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Abstract The descending pain modulatory system (DPMS) constitutes a network of widely

distributed brain regions whose integrated function is essential for effective modulation of sensory

input to the central nervous system and behavioural responses to pain. Animal studies demonstrate

that young rodents have an immature DPMS, but comparable studies have not been conducted in

human infants. In Goksan et al. (2015) we used functional MRI (fMRI) to show that pain-related brain

activity in newborn infants is similar to that observed in adults. Here, we investigated whether the

functional network connectivity strength across the infant DPMS influences the magnitude of this

brain activity. FMRI scans were collected while mild mechanical noxious stimulation was applied to

the infant’s foot. Greater pre-stimulus functional network connectivity across the DPMS was

significantly associated with lower noxious-evoked brain activity (p = 0.0004, r = -0.86, n = 13),

suggesting that in newborn infants the DPMS may regulate the magnitude of noxious-evoked brain

activity.

DOI: https://doi.org/10.7554/eLife.37125.001

Introduction
In adults, pain perception is modulated by the descending pain modulatory system (DPMS), allowing

environmental, contextual and cognitive factors to influence our pain experiences (McMahon et al.,

2013; Ossipov et al., 2010; Tracey and Mantyh, 2007). The DPMS comprises a network of cortical

and subcortical brain regions that can facilitate or inhibit nociceptive afferent brain input via brain-

stem nuclei (Ossipov et al., 2010; Tracey, 2010; Zhuo and Gebhart, 1997). The functional connec-

tivity of the DPMS is altered in adult chronic pain conditions such as migraine, back pain,

fibromyalgia and painful diabetic neuropathy (Jensen et al., 2012; Mainero et al., 2011;

Segerdahl et al., 2018; Yu et al., 2014), and transient alterations in DPMS connectivity influences

pain perception. For example, pre-stimulus functional connectivity between the anterior insula (AI)

and the periaqueductal gray (PAG) relates to whether or not a noxious stimulus is perceived as pain-

ful (Ploner et al., 2010), and pre-stimulus activity in the insular and anterior cingulate cortices (ACC)

is predictive of subsequent pain intensity ratings (Boly et al., 2007). Furthermore, anticipatory brain-

stem activity in adults has been shown to predict changes in insula activity evoked by noxious ther-

mal stimulation (Fairhurst et al., 2007).

Evidence from animal studies suggests that infant descending pain modulation is immature

(Hathway et al., 2009). During the first 3 postnatal weeks, anatomical descending projections to the

dorsal horn are physically present; however, physiological inhibition of nociceptive input is ineffective

or absent in rat pups (Hathway et al., 2009; Fitzgerald and Koltzenburg, 1986; Hathway et al.,
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2006). Moreover, the brainstem nuclei in the rostral ventromedial medulla (RVM), which are the prin-

ciple source of these projections, exclusively facilitate nociceptive spinal activity, rather than exerting

more adult-like biphasic inhibitory and facilitatory nociceptive control (Hathway et al., 2009;

Schwaller et al., 2017). In the human infant, spinal reflexes are uncoordinated, exaggerated and

prolonged (Andrews and Fitzgerald, 1994; Cornelissen et al., 2013; Hartley et al., 2016). Noci-

ceptive reflexes are refined postnatally in infants born prematurely, and by term age, infant reflexes

have lower amplitude and shorter duration compared with premature infants (Cornelissen et al.,

2013; Hartley et al., 2016). During this developmental period, the postnatal refinement of spinal

cord excitability is concomitant with the maturation of nociceptive brain activity (Hartley et al.,

2016), leading to the possibility that in the newborn term infant, the brain regions involved in

descending pain modulation may be influential in modifying pain behaviour and experience.

In our previous paper, we used fMRI to demonstrate that patterns of noxious-evoked brain activ-

ity in the infant are similar to those observed in the adult, and include both sensory and affective

brain regions (Goksan et al., 2015). Given we cannot measure subjective pain experience in non-ver-

bal infants, we are reliant on objective surrogate measures such as changes in noxious-evoked BOLD

activity to make inferences about pain experiences (Baumgärtner et al., 2010; Lee et al., 2008;

Maihöfner and Handwerker, 2005). Using this approach, provides the opportunity to investigate

whether the network connectivity strength between brain regions involved in descending pain mod-

ulation modifies infant pain. The aim of this study was to test the hypothesis that in the human infant,

the magnitude of noxious-evoked brain activity recorded using fMRI in response to a standardised

nociceptive stimulus is related to the pre-stimulus functional connectivity of brain regions known to

comprise the DPMS.

Results and discussion

Pre-stimulus functional connectivity in the infant DPMS
Mild experimental noxious stimulation was applied to the infant’s foot using a 128 mN PinPrick stim-

ulator. To ascertain the pre-stimulus functional connectivity, we extracted the demeaned BOLD sig-

nal from the three volumes recorded immediately prior to the application of the stimulus, which

were acquired within the 10 s pre-stimulus period (see Materials and methods and Figure 3—figure

supplement 2A). We extracted these time courses for the DPMS Network, and for brain regions in

two control networks - the first, referred to as the ‘Control Network’ has similar topography to the

DPMS Network, and the second network is a well-recognised resting state network (the Default

Mode Network). The DPMS Network comprised the bilateral AI, ACC, amygdala (AMY), RVM, PAG,

and the middle frontal gyri (mFG) situated within the dorsolateral prefrontal cortex (Figure 1A). This

includes the main brain structures identified in the adult DPMS (McMahon et al., 2013;

Schweinhardt and Bushnell, 2010). The Control Network comprised a set of brain regions that are

not reported to be involved in descending pain modulation, but included distinct cortical, subcortical

and brainstem structures, and had similar topographic distribution to the DPMS brain regions. Whilst

the Control Network is not a known functional network within the brain, this network controls for

global signal confounds for example respiratory or cardiovascular signals. The brain regions in the

Control Network are the bilateral calcarine cortices (CAL), caudate (CAU), hippocampus (HIP), pon-

tine nuclei (PON), recti gyri (RGY) and the supplementary motor areas (SMA) (Figure 1C). As an

additional control, the Default Mode Network (an established network that has been identified in

adults and term infants) (Doria et al., 2010; Raichle, 2015) allowed us to test the specificity of the

relationship between the pre-stimulus functional connectivity of the DPMS and the noxious-evoked

BOLD activity. The Default Mode Network included the posterior cingulate cortex (PCC), the inferior

parietal lobules (IPL) and the medial superior frontal gyrus (mSFG) situated within the medial pre-

frontal cortex (mPFC) (Figure 1E).

The overall mean pre-stimulus functional connectivity was calculated for each network (Figure 1B,

D,F). This was not significantly different between the DPMS Network and the Control Network

(mean pre-stimulus functional connectivity: DPMS Network = 0.08 ± 0.10; Control

Network = 0.15 ± 0.12). Unsurprisingly, given that the Default Mode Network is a canonical network
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that has been identified in both adult and infant resting state data (Doria et al., 2010;

Raichle, 2015), the functional connectivity of the Default Mode Network was significantly greater

(mean pre-stimulus functional connectivity: Default Mode Network = 0.24 ± 0.18) than connectivity

within the DPMS and the Control Network (p = 0.0014, repeated measures ANOVA, Tukey post-hoc
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Figure 1. Connectivity between brain regions in the DPMS and control networks. Schematic representation showing approximate locations of brain

regions in sagittal and coronal slices in the (A) DPMS Network, (C) Control Network and (E) Default Mode Network. Each anatomical region of interest

is identified in Figure 1—figure supplement 1 and the source data is provided in Figure 1—source data 1. Figure 1—figure supplement 2 shows

the registration of two example masks from template to functional space and example time series. Network schematics of the mean pre-stimulus

functional connectivity between pairs of regions in the (B) DPMS Network, (D) Control Network and (F) Default Mode Network. For abbreviations see

main text.

DOI: https://doi.org/10.7554/eLife.37125.002

The following source data and figure supplements are available for figure 1:

Source data 1. All region-of-interest masks in standard space.

DOI: https://doi.org/10.7554/eLife.37125.006

Figure supplement 1. Masks of regions included in the DPMS, Control Network and Default Mode Network.

DOI: https://doi.org/10.7554/eLife.37125.003

Figure supplement 2. Registration and time series data.

DOI: https://doi.org/10.7554/eLife.37125.004

Figure supplement 3. Pre-stimulus connectivity is stable.

DOI: https://doi.org/10.7554/eLife.37125.005
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comparison of DPMS and Control Network: p = 0.06, Default Mode Network and DPMS: p < 0.001,

Default Mode Network and Control Network: p = 0.047).

Characterisation of noxious-evoked brain activity in infants
Consistent with previous reports (Goksan et al., 2015; Williams et al., 2015), we identified positive

clusters of noxious-evoked BOLD activity in the bilateral postcentral gyrus (somatosensory cortices),

thalamus, anterior cingulate cortex and contralateral posterior insular cortex (Figure 2, Table 1). We

report a reduction in the number of active brain regions compared with our previous publication

(Goksan et al., 2015), and demonstrate more highly localised clusters of significant activity within

distinct anatomical regions (Figure 2). For example, clusters of activity can now be identified in the

medial surface of the somatosensory cortex, which encodes the somatotopic foot representation

(Figure 2 and Figure 2—source data 1). These differences have arisen due to improvements in the

data analysis pipeline to incorporate recent recommendations and methodological advances. Impor-

tantly, the statistical cluster-defining threshold has increased from z = 2.3 to z = 3.1, to account for

potential inflation in family wise error rates that have been observed across a broad range of MRI

studies (Eklund et al., 2016). Improved filtering of head motion parameters using FIX

(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) and an infant-specific haemodynamic response

function (Arichi et al., 2012) were also used (see Materials and methods). The brain regions identi-

fied in this more stringent analysis represent the most robustly activated clusters of noxious-evoked

brain activity in the infant, and are consistent with those most commonly reported in

adults (Tracey and Mantyh, 2007). Our previous report that the infant pattern of pain-related brain

activity is similar to that observed in adults is reconfirmed here (Goksan et al., 2015).
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Figure 2. Group noxious-evoked brain activity. (A) Sagittal and coronal views of the significant group activity from the 13 infants. Red lines indicate how

the two images (and the transverse image at z = 42, in B) relate to one another. (B) Transverse images showing significant group activity. The source

data is provided in Figure 2—source data 1). Numbers by the top left of each image represent coordinate locations in infant template space. The

location of each transverse slice is demonstrated (red lines) on the sagittal template brain in the top right. The activity map is overlaid on a standard

template of an infant brain at 40 weeks’ gestational age (Serag et al., 2012). Letters in italics depict axis labels: L = left, R = right, P = posterior.

Statistical maps are of cluster thresholded z-statistics (z > 3.1, cluster significance threshold p < 0.05).

DOI: https://doi.org/10.7554/eLife.37125.007

The following source data is available for figure 2:

Source data 1. Thresholded group activity map.

DOI: https://doi.org/10.7554/eLife.37125.008
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Relationship between the pre-stimulus functional connectivity of the
DPMS and noxious-evoked brain activity
For each infant, the mean pre-stimulus functional connectivity across the DPMS Network and the

control networks were calculated, and related to the mean percentage change in BOLD activity

evoked by the noxious stimulation (calculated for each individual participant across all the voxels

where significant group activity was identified). There was a significant inverse relationship between

the magnitude of pre-stimulus DPMS functional connectivity and the percentage change in noxious-

evoked BOLD activity (Pearson correlation coefficient (r) = -0.86, p = 0.0004, parameter estimate

(b) = -0.74, linear model also included gestational age in weeks as an explanatory variable,

Figure 3A). Infants with greater functional connectivity across their DPMS Network prior to noxious

stimulation had lower noxious-evoked brain activity. In contrast, the mean functional connectivity in

the Control Network and in the Default Mode Network were not related to the mean change in nox-

ious-evoked BOLD activity (Control Network: r = -0.36, p = 0.26, b = -0.25; Default Mode Network:

Table 1. Significant positive clusters of noxious-evoked brain activity, observed across the whole group (n = 13, cluster forming

threshold: z = 3.1, cluster significance threshold, p = 0.05).

This table provides an anatomical description and the location of the peak z-statistic within each active brain region. The group activity

reported consisted of 14 distinct clusters, some of which spanned multiple brain regions.

Anatomical description of location of activity Maximum z-statistic within cluster

Coordinates of maximum
z-statistic in infant template
space

X Y Z

Post-central gyrus Contra 4.8 7.7 �27.5 50.7

Ipsi 4.7 �23.2 �27.5 43.8

Posterior cingulate sulcus Contra 4.8 6.9 �23.2 36.0

Ipsi 3.8 �6.0 �20.6 34.3

Superior parietal lobule Contra 4.8 12.9 �44.6 47.2

Ipsi 4.7 �14.6 �43.8 43.8

Thalamus Contra 4.7 16.3 �19.7 12.0

Ipsi 4.6 �13.8 �24.0 16.3

Supra-marginal gyrus Ipsi 4.7 �25.8 �29.2 37.8

Contra 4.6 30.1 �24.9 28.3

Superior frontal sulcus Contra 4.7 16.3 �4.3 44.6

Middle frontal gyrus Ipsi 4.7 �27.5 0.9 30.0

Contra 4.0 24.1 5.2 33.5

Cuneus Contra 4.7 7.7 �53.2 26.6

Ipsi 4.2 �5.1 �50.7 23.2

Superior parietal lobe / Precuneus Contra 4.7 5.2 �35.2 39.5

Ipsi 4.0 �0.9 �43.8 41.2

Pre-central gyrus / Central sulcus Contra 4.6 24.1 �14.6 45.5

Ipsi 3.9 �8.6 �23.2 53.2

Posterior insula Contra 4.6 19.0 �19.7 24.0

Parietal operculum Ipsi 4.6 �34.4 �21.4 18.0

Superior temporal gyrus / Posterior operculum Contra 4.6 31.0 �27.5 22.3

Occipital gyrus Ipsi 4.6 �12.0 �63.5 21.4

Anterior cingulate cortex Ipsi 4.2 �1.7 14.7 24.0

Contra 3.9 4.3 12.1 25.7

Superior temporal gyrus Ipsi 4.2 �27.5 �28.3 12.8

DOI: https://doi.org/10.7554/eLife.37125.009
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Figure 3. Relationship between noxious-evoked brain activity and pre-stimulus functional connectivity in the DPMS and control networks. Linear

regression models (blue lines) were used to compare pre-stimulus functional connectivity (psFC) with the percentage change in BOLD activity in the (A)

DPMS Network, (B) Control Network and (C) the Default Mode Network (DMN). Noxious-evoked brain activity for each infant (calculated within a mask

of the group activity, see Figure 2) was adjusted for gestational age (in weeks) at the time of study. Coloured circles represent data from individual

infants within the DPMS (red) and control networks (light blue). Figure 3—source data 1 provides the individual PAG and RVM functional masks for

each infant. Figure 3—figure supplement 1 shows the relationship between the percentage change in BOLD activity and the psFC in the DPMS

Network and Control Network with the brainstem regions removed. (D) The brain schematic highlights the pairs of brain regions where psFC was

significantly correlated with percentage change in the BOLD response (dashed yellow lines). (E,F,G) The three pairs of regions within the DPMS

Network which demonstrated strong correlations between mean psFC and noxious-evoked brain activity.

DOI: https://doi.org/10.7554/eLife.37125.010

The following source data and figure supplements are available for figure 3:

Source data 1. Individual DPMS brainstem masks in functional space.

DOI: https://doi.org/10.7554/eLife.37125.013

Figure supplement 1. Relationship between percentage change in noxious-evoked brain activity and pre-stimulus functional connectivity in the

DPMS Network and Control Network with the brainstem regions removed.

DOI: https://doi.org/10.7554/eLife.37125.011

Figure supplement 2. Example data from individual infants.

DOI: https://doi.org/10.7554/eLife.37125.012
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r = 0.06, p = 0.88, b= -0.03 Figure 3B,C). The absence of a significant relationship between the func-

tional connectivity of the Default Mode Network and the noxious-evoked BOLD activity suggests

that the influence of the DPMS on the noxious-activity is not generalisable across all established

brain networks.

To explore the relative contribution of different brain regions within the DPMS Network, the rela-

tionship between the functional connectivity and the mean change in noxious-evoked BOLD activity

was calculated for each pair of brain regions. Increased pre-stimulus functional connectivity between

the ACC and PAG was associated with a substantial reduction in noxious-evoked BOLD activity

(adjusted for age, p = 0.0012, b = -0.22, Figure 3E). Functional connectivity between the AI-mFG

and ACC-AI were also strongly related to the change in noxious-evoked BOLD activity (p = 0.02,

b = -0.23 and p = 0.03, b = -0.17 respectively, Figure 3F,G). For all other pairs of brain regions, the

functional connectivity strength did not influence the magnitude of noxious-evoked brain activity.

The observation that a high degree of functional connectivity between the ACC and PAG is strongly

associated with a reduction in pain-related brain activity in the infant is interesting in light of obser-

vations in adults where greater co-variation in the functional activity of the rostral ACC and PAG

relates to an increase in the efficacy of endogenous analgesia elicited by placebo treatment

(Petrovic et al., 2002). Anticipation of placebo has been associated with greater pre-stimulus activ-

ity in the PAG, and leads to a placebo-induced reduction in evoked brain activity in the thalamus

and rostral ACC (Wager et al., 2004). The importance of the PAG, as part of the DPMS, has also

been demonstrated in animal studies, where direct stimulation of the PAG is associated with a

reduction in incoming nociceptive information from the peripheral nervous system (Reynolds, 1969).

In adult rodents, descending modulation (evidenced by PAG activation) preferentially modulates

C-fibre input (McMullan and Lumb, 2006; Waters and Lumb, 2008), whereas the noxious stimulus

applied in this study likely preferentially activates A-delta fibres, which may be differentially modu-

lated compared with C fibre input. However, it is not known how other supraspinal components of

the DPMS respond to activity in subclasses of nociceptors in humans. Further work is needed to

understand the developmental trajectory of the PAG-RVM axis in humans and the maturation of its

connections to the spinal cord.

Human and non-human infants display heightened sensitivity to noxious stimulation, which has

long been attributed to hyper-excitable spinal reflex networks (Fitzgerald, 2005). In the neonatal

rodent, brain structures within the DPMS facilitate, rather than inhibit, spinally-mediated nocifensive

behaviours (Hathway et al., 2009). During human preterm development, these exaggerated

reflexes are refined with shorter durations, lower magnitudes, and higher response thresholds, and

patterns of noxious-evoked brain activity concomitantly mature (Hartley et al., 2016;

Cornelissen et al., 2013; Fabrizi et al., 2011). The data presented here in term infants suggest that

the functional DPMS brain networks have an inhibitory function at the level of the brain, similar to

that observed in the adult (Ossipov et al., 2010). There is, however, a potential contradiction with

observations in neonatal rodents where facilitation at the level of the spinal cord has been observed

in electrophysiological recordings. This could reflect maturational differences in the connectivity of

supraspinal DPMS regions and the connectivity of the descending pathways from the RVM to the

spinal nociceptive dorsal horn network in newborn infants. Nevertheless, this interpretation relies on

a comparison across species, which is based on a theoretical age-equivalence between human

infants and neonatal rat pups. Some networks will likely have a different developmental trajectory in

rodents compared with humans and the maturation of the CNS is not a coordinated linear process

as different networks likely mature at different rates (Clancy et al., 2001). As we have not measured

activity in the spinal cord, we cannot determine the relationship between functional connectivity in

the DPMS and spinal activity in the term-aged infant.

Collecting functional imaging data in the brainstem is challenging, both in adults and infants, due

to head motion, and cardiac-related and respiratory-related motion (Harita and Stroman, 2017). In

this study, we identified and regressed out physiological noise using independent component analy-

sis (Salimi-Khorshidi et al., 2014; McKeown et al., 2005; McKeown et al., 1998). As further confir-

mation of the results, we re-assessed the strength of pre-stimulus functional connectivity in the

DPMS Network and Control Network excluding brainstem regions; namely the PAG and RVM for

the DPMS Network and the PON from the Control Network. The strength of the DPMS Network

within the remaining cortical and subcortical regions, the ACC, AI, mFG and AMY, was still signifi-

cantly inversely related to noxious-evoked brain activity (r = -0.61, p = 0.04, b = -0.37, Figure 3—
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figure supplement 1). As before, the Control Network excluding the PON, was not significantly cor-

related with noxious-evoked brain activity (r = -0.29, p = 0.36, b = -0.15). This suggests that our

results are unlikely to be driven by noise within the brainstem. While there are inherent limitations in

this study in terms of the spatial resolution that can be achieved when imaging small structures

within the brainstem, we believe that the PAG and RVM masks that we individually defined for each

infant are well localised within these anatomical structures. Figure 3—source data 1 gives the indi-

vidual PAG and RVM functional masks for each infant.

It is possible that application of the noxious stimulus could influence the pre-stimulus data; how-

ever, the stimulus presentation was not predictable, and the time-period between stimuli was always

greater than 25 s. The pre-stimulus functional connectivity of the DPMS was not dependent on stim-

ulus number (p = 0.33, repeated measures ANOVA, see Figure 1—figure supplement 3), suggest-

ing that the functional connectivity of this network is relatively stable. In adults, functional brain

networks are also thought to be dominated by stable individual features, and only modestly influ-

enced by evoked factors and day-to-day variability (Gratton et al., 2018). To further understand the

relationship between infant noxious-evoked brain activity and the DPMS, functional connectivity

analysis of resting state data, and underlying structural connectivity and white matter fibre integrity

between DPMS regions using diffusion MRI is warranted (Gratton et al., 2018; Friston, 2011). Neu-

roimaging studies in both humans and animals suggest that functional connectivity measures can be

used to better understand how networks of brain regions are involved in complex functions

(Cole et al., 2016; Fox et al., 2005; Smith et al., 2013), including pain (Baliki et al., 2014). While

these measures may represent direct or indirect communication between these brain regions

(Fox et al., 2005; Smith et al., 2013), they may also reflect underlying changes in the amplitude of

the neural signals, which are unrelated to neural synchrony (Friston, 2011; Cole et al., 2016;

Duff et al., 2018) – further investigation of DPMS structural and functional connectivity may eluci-

date these underlying mechanisms.

In summary, this study suggests that in term infants the DPMS may be influential in regulating the

magnitude of noxious-evoked brain activity. In adults, greater pre-stimulus activity in brain regions

within the DPMS network are coupled with lower behavioural pain reports (Ploner et al., 2010;

Boly et al., 2007; Fairhurst et al., 2007). Therefore, a possible interpretation of our results is that

when regions within the DPMS are more strongly functionally connected, infants have a greater abil-

ity to regulate their pain experience and dampen the magnitude of their brain activity in response to

incoming nociceptive input. Surgical injury in the neonatal period is known to lead to whole-body

changes in pain sensitivity that persist into childhood (Walker et al., 2009), and this may be depen-

dent upon changes in the maturation of the DPMS, especially the RVM (Walker et al., 2015). To

understand how the DPMS develops during early life, and how it is influenced by early life experien-

ces, further investigation of the DPMS is required in both younger preterm infants and older infants.

For example, it has been suggested that development of aberrant DPMS function in early life may

lead to long-term vulnerability towards chronic pain states (Denk et al., 2014). The presence of a

functional supraspinal modulation system in a term-aged human infant is consistent with the pro-

posal that the emergence of top-down inhibitory pathways develop in early life (Hartley et al.,

2016). We conclude that the DPMS network can influence the magnitude of pain-related brain activ-

ity in term-aged infants.

Materials and methods

Participants
Seventeen newborn term-aged infants were recruited from the Maternity Unit at the John Radcliffe

Hospital, Oxford, UK. All infants completed the full study protocol. The National Research Ethics Ser-

vice provided ethical approval: REC reference 12/SC/0447. Informed written parental consent was

obtained prior to each study. The study was carried out in accordance with the standards set by the

Declaration of Helsinki and Good Clinical Practice guidelines.

Data from four infants were excluded from the analysis because the most caudal region of inter-

est, the rostral ventral medulla in the brainstem, fell outside of the field of view. Therefore, 13 term

infants (average gestational age (GA) at study = 40 weeks, range 38 to 43 weeks) were included in

this analysis. The average postnatal age at the time of the study was 4 days (range 1 to 8 days). Eight
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of the 13 infants included in this analysis were also included in our previous publication

(Goksan et al., 2015).

Study protocol
Infant recruitment criteria, experimental study design and MRI study protocol were identical to that

described previously by Goksan et al., 2015. In brief, all infants were scanned at the Centre for

Functional Magnetic Resonance Imaging of the Brain (FMRIB), John Radcliffe Hospital, Oxford. Prior

to scanning infants were fed and swaddled and provided with three levels of ear protection: ear

putty (Mack’s Kids size earplugs, McKeon Products Inc., MI), ear muffs (Minimuffs, Natus Medical

Inc., Galway, Ireland) and hearing defenders (Em’s 4 Bubs Baby Earmuffs, Em’s 4 Kids, Brisbane, Aus-

tralia), with noise reduction ratings of 22 dB, 7 dB, and 22 dB, respectively. Infants were then placed

in a vacuum-positioning mattress and all scanning was done when infants were settled or asleep.

During all MRI sessions, T2-weighted structural images were collected prior to acquisition of func-

tional echo planar imaging (EPI) scans. During individual infant’s functional scans, acute experimental

noxious stimulation was applied using a calibrated nociceptive stimulator (force: 128 mN, PinPrick

Stimulators, MRC Systems). Noxious stimulation was applied 10 times to the heel of the left foot by

the same experimenter and with a minimum inter-stimulus interval of 25 s. The interval was chosen

based on the neonatal term infant haemodynamic response function (HRF) described by Arichi et al.

(2012) and the interval was extended if necessary to ensure the infant was settled at the time of

stimulation.

MRI acquisition
Images were collected using a Siemens 3-Tesla Magnetom Verio scanner (Erlangen, Germany) with a

32-channel adult head coil. T2-weighted turbo spin echo structural scans were acquired for each

infant (sequence parameters: repetition time/echo time (TR/TE) = 14740/88 ms; flip angle 150 ˚; res-
olution 1 mm3; slices = 85, field of view (FOV) = 192�192 mm, acceleration = GRAPPA 2, slice

order = interleaved, with no slice overlap). BOLD images were acquired using a T2*-weighted EPI

acquisition (sequence parameters: TR/TE = 2500/40 ms; flip angle = 90˚; FOV = 192�192 mm; imag-

ing matrix 64�64; resolution 3�3�3 mm; slices = 33, collected in descending order; average total

volumes = 142). Prospective Acquisition Correction for head motion (PACE) was applied during all

EPI scans (Thesen et al., 2000), as described previously in Goksan et al., 2015). Field map images

were obtained for post-acquisition correction of gradient field effects (sequence parameters:

TR = 400 ms; TE1/TE2 = 5.19/7.65 ms; flip angle = 60˚; FOV = 192�192 mm; imaging matrix 64�64;

resolution 3�3 �3 mm; slices = 36, slice order = interleaved; inter-slice gap = 0.75 mm). The noxious

stimuli were time-locked to the fMRI recording using Neurobehavioural Systems (Presentation, www.

neurobs.com) software; coded to detect an experimenter’s button-press each time an experimental

stimulus was applied to the participant’s foot.

Data analysis
MR data processing
All MR data pre-processing were done using FMRIB Software Library (FSL) (www.fmrib.ox.ac.uk/fsl),

Versions 5.0.10 and 4.1.9. Version 5.0.10 was used to prepare the structural and field map images.

FSL’s Brain Extraction Tool (BET) was used in order to extract brain-tissue signal from the non-brain

structures in each infant’s structural image (Smith, 2002). The fractional intensity threshold and

threshold gradient parameters within BET were adjusted in order to obtain the most accurate brain

extraction per subject. A mask of each infant’s brain-extracted structural scan was registered to the

fieldmap and used to guide fieldmap preparation. All fMRI data registrations were done using FMRI

Expert Analysis Tool (FEAT) Version 5.98 (FSL Version 4.1.9) to avoid boundary-based registration

(BBR), due to hard coding of the adult-appropriate BBR-slope parameter, which is unsuitable for

infant fMRI data. Functional images were registered to a standard average infant template (40 week

GA template; downloaded from www.brain-development.org). Each EPI was initially registered to

the infant’s structural image (FLIRT: rigid body transformation with six DOF [Jenkinson et al., 2002;

Jenkinson and Smith, 2001]). Subsequently, images in structural space were non-linearly registered

to the neonatal-specific template image, which corresponded to the GA of the infant at the time of
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the study (Serag et al., 2012) and then to the standard infant 40-week gestation template (FNIRT:

non-linear transformation with twelve DOF).

FEAT (Version 5.98) was used to run functional data pre-processing steps implemented within

FSL; which included motion correction of the functional data using MCFLIRT (Jenkinson et al.,

2002), distortion correction using FUGUE, brain extraction using BET, high pass temporal filtering at

0.01 Hz (100 s period), and grand mean scaling. Spatial smoothing is a common preprocessing step

that typically filters the data with a smoothing kernel extent (measured in full width at half maximum)

larger than one voxel. Given our spatial resolution, the voxel size relative to the neonatal brain, and

our use of small brainstem ROIs, spatial smoothing was deemed inappropriate and thus omitted.

MELODIC (model-free fMRI analysis using probabilistic independent component analysis) was used

to decompose functional data into spatially independent components, which were subsequently

manually labelled as signal or noise (Griffanti et al., 2017). FIX (FMRIB’s ICA-based Xnoiseifier,

v1.065) was then applied to regress out the noise component time series and 24 head motion

parameter time series (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). While spatial ICA-based

denoising does not remove global signal artefacts, we did not include a pre-processing step to

address this, such as GSR (global signal regression). We addressed the potential issue of global sig-

nal cofounds in the main analysis by including our Control Network.

MR data statistical analysis was conducted using FSL (Version 5.0.10). Time-series statistics were

generated using general linear modelling (GLM) in FEAT (Version 6.00). The experimental model

was created using an event-related design, where each input represented the timing of each noxious

stimulus (duration: approximately 1 s), recorded during the scanning session via the Presentation

code. The experimental design was convolved with three term-infant-specific optimal basis functions

generated by Arichi and colleagues (Arichi et al., 2012). Motion outlier variables were included in

the model by identifying volumes where large deviations in head position occurred. Each motion var-

iable was generated by FSL’s motion outliers command using the DVARS option; which calculated

the rate of change of the variance between volumes (Power et al., 2012). Cluster thresholding (with

a cluster defining threshold of p = 0.001 (z = 3.1) and a cluster significance threshold of p = 0.05)

was used to identify significant increases in BOLD following experimental noxious stimulation.

Group analysis was run in FSL (Version 5.0.10), using mixed effects FLAME 1 and 2 in FEAT (Ver-

sion 6.00), with automatic outlier detection. The first contrast of the parameter estimate (COPE) sta-

tistical image of each participant was input into the higher group analysis, therefore only taking into

account the first basis function described by Arichi et al. (2012). This function closely resembles a

double gamma function with a peak at 7 s and an undershoot to positive peak ratio of 0.49. Two

neonatal-specific atlases, the University of North Carolina’s (UNC) atlas (Shi et al., 2011) and an

Imperial College London (ICL) atlas (Serag et al., 2012), and an adult atlas (Mai et al., 2008) were

used to guide description of the resulting group activity (in Table 1). Three atlases were required

because each atlas provided varying levels of anatomical specificity. The ICL atlas was the most gen-

eral, describing all the lobes of the brain, as well as some deep brain nuclei and maps of the CSF,

grey and white matter. Despite this broad labelling, the ICL atlas also provided the most accurate

partition between anatomical boundaries. The UNC infant atlas was used as it contained more spe-

cific anatomical masks. However, the partitions between anatomical boundaries were less good;

therefore the ICL atlas was used in conjunction to define boundaries. Finally when describing the

anatomical location of peaks within the group activity (see Table 1), an adult atlas was used as it pro-

vided further guidance for labelling specific gyri and sulci. Clusters that extended across more than

one brain region were described separately only when a region of activity with a separate local peak

voxel was observed within the adjacent brain region. For all regions named in the table, masks were

hand drawn and aimed to include all the active voxels within each region, however given the subjec-

tive nature of this task it is possible that small regions of activity that formed part of the same cluster

may have been overlooked. The function Cluster, available within FSL, was then used to obtain maxi-

mum z-statistics and their coordinate locations.

Pre-stimulus functional connectivity (psFC)
Mean time series were calculated in 15 brain regions. Six regions were identified as key regions

within the DPMS: anterior cingulate cortex (ACC), amygdala (AMY), anterior insula (AI), middle fron-

tal gyrus (mFG) (a region within the dorsolateral prefrontal cortex - dlPFC); assessed using the fol-

lowing papers (Rajkowska and Goldman-Rakic, 1995; Sallet et al., 2013; Stagg et al., 2013),
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periaqueductal grey (PAG) and rostal ventral medulla (RVM). A further nine brain regions, without a

known role in the DPMS, were included within the two control networks. The Control Network

included the calcarine cortex (CAL), caudate (CAU), hippocampus (HIP), pons (PON), recti gyri (RGY)

and the supplementary motor area (SMA). Three regions were identified in the Default Mode Net-

work – the posterior cingulate cortex (PCC), inferior parietal lobules (IPL) and the medial superior

frontal gyrus (mSFG). The mSFG was chosen in place of the medial prefrontal cortex (commonly

reported as part of the DMN) because a medial prefrontal cortex mask was not available as part of

the UNC or ICL infant atlases; therefore, the mSFG was taken as the representative of this region.

Brain regions commonly reported to be involved in descending pain modulation

(Schweinhardt and Bushnell, 2010), were included in the DPMS Network. However, this network

did not include all DPMS regions, as for example, the hypothalamus also plays a key role in descend-

ing pain modulation (Denk et al., 2014; Dafny et al., 1996). The DPMS Network reported here

therefore includes core regions within the adult DPMS network that could be confidently identified

and masked in the infant.

Using the two neonatal atlases described above (UNC and ICL), region of interest (ROI) masks

were created. ACC, AMY, CAU, HIP and PCC masks were taken directly from the ICL atlas at 40

week GA. CAL, IPL, mFG, mSFG, RGY and SMA were regions within the UNC infant atlas. Following

registration of the UNC atlas to the 40-week template brain, masks of all six aforementioned UNC

atlas regions were isolated. Subsequently, UNC atlas masks were carefully inspected to ensure that

each mask fell within the appropriate boundaries of the ICL atlas (as this atlas is more accurately reg-

istered with the anatomy of the template brain). The mFG mask was taken directly from the UNC

atlas. For the CAL mask, voxels that fell within the occipital lobe mask from the ICL atlas were

included, and individual voxels falling outside of the calcarine cortex were manually removed. For

the RGY and mSFG masks, only voxels that fell within the frontal lobe mask from the ICL atlas were

included. For the IPL, voxels that fell within the parietal lobe mask from the ICL atlas were included.

For the SMA, voxels labelled as CSF by the ICL atlas were removed.

Four brain regions were not included as independent brain regions in either atlas and were there-

fore hand-drawn. AI, PAG, PON and RVM masks were manually drawn in FSLeyes (FSL, Version

5.0.10). Adult masks of the AI (Wiech et al., 2014) and PAG (Ezra et al., 2015) were used to guide

drawing of masks over the infant template brain. PON and RVM masks were drawn with reference to

the Duvernoy Atlas (Duvernoy, 2012). The RVM mask fell within the region of the ventromedial

nucleus of the solitary tract, while the PON mask consisted of the pontine nuclei and the basilar part

of the pons (Figure 1—figure supplement 1).

Mean time series were calculated in EPI space by (i) registering masks of each region from the

standard neonatal (40 week GA) template to EPI space (via structural scans) (Figure 1—figure sup-

plement 2A–C), (ii) checking that each ROI mask fell within the field of view and was appropriately

registered, (iii) using the function fslmeants, available in FSL, to generate a mean time series within

each specific ROI (Figure 1—figure supplement 2D). Note, for the RVM (as this is a small ROI), we

extracted a weighted time series using the mask weights in functional space. While masks were in

structural space (Figure 1—figure supplement 2B), segmentations of individual participant’s struc-

tural images (generated using a beta release of the developing Human Connectome Project (dHCP)

pipeline) were used to remove voxels classified as CSF. Finally, voxels that fell within regions of sig-

nal dropout (i.e. where there was greater than 10 % signal loss in the functional image from maxi-

mum signal intensity) were also rejected. This was done by using a mask - automatically generated in

FEAT - to identify and subtract voxels of large signal loss from the ROI masks.

All mean time series were demeaned and the three pre-stimulus data points were selected by

identifying the volumes in which the noxious stimulus occurred and selecting the data from the three

volumes immediately prior to each stimulus (see Figure 3—figure supplement 2A). The TR was 2.5

s so the pre-stimulus period had a duration of 7.5 s. As the stimuli could be applied at any time

within a single volume the start point of the pre-stimulus period occurred between 7.5 and 10 s prior

to the application of the stimulus. This resulted in 10 sets of 3 data points per mean time series per

infant. Next, pairs of ROIs were taken from each infant’s data (let these be ROI1 and ROI2). The

overall pre-stimulus correlation between ROI1 and ROI2 was calculated by averaging the 10 pre-

stimulus correlations (one per stimulus), which were the correlations between the three pre-stimulus

points from ROI1 and the equivalent set of pre-stimulus points from ROI2. This method was

repeated for all combinations of ROIs resulting in a connectivity matrix displaying all correlations per
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infant (Figure 3—figure supplement 2B). Finally, the mean pre-stimulus functional connectivity was

calculated per infant by averaging the below diagonal values of the connectivity matrix. The mean

pre-stimulus connectivity was compared with the average post-stimulus percentage change in BOLD

(calculated using the function Featquery, available in FSL) within a mask of all significantly active vox-

els (z > 3.1, p < 0.05) from the group analysis.

Regression analysis was carried out using MATLAB (Mathworks, version R2017a). Post-stimulus

percentage change in BOLD in the group activity mask was input as the response variable into a lin-

ear regression model, which included the mean pre-stimulus functional connectivity within the net-

work and infant’s GA at study (in weeks and days) as the first and second explanatory variables

respectively. The parameter estimates and p-values from the model are reported in the results.

Finally, the r-value (Pearson’s Correlation Coefficient) was calculated between the percentage

change in BOLD and pre-stimulus functional connectivity (adjusted for age and obtained following

the regression model fit).
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