) [13]. In the current analyses, the effects were similar to what was previously reported 

with more significant P values due to the larger sample size (Aβ42 β = −0.101, P = 4.78 × 

10−94; tau β = 0.078, P = 4.05 × 10−29; ptau181 β = 0.081, P = 9.51 × 10−35). While there 

were no other loci associated with Aβ42 in the previous GWAS, two loci outside the APOE 
locus were identified to be associated with CSF tau and ptau181 [13]. We also replicated the 

previously reported loci for ptau 181 on 3q28 (rs9877502[A] near GMNC, β = 0.044, P = 

1.68 × 10−7) and on 9p24.2 (rs514716[C] on GLIS3, β = −0.072, P = 3.22 × 10−9) were both 

genome-wide significant in this larger study (rs9877502[A], β = 0.032, P = 6.35 × 10−9; 

rs514716[C], β = −0.049, P = 2.94 × 10−8) (Table 2, Supplementary Fig. 13; see 

Supplementary Table 4 for all loci with P < 1 × 10−5) [13].

A small GWAS of AD CSF biomarkers from 374 ADNI participants (102 controls) 

identified variants in EPC2 associated with CSF levels of tau and the Tau/Aβ42 ratio [46]. In 

our current analyses, there were no genome-wide significant, or suggestive, associations 

with the EPC2 locus (tau: β = 0.005, P = 0.428; Tau/Aβ42 ratio β = 0.072, P = 0.017), but 

interestingly the strongest association was for Aβ42 (β = −0.016, P = 3.77 × 10−4; 

Supplementary Fig. 14). Another early GWAS of CSF levels from 410 ADNI participants 

(119 controls) did not identify any genome-wide significant variants for CSF Aβ42, ptau181, 

or tau in cases, but found three genome-wide significant signals for Aβ42 in controls 

(CYP19A1, NCAM2, and ARL5B) [36]; none of these loci were associated with Aβ42 in 
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our current analyses of the joint dataset, cases-only, or controls-only (P > 0.1). A recent 

GWAS with only AD cases (N = 363) reported that SNPs located in the SUCLG2 region 

were associated with CSF Aβ42 levels [63] but this region was not associated with Aβ42 in 

any of the current analyses of the joint dataset, cases-only, or controls-only (P > 0.1). 

FRA10AC1 variants were associated with CSF Aβ42 levels in a two-stage GWAS of data 

from ADNI (two discovery sets: N = 391 and N = 385; replication set N = 204), and 

although there were no genome-wide significant signals within the FRA10AC1 locus in the 

current analyses, there was a near suggestive association between Aβ42 and indel 

rs143151810[-] (β = −0.033, P = 8.13 × 10−5; Supplementary Fig. 14), which is in high LD 

with the SNP identified in the other study, rs10509663[G] (r2 = 0.987, D’ = 0.997), and both 

associations showed the same direction of effect on Aβ42 levels [51].

APOE locus significantly influences CSF levels of ptau181 and tau independently of Aβ42

As we reported previously, the APOE region was still significantly associated with ptau181 

after including CSF Aβ42 levels in the analysis (rs769449[A]: default, βSNP = 0.079, P = 

5.30 × 10−33; adjusted for Aβ42 levels, βSNP = 0.046, P = 2.08 × 10−11), and in the current 

analysis the association between rs769449[A] and ptau181 remained genome-wide 

significant after including the interaction between Aβ42 levels and APOE genotype in the 

model (βSNP = 0.042, P = 1.65 × 10−8), suggesting APOE may influence tau pathology 

independently of Aβ42 and supporting our previous findings (Supplementary Fig. 11 and 

Supplementary Table 5) [13]. Similar results were observed with CSF tau as well (default, 

βSNP = 0.077, P = 6.75 × 10−28; adjusted for Aβ42 levels, βSNP = 0.048, P = 4.11 × 10−11; 

Aβ42 and APOE genotype interaction, βSNP = 0.045, P = 1.04 × 10−8). Low Aβ42 levels 

(ADRC < 500 pg/mL and ADNI < 192 pg/ mL) have been associated with amyloid positron 

emission tomography (PET-PIB) evidence of Aβ deposition [25, 69]. To determine if the 

possible presence of Aβ pathology influenced the effect of the APOE locus on ptau181 levels 

as we reported previously [13], we stratified the data from ADRC, ADNI1, and ADNI2 by 

high and low levels of Aβ42 and found the association between APOE locus and ptau181 

levels in both groups with a higher effect size in the individuals with low Aβ42 (β = 0.055, P 
= 2.12 × 10−7) than those with high Aβ42 (β = 0.037, P = 1.05 × 10−2).

We wanted to determine if the signal in the APOE locus was driven entirely by APOE 
genotype (APOE ε2, ε3, and ε4), or if there was an independent signal influencing CSF 

levels of ptau181 and Aβ42, so we performed conditional analyses on APOE genotype 

accounting for both ε 2 and ε 4 effects. The APOE genotype showed the strongest 

association with CSF levels of ptau181 (β = 0.042, P = 3.13 × 10−40) and Aβ42 (β = −0.053, 

P = 8.88 × 10−114) after correcting for age, sex, study, and two principal components. The 

association between the top hit in the APOE locus (rs769449) and ptau181 or Aβ42, remained 

significant, but not genome-wide significant, after adding APOE genotype to the model 

(ptau181: β = 0.034, P = 1.07 × 10−3; Aβ42: β = −0.036, P = 1.65 × 10−6) suggesting that 

there may be a signal in this region independent of APOE ε2, ε3, and ε 4 (Supplementary 

Table 12). To further explore this finding, we conditioned on the most significant SNP 

(rs769449), which is in high LD for the APOE ε 4 allele (rs429358[C], D’ = 1, r2 = 0.726). 

We found that although the associations between APOE genotype and ptau181 and Aβ42 

decreased, they remained genome-wide significant (conditioned: β = 0.029, P = 5.91 × 10−9 
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and β = −0.040, P = 2.28 × 10−28, respectively) (Supplementary Table 12). Together, these 

results suggest that most of the signal in this region is driven by APOE genotype, but 

additional independent SNPs in this region may influence CSF levels of both ptau181 and 

Aβ42.

Novel associations in single-variant regression analyses for Aβ42 and ptau181

The genomic inflation was minimal in all analyses suggesting no evidence of confounding 

by systematic biases (default model λ = 1.03 for Aβ42 and tau, 1.02 for ptau181; 

Supplementary Fig. 7). In addition to the loci reported previously, two novel genetic 

associations with CSF ptau181 were identified on 13q21.1 (rs9527039[C] near PCDH8, β = 

−0.061, P = 5.95 × 10−9) and 18q23 (rs12961169[T] near CTDP1, β = 0.050, P = 5.12 × 

10−10) (Fig. 1; Table 2). We also identified, for the first time, two genome-wide significant 

loci outside of the APOE region associated with CSF Aβ42 on 1p32.3 (rs185031519[G] near 

GLIS1, β = −0.059, P = 2.08 × 10−8) and on 6p25 (rs316341[G] within SER-PINB1, β = 

−0.025, P = 1.72 × 10−8) (Fig. 2; Table 2; see Supplementary Table 3 for all loci with P < 1 

× 10−5). Conditioning on the most significant SNPs in each of these identified loci did not 

reveal any additional genome-wide significant signals (Supplementary Figs. 9, 10).

When clinical dementia rating (CDR) or clinical status were included in the model for either 

Aβ42 or ptau181, the results for the top loci were not significantly different than the default 

model (Supplementary Table 7), and when the analyses were stratified by AD status, the 

betas were similar for cases and controls (Supplementary Table 8). When individuals were 

stratified by high or low CSF Aβ42 levels (Aβ42 threshold: ADRC = 500 pg/ mL [25], ADNI 

= 192 pg/mL [69]), the betas for the top loci were similar between the two groups 

(Supplementary Table 8). These results suggest that all of the individuals in this study 

contributed to the associations with CSF Aβ42 and ptau181 levels, independent of status or 

amyloid pathology.

Effects of associated genetic loci on other AD phenotypes

Since the purpose of studying these AD endophenotypes was to identify genetic factors 

associated with AD, we tested the genome-wide significant loci for associations with AD 

risk [48], rate of AD progression [58], or AAO (personal communication: Huang & Goate) 

in independent cohorts. The loci associated with Aβ42 were also associated with risk, AAO, 

and/or progression (Table 3). The GLIS1 locus was associated with lower CSF Aβ42 levels 

(rs185031519[G], β = −0.059, P = 2.08 × 10−8), increased AD risk (rs114122417[A], OR = 

1.105, P = 0.034) [48], and faster disease progression (rs185031519[G], β = 0.277, P = 

0.019) (Table 3). The intronic SERPINB1 variant, rs316341[G], was associated with earlier 

AAO (β = 0.043, P = 4.62 × 10−3) as well as lower Aβ42 (β = −0.025, P = 1.72 × 10−8) 

(Table 3). Although the loci associated with ptau181 that we reported previously were 

associated with AD risk and AAO [13], we did not find evidence that the novel loci were 

associated with risk, AAO, or progression (Table 3). We were unable to test other AD 

phenotypes such as brain atrophy or neuropathology. However, both the MAPT locus on 

17q21, which is associated with CSF tau levels in the presence of Aβ deposition [45], and 

the GMNC locus, which was associated with CSF levels of tau (β = 0.040, P = 3.07 × 10−11) 

and ptau181 (β = 0.035, P = 7.62 × 10−10), as well as AD risk (OR = 1.044, P = 9.08 × 10−3), 

Deming et al. Page 12

Acta Neuropathol. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tangle pathology (P = 0.039, reported previously) and cognitive decline (P = 4.86 × 10−5, 

reported previously) [13], have recently been associated with total brain volume in a meta-

analysis of 26,577 individuals of European descent [1], suggesting variants associated with 

ptau181 may also be associated with other brain-related or neurodegenerative phenotypes.

Bioinformatics annotation

None of the genotyped or imputed SNPs in the genome-wide significant loci for Aβ42 or 

ptau181 were coding variants (R2 > 0.5, Supplementary Tables 3, 4). In an effort to pinpoint 

functional genes influencing CSF protein levels, we searched for SNPs in the genome-wide 

significant loci with cis expression quantitative trait locus (eQTL) effects in human tissues. 

The top SNPs associated with Aβ42 on 6p25 have eQTL effects for SERPINB1 in 

transformed fibroblasts (rs316341[G]: β = 0.24, P = 1.3 × 10−7) and whole blood 

(rs316339[A]: Z score = 28.96, P = 2.2 × 10−184), and rs316339 had the strongest eQTL 

effect on SERPINB1 in the hippocampus (β = 0.30, P = 3.90 × 10−5) (Table 4). To determine 

if the putative causal variant is the same for SERPINB1 expression and Aβ42 levels, we 

utilized Summary data-based Mendelian Randomization (SMR) [85] to test the Westra 

whole blood expression data [79]. One SERPINB1 variant, rs316339, which is in LD with 

rs316341 (D ‘ = 1, r2 = 0.993; CSF Aβ42 β = −0.025, P = 1.76 × 10−8), passed the SMR 

analysis (P = 2.95 × 10−8) and HEIDI test (P = 0.258). We performed the same test on 

macrophage expression data obtained from Cardiogenics and rs316341 passed the SMR 

analysis (P = 1.23 × 10−7) and HEIDI test (P = 0.240). This suggests that the locus 

associated with CSF Aβ42 is the same locus that affects expression of SERPINB1 in blood 

and macrophages.

The other genetic loci for Aβ42 and ptau181 were not as enriched for significant eQTL 

effects as SERPINB1, but there were suggestive results for 1p32.3 (near GLIS1) and 18q23 

(near CTDP1). The signal near GLIS1 associated with Aβ42 (1p32.3) had an eQTL effect on 

SLC1A7 throughout the brain (rs185031519[G]: P = 8.8 × 10−5); however, overall 

expression of SLC1A7 was reported to be relatively low in the human brain, within the 33rd 

percentile of all gene expression in the temporal cortex, primarily in endothelial cells [84] 

(Supplementary Table 13). The locus on 18q23 associated with ptau181, between CTDP1 
and NFATC1, may have eQTL effects on both genes in the frontal cortex (rs12961169[T]: 

CTDP1, β = −0.319, P = 3.85 × 10−5 ; NFATC1, β = −0.290, P = 1.71 × 10−5). Both 

NFATC1 and CTDP1 are expressed in the human temporal cortex (NFATC1 = 58th 

percentile; CTDP1 = 37th percentile; Supplementary Table 13).

Effect of AD risk loci on CSF levels

We wanted to determine whether known loci for AD risk are also associated with CSF levels 

of Aβ42 or ptau181. AD risk variants identified in the IGAP study [48] that were most 

significantly associated with Aβ42 were located in the CLU (β = 0.014, P = 0.001) and 

FERMT2 (β = −0.018, P = 0.009) gene regions, and SNPs in the CELF1 and ABCA7 
regions had P < 0.05 (Supplementary Table 11). For CSF ptau181 levels, the most significant 

association was in the INPP5D region (β = 0.014, P = 0.009) and the CR1, PICALM, and 

FERMT2 regions had P < 0.05 (Supplementary Table 11). These results suggest that the risk 

variant in the CLU locus (rs11136000[T]) may increase risk for AD through an Aβ-
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associated mechanism and the INPP5D locus by a ptau-associated mechanism. Other loci 

like APOE or FERMT2 may act through both Aβ- and ptau-associated pathways to affect 

AD risk, and still other risk loci may act through alternate mechanisms such as neuronal 

survival, apoptosis, or homeostasis.

Although the individual AD risk variants were not strongly associated with Aβ42 or ptau181, 

we decided to analyze the potential overlap in the genetic architecture of AD risk and these 

endophenotype levels by determining whether PRS (with or without the effect of APOE 
genotype) calculated from the genome-wide significant hits for AD risk are also associated 

with CSF levels. We found not only a strong association between the non-APOE PRS and 

Aβ42 (β = −0.033, P = 5.01 × 10−7), but also tau (β = 0.049, P = 1.38 × 10−7) and ptau181 (β 
= 0.049, P = 1.81 × 10−8) (Supplementary Table 11). The strength of the association with the 

non-APOE PRS was greater than any of the individual SNPs composing the PRS. The 

addition of APOE genotype significantly increased the PRS association with CSF levels 

(Aβ42: β = −0.065, P = 5.01 × 10−88; tau: β = 0.051, P = 1.38 × 10−31; and ptau181: β = 

0.044, P = 1.81 × 10−31) (Supplementary Table 11).

Estimation of CSF level variance explained by associated genetic loci

To determine the proportion of phenotypic variance (h2) explained by the genetic loci 

identified for Aβ42 and ptau181, we analyzed all of the tested genotyped and imputed 

autosomal common variants (MAF > 0.02). It was recently demonstrated that estimated h2 

may be biased if causal variants are enriched in areas with lower or higher LD than average 

[81], so we used the GCTA tool to calculate segment-based LD scores (segment length = 

200 kb) for all SNPs and plotted the number of SNPs with P < 1 × 10−5 for Aβ42 and 

ptau181 (Supplementary Fig. 12). Since we observed LD heterogeneity in the associated 

variants, and the LDMS method can be applied to imputed GWAS data, we used the GCTA 

LDMS method to test all SNPs in our genetic data [81]. After correcting for age, sex, and 

two principal components, approximately 35.5% of the variability in Aβ42 and 24.9% in 

ptau181 levels were explained by common variants; the respective SNPs associated with CSF 

Aβ42 and ptau181 with P < 1 × 10−5 only accounted for 3.5% (2.9% from chromosome 19) 

of the variability in Aβ42 levels and 3.2% (1.4% from chromosome 19) in ptau181 levels, 

corresponding to 10 and 13% of the estimated h2 for CSF Aβ42 and ptau181, respectively. 

These results suggest many genetic variants have yet to be discovered.

Discussion

Genetic studies using disease endophenotypes as quantitative traits provide power to identify 

loci associated with disease risk with smaller sample sizes, and endophenotypes provide 

biological context to help identify loci associated with other disease phenotypes such as 

AAO and disease progression. In our previous study using CSF levels of Aβ42 and ptau181 

as endophenotypes, rs9877502 (near GMNC1 on 3q28) was reported, for the first time, to be 

associated with ptau181 levels, AD risk, tangle pathology, and cognitive decline [13]. The 

ptau181 association was recently replicated in an independent cohort [63] and we confirmed 

the association in this much larger dataset. The GMNC1 locus was also recently reported to 

be associated with intracranial volume [1], suggesting that tau-associated pathology and 
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brain volume share some genetic architecture. This larger study also revealed novel loci 

associated not only with Aβ42 but also with AD risk and disease progression 

(rs185031519[G], (rs185031519[G], P = 3.43 × 10−2 and P = 1.92 × 10−2, respectively), or 

AAO (rs316341[G], P = 4.62 × 10−3). The associations with AD risk and AAO were tested 

in independent datasets. The associations of these SNPs with risk, disease progression, and 

AAO may not pass stringent multiple test correction if we take into account the number of 

SNPs and phenotypes tested. However, it is important to note that we had a very specific 

hypothesis, including direction of effect, for each SNP. As expected, the alleles associated 

with lower CSF levels of Aβ42 were also associated with earlier disease symptom onset, 

increased AD risk, or faster progression. In any case, the associations with risk, disease 

progression, and AAO were identified in the largest datasets available to date, but additional 

studies will be needed to confirm the role of these loci in AD. By increasing the sample size 

more than twofold, we not only verified the results from our previous analyses, but also 

uncovered additional findings that can be used to inform future AD studies.

APOE genotype is the strongest genetic risk factor for sporadic AD, and is consistently the 

strongest association with CSF levels of Aβ42, tau, and ptau181 in several GWAS as well [13, 

36, 46, 63]. Numerous studies have explored how APOE influences amyloid pathology in 

AD [67]. A few studies have also looked at the role of ApoE in tau pathology [30, 49, 52]. A 

recent study of brain tissue from 1056 individuals (659 AD cases) found that the APOE ε4 
and ε2 alleles were not associated with tau tangle pathology in the absence of amyloid 

deposits [27]. As we previously reported, after accounting for CSF Aβ42, there was a strong 

association for APOE with CSF ptau181, although it no longer passed genome-wide 

significance [13]. We verified these results in the current study, and with the larger dataset 

the APOE signal remained genome-wide significant after accounting for Aβ42 levels. This 

provides additional evidence that APOE influences ptau181-associated mechanisms of AD 

independently of Aβ42-associated mechanisms. We also found, through conditional 

analyses, that although APOE genotype is driving most of the association for APOE with 

CSF Aβ42 and ptau181, there appears to be an additional signal within the APOE gene region 

that is independent of APOE ε2, ε3, and ε4.

CSF Aβ42 and ptau181 are well-established AD endophenotypes with a clear common 

genetic association for APOE and AD risk, but the shared genetic architecture between the 

disease and AD biomarkers is not as well-understood [7, 13–15]. Shared heritability 

between two traits can be estimated using different methods to calculate genetic and 

phenotypic correlations by linear mixed models, LD scoring, or genome partitioning; but 

most methods currently available usually require sample sizes in the tens of thousands to 

counteract statistical noise [3, 9, 10, 12, 66]. Another method to detect shared genetic 

etiology between traits is to calculate a PRS from a well-characterized cohort, usually from 

large case–control GWAS, and regress the other trait of interest, such as CSF protein levels, 

on the PRS in an independent cohort [21, 24]. Small studies (N < 350) have found that PRS 

were negatively correlated with CSF Aβ42 but not correlated with tau or ptau181 [54, 65, 71]. 

Recent studies of AD cases (N = 338) or individuals with mild cognitive impairment (N = 

454), reported that their PRS without APOE were not associated with Aβ42, but tau and ptau 

were associated with the score without the APOE effect [53, 71]. In our current study of 

both AD cases and controls (N = 3145), we calculated a PRS composed of genome-wide 
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significant AD risk loci that were reported in the largest AD case–control GWAS thus far 

[48]. Since the APOE locus is strongly associated with CSF levels and AD risk, it is not 

unexpected that PRS that include APOE effect would also be significantly associated with 

Aβ42 and ptau181. Calculating PRS without including the APOE effect can provide 

information about the much smaller genetic effect of other AD risk loci, and although the 

individual variants were not even suggestively significant the PRS was significantly 

associated with both proteins. This suggests there is a genetic overlap between AD risk and 

the CSF biomarkers that is not apparent in single variant analyses. Since we restricted the 

PRS to genome-wide significant AD risk loci, we may actually be underestimating genetic 

overlap between AD risk and CSF Aβ42 and ptau181. Some of the AD risk loci did not 

appear to be associated with either biomarker, suggesting they affect AD risk through 

mechanisms independent of Aβ42 and ptau181. Some AD risk loci such as CLU and 

PERMT2 for Aβ42 and INPP5D for ptau181 may be associated with these AD 

endophenotypes but did not reach genome-wide significance. Reasons for this could be that 

multiple risk loci interact to influence CSF levels, or possibly a lack of power due to small 

effect size of the individual variants. For example, we estimated that at least 4500 samples 

would be necessary for the association for CLU with Aβ42 to pass the genome-wide 

significance threshold (P < 5 × 10−8), suggesting that additional signals could be identified 

with a larger sample size.

Genetic studies of endophenotypes not only provide enough power to identify novel 

associations with smaller sample sizes than case–control studies, but can also help with 

understanding biological mechanisms of disease. Loci identified in this study alter gene 

expression or protein binding, which can provide valuable information for understanding the 

biological basis for AD pathology. We identified here, for the first time, two genome-wide 

significant signals for CSF Aβ42 outside the APOE region. Of particular interest is the locus 

on 6p25 which is associated with lower CSF Aβ42 and earlier AAO. This may be mediated 

through SERPINB1, because the same SNPs affect SERPINB1 expression in blood and 

macrophages. SERPINB1 encodes a serine protease inhibitor that is a key regulator of 

neutrophil programmed cell death [28, 50]. SERPINB1 is expressed in the human brain, 

primarily in microglia and macrophages [84]. Recent research of transgenic mouse models 

for AD (5×FAD and 3×Tg-AD) reported that neutrophils were present in the brain near Aβ 
deposits, and researchers observed neutrophil migration from blood into the brain toward 

amyloid plaques [4, 83]. They discovered that Aβ42 triggered the high-affinity state of 

integrin LFA-1, which is necessary for neutrophil infiltration of the CNS [83]. Their results, 

combined with our findings that genetic variants that increase expression of SERPINB1 are 

also associated with lower levels of Aβ42, support other studies suggesting that immune 

response pathways may play a key role in AD pathology [38, 75]. Our results indicate a 

potential role for SER-PINB1 in AD and suggest that adaptive immune response 

mechanisms are associated with Aβ-mediated pathology. Key proteins in 

neuroinflammation, triggering receptor expressed on myeloid cells 2 (TREM2) and 

YKL-40, are promising AD biomarkers [59, 60], and TREM2 variants are also strongly 

associated with AD risk [6, 34, 42]. Clusterin (CLU) has been associated with AD risk in 

numerous studies [37, 48] and a GWAS of CSF CLU levels suggested CLU may be 

associated with immune response [20]. Our findings add to this growing evidence that 
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immune response plays a key role in AD and CSF levels of Aβ42 may be representative of 

this role.

The associations of the GMNC locus with ptau181 levels and brain volume suggest 

biological mechanisms other than immune response may be associated with tau-mediated 

pathology in AD [1, 13, 63]. Although not well studied, GMNC (also known as GEMC1) is 

a necessary regulator of DNA replication [5] and recently was shown to be a key player in 

the differentiation of radial glial cells to multiciliated neuroepithelial cells during 

neurogenesis in the sub-ventricular zone [47]. Combined with our GWAS results, it appears 

GMNC may influence CSF ptau181 as part of the neurogenesis process. Further research is 

needed to determine if GMNC is indeed the gene affecting ptau181 and what biological 

mechanism is involved. However, some of the loci associated with ptau181 suggest immune 

response may also play a role in tau-associated pathology. NFATC1 encodes the nuclear 

factor of activated T-cells cytoplasmic 1 protein which is important in gene transcription 

induced by immune response. CTDP1 encodes the RNA polymerase II subunit A C-terminal 

domain phosphatase which interacts with the TFIIF transcription factor. Both NFATC1 and 

CTDP1 are expressed in the human temporal cortex, NFATC1 (58th percentile) more so than 

CTDP1 (37th percentile). NFATC1 is also the more promising candidate than CTDP1 
because CTDP1 is primarily expressed in fetal astrocytes and nominally in other cell types, 

while NFATC1 is predominantly expressed in microglia and macrophages [84] 

(Supplementary Table 13). We were unable to test for the putative causal variant in these 

regions for these eQTL effects. However, these data suggest the top loci may influence 

ptau181 levels by affecting expression of these genes.

In summary, by increasing the sample size more than twofold we not only verified the 

results from our previous analyses, but also uncovered additional findings that can be used to 

inform future AD studies. We identified novel associations between genetic loci and CSF 

levels that may provide insight into the biological mechanisms that affect protein levels, 

influence AD risk, AAO, and disease progression. Our findings suggest CSF Aβ42 levels 

may be representative of the role of immune response on Aβ-associated pathology, and that 

this role may influence AAO. Although immune-related genes may be associated with 

ptau181, our results suggest that CSF ptau181 may reflect pathways related to neurogenesis 

and brain volume. Although we did not identify individual AD risk variants outside the 

APOE region, the PRS results indicate shared genetic architecture between AD risk and 

these CSF biomarkers. Larger studies using AD endophenotypes will likely provide even 

more information to help understand the biology underlying AD pathology.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Association plots from single variant analyses of CSF ptau181 levels. a Manhattan plot 

shows negative log10-transformed P values from the joint analysis of ptau181. The horizontal 
lines represent the genome-wide significance threshold, P = 5 × 10−8(red) and suggestive 

threshold, P = 1 × 10−5(blue). Red arrows point to novel loci. The y-axis is truncated, the 

lowest P value on chromosome 19 was 5.30 × 10−33.b, c Regional association plots of novel 

loci are shown for SNPs associated with ptau181 near PCDH8 (a) and between NFATC1 and 

CTDP1 (b). The SNPs labeled on each regional plot had the lowest P value at each locus and 

are represented by a purple diamond. Each dot represents a SNP and dot colors indicate LD 

with the labeled SNP. Blue vertical lines show recombination rate marked on the right-hand 

y-axis of each regional plot. Plots for previously reported loci are in Supplementary Fig. 7
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Fig. 2. 
Association plots from single variant analyses of CSF Aβ42. a Manhattan plot shows 

negative log10-transformed P values from the joint analysis of Aβ42. The horizontal lines 
represent the genome-wide significance threshold, P = 5 × 10−8(red) and suggestive 

threshold, P = 1 × 10−5(blue). Red arrows point to novel loci. The y-axis is truncated, the 

lowest P value on chromosome 19 was 4.78 × 10−94. b, c Regional association plots of novel 

loci are shown for SNPs associated with Aβ42 near GLIS1 (b) and within SERPINB1 (c). 

The SNPs labeled on each regional plot had the lowest P value at each locus and are 

represented by a purple diamond. Each dot represents a SNP and dot colors indicate LD with 
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the labeled SNP. Blue vertical lines show recombination rate marked on the right-hand y-

axis of each regional plot. Plots for previously reported loci are in Supplementary Fig. 7
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