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Abstract. Gravitationally collapsed objects are known to be biased tracers of an underlying
density contrast. Using symmetry arguments, generalised biasing schemes have recently
been developed to relate the halo density contrast δh with the underlying density contrast
δ, divergence of velocity θ and their higher-order derivatives. This is done by constructing
invariants such as s, t, ψ, η. We show how the generating function formalism in Eulerian
standard perturbation theory (SPT) can be used to show that many of the additional terms
based on extended Galilean and Lifshitz symmetry actually do not make any contribution to
the higher-order statistics of biased tracers. Other terms can also be drastically simplified
allowing us to write the vertices associated with δh in terms of the vertices of δ and θ, the
higher-order derivatives and the bias coefficients. We also compute the cumulant correlators
(CCs) for two different tracer populations. These perturbative results are valid for tree-level
contributions but at an arbitrary order. We also take into account the stochastic nature bias
in our analysis. Extending previous results of a local polynomial model of bias, we express
the one-point cumulants SN and their two-point counterparts, the CCs i.e. Cpq, of biased
tracers in terms of that of their underlying density contrast counterparts. As a by-product
of our calculation we also discuss the results using approximations based on Lagrangian
perturbation theory (LPT).
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“Why do you want to know his bias? Form your own bias!” R.P.Feynman

1 Introduction

Recently completed cosmic microwave background (CMB) surveys e.g. the Planck surveyor1,
have provided us with a robust cosmological framework that will allow us to investigate the
physics beyond the Standard Model of cosmology. Next generation surveys are mapping the
entire CMB sky with higher resolution and accuracy e.g. ACT2 and SPT3 to answer many
of the questions relevant to structure formation in the low redshift Universe. In addition,
the ongoing and future large scale surveys will map the sky with ever increasing precision
(BOSS4 [1], WiggleZ5 [2], DES6 [3], EUCLID7 [4]). These surveys will provide a glimpse of
physics beyond the standard model. On one hand, they will check any departure from general
relativity (GR) on cosmological scales, on the other, they will also provide an estimate of
the sum of the neutrino mass [5]. The galaxies, however, are known to be biased tracers of
underlying dark matter distribution [53]. To achieve the full potential of the future surveys,
parametrization and understanding of bias is of utmost importance.

Initial models of bias were linear and local relations between the tracer’s density contrast
δh and the underlying matter density contrast δ: δh = b1δ. However, early simulations e.g.
[8] pointed to a more complex nature of bias that can be nonlinear and non-local. It was
also realized that bias can also be stochastic. On the theoretical side, both perturbative and
non-perturbative models started to emerge. The non-perturbative theories based on peak
approach were developed in [9]; these theories can mimic many of the properties of galaxy

1Planck: http://www.cosmos.esa.int/web/planck/
2ACT: http://www.physics.princeton.edu/act/
3SPT: http://pole.uchicago.edu
4Baryon Oscillator Spectroscopic Survey: http://www.sdss3.org/surveys/boss.php
5WiggleZ Survey : http://wigglez.swin.edu.au/
6Dark Energy Survey: http://www.darkenergysurvey.org/
7EUCLID: http://www.euclid-ec.org/
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bias successfully. Halo based approaches were developed which remain an important tool for
making analytical predictions [10].

Many recent approaches have also seen development of formal perturbative approaches
that extend and put known results on a solid foundation [11–13]. The effective field theory
based approaches were also developed [14, 15]. Indeed, the polynomial model for bias de-
veloped in [16] was valid for large smoothing scales and lacks the non-local terms that are
generated due to gravitational clustering. Using just second-order standard perturbation the-
ory (SPT) it has been shown that gravitational evolution is responsible for generating tidal
interactions which are non-local in the density field [17–19]. Similar non-local contribution
is also expected in the clustering of halos and was studied in detail in several publications
[20, 21]. In [22] a more generic scheme for bias was developed based on symmetries inherent
in the dynamical equations. In the nonlinear regime gravity-induced bias has been studied
in the context of the hierarchical ansatz (HA) [23, 24]. It has recently been pointed out that
non-local bias can mimic scale-dependent suppression of growth of perturbation in cosmolo-
gies with massive neutrinos [25–30]. The non-local bias is relatively small compared to the
linear bias but future large-scale surveys will be sensitive to them. Large-scale numerical sim-
ulations have been employed to investigate their effect on the clustering of halos [31–34]. It
was shown that scale-dependent bias in the power spectrum of dark matter halo is degenerate
with the signatures left by the various non-local bias terms. The degeneracies present in the
characterization of the bias can be broken by using higher-order statistics of biased tracers.
Going beyond the usual power spectrum analysis, in this paper we compute the higher-order
statistics for a generic biasing scheme which can be nonlinear, non-local and stochastic. The
additional terms in the perturbative description of bias stem from symmetry considerations.
The inherent symmetries in the dynamical equations predict invariant quantities [35–37] in
the perturbative expansion of bias.

A generating function based approach in the perturbative regime was introduced in
[38]. It provides a powerful framework to analyse the higher-order statistics of cosmological
fields. We use this formalism along with the functional relationship dictated by a biasing
scheme of δh with δ and θ to compute the tree-level vertices of δh as a function of those
of δ and θ. These derivations are valid in the perturbative regime. We derive the formal
relations in the presence of nonlinear, non-local and higher-derivative terms. We also include
a stochastic noise that originates from our lack of knowledge of the fundamental physics
related to the galaxy formation process. We use these expressions to decide which terms in
these expressions do not contribute at any order. The results from the generating function
formalism are next used to express the cumulants and cumulant-correlators of the biased
tracers. Our aim is to extend the results presented in [39] to more general biasing schemes.

This paper is organised as follows. In §2 we review the generating function approach.
In §3 we consider a family of generalized bias models and use the generating function to
analyse them. §4 is devoted to discussion of a non-local bias. §5 is devoted to the discussion
of cumulants and cumulant correlators (CCs). Finally, our conclusions are presented in §6.
Some of the details of our derivations are relegated to the two appendices.

2 Generating Functions

The generating function formalism is often used to compute the cumulants and the CCs of
cosmological fields. Our aim here is to provide a very brief review of the generating function
formalism developed in [38] (also see [40]) to construct the CCs of the biased tracers (halos
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or peaks) and express them in terms of the statistics of underlying mass distribution. The
results are relevant for the perturbative regime. The n-th order of perturbative expansion of
an arbitrary field F defined as F (n) with respect to δ is defined as follows:

〈F (n)〉c =

∫

〈F(n)(x, a)δ(1)(x1, a) · · · δ
(1)(xn, a)〉c d

3x d3x1 · · · d
3xn

(
∫

〈δ(1)(x, a)δ(1)(x′, a)〉d3xd3x′)n
. (2.1)

Here, δ(1)(x, a) is the linear approximation for δ(x, a) at a comoving position x and a(t) is
the scale factor of the Universe. Only connected diagrams are taken into account, which
explains the subscript c. Throughout, we will assume that the initial density contrast δ is
Gaussian, though it is possible to incorporate non-Gaussian initial condition. The generating
function GF (τs) for the vertices for any random field F (x, a) is given by:

GF (τs) =
∞
∑

n=1

〈F (n)〉c
n!

τns . (2.2)

For two arbitrary fields A(x, a) and B(x, a), we have the following properties for the
generating functions [38]:

GA+B(τs) = GA(τs) + GB(τs); (2.3a)

GAB(τs) = GA(τs)GB(τs); (2.3b)

G∇iA ∇iB(τs) = 0; (2.3c)

G∇i∇jA ∇j∇iB(τs) =
1

3
G∇2A∇2B(τs). (2.3d)

We will denote the generating function of the density contrast δ by Gδ(τs) =
∑

∞

n=1 νn/n! τ
n
s

where νn ≡ 〈δ(n)〉c. We will also need the divergence of velocity θ (to be defined later), for
which, the generating function will be denoted as Gθ(τs) ≡

∑

∞

n=1 µn/n! τ
n
s with µn ≡ 〈θ(n)〉c.

The generating function formalism was originally introduced in [41] and later exploited
in many publications including in [38, 42] to compute the lower order cumulants and cumulant
correlators [43] by linking the generating function of tree-level amplitudes directly with the
dynamical equations of a self-gravitating collisionless system [44]. The resulting expressions
will be applied to understand halo clustering in §3. Notice the bias of overdense regions has
been studied using the generating function formalism in [43].

3 Bias and Biased Tracers

The idea of nonlocal bias has been investigated in great detail in the past by many author.
Starting from ref.[22] the idea was developed further in [35, 36]. More recently the results
were extended to third order in perturbation theory in ref.[6]. The idea behind these stud-
ies is to probe the statistics of proto-halos which preserve their identity and their number
density is conserved. It is assumed that, though their shape and topology may change, the
center of mass of these proto-halos follow a well defined trajectory and their statistics can
studied using perturbative techniques. We will consider the matter dominated case, x is the
spatial comoving coordinate and τ the conformal time τ =

∫

dt/a(t). The associated Hubble
parameter is H = d ln a(t)/dτ . We will also define the divergence of velocity as θ = ∂iv

i
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where vi = dxi/dτ . The Euler, continuity and Poisson equations describe the gravitational
clustering of a collisionless system in the hydrodynamic limit:

∂δ

∂τ
+∇i[(1 + δ)vi] = 0; (3.1a)

∂vi

∂τ
+Hvi + vj∇jv

i = −∇iφ; (3.1b)

∇2φ =
3

2
ΩMH2δ. (3.1c)

In terms of generating functions for δ and θ denoted as Gδ =
∑

(νn/n!)τ
n
s and Gθ =

∑

(µn/n!)τ
n
s , these equations take the following forms [40]:

∂Gδ
∂τ

+ (1 + Gθ)Gδ = 0; (3.2a)

∂Gθ
∂τ

+
1

2
Gθ +

1

3
G2
θ + G∇2Φ = 0; (3.2b)

G∇2φ =
3

2
Gδ. (3.2c)

The solution to these equations are well known and Gδ and Gθ satisfy collapse of spherically
over-dense top-hat perturbation. However, Eq.(3.2a)-Eq.(3.2c) do not represent evolution of
perturbations they encode the statistical description of an ensemble of perturbations.

To relate the tracer density δh with δ many different simplifying assumption are em-
ployed. It is typically assumed the number density of tracers (proto-halos) do not change
and remains conserved. Thus evolution of δh can be described by a continuity equation. In
this picture the halos can change shape or their topology but they follow a well-defined tra-
jectories. It is further assumed that halo velocities vh are unbiased estimators of underlying
dark matter velocities v i.e. vh = v:

(δ̇h − δ̇) +∇i[(δh − δ)vi] = 0. (3.3)

The overdots represent derivative w.r.t. τ . The halo density contrast δh(x, τi) and the DM
density contrast δ(x, τi) are related at some initial time τi as follows:

δh(x, τi) ≡ b(δ) =
∑

ℓ

bLℓ (τi)

ℓ!
[δ(x, τi)]

ℓ =
∑

ℓ

bLℓ (τ)

ℓ!
[δ(x, τ)]ℓ. (3.4)

Thus the evolution of the Lagrangian bias bLℓ (τ) as a function of conformal time τ from bLℓ (τi)

takes the following form: bLℓ (τ) = bLℓ (τi) [a(τi)/a(τ)]
ℓ. The above expression can be used to

evaluate bLℓ at a later time τ once specified at an initial epoch τi. Notice that at this stage
we have left the parameters bLℓ arbitrary. Perturbative analysis of Eq.(3.3) has been carried
out in an order-by-order manner. In [35, 36] an analysis was performed up to second order
in the linear density contrast δ(1), more recently the result was extended to third order in [6].
These studies found that the halo density contrast δh is related to the underlying δ through
the following expression:

δh ≡ b(δ, θ,∇i∇jφ,∇iθj, · · · ); (3.5a)

δh = b1δ +
1

2!
b2δ

2 +
1

3!
b3δ

3 +
1

2!
bs2s

2 + bψψ + bsts · t

+b∇2δ∇
2δ + b∇2∇2[sijs

ij] + b∇4∇2[sij ]∇
2[sij] · · · . (3.5b)
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The coefficients bs2 , bψ · · · and the higher-order derivative operators b∇2δ, b∇2 , · · · appearing
in Eq.(3.5b) are left arbitrary at this stage. The non-local operators t, s, η ans ψ above are
defined as [22]:

sij =
2

3H2
∇i∇jφ−

1

3
δKijδ; (3.6a)

tij = ∂ivj −
1

3
δijθ − sij; (3.6b)

η = θ − δ; (3.6c)

ψ = η −
2

7
s2 +

4

21
δ2. (3.6d)

we have introduced the following notations

s2 ≡ sijs
ij ; s · t ≡ sijtij ; t2 ≡ tijt

ij. (3.7)

We have also assumed a Ω = 1 universe. However, the higher-order statistics are known to
be very weakly-dependent on background cosmology. The traceless tidal tensor is denoted
as sij. Here, tij is considered to be symmetric as vorticity is not generated at lower-order in
perturbation theory only needs to be accounted for at a very higher-order. The terms η and
t start to contribute at second-order while ψ contributes at cubic order and beyond.

These operators along with density δ are invariants under the extended Lifshitz and
Galilean transformation. The local bias expansion corresponds to the invariant δ and rep-
resents a Taylor expansion of δh with coefficients bℓ specifying the exact functional form of
b(δ). However, this is incomplete as inherent extended Lifshitz and Galilean symmetry of the
Euler-continuity-Poisson system also allows the additional invariants s2, t2 and s · t involving
sij and tij etc. It has been argued that even if these forms of bias are not present in the initial
conditions there is no guarantee that they will not be generated during the subsequent grav-
itational evolution as they are permitted by the symmetry of the system. It is expected that
on large-scales the polynomial model will be more accurate. The non-local derivative terms
in Eq.(3.5b) are an unavoidable consequence of symmetry and will contribute on smaller
scales. Indeed, modification of gravity doesn’t necessarily respect the symmetry under these
transformations, and, hence, in addition to non-local terms, scale-dependent terms will also
be generated.

We can use Eq.(3.5b) to relate the generating function Gδh of δh in terms of the gen-
erating function of other variables. The generating functions are defined in Eq.(2.1). Using
Eq.(2.3a) we arrive at:

Gδh ≡ b(Gδ) = b1Gδ +
1

2!
b2[Gδ]

2 +
1

3!
b3[Gδ]

3 +
1

2!
bs2G

2
s + bψGψ + bstGs·t +

+b∇2δG∇2δ + bs2∇2Gs2∇2 + bs2∇4Gs∇4 · · · . (3.8)

This is one of the main result of this paper. Following the derivations outlined in Appendix-A
it can be shown that many of the terms involving the following generating functions vanish.

Gs2 = 0; Gt2 = 0; Gs·t = 0; Gs2∇2 = 0; Gs∇4 = 0. (3.9)

An important conclusion from this analysis is that the higher-order statistics of tracers are
independent of bs2 , bt2 , bst and other similar constructs to an arbitrary order though they do
contribute to the variance.
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These quantities are the well known invariants that are the result of inherent extended
Galilean and Lifshitz symmetries in the dynamic equations[35–37]. The corresponding ex-
pressions in terms of the generating functions take the following form:

Gη = Gθ − Gδ; Gψ = Gη −
2

7
Gs2 +

4

21
[Gδ]

2. (3.10)

It is possible to show using the properties of the generating functions in Eq.(2.3a)-Eq.(2.3d)
we have:

Gψ = Gη −
4

21
[Gδ]

2. (3.11)

The Eulerian bias bℓ and the Lagrangian bias bLℓ are related by the following expression [6]:

b1 = 1 + bL1 ; b2 = bL2 +
8

21
bL1 ; bs2 = −

4

7
bL1 ; bψ = −

1

2
bL1 ; bst = −

5

7
bL1 ; (3.12)

It is recognized that galaxy formation is a stochastic process [46]. A more general expression
of Eq.(3.5b) should include the stochasticity of galaxy formation with δ replaced by δ + n
with n given by a more generic series expansion:

n = bǫǫ+ bδǫδǫ+
1

2
bδ2ǫδ

2ǫ+
1

2
bs2ǫs

2ǫ+
1

2
bǫ2ǫ

2 +
1

3
bδǫ2δǫ

2 +
1

3
bǫ3ǫ

3 + . . . ; (3.13a)

Gn = bǫGǫ + bδǫGδGǫ +
1

2
bδ2ǫG

2
δGǫ +

1

2
bs2ǫGs2Gǫ +

1

2
bδǫ2GδG

2
ǫ +

1

2
bǫ3G

3
ǫ . (3.13b)

The generating function Gδ in Eq.(3.8) will be replaced by Gδ+n = Gδ + Gn Indeed, following
the same arguments Gs2 = 0 and rest of the terms can be expressed in terms of Gδ and Gǫ. If
we assume ǫ to be Gaussian the expressions can be further simplified.

It is also possible to consider a biasing model where the halo over-density at a given
location is assumed to be a function of dark matter fields and their higher-order derivatives
along the entire past trajectory. Such an expression would not only be non-local in space
but also in time. It can however be argued that dominant perturbative expressions can be
factorized in spatial and temporal dependence. The integration of the temporal part can be
performed without distorting the spatial dependence. Thus only the parameters defining the
bias will get normalized.

The Eulerian bias in Eq.(3.12) was expressed in terms of Lagrangian bias using order-
by-order perturbative calculation. The subset of polynomial bias coefficients bℓ can also be
derived using the following mapping that relates the Eulerian density contrast δEh (τ) for halos
with the Lagrangian density contrast δLh (τ):

1 + δEh (τ) = (1 + δ)[1 + δLh (τ)]; (3.14a)

1 + G
(h)
E = (1 + Gδ)(1 + GLδ ); (3.14b)

δEh (x, τ) =
∞
∑

ℓ=1

bEℓ
ℓ!

[δ(x, τ)]ℓ; δLh (x, τ) =
∞
∑

ℓ=1

bLℓ
ℓ!
[δL(x, τ)]ℓ; (3.14c)

GhL(τ) =
∞
∑

ℓ=1

bLℓ
[Gδ(τ)]

ℓ

ℓ!
; GhE(τ) =

∞
∑

ℓ=1

bEℓ
[GLδ (τ)]

ℓ

ℓ!
; Gδ(τ) =

∞
∑

ℓ=1

νℓ
ℓ!
τ ℓ. (3.14d)
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Assuming a Gaussian initial codition, we can relate the Lagrangian and Eulerian generating
functions as:

GLδ (τ) = τ =

∞
∑

ℓ=1

aIℓ [Gδ(τ)]
ℓ. (3.15)

The above expansion is an inverse series of Gδ. Using Eq.(3.14b) in Eq.(3.14d) we arrive at
the following relations [47, 48]:

bE1 (τ) = 1 + bL1 (τ); (3.16a)

bE2 (τ) = 2(1 + aI2)b
L
1 (τ) + bL2 (τ); (3.16b)

bE3 (τ) = 6(aI2 + aI3)b
L
1 (τ) + 3(1 + 2aI2)b

L
2 (τ) + bL3 (τ). (3.16c)

However, we would like to point out that in our derivation we have not assumed a spherical
collapse model at any stage. The an parameters above are related to the νn parameters
defined before an = n!νn which are determined by solving the dynamical equations Eq.(3.2a)-
Eq.(3.2c).

an =

{

1,
17

21
,
341

567
,
55805

130977
, · · ·

}

; aIn =

{

1,−
17

21
,
2815

3969
,−

590725

916839
, · · ·

}

. (3.17)

The coefficients aIn are the coefficients of the inverse series. Taylor expanding GZA
δ and GPZA

δ

and replacing the an coefficients in Eq.(3.16a)-Eq.(3.16c) with the µn coefficients will produce
the resulting bn(τ) parameters for the Zel’dovich (ZA) or post Zel’dovich approximation
(PZA) (see Appendix-B for a detailed discussion). One important point is probably worth
mentioning here. Unlike previous derivations, e.g. [47, 48], the above derivation is directly
derived from of Euler, Continuity and Poisson given in Eq.(3.2a)-Eq.(3.2c).

Thus at this level, all the coefficients that describe the generating function of the so-
called proto-halos defined in Eq.(3.8) can be expressed in terms of the coefficients bL1 and bL2 .
These coefficients can be derived using a halo model based approach [30]:

An important conclusion of this section would thus be that in a non-local bias model the
clustering of halos only depend on the local Lagrangian bias parameters bLℓ and clustering of
density δ and the divergence velocity field θ that are characterized by the vertices νn or µn.
This extends the result presented in ref.[39]. Next we will consider the case of scale-dependent
bias.

4 Scale-Dependent Bias

The models discussed in §3 are not scale-dependent as the parameters bLℓ are independent
of the wavenumbers qi. The formalism of scale-dependent bias was developed in a series of
papers: [11, 49–51]

δh(k) =
∞
∑

n=1

1

n!

∫

d3q1

(2π)3
· · ·

∫

d3qn
(2π)3

cLn(q1, . . . ,qn)δL(q1) · · · δL(qn)δD(k− q1...n);

q1...n ≡ q1 + · · ·+ qn. (4.1)

Here δL is the linear density contrast in a perturbative expansion. In the Fourier domain
the scale-dependent bias is implemented by replacing the scale-independent bLℓ (τ) parameters
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defined in previous section with the following functions cLℓ (k, τ) of wave numbers [52]:

cL1 (q, τi) = bL10(τi) + bL01(τi)q
2 (4.2)

cL2 (q1,q2, τi) = bL20(τi) + bL11(τi)(q
2
1 + q2

2)

+bL02(τi)q
2
1q

2
2 − 2χL10(q1 · q2) + χL01(τi)

[

3(q1 · q2)
2 − q2

1q
2
2

]

(4.3)

An angular averaging of cLn recovers the scale-dependent parameters bLℓ . The functions cL1
and cL2 which depend on the parameters bLij , χ

L
ij can be computed using peak-background

split in [52, 54]. The form of the bias functions is based on rotationally symmetric invariants.
The peaks of the smoothed density fields are defined up to second order in derivatives which
explains the absence of terms with higher powers in k. The Zel’dovich approximation (ZA)
is used to map the Lagrangian positions to Eulerian position. In the real or configuration
space [52]:

δh(x, τi) = bL10(τi)δ(x, τi)− bL01(τi)∆δ(x, τi)

+
1

2!
bL20(τi)[δ(x, τi)]

2 − bL11(τi)δ(x, τi)∆δ(x, τi) +
1

2
bL02(τi)[∆δ(x, τi)]

2

+χL10(τi)∇δ(x, τ) · ∇δ(x, τ) +
1

2!
χL01(τi)

[

3∇i∇jδ − δ
(K)
ij ∆δ

]2
+ · · · (4.4)

In terms of ψ, η defined before [52]:

δh(x, τ) = b10δ(x, τ) − b01∆δ(x, τ) +
1

2!
b20δ

2(x, τ)

+
1

2!
bs2s

2(x, τ) + bψψ(x, τ) + bsts(x, τ) · t(x, τ) + · · · (4.5)

The generating functions of δh and δ are related by the following expression:

Gδh = b10Gδ − b01G∆δ +
1

2!
b20G

2
δ +

1

2!
bs2Gs2

+
1

2
b02[G△δ]

2 − b11GδG△δ + bψGψ + bst Gs·t + · · · (4.6)

Thus the generating function Gδh at second order is determined by Gδ and G△δ. The following
expressions relate the Eulerian bias coefficients bij with their Lagrangian counterparts bLij :

b10 = 1 + bL10; b01 = −R2
v + bL01; b20 = bL20 +

8

21
bL10;

bs2 = −
4

7
bL10; bψ = −

1

2
bL10; bst = −

5

7
bL10; (4.7)

The expressions in Eq.(3.12) gives statistics of δh in terms of the coefficients bs2 , bψ and bst.
In addition to Gδ it also depends on G△δ. Scale dependent bias has also been used in the
context of primordial non-Gaussianity [53] which we have ignored here. However, the results
discussed here can trivially extended to include primordial non-Gaussianity.

5 Cumulants and Cumlant Correlators

In this section we use the results derived in previous sections to compute the higher-order
one-point and two-point statistics of biased tracers. The cumulants and their correlators for
the halos and the underlying dark matter distribution is defined as follows:

S
(h)
N =

〈δNh 〉c

〈δ2h〉
N−1
c

; C(h)
pq =

〈δph1δ
q
h2〉c

〈δh1δh2〉c〈δ
2
h〉

p+q−2
c

; δhi ≡ δ(xi). (5.1)
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A similar expression holds for the underlying dark matter distribution and will be denoted
without the subscript h [16].

ν
(h)
1 = b1; ν

(h)
2 = (b2 + b1ν2); ν

(h)
3 = (b3 + 3b2ν2 + b1ν3). (5.2)

For b1 = 1 and bn = 0 we recover the unbiased result ν
(h)
n = νn. In practice the bn are

computed using the Press-Schechter (PS) or Sheth-Tormen (ST) mass functions or using
theories based on peak statistics. The expressions of bn are given in Eq.(3.12) and Eq.(4.7).

The cumulants S
(h)
n can be expressed in terms of the vertices ν

(h)
n [17, 38]:

S
(h)
3 = 3ν

(h)
2 ; S

(h)
4 = 4ν

(h)
3 + 12[ν

(h)
2 ]2. (5.3)

In the perturbative regime the following relations hold [38, 42]:

S3 =
34

7
+ γ1; S4 =

60712

1323
+

62

3
γ1 +

7

3
γ21 +

2

3
γ2. (5.4)

The terms involving γp = [dp log σ2(R0)/d(logR0)
p] are results of smoothing using top-hat

window of radius R0. We will use the following notation to represent the variance of the
smoothed field σ2(R0) = 〈δ2s〉c and correlation function ξ12 = 〈δs(x1)δs(x2)〉c. The CCs take
the following form:

C
(h)
21 = 2ν

(h)
2 ; C

(h)
31 = 3ν

(h)
3 + 6ν

(h)
2 ; (5.5)

The CCs satisfy a factorization property in the large-separation limit [ξ12(|x1−x2|) < σ2(R0)]:

C
(h)
pq = C

(h)
p1 C

(h)
q1 . Here, σ

2(R0) is the variance of the smoothed density field, and ξ2(|x1 −x2|
represents the two-point correlation function. A tophat smoothing window with a radius R0

is assumed. In the quasi-linear regime with a tophat smoothing window the CCs have the
following expressions [43]:

C21 =
68

21
+
γ1
3
; C31 =

11710

441
+

61

7
γ1 +

2

3
γ31 +

γ2
3
. (5.6)

The cumulant correlators probe squeezed and collapsed configuration of the underlying
multispectra. The related statistics in the Fourier domain are the squeezed bispectrum and
the squeezed and collapsed trispectrum. The lowest order non-trivial C21 is independent of
the contribution from sijs

ij . In a similar manner the squeezed bispectrum do not take any
contribution from sijs

ij in Fourier domain. It is expected that similar results will hold for the
squeezed and collapsed trispectrum, C31 and C22 respectively. In §3 we have shown that all
additional terms vanish and only contributions from ψ need to be included. Taylor expanding
Gψ(τs):

Gψ(τs) =
4

21
+

8

21
τs +

1

42
(8 + 21µ2 − 13ν2)τ

2
s

+
1

126
(21µ3 + 24ν2 − 13ν3) τ

3
s + · · · (5.7)

The expressions for ν
(h)
k defined in Eq.(5.8c) now get modified and depend also on the bias

coefficient bψ = −bL/2 as:

ν
(h)
1 = b1 +

4

21
bψ; (5.8a)

ν
(h)
2 = (b2 + b1ν2) +

8

21
bψ; (5.8b)

ν
(h)
3 = (b3 + 3b2ν2 + b1ν3) +

1

84
(8 + 21µ2 − 13ν2)bψ. (5.8c)

– 9 –



Notice that Gη(τs) takes contribution from both δ and θ vertices thus making the δh statistics
a function of both δ and θ Eq.(5.8a)-Eq.(5.8c). Indeed, Eq.(3.13a)-Eq.(3.13b) provide a
framework for inclusion of arbitrary noise contribution. In case of a Gaussian noise, the
higher-order terms of Eq.(3.13b) will not contribute and only the variance will be affected
through the term bǫ2ǫ

2/2.
For two different populations of tracers h and h′ the CCs defined in Eq.(5.1) can be

generalized to:

C(hh′)
pq =

〈δph1[δh′2]
q〉c

〈δh1δh′2〉c〈δ
2
h1〉

p−1
c 〈[δh′2]2〉

q−1
c

; (5.9)

We have used the following notations δh1 ≡ δh(x1) and δh′2 ≡ δh′(x2), the respective CCs
can be factorized and be expressed in terms of respective CCs i.e. Chh′pq = Chp1C

h′
q1. The CCs

Chp1 and Ch′q1 are constructed from the coefficients of the series expansion of their respective
density contrasts as in Eq.(3.8).

6 Summary and Outlook

In a generic biasing scheme, based on symmetry arguments, many additional terms can
be included. Using a generating function formalism we test which of these terms actually
contribute. In [37] symmetry arguments were used to determine the temporal dependence of
the terms included in Eq.(3.5b). Here, we use the symmetry to determine which terms will
actually contribute. Many other terms can be simplified drastically. We use the results to
compute the higher-order one-point cumulants as well two-point CCs for collapsed objects.

The degeneracies present in the characterization of bias at the level of power spectrum
can only be broken by using higher-order statistics of biased tracers. In this paper we compute
higher-order statistics in terms of the recently introduced invariant quantities. The inherent
symmetries of the dynamic equations predict invariant quantities [35–37] in the perturbative
expansion of bias. Using a generating function approach we use the functional relation of δh
in terms of δ and θ to relate the tree-level vertices of δh with that of δ and θ. We derive
formal relations in the presence of higher-derivative terms. We have used these expressions
to show that certain terms in this expression do not contribute at any given order. The
results from the generating function formalism is used to express the cumulants and CCs of
biased tracers. The squeezed bispectrum as well as the squeezed and collapsed tri-spectra
are related to their counterparts of same order, respectively to C21 and C31, C22. The results
developed here generalize the expressions derived for CCs in ref.[39] assuming a polynomial
bias model. Similar generalizations are possible for squeezed and collapsed multispectra.

classical physics at a fundamental level is deterministic. However, the detailed micro-
scopic physics of galaxy formation is not well understood. A stochastic contribution ǫ is
thus often included in the expression of bias to encode our lack of knowledge that relates
δh with δ and θ. The terms in Eq.(3.5b) correspond to ǫ = 0 (no-noise). The terms in
Eq.(3.13a) depicts the first- and second-order terms in noise in a Taylor expansion of δh in
terms of ǫ. In computing the higher-order statistics of any biased tracers these contribu-
tions should be included. We have considered higher-order terms in ǫ and that represent its
higher-order correlation with δ and θ. The generating function approach is generalized to
take in account presence of such stochastic contributions at an arbitrary order. The generat-
ing function approach simplifies the order-by-order analysis. Assuming a Gaussian stochastic
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noise can further simplify the expression as all terms beyond second-order that characterize
non-Gaussianity vanish.

In recent years the large deviation principle (LDP) has been used to construct the one-
and two-point PDFs of biased tracers [55–57] (also see [58] for related approach based on
steepest descent method). This method is also related to earlier generating function based
approaches [38, 42, 43]. Recent work based on LDP also has attempted to compute the PDF
and bias of collapsed objects., These results were obtained assuming a polynomial biasing
model. Results presented here will help us to go beyond the polynomial model and include
stochastic noise within the LDP formalism (Munshi 2017; in preparation).
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A Symmetries and Generating Function

In this appendix we provide a detailed derivation of of Gs2 = 0. These results are a direct
consequence of the fact that sij is a traceless tensor and the generating functions which en-
code tree-level amplitudes of vertices in the perturbative analysis of Euler-Continuity-Poisson
system satisfies spherical top-hat collapse equations; in a spherically symmetric setup the off-
diagonal terms that are related to departure from spherical symmetry do not contribute. We
start with the definition of sij in Eq.(3.6a) which gives:

sijs
ij =

2

3H2
∇i∇jφ∇i∇jφ−

2

3H2
∇i∇jφ δ

K
ij +

1

9
δKij δ

K,ijδ2. (A.1)

Summation over repeated indices is assumed. Next, we can simplify the first term using
Eq.(2.3d) as:

G∇i∇jφ∇i∇jφ =
1

3
G2
δ (A.2)

Using this expression in Eq.(A.1) we arrive at the desired result. A similar calculation can be
used to prove Gt2 = 0 as well as Gst = 0. These results are valid in the perturbative regime.
Thus, it depends on the assumption that the fluid flow is single stream and irrotational.

Next we consider the terms involving the derivatives of sij e.g. ∇
2[sijs

ij].We note that
∇2[sijs

ij] = 2∇2[sij]s
ij . So, we can write:

∇2[sij ] = ∇i∇jδ −
1

3
δKij∇

2δ (A.3)

Using Eq.(2.3d) as before we can write:

G∇2sijsij = 2Gsij∇2sij = 0. (A.4)

The result G∇2sij∇2sij = 0 can be derived using similar steps. Following similar arguments
we can prove similar identities for the divergence of velocity in case of potential flow. These
terms are not included in our definition of bias.

B Bias and Lagrangian perturbation theory

It is possible to consider the Lagrangian perturbation theory (LPT) to model the underlying
dynamics. The Zel’dovich approximation (ZA) is first order in LPT. We list below the
generating functions at various order [40]:

1 + GZA
δ (τs) =

∞
∑

n=1

µZAn
n!

τns =
(

1−
τs
3

)−3
;

1 + GPZA
δ (τs) =

∞
∑

n=1

µPZAn

n!
τns =

(

1−
τs
3

−
τ2s
21

)−3

. (B.1)
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Here PZA is the post Zel’dovich Approximation. A systematic development of higher or-
der LPT in the context of generating function was developed in [40]. For the Zel’dovich
Approximation (1st order in LPT):

{ai}
ZA =

{2

3
,
10

27
,
5

27
, · · ·

}

; {aIi }
ZA =

{

−
2

3
,
14

27
,−

35

81
, · · ·

}

. (B.2)

The corresponding relation between Lagrangian and Eulerian bias are:

bE2 =
2

3
bL1 + bL2 ; bE3 = −

16

9
bL1 − bL2 + bL3 . (B.3)

For PZA:

{ai}
PZA =

{17

21
,
106

189
,

47

1323
, · · ·

}

; {aIi }
PZA =

{

−
17

3
,
992

1323
,−

20558

27783
, · · ·

}

. (B.4)

The corresponding relations between Lagrangian and Eulerian bias get modified to:

bE2 =
8

21
bL1 + bL2 ; bE3 = −

158

441
bL1 −

13

7
bL2 + bL3 . (B.5)

Eq.(B.3) and Eq.(B.5) are Lagrangian approximations to the exact expression in Eq.(3.16c).
These results can be trivially extended to expressions linking higher-order Lagrangian and
Eulerian bias parameters
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