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Abstract

Background—Common cancers develop through a multistep process often including inherited 

susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has 

allowed the development of an inexpensive genotyping microarray, the OncoArray. The array 

includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic 

variants, together with dense mapping of known susceptibility regions, rare variants from 

sequencing experiments, pharmacogenetic markers and cancer related traits.

Methods—The OncoArray can be genotyped using a novel technology developed by Illumina to 

facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs 

for study, for quality control of markers and for ancestry analysis. The array was genotyped at 

selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy 

among centers and by ethnic background.

Results—The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs 

passed quality control steps with a sample success rate of 97% of the samples. Participating sites 

performed ancestry analysis using a common set of markers and a scoring algorithm based on 

principal components analysis.

Conclusions—Results from these analyses will enable researchers to identify new susceptibility 

loci, perform fine mapping of new or known loci associated with either single or multiple cancers, 

assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been 

identified for disease-specific risk, and jointly model genetic, environmental and lifestyle related 

exposures.

Impact—Ongoing analyses will shed light on etiology and risk assessment for many types of 

cancer.
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Introduction

Cancer is one of the leading causes of death world-wide. In 2012 the estimated number of 

cancer cases around the world was 14.1 million; and this number is estimated to swell to 21 

million by 2030(1). Cancer has a sizable heritable component. A large twin study estimated 

that heritable factors may explain between 20% and 40% of the variance in cancer risk(2). 

High-penetrance mutations, including those in BRCA1 and BRCA2, APC and DNA 

mismatch-repair genes, are estimated to account for less than 5% of all cases(3, 4). As for 

other common complex diseases, it is expected that much of the inherited susceptibility to 

cancer is likely to be explained by common alleles having low-penetrance(2–5). Large 

consortial efforts may identify effects from additional rarer alleles (6, 7). As pointed out by 

Ponder (8, 9) and Peto(10) common genetic variants account for a large proportion of cancer 

incidence, even though they do not individually lead to strong clustering within families. 

Moreover, the combinations of effects from genetic and environmental factors may account 

for substantial differences in cancer susceptibility within and among populations(8–13).

Over the past decade, genome-wide association studies (GWAS) of cancer have discovered 

multiple low-penetrance loci. Given that the effect sizes are generally weak (relative risks 

per allele of 1.3 or less), increasing the sample size has become crucial in identifying and 

characterizing true genetic associations. Genetic signatures of cancer etiology indicated 

novel influences in cancer development, thereby providing new insights into etiologic 

mechanisms that suggest interventions (14). By identifying many new loci influencing 

cancer development, genomic research has identified pathways that influence cancer 

development(15). In addition, Mendelian randomization has emerged as an effective 

approach for confirming non-genetic etiologic factors identified through epidemiologic 

studies, removing potential concerns about reverse causality(16).

Once the loci are identified, fine-mapping studies are a critical next step in finding 

functional variant(s) and in the discovery of nearby, independent, secondary signals, which 

may increase the heritable fraction explained by each region. More than 90% of risk-alleles 

lie in non-protein coding DNA and there is now unequivocal evidence that risk regions are 

enriched for regulatory elements, including enhancers, promoters, insulators and 

silencers(17). In general, genome-wide estimates in humans indicate about 500,000 

enhancers may alter regulation of expression and thus alter risk by controlling expression of 

target susceptibility genes(17–20). Analyses to date indicate that several regions harbor 

multiple distinct susceptibility variants for different cancer types, suggesting common 

mechanisms but tissue-specific regulation(21). Thus fine-mapping of multiple cancer types 

using a common array is likely to be an effective strategy for finding new alleles influencing 

common cancers and for unravelling mechanisms in their etiology.

The overall goal of the OncoArray Consortium is to gain new insights into the genetic 

architecture and mechanisms underlying common cancers, by deploying a new genotyping 

array, the OncoArray, and using it to genotype a large number of cases with cancers of the 

breast, colon, lung, ovary, prostate or endometrium as well as genetically susceptible 

individuals such as BRCA1 and BRCA2 mutation carriers along with a large number of 

cancer-free controls. The collaboration arose, in part, through the efforts of the Genetic 
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Associations and Mechanisms in Oncology (GAME-ON) consortium, which was a multi-

year project to characterize SNP associations for common cancers and to understand their 

mechanistic and functional consequences in disease development. The OncoArray project 

provides an unprecedented opportunity both to discover new cancer susceptibility variants, 

common and rare, and to identify the likely causal variants at known loci through fine 

mapping and the integration of disease associated variants with tissue-specific regulatory 

information. Additionally, joint genotyping across cancer sites permits sharing of controls 

and a more comprehensive assessment of genetic risk among many cohort studies that 

participated in this study. Moreover, given the evidence that some of the loci influencing 

cancer risk are shared among cancer sites, the genotyping of a common array across multiple 

cancer sites provides an excellent opportunity to study the pleiotropic effect of susceptibility 

loci. However, while there is tremendous value in organizing a genotyping consortium on 

this scale, there are also substantial challenges in how best to integrate data across this 

diverse spectrum of cancer sites and genotyping locations. To facilitate the analysis, the 

consortium developed shared procedures for genotype calling and quality control. This 

report describes the development of the consortium, the array that was designed, and quality 

control approaches that have been implemented across the consortium.

Materials and Methods

Principles in sample and SNP selection

The OncoArray Consortium is focused on the discovery of variants influencing common 

cancers, in particular cancers of the breast, colon, lung, ovary, and prostate. These cancers 

were chosen for analysis based upon prior observation of some common causal 

pathways(15) as well as the opportunity provided by common funding through the GAME-

ON, a consortium of U19 grants studying genetic etiology of breast, ovarian, prostate, colon 

and lung cancers. The existence of an effective, multi-consortium collaboration provided an 

opportunity primarily because of economies of scale. The potential to utilize common 

control sets across the consortia gave added value. A description of the sample sets is 

provided in Supplementary Tables 1a–1g. Endometrial cancer cases were included because 

endometrial cancer shares several risk factors with breast cancer and ovarian cancer, such as 

the genetic locus (HNF1B) which has shared variants with prostate (22, 23) and ovarian 

cancer(24). Finally, there are similarities in tumor phenotype and/or shared tissue of origin 

between endometrial cancer, the benign gynaecological condition endometriosis, the 

endometrioid and clear cell histologies of ovarian cancer, and basal-like breast cancer(25–

27). Thus, pooling ovarian and endometrial(23, 28, 29) cases could uncover novel loci.

The array was designed from a final list of approximately 600,000 markers, of which 

approximately 533,000 were successfully manufactured. Of these, nearly 50% of the 

markers were selected as a GWAS backbone (Illumina HumanCore). These markers were 

selected to tag the large majority of known common variants, via imputation. The remaining 

markers were selected from seven lists: five from the disease consortia representing the main 

cancer sites, one from the CIMBA consortium including potential modifiers of cancer risk in 

BRCA1 or BRCA2 carriers, and a seventh “common” list that included variants of common 

interest (see below). SNPs were allocated to these disease sites, and to CIMBA, according to 
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the number of samples that each consortium would be contributing. In addition, the array 

that was configured by Illumina allows flexibility for cancers not originally participating in 

the design of the array by allowing additional custom content to be added to the array. The 

general principles for SNP allocation were set by consensus by members of the OncoArray 

Consortium as presented in Table 1. More detailed descriptions of the SNP selection process 

for disease sites participating in the OncoArray are also provided in the Supplementary 

Methods and governance described in Supplementary Information about the Oncoarray 

Consortium. Below, we present the general approaches that were taken for nominating SNPs 

for the Array.

Selection of SNPs for inclusion within disease site

SNPs to be included in the array were nominated by participating consortia organized into 

each of the major disease site groups that participated in the primary array development. 

Each cancer site used its own prioritization scheme. Generally, selection of SNPs were based 

on 1) candidate SNPs from loci enriched showing some evidence of association (e.g. 

p<10−5) from previous GWAS of common cancers (breast, ovarian, prostate, colon and lung) 

(30–37); 2) fine mapping of risk loci based on 1000 Genomes Project data and resequencing 

studies(38); 3) candidate rare variants from whole genome and whole exome studies, and 

exome arrays(39); 4) findings from previously published studies of other cancers provided 

by the NHGRI SNP catalogue (40) and other online resources; and 5) other “wild-card” 

variants, for example variants of potential functional significance(18, 41, 42). The majority 

of SNP selection was based on regions previously identified from GWAS in European 

populations, but disease sites also allocated tagging SNPs to capture variability for Asian 

and African descent populations. In addition to site-specific variants, some of which were 

nominated by more than one group, candidates were nominated from in silico functional 

analyses that suggested putative mechanistic targets for risk variants based either on their 

predicted effects on the coding sequence of candidate genes, or their intersection with non-

coding, putative regulatory targets (see below). Finally, variants associated with phenotypes 

that correlate with cancers (such as smoking or BMI) were also selected.

Selection of SNPs for fine-mapping

Similar procedures were followed for each site. We first defined a 1Mb interval surrounding 

the known lead signal for each genome-wide signal. Where such regions overlapped, the 

intervals were amalgamated into a single interval so as to include 500kb either side of each 

hit. Common regions were defined as regions including hits within 1Mb for more than one 

cancer type, amalgamated as described. We then identified and obtained design scores for all 

variants in the interval from the 1000 Genomes Project (phase I version 3, March 2012 

release). From among designable SNPs, we then selected three sets of variants (1) all 

variants correlated with the known hits at r2>0.6, (2) all variants from lists of potentially 

functional variants, defined through RegulomeDB and (3) a set of SNPs designed to tag all 

remaining variants at r2>0.9.

Selection of “Common” SNPs

Previous analyses(30, 32, 43, 44) have demonstrated that association signals for different 

cancers tend to cluster together, perhaps reflecting common mechanisms. For this reason, we 
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selected a dense set of SNPs within 1Mb (see above) across all regions in which this 

occurred for more than one cancer type. Variants were nominated for inclusion if they, i) 

occurred within genes that have been found to associate with pharmacogenetic traits relevant 

to cancer, ii) had previously been associated at genome-wide levels of significance for any 

other cancer type (not among the five primary cancers sites participating in the OncoArray 

Consortium) as defined by the GWAS Catalog (45) and iii) had been found to be relevant to 

cancer associated traits(46) including BMI, height, and waist to hip ratio (in collaboration 

with the GIANT consortium(47), smoking, age at menopause or menarche (in collaboration 

with the REPROGEN consortium(48), and telomere length in lymphocytes(31). We also 

included additional SNPs that showed evidence of association with other cancer types 

including endometrial, testis, bladder and pancreatic cancer, Wilms’ tumor, and glioma, and 

SNPs tagging known common eQTLs (i.e. associated with expression across a range of 

tissues).

Pharmacogenetic variants were nominated by several collaborators based on i) functional 

variants in 19 genes nominated by the pharmacogenetics network, ii) functional variants or 

tagging SNPs in CYP2A6 and CYP2B6 and iii) SNPs nominated by PharmGKB and 

variants nominated from study of cell lines to affect expression of pharmacogenetically 

relevant genes. (49) SNPs from the region of chromosome 15q25.1 that associate with lung 

cancer and smoking behavior were placed in the common region given the ubiquitous effects 

of smoking on cancer risks. Of note, BRCA1 and BRCA2 were finally released from patent 

controls two days before the final selection of SNPs so that common functional variants of 

these loci could be included in the array. We included additional (non-polymorphic) probes 

for each exon of BRCA1, BRCA2, MLH1 and MSH2 in order to capture large deletions in 

these genes. Finally, we included a panel of Y chromosome and mitochondrial markers to 

provide data on population ancestry.

The Division of Cancer Epidemiology and Genetics of the National Cancer Institute 

accumulated GWAS scan data for other cancer sites including bladder, NHL (Non-

Hodgkin’s Lymphoma), esophageal, gastric, glioma, kidney, osteosarcoma, pancreas, testis 

or scan data for non-Caucasian studies including Asian non-smoking female lung cancer and 

African American lung cancer. The top 200–400 most significant loci from each scan were 

selected after ranking by association test p value and LD pruning (r2>0.6).

Functional characterization and selection—Risk variants at known susceptibility loci 

for breast, colorectal, lung, ovarian and prostate cancer were integrated with epigenomic 

datasets from ENCODE and other published sources, to identify intersections between risk 

SNPs and tissue-specific regulatory features that define the most likely causal variants and 

their functional targets. We interrogated associations between SNPs and DNAse 

Hypersensitivity (DHS) sites generated in the pan-cancer cell line panel from ENCODE, as 

well the LNCaP cell line (for prostate cancer specific marks), the HMEC line (for breast), 

the SAEC line (for lung cancer), the HCT116 line (for colorectal cancer) and the CaOV3 

line (for ovarian cancer). The most likely causal SNPs from these analyses were prioritized 

in the selection of fine mapping variants described above. In addition, we identified 

candidate causal SNPs at loci associated with risk of two or more cancers, to identify the 

putative functional targets that are common across cancer types as well as those that are 
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tissue/cancer specific at these loci. A summary of these analyses are illustrated in Figure 1. 

This approach evaluates regions around the significant SNPs common to cancers to identify 

regional variants that impact chromatin structure, expression levels or transcription factor 

binding sites to enrich for SNPs directly related to cancer development.

Pruning and merging procedures

As a starting point, we “forced-in” all SNPs in the GWAS backbone (260,660) and the 

common fine-mapping list (32,548). All other lists include SNPs that passed design at 

Illumina and were rank ordered with the most important SNPs first, and were pruned to 

exclude redundant SNPs in LD (r2>0.9) with other SNPs in the same list or the “force-in” set 

described above.

The proportions allocated to each disease site are listed in the Supplementary Table 2.

The final merging took the lists of SNPs generated by the disease sites and for common 

mapping and generated a single list in the following order:

a. Include the GWAS backbone

b. Include the Common fine-mapping list

c. Choose the remaining SNPs iteratively from the five ranked lists. At each 

stage choose the next SNP from the list with the smallest value of n/p, 

where n is the number of SNPs already chosen from that list and p is the 

proportional allocation of that list, as given in the above table. This 

ensured that the correct proportions were kept.

d. Include the SNP unless the exact SNP has already been chosen. In either 

case, augment the count n for that list by 1.

e. Increase the number of beadtypes for chosen SNPs, where necessary 

because variation could not be captured by a single beadtype.

Based on the merged list of 715,637 unique SNPs (76,290 from lung; 224,074 from familial 

and sporadic breast and ovarian; 81,009 from prostate; 50,110 from colorectal; 17,547 from 

common list), we further performed LD pruning (r2>0.95). This process resulted in a total of 

651,216 SNPs. A set of obligatory SNPs provided by each contributing lists was not allowed 

to be “pruned”.

After this process, we submitted 568,712 SNPs (reaching the total number of ~600,000 

beadtypes) from the priority lists to Illumina for manufacturing. Of these, a total of 533,631 

(93.8%) passed quality control procedures and were included as valid markers on the array.

Genotyping

To minimize variability that might result from genotyping among sites and to improve 

efficiency, the large majority of genotyping was performed at just 8 sites CIDR (n=211,638), 

Cambridge (n=98,770), Genome Quebec/McGill Innovation Center (n=55,121), the National 

Cancer Institute (26,803), the Mayo Clinic (n=22,023), Denmark (n=5,961), and Shanghai 
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(n=3,840). To ensure comparability among centers, selected Hapmap samples were analyzed 

by all groups.

Quality control steps

A detailed quality control plan was developed and is included as Supplementary material but 

salient features are presented here. Participating sites genotyped a common set of Hapmap 

samples so that strand alignment and integrity of imputation could be compared among 

analytical sites. All sites used a common genotype clustering file that can be downloaded 

from http://consortia.ccge.medschl.cam.ac.uk/oncoarray/onco_v2c.zip and removed 765 

duplicated probes (onco_duplicate_variants_excluded.csv).

Clustering process

A selection of 56,284 samples with high call rates from across the genotyping centers were 

combined into a single Illumina Genome Studio project and automatic clustering performed 

using the GenTrain 2 clustering algorithm. This included 3,687 African-American, 5,590 

Asian and 2,608 Hispanic samples. A large number of samples was used to increase the 

chances of including heterozygotes for the many rare variants on the array (23,249 variants 

have a MAF below 0.0005). Variants showing poor clustering (57,673) were manually 

evaluated and revised, which reduced the number to 16,526 variants excluded from the 

analysis.

Ancestry Analysis

Ancestry analysis was performed using a standardized approach in which 2,318 ancestry 

informative markers (AIMs) with minor allele frequencies of 0.05 or higher were used on 

66,105 samples genotyped at CIDR, Cambridge and Genome Quebec/McGill Innovation 

Center (the primary contributing centers) and 505 Hapmap 2 samples. We noted that among 

those individuals not clearly aligning into one of the major continental ancestry groups there 

are clines connecting ancestral groups along axes connecting the centroids of the ancestral 

populations. We mapped ancestry to regions of a triangle connecting the three regions, in 

order to estimate the contribution of European, Asian and African ancestry to each 

individual. The method is further described in the software package FastPopc(50) distributed 

to consortium members. Individuals were thus classified into 4 groups for downstream 

analyses: European (defined as >80% European ancestry), Asian (>40% Asian ancestry), 

African (>20% African ancestry) and other (not fulfilling any of the above criteria) (50) (see 

Supplementary methods).

Results

Genotyping quality

Samples passed genotyping quality control steps if more than 95% of SNPs had valid calls. 

After manual review of cluster plots for SNPs failing to achieve 95% call rates a total of 

494,763 SNPs were retained for analysis. The call rate varied according to tissue source and 

DNA processing steps (Figure 2). Overall, 97% of samples had call rates of 95% or higher. 

However, the efficiency in genotyping varied markedly among sources of DNA. In 

particular, genotyping of samples derived from peripheral blood provided excellent 
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performance with a 98% success rate, while amplified DNA derived from non-blood 

samples show poor performance (18% overall failure rate for amplified buccal or saliva). 

The success rate for genotyping Hapmap derived samples was 100% and the overall 

genotyping success rate for lymphoblastoid lines was 99.5%.

Analysis of concordance of sample genotypes

To evaluate the reliability of genotyping across samples including post-imputation 

processing we evaluated concordance of imputed SNP genotype probabilities among the 

centers. Figure 3 depicts average squared correlations among 19,367,932 variants imputed 

from v3 of the 1000 Genomes Project for Hapmap samples genotyped and imputed in 

Cambridge versus the same samples genotyped by CIDR and imputed at Dartmouth using 

the same imputation protocol (Supplementary methods). The integral values along the X 

axis depict results for the same individual, with multiple replicate samples having been 

genotyped for individuals 1, 4, 5, 6 and 8. Samples 1–8 derive from European descent 

individuals, samples 9–10 are Chinese, sample 11 is Japanese and samples 12–14 are 

Yoruban. Correlations in genotypes performed at different centers were high but were 

slightly higher for European descent samples (average R2=0.985) versus Chinese (average 

R2=0.958), Japanese (average R2=0.961) or Yorubans (average R2=0.975). Supplementary 

Figure 1 compares the imputation accuracy of the OncoArray to several other arrays.

Discussion

Comparison to other large-scale genotyping efforts

The OncoArray is a scientific community-derived effort from many world-wide investigators 

to understand common causes of cancer susceptibility and progression. The array that was 

configured balanced several needs. First, each of the contributing groups had specific 

interest in fine mapping and validation of previously suggested loci. This element of the 

OncoArray is similar to prior large-scale consortia such as the Metabochip (51) and the 

Immunochip(52), which are highly targeted arrays. Balanced against the fine mapping 

element, we also allocated about 50% of the array to permit further discovery of novel 

variants. The array balances the needs for new discovery with validation and fine mapping; it 

is unlike prior arrays such as the Metabochip or Immunochip which did not include a GWAS 

array backbone. More generic platforms such as the Biobank array can be applied for a 

broad range of diseases but did not include content specific for known cancer loci. The 

OncoArray, thus, has broad value for studying cancer or related conditions. Additionally, the 

platform allows additional content to be added so that other scientists or consortia such as 

Gliogene or Pancan could add content specific to their cancer types with minimal additional 

cost.

Impact of Findings on Prevention and Treatment

We expect the discovery of novel genetic risk factors for cancer to provide insight into the 

genetic architecture of cancer and help elucidate its underlying biology. Providing a more 

comprehensive list of loci strongly associated with cancer susceptibility will greatly increase 

our knowledge of the pathophysiology of early stages in cancer development.
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The clinical value of genetic testing for SNPs was questioned by some commentators 

because individual variants have limited power to discriminate cancer risk(53, 54). However, 

modeling show analysis with multiple variants provides discrimination in risk stratification 

sufficient to improve the efficiency of screening (55), as born out by recent studies. For 

example, Pashayan and colleagues(56) showed that if prostate cancer screening were offered 

to men with a ten-year absolute risk of greater than 2% then risk stratification based on age 

and a 31-SNP polygenic risk score would result in 16% fewer men being eligible for 

screening than risk stratification based on age alone, but only 3% fewer cases would be 

detected(56). So and colleagues(57) showed that a polygenic risk model allows more precise 

enrollment of women according to age reducing the cost and burden of mammography. 

Given the expense and potential harms associated with prevention and early diagnosis (e.g. 

overdiagnosis and false positive findings) identifying those at highest risk might have 

important public health implications. These examples demonstrate the potential of genetic 

findings(58, 59) to impact public health and clinical care through the next several 

decades(60).

Gene-environment Interactions (GxE)

Several environmental and lifestyle risk factors, many of which are modifiable, such as 

obesity, physical activity, non-steroidal anti-inflammatory drug (NSAID) use, hormone use, 

diet, smoking, and alcohol have been associated with various cancers. To fully understand 

the impact on the etiology of cancer, it is important to examine whether the genetic factors 

modify the effect of environmental factors. Recently there has been extensive methodologic 

and applied work that provides a strong rationale for examining GxE interactions(8, 10–13, 

61–65). The development of statistical methods for genome-wide GxE with increased power 

(66, 67) has led to detection of genetic variants whose effects are modified by environmental 

factors; and identification of variants that would have been missed through searches of 

marginal effects alone. As genetic profiles are fixed, modifying environmental exposures to 

alter deleterious effects of alleles remains the most viable preventive strategy. Importantly, 

even in the absence of gene-environment interaction on the multiplicative scale, the absolute 

reduction in risk due to a change to a lower risk lifestyle is greater in those at higher genetic 

risk, making the development of tools to predict genetic risk a critical component of advice 

on lifestyle risks. Additionally, the application of large scale genetic testing of the same 

platform on a very large number of individuals permits an unprecedented opportunity for 

studying the impact that epistasis, interaction among loci, has upon risk for cancer 

development.

Functional characterization of risk loci

Perhaps the greatest challenge facing large collaborative genotyping projects such as the 

OncoArray is to understand of the functional mechanisms underlying disease development 

at each susceptibility locus. The pace of discovery of genetic risk associations for cancer and 

other traits and diseases continues to accelerate, creating an increasing bottleneck between 

discovery and functional validation. The basic tenets of functional characterization(68) – 

proving causality for risk variants and the genes they regulate - have been described for a 

tiny fraction of risk associations identified by GWAS(20, 69). This is partly due to our 

rudimentary knowledge of the non-coding genome and the effects of genetic variation on 
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gene regulation. Integration of GWAS SNP data with methylome data has identified 

methylation-quantitative trait loci (meQTLs) showing that inherited genetic variation may 

affect carcinogenesis by regulating the human methylome(70, 71). The ENCODE 

(ENCyclopedia Of DNA Elements) consortium has catalogued genome-wide regulatory 

elements for many, but by no means all human tissues(72). Enhancers are often cell type-

specific and drive the spatial and temporal diversity of gene expression in and across 

different cell types (73). One of the main challenges will therefore be to define the 

regulatory landscape for the relevant cell type for each trait-associated locus, followed by 

integration with genetic fine mapping data to identify the most likely regulatory targets.

The ability to test the function of specific risk alleles has been enhanced by recent 

developments in genome editing, a powerful and highly efficient methodology for 

introducing DNA sequence alterations in human cells. Engineered nucleases (e.g. the 

CRISPR-Cas9 system) with customizable cleavage specificities can be used to introduce 

induce precise DNA base substitutions at the site of risk SNPs. The molecular and 

phenotypic effects of the different alleles of each risk SNP can then be evaluated in vitro or 

in vivo. The success of genome editing has been recently demonstrated for GWAS risk 

variants associated with fetal hemoglobin and prostate cancer. (69, 74)

Complementary to genome editing for proving causality of risk SNPs is expression 

quantitative trait locus (eQTL) analysis to identify the likely target susceptibility gene(75, 

76). eQTL analyses can interrogate both near and distant regulatory associations between 

risk genotypes and gene expression on the same chromosome (cis-) or across chromosomes 

(trans-). The role of these genes in neoplastic development can then be evaluated in 

experimental models of disease(77). Many groups have applied this concept to identify 

transcript expression correlated with trait-associated SNPs(78–80). For example, GAME-

ON investigators have successfully used eQTL analysis to identify susceptibility genes at 

several breast, prostate and ovarian cancer loci, and confirmed the significance of these 

genes through their functional analysis in disease models(42, 81, 82).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Twenty risk regions analyzed as part of the GAME-ON OncoArray, including 17 pleiotropic 

regions conferring risks to two or more common cancers (breast, colorectal, lung, ovarian or 

prostate cancers). Panel (a) – Circos plot illustrating the 24 different regions ordered by 

chromosome and cytoband. The index SNP(s) at each locus are color coded by cancer type, 

(b) integration of correlated risk SNPs at each locus with regional catalogues of regulatory 

marks for related tissue types for common cancers to identify SNPs intersecting tissue 

specific regulatory targets. Publically available genome wide regulatory profiling data were 

available for the HMEC mammary epithelial cells (specific to breast cancer), LNCap cancer 

cells (for prostate cancer), CaOV3 cancers (for ovarian cancer), SAEC cells (for lung 

cancer). The first column indicates a risk-associated SNP that intersects a regulatory mark, 

color coded by cancer type. For other columns, colored squares represent an intersection 

between a risk associated SNP and a regulatory mark, and in which tissue type, indicating 

which marks are common across tissues and which are tissue specific. White squares 

indicate the most strongly associated SNPs (index SNP) in a region and a dot within the 

square indicates an intersection between a regulatory mark and an index. The position of 

each regulatory mark is indicated relative to hg19 coordinates. In panel b, only SNPs with 

regulatory marks are shown, thus excluding 24 of the regional associations shown in panel a.
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Figure 2. 
Failure rates (<95% of SNPs called) for 211,594 samples genotyped by CIDR across 

multiple tissue types. The overall failure rate was 2.97%.
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Figure 3. 
Correlation between replicate Hapmap samples genotyped at Cambridge versus the Center 

for Inherited Disease Research. Samples 1–8 are of European origin while samples 9–14 are 

Asian or African. There are multiple replicates of samples 1, 4, 5, 6 and 8. Samples 1–8 are 

European, 9–10 are Chinese, sample 11 is Japanese and samples 12–14 are Yoruban.
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