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Abstract. The consistency relations in large scale structure relate the lower-order correlation
functions with their higher-order counterparts. They are direct outcome of the underlying
symmetries of a dynamical system and can be tested using data from future surveys such
as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of
consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of
an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which
adjusts the SPT predictions to account for the departure from the ideal fluid description on
small scales. We provide detailed results for the 3D density contrast δ as well as the scaled
divergence of velocity θ̄. Assuming a ΛCDM background cosmology, we find the correction
to SPT results becomes important at k & 0.05h/Mpc and that the suppression from EFT
to SPT results that scales as square of the wave number k, can reach 40% of the total at
k ≈ 0.25h/Mpc at z = 0. We have also investigated whether effective field theory corrections
to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the
results to be rather insensitive to these counterterms. In addition, we present the EFT
corrections to the squeezed limit of the bispectrum in redshift space which may be of interest
for tests of theories of modified gravity.
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1 Introduction

After the completion of the Planck1 mission [1], large scale surveys are expected to play a
more dominant role in answering many of the puzzling questions of modern day cosmology.
Several ongoing surveys are already mapping the large scale matter distribution with ever
increasing precision while others are being planned (e.g. BOSS2 [2], WiggleZ3 [3], LSST4,
DES5 [4], EUCLID6 [5]).

Cosmic Microwave Background (CMB) experiments primarily probe the high redshift
Universe where the growth of inhomegeneities are in the linear regime and are relatively easy
to understand. By contrast, the growth of large scale structure at lower redshifts involves
nonlinear physics of gravitational clustering characterized by the coupling of small and large
scale modes. This gravitational clustering is typically studied using a perturbative framework,
known commonly as standard perturbation theory (SPT), and its extensions [6–25] - however,
these results are valid only in the quasilinear regime and tend to break down at smaller
length scales. Renormalized perturbation theory or (RPT) was introduced to improve the
performance of SPT [11, 26], by dividing the nonlinear corrections into (a) a mode-coupling
effect and (b) an appropriate normalization of the propagator. The RPT approach, which
attempts to solve the full non-linear equations for a pressureless ideal fluid as exactly as

1Planck: https://www.cosmos.esa.int/web/planck
2Baryon Oscillator Spectroscopic Survey: http://www.sdss3.org/surveys/boss.php
3WiggleZ Survey : http://wigglez.swin.edu.au/
4The Large Synoptic Survey Telescope : http://https:/www.lsst.org/
5Dark Energy Survey: http://www.darkenergysurvey.org/
6EUCLID: http://www.euclid-ec.org/
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possible, is known to significantly improve the performance of the SPT, but does not address
the effect of backreaction due to ultraviolet (UV) physics.

Most perturbative approaches have limited range of applicability, and in the highly
non-linear regime, sophisticated numerical algorithms, such as GADGET7 [27], exist to evolve
a self-gravitating system. These simulations, however, can be highly expensive for detailed
exploration of the entire cosmological as well as astrophysical parameters. Different phe-
nomenological approaches, such as the halo model prescription [28], are also used regularly
for making quantitative predictions [28]. An alternative treatment – known as the effec-
tive field theory of large scale structure – to reduce the necessity of expensive simulations
while retaining analytic control was introduced recently in [29–32] (also see [23] for a similar
approach).

The effective field theory (EFT) is based on exploitation of the symmetries of a system
to incorporate small-scale effects that are beyond the analytical treatment. The large scale
modes, which can be modelled analytically, are dealt with using standard perturbation theory
(SPT). The EFT provides a self-consistent framework to handle the coupling of large- and
small-scale modes through the inclusion of a stress tensor, thus equivalently forcing us to deal
with an non-ideal fluid. The EFT approach remedies many of the fundamental issues faced
by the SPT. Indeed, SPT is plagued by UV-divergent integrals resulting from a high scale
cut-off that appears in loop level corrections [33]. It also deals with the breaking down of the
assumption of a pressure-less ideal fluid on small scales. In EFT, these divergences are normal-
ized by introducing “counter-terms” that take the form of a non-ideal fluid with the inclusion
of non-zero pressure, viscosity and thermal conductivity terms. These unknown parameters
describing a non-ideal fluid, however, can not be computed within the EFT framework, but
can be estimated using numerical simulations on small scales.

There is an extensive literature by many different authors in this area as it has emerged
as a very active area of research. Our approach is closest to the one described in [30, 34],
with our discussion of the EFT bispectrum largely following the description in [35], where
it was shown to be be accurate up to k ≈ 0.22hMpc−1 for z = 0 (a factor of two better
than achievable with one-loop SPT). Of particular relevance to the study performed in this
paper are results regarding the statistics of velocity in EFT presented in [36], primordial
non-Gaussianity in [37, 38] and on redshift space distortions in [39–41].

Consistency relations encode correlations between large-scale linear modes and small-
scale non-linear modes. The advantage of these relations stems from the fact that they are
valid despite our poor understanding of the non-linear gravitational clustering or the compli-
cated astrophysics of star formation and supernovae feedback. These relations are kinematic
and simply enforce the equivalence principle so that, at leading order where large scale forces
are assumed to be constant, the small structures are transported without distortion by the
large-scale fluctuations. The consistency relations can, therefore, act as an important diag-
nostics for detection any departure from General Relativity [42]. Consistency relations for
the CMB secondaries were investigated in [43, 44], while the consistency conditions of large
scale structure observables, studied in [17, 45–49], were derived recently in the context of
redshift space distortions in [50], and in the presence of primordial non-Gaussianity in [51].
The density-velocity consistency relations were derived in [52].

This article is organized as follows: in Sec. 2 we summarize the effective field theory
formalism, reviewing the results for the density and velocity-divergence bispectra. In Sec. 3

7GADGET: https://www.mpa.mpa-garching.mpg.de/gadget/
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we generalise the discussion to primordial non-Gaussianity, which introduces an extra degree
of freedom into the construction of the effective stress-energy tensor, which encapsulates the
UV physics. This is followed in Sec. 4 by a discussion of the bispectrum in redshift space
where the distorting effect of peculiar velocities along the radial direction must be accounted
for. Sec. 5 presents the key new results of this paper. We begin by elucidating the relationship
between the consistency relations and the angle-averaged squeezed bispectrum, and in turn
the integrated bispectrum. We then compute the squeezed bispectra for each of the previously
described cases, to evaluate the importance of accounting for the impact of UV physics on
each of the observables. Finally, in Sec. 6 we present our conclusions, and proposals for further
applications of this line of investigation.

2 Effective Field Theory of Large Scale Structure

The standard perturbation theory (SPT) framework is given by the non-relativistic limit of
a perfect fluid of pressureless (cold) dark matter in the Newtonian gauge. On large scales
this prescription agrees well with N-body simulations. However, on somewhat smaller scales
more accurate predictions necessitate integrals over convolutions of first order solutions. These
convolutions couple large and small scales, the latter of which are impacted by ultraviolet (UV)
physics which violate the perfect fluid approximation. The effective field theory framework
developed in [7, 29, 30, 32, 39, 53] can be regarded as a renormalisation of the density and
velocity perturbations by introducing counterterms which aggregate the effect of the UV
physics [41]. Equivalently one can regard the effect of the small scale physics as generating
terms like viscosity and stochasticity in an effective stress-energy tensor. The equations of
motion in comoving time τ =

∫
dt/a(t) takes the following form for the density, δ, and velocity

divergence θ ≡ ∇.v:

∂

∂τ
δ + θ = Sα; (2.1)

∂θ

∂τ
+Hθ +

3

2
ΩMH2δ = Sβ + τθ , (2.2)

where the convolutions Sα(k, τ) and Sβ(k, τ) denote

Sα(k, τ) ≡ α[p ? (k− p)] ≡ −
∫
α(p,k− p)θ(p, τ)δ(k− p, τ) , (2.3a)

Sβ(k, τ) ≡ β[p ? (k− p)] ≡ −
∫
β(p,k− p)θ(p, τ)θ(k− p, τ) . (2.3b)

The kernels α(k1,k2) and β(k1,k2) are, in turn, given by:

α(k1,k2) ≡ k12 ·
k1

k2
1

and β(k1,k2) ≡ 1

2
k2

12

k1 · k2

k1k2
; k1···p = k1 + · · ·+ kp. (2.4)

To these one also appends the Poisson equation, relating the density to the gravitational
potential via

4φ =
3

2
H2ΩMδ , (2.5)

where H ≡ ∂ ln a/∂τ , and ΩM is the dark matter abundance, as usual. These equations are
identical, in the case of negligible vorticity, to the SPT equations apart from the presence
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of the divergence of the effective-stress-energy tensor term, τθ, which incorporates the UV
physics. The form of this term may be deduced on symmetry grounds. To second order, where
stochastic terms can be neglected one writes (in the absence of primordial non-Gaussianities
which shall be dealt with in Sec. 3) [35]

τθ = −d24δ − e14(δ2)− e24(s2)− e3∂i(s
ij∂jδ) , (2.6)

where d2 can be thought of as an aggregated term for the speed of sound or viscosity, while
sij ≡ (∂i∂j −4δij/3)Φ is the tidal term, for Φ ≡ 2φ/(3H2ΩM ), with s2 = sijs

ji.

Green’s function solutions.—Equations (2.1) and (2.2) may be solved perturbatively using a
Green’s function approach such that

δ(k, a) = D+(a)δ(1)(k) +

∫ a

0
Gδ(a, a′)

[
Sβ + τθ −H∂a′(a′Sα)

]
da′ , (2.7a)

θ(k, a) = −HfD+(a)δ(1)(k) +

∫ a

0
Gθ(a, a′)

[
∂a′(a

′Sβ + a′τθ)−
3

2
ΩMHSα

]
da′ , (2.7b)

where δ(1)(k) denotes the initial density perturbation, D+ represents the growth factor, while
f ≡ d lnD+/d ln a is dubbed the growth rate. The Green’s functions Gδ and Gθ are given by:

Gδ(a, a′) =
5

2
Θ(a− a′)Ω0H2

0

H
a

{
D−(a′)

D−(a)
− D+(a′)

D+(a)

}
; (2.8a)

Gθ(a, a′) = −HGδ(a, a′). (2.8b)

Here D− represents the decaying modes and Θ the unit step function, and the ‘0’ subscript
is used to denote quantities evaluated at the present time.

Iteratively solving equations (2.7b) allows one to obtain the general solution to arbitrary
order. One may separate the SPT solution (with source τθ set to zero) and write,

δ(k, a) =
∞∑
n=1

[δ(n)(k, a) + δ(n)
c (k, a)] , and θ(k, a) = −Hf

∞∑
n=1

[θ̄(n)(k, a) + θ̄(n)
c (k, a)] ,(2.9)

with δ(n) (δ(n)
c ) and θ̄(n) (θ̄(n)

c ) denoting the SPT (EFT) contributions. Substituting the first
order SPT solution δ(1) into τθ one utilises (2.7b) with the other sources set to zero to obtain
the leading order EFT solution. The EFT solutions at second order are similarly obtained
using the Green’s function method with source given by

(a) τθ only at second order, as obtained using Eq. (2.6) using the first and second order
SPT solutions for δ and θ.

(b) the entire source term of Eq. (2.7b), but with τθ = 0, evaluated using the first order
EFT solution (with the first order SPT solution). Such solutions will be called the ‘αβ’
terms for reasons that will be apparent later.

Einstein-de Sitter (EdS) solutions.—In the Einstein-de Sitter limit, ΩM = 1 (and f = 1), the
time dependence of the SPT terms factorise simply (∝ an for δ(n)) and may be written as

δ(n)(k, a) ≈ Dn
+(a)

∫
d3k1

(2π)3
· · · d

3kn
(2π)3

[δD]nFn(k1, · · · ,kn)δ(1)(k1) · · · δ(1)(kn) ,(2.10a)

θ̄(n)(k, a) ≈ Dn
+(a)

∫
d3k1

(2π)3
· · · d

3kn
(2π)3

[δD]nGn(k1, · · · ,kn)δ(1)(k1) · · · δ(1)(kn) ,(2.10b)
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where [δD]n ≡ (2π)3δD(k − k1···n), and iterative expressions for the kernels Fn and Gn are
given in [6], with explicit formulae for F2 and G2 written

F2(k1,k2) =
5

7
+

1

2

(
k1

k2
+
k2

k1

)(
k1 · k2

k1k2

)
+

2

7

(
k1 · k2

k1k2

)2

, (2.11a)

G2(k1,k2) =
3

7
+

1

2

(
k1

k2
+
k2

k1

)(
k1 · k2

k1k2

)
+

4

7

(
k1 · k2

k1k2

)2

. (2.11b)

Setting a → D+(a) for the first order expressions used in Eq. (2.10) is accurate to within
O(2%) [54].

EFT solutions.—For the effective field theory case, one may similarly express the solutions in
the form

δ(n)
c (k, a) ≈ Dn

+(a)

∫
d3k1

(2π)3
· · · d

3kn
(2π)3

[δD]nF
c
n(k1, · · · ,kn; a)δ(1)(k1) · · · δ(1)(kn) ,

θ̄(n)
c (k, a) ≈ Dn

+(a)

∫
d3k1

(2π)3
· · · d

3kn
(2π)3

[δD]nG
c
n(k1, · · · ,kn; a)δ(1)(k1) · · · δ(1)(kn) ,

(2.12)

noting that the kernels F cn and Gcn have an implicit time dependence inherited from the time
dependence of the source term, τθ. At first order the solution for δc is given by

δ(1)
c (k, a) = −ξ(a)k2δ(1)(k, a) where ξ(a) =

∫
d a′ Gδ(a, a′)d2(a′)

D+(a′)

D+(a)
, (2.13)

while at second order the kernel F c2 is given by the sum of terms F δ2 +F e2 +Fαβ2 as computed
using the recipe given under Eq. (2.9) where

F δ2 (k1,k2) = −ξ(a)Eδ(k1,k2) , (2.14a)

F e2 (k1,k2) = −
3∑
i=1

εi(a)Ei(k1,k2) with εi(a) =

∫
d a′ Gδ(a, a′)ei(a′)

D+(a′)2

D+(a)2
,(2.14b)

Fαβ2 (k1,k2) = −ξ(a)Eαβ(k1,k2) . (2.14c)

To give explicit expressions for the kernels EX requires knowledge of the time dependence of
the coefficients of the stress-energy tensor τθ. As in [35] we assume that d2, ei ∝ D+(a)md

for some specified value of md (with constants of proportionality d̄2, ēi, respectively). The
results of [35] showed robustness to different choices of md. Using the assumption of an EdS
Universe one obtains the following expressions for the kernels,

Eδ = Mdk
2
12F2(k1,k2) where Md ≡

(md + 1)(2md + 7)

(md + 2)(2md + 9)
,

E1(k1,k2) = k2
12 ,

E2(k1,k2) = k2
12

[
(k1 · k2)2

k2
1k

2
− 1

3

]
, (2.15)

E3(k1,k2) = −1

6
k2

12 + k1 · k2 +
1

2

(
k1 · k2

k1k2

)2 [
k2

1 + k2
2

]
,

Eαβ(k1,k2) =
1

2md + 9

[
2β(k1,k2)(k2

1 + k2
2)

+
2md + 7

2(md + 2)

{
α(k1,k2)[k2

2 + (md + 2)k2
1] + (k1 ↔ k2)

} ]
.
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In addition with this choice of time dependence, the coefficients are given by ξ(a) =
2d̄2Dmd+1

+ /[(2md + 7)(md + 1)] and εi(a) = 2ēiD
md+1
+ /[(2md + 9)(md + 2)].

The expressions for θ̄ are similar, with Gc2 = Gδ2 + Ge2 + Gαβ2 , with Gδ2 = (md + 3)F δ2 ,
Ge2 = (md + 3)F e2 , and

Gαβ2 = −ξ(a)
4(md + 3)

2md + 9

[
2β(k1,k2)(k2

1 + k2
2) + (2.16)

3

2(md + 2)(md + 3)

{
α(k1,k2)[k2

2 + (md + 2)k2
1] + (k1 ↔ k2)

} ]
.

Values of the counterterms.—Using the assumption that md = 5/3 (as suggested by self-
similarity in an EdS Universe) the parameter ξ was measured in [35] to give a value of
(1.5± 0.03)h−2Mpc2 at redshift zero, while exact cancellation of divergences in the one loop
SPT bispectra ensure,

ε1
ξ

=
3466

14091
,

ε2
ξ

=
7285

32879
,

ε3
ξ

=
41982

52879
. (2.17)

We shall assume these numerical values hold at other instances of md. Specifically, we will
consider md = 1 and md = (1−n)/(3+n), where n is the slope of the linear power spectrum,
given approximately by −3/2 for large k.

Bispectrum Predictions.—The bispectrum for the density and velocity divergence perturba-
tions is defined as

〈δ(k1)δ(k2)δ(k3)〉 ≡ (2π)3δ3D(k1 + k2 + k3)Bδ(k1, k2, k3) , (2.18)
〈θ̄(k1)θ̄(k2)θ̄(k3)〉 ≡ (2π)3δ3D(k1 + k2 + k3)Bθ̄(k1, k2, k3) . (2.19)

The tree-level SPT bispectra are computed using two first order and one second order per-
turbations, 〈δ(1)δ(1)δ(2) + cyclic〉, to give

BSPT
δ (k1, k2, k3) = 2F2(k1,k2)P (k1)P (k2) + cyclic , (2.20)

BSPT
θ̄ (k1, k2, k3) = 2G2(k1,k2)P (k1)P (k2) + cyclic , (2.21)

where P (k) denotes the tree level power spectrum.
The leading EFT contribution may be evaluated using 〈δ(1)

c δ(1)δ(2) + 5 permutations〉
+〈δ(1)δ(1)δ

(2)
c + 2 cyclic〉, and similarly for the velocity divergence. The resulting density

bispectra are given by (where we suppress explicit dependence on wavenumbers for simplicity)

BEFT
δ = B

δ
(1)
c

+B
δ
(2)
c ,δ

+B
δ
(2)
c ,e

+B
δ
(2)
c ,αβ

; (2.22)

Bδ(1) = −ξ(a)
[
2F2(k1,k2)(k2

1 + k2
2)P (k1)P (k2) + 5 permutations

]
, (2.23)

while the other expressions are given by Eq. (2.20) with the replacement of the kernel F2 by
the appropriate formula in Eq. (2.14) indicated by the subscript. The first term was absent
from the expressions presented in [35].

Similarly, for the velocity divergence the EFT bispectra may be written in the form,

BEFT
θ̄ = B

θ̄
(1)
c

+B
θ̄
(2)
c ,δ

+B
θ̄
(2)
c ,e

+B
θ̄
(2)
c ,αβ

; (2.24)

Bθ̄(1) = −(md + 2)ξ(a)
[
2G2(k1,k2)(k2

1 + k2
2)P (k1)P (k2) + 5 permutations

]
, (2.25)
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with the remaining terms obtained by replacing G2 in Eq. (2.21) with the indicated kernel
for θ̄(2)

c .

Squeezed limit comparisons using tree level SPT.—While comparison of the SPT bispectrum
to the leading order EFT contribution should be done using the 1-loop SPT formula, we
shall in this paper perform our computations using the tree level SPT results of Eqs. (2.20)
and (2.21). The justification for this simplification is that our focus in this paper is on the
suqeezed bispectrum, for which the tree level prediction agrees to O(5%) with the one-loop
result out to k ≈ 0.1h/Mpc and to within O(10%) in the range k ∈ [0.1, 0.2]h/Mpc [55] at
redshift zero. In [55] it was also conjectured that discrepancies between the SPT predictions
and measurements from simulations is most likely due to non-perfect fluid terms which are
the primary focus of this paper.

3 Primordial non-Gaussianity in EFT

The Planck surveyor has put very tight constraint on primordial non-Gaussianity [1]. How-
ever, future CMB missions may not be able to significantly lower the bound on primordial
non-Gaussianity. On the other hand, galaxy redshift surveys are currently entering a new
era in terms of survey volume, number of galaxies observed, as well as the range of redshift
probed. This will allow very high signal-to-noise for the detection of higher-order statistics
[56], and also lead to further tightening of the constraints on primordial non-Gaussianity or,
indeed, possible detection.

Our discussion of the SPT and EFT solutions for the density and velocity divergence
perturbations in Sec. 2 was implicitly predicated on the assumption of Gaussian initial con-
ditions. In the non-Gaussian case, a non-zero primordial bispectrum of the gravitational
potential, Bφ allows for a further degree of freedom with which to construct the effective
stress-energy tensor. More particularly, the potential, φ, is expanded about a Gaussian field
φg, such that for k 6= 0 [37]

φ(k) = φg(k) + fNL

∫
d3p

(2π)3
KNL(p,k− p) [φg(p)φg(k− p)] , (3.1)

where fNL labels the amplitude of the bispectrum of the form,

Bφ(k1, k2, k3) = 2fNLKNL(k1,k2)Pφ(k1)Pφ(k2) + cyclic. (3.2)

Noting the relation between the gravitational potential and the density fluctuation, δ =
M(k, a)φ, where M(k, a) = 2k2/(3H2ΩM ), as in Eq. (2.5), the contribution to the total
matter bispectrum is given by

Bδ(k1, k2, k3) ⊃ BSPT
PNG(k1, k2, k3) ≡M(k1, a)M(k2, a)M(k3, a)Bφ(k1, k2, k3) . (3.3)

where we suppress the redshift dependence in our notation for the bispectrum.
In the squeezed limit, scalar contributions from KNL may be expressed in the form

KNL(k1,k2)
k3�k1,k2−−−−−−→

Bφ(k1, k2, k3)

4fNLPφ(k1)Pφ(k2)
≈ a0

(
k3

k

)∆

, (3.4)

for some constant a0 and scale factor ∆. This in turn dictates that the long mode contribution
to Eq. (3.1) can be written fNLψ(k), where ψ(k) = (k/µ)∆φg(k) for some arbitrary scale8 µ.
This contribution modulates the short wavelength contribution.

8For simplicity, in this paper we choose µ = 1h/Mpc.
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For the purposes of this paper, we consider the local, equilateral and quasi-single-field
models of inflation for which the scaling dimension ∆ is given by {0, 2, 1}, respectively, and
for which the bispectra are given by

Bloc
φ (k1,k2,k3) = 2f loc

NL (Pφ(k1)Pφ(k2) + cyclic) , (3.5a)

Beq
φ (k1,k2,k3) = 162f eq

NLA
2
φ

1

k1k2k3K3
, (3.5b)

Bqsf
φ (k1,k2,k3) = 18

√
3fqsf

NLA
2
φ

1

k1k2k3K3

Nν(8κ)√
κNν(8/27)

, (3.5c)

where, we have defined K = k1 + k2 + k3 and κ = k1k2k3/K
3, and expressed the power

spectrum of the gravitational potential in the form Pφ(k) = Aφ/k
3(k/ks)

ns−1, where ks is a
pivot scale and ns represents the scalar tilt. Nν denotes the Neumann function of order ν,
which is taken to be ν = 1/2 for definiteness, though the index ν can take a wider range of
allowed values.

EFT contributions.—The long mode modulation of the gravitational potential gives the extra
contributions to the effective stress energy tensor given in Eq. (2.6) [37],

τθ ⊃ −fNL
(
g(4Ψ− ∂i(δ∂iΨ)) + g14(Ψδ) + g2∂i∂j(Ψs

ij)
)
, (3.6)

for coefficients g, g1, g2 and where Ψ(x) is given by ψ(q(x)) at the Lagrangian position, q(x).
This results in the following contributions to the density bispectrum,

BEFT
PNG = BSPT

PNG − fNL

(
B
g(1)
PNG +B

g(2)
PNG +Bg1

PNG +Bg2
PNG +Bαβ

PNG

)
; (3.7)

B
g(1)
PNG = γ(a)(k2

1 + k2
2 + k2

3)BSPT
PNG ,

B
g(2)
PNG = γ(a)

[
mg(2mg + 5)

(mg + 1)(2mg + 7)

](
k2

12

k1.k2

k2
2

− k12.k1

)
P1ψ(k1)P (k2) + 5 permutations ,

Bg1
PNG = γ1(a)k2

12P1ψ(k1)P (k2) + 5 permutations ,

Bg2
PNG = γ2(a)

[(k12.k2)2

k2
2

− k2
12

3

]
P1ψ(k1)P (k2) + 5 permutations ,

Bαβ
PNG = 4γ(a)

[ 4

2mg + 7
β(k1,k2) +

2mg + 5

(mg + 1)(2mg + 7)
((mg + 1)α(k1,k2) + α(k2,k1)

]
k2

1P1ψ(k1)P (k2) + 5 permutations ,

where P1ψ(k) ≡ (k/µ)∆P (k)/M(k). Here we have assumed that g(a) ∝ D+(a)mg , and have
solved in the limit of an exact EdS Universe – extrapolating the result by the replacement
a→ D+(a). In addition the time dependent factors are given by γ(a) = −

∫
da′Gδ(a, a′)

g(a′)D+(a′)/D+(a), and similarly for γi(a) (with g replaced by gi in the integrand).

4 Redshift Space Distortions

Next we consider the case of galaxy bispectrum in redshift space [57–62]. An extra compli-
cation arises when the redshift space effects are accounted for [63], with the galaxy survey
measuring the redshift corresponding to both the Hubble flow and the peculiar velocity, v
along the line of sight, x̂‖. The peculiar velocities result in a displaced radial position

s = x +
v.x̂‖

aH
x̂‖ , (4.1)
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which, in turn, distorts the measured density field. The relation between the redshift space
matter overdensity, δs, and the real space δ, was inferred by Scoccimarro [64] by noting that
the mapping must conserve mass, such that

δs(k) = δ(k) +

∫
d3xe−ik.x

[
exp

(
−
i(k.x̂‖)(v.x̂‖)

H

)]
[1 + δ(k)] . (4.2)

To generalise this expression to galaxies from matter, one must also account for the biasing
of tracers. There is a rich literature of estimation from galaxy survey [65–71]. While we will
primarily be interested in the squeezed limit and correction from EFT counter-terms, we first
shall recapitulate the standard perturbation theory expressions presented in those works. The
expressions presented here will be valid in the distant observer approximation. However, we
note that future surveys will probe a considerable fraction of the sky. A 3D approach has
been developed which uses spherical-Bessel transform, and has been used recently to compute
the redshift power spectrum [72–74].

The effect of redshift-space distortions (RSD) is to mix peculiar velocity statistics with
the statistics of the density contrast. Interpretation and analysis of results from spectroscopic
surveys therefore depends on our ability to model such complications. We will denote the
redshift-space density contrast of halos as δh,s, which – similar to their real-space counterparts
– can be expressed in terms of redshift-space kernels Zn(k1, · · · ,kn) and the bias parameters
bk (c.f. Eq. (2.10)):

δh,s(k, τ) =

∞∑
n=1

Dn
+(τ)

∫
d3k1

(2π)3
· · ·
∫

d3kn
(2π)3

[δD]nZn(k1, · · · ,kn) δ(1)(k1) · · · δ(1)(kn). (4.3)

The lower order kernels Z1(k1) and Z2(k1,k2) in redshift-space are given by the following
expressions [75]:

Z1(ki) ≡ (b1 + fµ2
i ) (4.4a)

Z2(k1,k2) ≡ b1
[
F2(k1,k2) +

1

2
fµk

(
µ1

k1
+
µ2

k2

)]
+ fµ2G2(k1,k2)

+
1

2
fµkµ1µ2

(
µ1

k1
+
µ2

k2

)
+
b2
2

+
bs2

2
S2(k1,k2) , (4.4b)

where, here and throughout, we use the expression for the direction cosines:

µ = x̂‖ · k̂; µi = x̂‖ · k̂i , (4.5)

with the comoving separation separated into components that are parallel and perpendicular
to the line of sight x = x‖ + x⊥. The direction cosines are related by

k = k1 + k2; µk ≡ (µ1k1 + µ2k2). (4.6)

The kernel Z2(k1,k2) defined in Eq.(4.4b) depends on both F2(k1,k2) and G2(k1,k2) which
implies that the squeezed limit of redshift space bispectrum will depend on the squeezed
limits of δ and θ bisepctrum [42]. To relate the halo density contrast δh and the underlying
contrast δ we use a deterministic bias: δh =

∑
k bkδ

k/k!, noting that the results can be simply
extended to include scale-dependent bias, and other complications.
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For these computations we have utilised a more general form of the symmetrized second
order kernels F2(k1,k2) and G2(k1,k2) [42]:

F2(k1,k2) =
1

2
(1 + ε) +

1

2
µ12

(
k1

k2
+
k2

k1

)
+

1

2
(1− ε)µ2

12; µ12 = k̂1 · k̂2. (4.7)

where the parameter, ε, takes the value 3/7 for an Einstein de-Sitter Universe. The kernel
G2(k1,k2) has similar functional form; to avoid confusion we will use the parameter ε′ with
ε′ = −1/7 relevant for the SPT kernel. This parametrisation is useful as similar calculations
may be performed using e.g. first order Lagrangian Perturbation Theory (LPT), also known
as the Zel’dovich Approximation (ZA; [76, 77]), with the parameter in this case taking the
value ε = 0.

RSD power spectrum and bispectrum.—In redshift-space the halo power spectrum takes the
form [6]

〈δh,s(k1)δh,s(k2)〉 ≡ (2π)3δ3D(k1 + k2)Ph,s(k1); (4.8)
Ph,s(k) = b21(1 + b−1

1 fµ2
k)

2 P(k). (4.9)

Similarly the redshift-space halo bispectrum, Bh,s, is defined via [75],

〈δh,s(k1)δh,s(k2)δh,s(k3)〉c ≡ (2π)3δ3D(k1 + k2 + k3)Bh,s(k1,k2,k3); (4.10a)
Bh,s(k1,k2,k3) = DFoG[2P (k1)Z1(k1)P (k2)Z1(k2)Z2(k1,k2) + cyclic]. (4.10b)
DFoG(k1, k2, k3, σFoG[z]) = (1 + [k2

1µ
2
1 + k2

2µ
2
2 + k2

3µ
2
3]2σ2

FoG[z]/2)2. (4.10c)

At small scales the Fingers-of-God (FoG) effect can dominate clustering in redshift space.
The FoG effect arises as a result of random peculiar velocities of galaxies within virialised
collapsed objects. The effect of peculiar velocity is an incoherent contribution and results in
a suppression of the clustering amplitude at high k [63]. This is distinct from the requirement
to resum large-scale random motions which are not fully accounted for within the standard
perturbation theory framework. The effect of these bulk flows (once resummed) is to dampen
the effect of acoustic oscillations. Within the EFT framework, the FoG effect is accounted
for by the counterterms, while the large-scale bulk flow can be modelled by re-writing the
SPT expressions in the Lagrangian perturbation theory [7, 13, 31, 41, 78]. Nevertheless, fol-
lowing the standard nomenclature in the literature we denote the multiplicative factor, which
accounts for the large-scale un-resummed bulk velocities, as the Fingers-of-God contribution
in Eq.(4.10b)-Eq.(4.10c).

SPT contributions.—Following [55] we will group the various configurations to the bispectrum
in Eq.(4.10a) as follows:

B = BSQ1 +BSQ2 +BNLB +BFoG; (4.11a)

BSQ1 = b31
∑

βi−1BSQ1,i; BSQ2 = b31β
∑

βi−1BSQ2,i; β = f/b1; (4.11b)

BNLB = b21b2β
∑

βi−1BSQ2,i. (4.11c)

BFoG = b41β[BFoG1 + β(BFoG2 +BFoG3) + β2(BFoG4 +BFoG5) + β3BFoG6 ]. (4.11d)

The first contributions BSQ1 listed above, represents linear squashing and depends on the
kernel F2(k1,k2). The linear Kaiser effect [79] represents the coherent distortion due to the
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peculiar velocity along the line of sight. The linear growth rate controls its magnitude. At
the level of power spectrum it leads to an enhancement of the power spectrum amplitude at
small k. The second order squashing terms BSQ2 depends on the kernel G2(k1,k2). Nonlinear
biasing is represented by the BNLB terms and depend on the second order biasing coefficient
b2. Finally BFOG represents the additive FoG effect which needs to be included in addition to
the multiplicative factor DFOG introduced above. The real-space expressions can be recovered
by taking the limit f → 0 in Eq.(4.4a)-Eq.(4.4b).

More explicitly – from [55] – the “linear squashing" terms (SQ1) are given by

BSQ11(k1,k2,k3) = 2[F2(k1,k2)P(k1)P(k2) + cyclic] , (4.12a)
BSQ12(k1,k2,k3) = 2[(µ2

1 + µ2
2)F2(k1,k2)P(k1)P(k2) + cyclic] , (4.12b)

BSQ13(k1,k2,k3) = 2[µ2
1µ

2
2F2(k1,k2)P(k1)P(k2) + cyclic] , (4.12c)

and the “second order squashing" terms (SQ2) are written

BSQ21 = 2[µ2G2(k1,k2)P(k1)P(k2) + cyclic] , (4.13a)
BSQ22 = 2[µ2(µ2

1 + µ2
2)G2(k1,k2)P(k1)P(k2) + cyclic] , (4.13b)

BSQ23 = 2[µ2µ2
1µ

2
2G2(k1,k2)P(k1)P(k2) + cyclic] . (4.13c)

The contributions corresponding to the “non-linear bias” (NLB) terms and “Fingers-of
God" (FoG) terms are independent of kernels F2(k1,k2) and G2(k1,k2), so do not depend
on ε or ε′. These contributions do not receive corrections (at leading order) from EFT. We
refer the reader to [55] for full expressions of BNLBi (i ∈ [1, 3]) and BFOGi (i ∈ [1, 6]).

EFT contributions.—The corrections to the SPT redshift space distortion expressions due to
the UV physics encapsulated within the EFT framework at leading order may be inferred from
Sec. 2, via the replacement of F2 and G2 by F c2 and Gc2, respectively within the expressions
for SQ1 and SQ2.

The bispectrum predicted by modified gravity theories in general can be very different
from the standard ΛCDM predictions which we have considered here [80–84]. Using simu-
lations of MG theories, the EFT parameters can be estimated which can be used to obtain
results similar to what is presented in this paper.

5 Squeezed Limits, Consistency Relations & Position Dependent Power
Spectra

5.1 Consistency Relations and the Position Dependent Power Spectrum

Consistency relations connect the correlations between different orders in the squeezed limit
[85]. Equal-time relations vanish in the soft limit for a uniform gravitational field as (1) the
equivalence principle ensures that the effect of the zero mode and first spatial gradient of the
long wavelength mode can be locally eliminated, and (2) the short-scale modes are uniformly
displaced. As emphasised in [17, 86] the relations will not vanish for a non-uniform gravi-
tational field, or in the presence of a non-Gaussian initial field. [17] derived the consistency
relation for the n+ 1-point function which is valid in the mildly non-linear regime,

〈δ(q)δ(k1) · · · δ(kn)〉avq→0 = P (q)
[
1−

n∑
i=1

1

3

∂

∂ ln ki
+

13

21

∂

∂ lnD+(a)

]
〈δ(k1) · · · δ(kn)〉 , (5.1)
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where the superscript “av” indicates an averaging over the angle between the long and short
wavelength modes. Going beyond the mildly non-linear regime necessitates either a phe-
nomenological model, such as the halo model [28], to probe non-perturbative scales, a fitting
formula approach (e.g. [87]), or the use of frameworks such as the effective field theory of
large scale structure investigated in this paper. The last term in the consistency relation is
only valid in the quasilinear regime which motivates going beyond the quasilinear regime -
which also motivates the use of EFT to derive consistency relations that are valid beyond the
perturbative regime. The consistency relations or equivalently the response functions have
also been checked using simulations [88, 89] The form of these expressions in redshift space
was investigated in [50] who derived the extension of the relation to account for the velocity
component along the radial direction, where they were studied at leading order SPT, and
using the non-perturbative approximation to investigate the non-linear regime (but only in
the one-dimensional case). As a probe of non-uniformity of the gravitational field, consis-
tency relations have been suggested as a testbed for theories of modified gravity [46]. The
presence of primordial non-Gaussianity also invalidates the standard formulae for the consis-
tency relations due to the introduction of a correlation between the long and short wavelength
modes.

Position Dependent Power Spectrum and Integrated Bispectrum.—The integrated bispec-
trum is defined by first dividing a survey into Ns subvolumes centred at rL; within each
subvolume one computes the power spectrum and average overdensity, denoted P (k, rL) and
δ̄L, respectively. The appropriate three point function is given by the expectation value of
the product of these quantities. However, due to non-isotropy of the window functions defin-
ing the subvolumes, the position dependent power spectrum, P (k, rL), may depend on the
orientation k̂. Thus one averages over orientations to give the expression for the integrated
bispectrum,

iB(k) ≡
∫
d2k̂

4π
〈P (k, rL)δ̄(rL)〉Ns , (5.2)

where the subscript Ns is used to emphasise that the expectation is taken over all subvolumes.
The integrated bispectrum is related to the linear response function, d lnP (k)/dδ̄, as can be
demonstrated by taking the Taylor expansion of P (k, rL) in powers of δ̄(rL), to establish that
at leading order [90]

iB(k) ≈ d lnP (k)

dδ̄

∣∣∣
δ̄=0

P (k)σ2
L where σ2

L ≡ 〈δ̄(rL)2〉Ns . (5.3)

The explicit relationship between the integrated bispectrum and the bispectrum is given by
[90]

iB(k) =
1

V 2
s

∫
d2k̂

4π

∫
d3qa
(2π)3

∫
d3qb
(2π)3

[
B(k− qa,−k + qa + qb,−qb)

×WL(qa)WL(qb)WL(−qa − qb)
]
, (5.4)

where the window functions, WL, largely constrain the qi integrals to within the subvolumes
(of volume Vs). For k larger than the subvolume scale ∼ 1/V

1/3
s the integrals are, therefore,

dominated by contributions from squeezed bispectrum configurations, with qa, qb � k. Thus,
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Figure 1. (Left panel) Squeezed matter bispectrum Bδ(k,−k,−qb) for qb ≡ k3 = k/10, for the
both SPT (red, solid) and EFT (blue, dashed). (Right panel) Ratio of the EFT and SPT squeezed
bispectra. Corrections to the usual consistency relation become important for k & 0.05 h/Mpc [see
Eq.(5.10)-Eq.(5.10) for analytical expressions.]

in this paper we will ignore the exact form of the window functions and focus instead on the
(computationally simpler) angle-averaged squeezed bispectrum given by (noting that k3 ≡ qb)

Bsq(k, k3)
qa,qb�k≡

∫
d2k̂

4π

∫
d2q̂a
4π

∫
d2q̂b
4π

B(k− qa,−k + qa + qb,−qb) . (5.5)

Thus, by comparison to Eq. (5.1) it is apparent that the angle-averaged squeezed bispectrum
studied in this paper is equivalent to probing the consistency relations and can be used as a
proxy for the integrated bispectrum.

5.2 Squeezed limit of the EFT density bispectrum

5.2.1 General (3D) case

In Sec. 2 we described the effective field theory of large scale structure and its particular
application for the computation of the density and velocity divergence bispectra. Here we
largely follow the description in [55, 90] to compute the squeezed limit of the expressions
described for the density.

Parametrization of the squeezed limit.—We employ the following parametrization for the
bispectrum to analyse its squeezed limit:

k1 = k− qa; k2 = −k + qa + qb; k3 = −qb , (5.6)

and take the limit qa, qb → 0. We denote the cosine of angle between k and qa (qb) as µak
(µbk), and that between qa and qb as µab. Expanding the wavenumbers in a Taylor series
about k, and keeping only the leading powers of qa/k and qb/k, gives

k1 = k
(

1− µak
qa
k

)
, k2 = k

(
1− µak

qa
k
− µbk

qb
k

)
, k3 = qb . (5.7)
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Figure 2. Two different approximations for md are compared for the scaling dependence of the
counterterms. The different values of md correspond to those typically considered in the literature,
namely md = (1− n)/(n+ 3) and md = 1. The first value corresponds to EdS Universe and for
n = −3/2 can approximate ΛCDM, while most of our numerical results have been evaluated using
md = 1 which corresponds to the time-dependence of the 1-loop terms.

The power spectra are similarly expanded in the form:

P (k1) = P (k)

[
1− qaµak

k

d lnP (k)

d ln k

]
,

P (k2) = P (k)

[
1− 1

k
(qaµak + qbµbk)

d lnP (k)

d ln k

]
, P (k3) = P (qb) . (5.8)

To simplify notation we shall, in addition, assume a locally power-law power spectrum with
P (k) ∝ kn throughout.

Taking the squeezed limit of the density bispectrum.—Taking the limit qa, qb → 0, one finds
that the results retain a dependency on the angle µbk. We will take the angle-averaged value
of this quantity, such that, for example, 〈µbk〉 = 0, and 〈µ2

bk〉 = 1/3. The formulae for the SPT
and EFT-only contributions to the density bispectrum are given in Eq. (2.20) and Eq. (2.22),
respectively. The SPT part of the bispectrum BSPT

δ has the following contribution:

lim
qa,qb→0

BSPT
δ (k− qa,−k + qa + qb,−qb) (5.9)

sq
≈

[
13

7
+

8

7

(
k · qb
kqb

)
−
(
k · qb
kqb

)2 d lnP (k)

d ln k

]
P (k)P (k3) =

[
47

21
− n

3

]
P (k)P (k3) .

The squeezed limit for the EFT contributions may be evaluated similarly, resulting in (where

– 14 –



Gravity Induced Non-Gaussianity in 3D - δ

0.01 0.05 0.20

1e
+

07
5e

+
07

2e
+

08
1e

+
09

restricted_kvals

S
qu

ee
ze

d 
B

is
pe

ct
ra

SPT
EFT (total)
e terms
αβ terms
δc

(1) contribs
δc

(2) contribs

k [h/Mpc]

S
qu

ee
ze

d 
B

is
pe

ct
ra

0.01 0.05 0.20

0.
4

0.
6

0.
8

1.
0

1.
2

restricted_kvals

R
at

io
 E

F
T

/S
P

T

EFT (total)
e terms
αβ terms
δc

(1) contribs
δc

(2) contribs

k [h/Mpc]

R
at

io
 E

F
T

/S
P

T

Figure 3. (Left panel) Contributions to the squeezed matter bispectrum Bδ(k,−k,−qb) from the
various terms in Eq. (5.10) are depicted. (Right panel) Ratio of various contributions to EFT and
the SPT are shown. The computation of the squeezed bispectrum is peformed using the same set up
as in Fig.1

we recall BEFT
δ = B

δ
(1)
c

+B
δ
(2)
c ,δ

+B
δ
(2)
c ,e

+B
δ
(2)
c ,αβ

)

B
δ
(1)
c

sq
≈ −ξ

[33− 7n

21

]
k2P (k)P (k3) , (5.10a)

B
δ
(2)
c ,δ

sq
≈ −ξMd

[61− 7n

21

]
k2P (k)P (k3) , (5.10b)

B
δ
(2)
c ,e

sq
≈ −ξMd

[
4
ε1
ξ

]
k2P (k)P (k3) (5.10c)

B
δ
(2)
c ,αβ

sq
≈ −ξ

4
[
(87 + 66md + 12m2

d)− (11 + 4md)n
]

3(2 +md)(9 + 2md)
k2P (k)P (k3) . (5.10d)

That each of the contributions appears as a coefficient times k2P (k)P (k3) is typical of the
EFT terms, and may have been inferred by the form of the effective stress-energy tensor, τθ,
in Eq. (2.6).

In Fig. 1 we plot the results for the squeezed limits of the SPT (red, solid) and total EFT
(blue, dashed) density bispectra utilising the coefficients given in Eq. (2.17), and choosing
the scaling coefficient as md = 1. We assume a factor of 10 ratio between the long and short
modes. It is clear that EFT contributions become important to the squeezed limit already
at k ≈ 0.05h/Mpc. We find that the k-dependent correction can contribute up to 40% of
the total estimate at k = 0.25hMpc−1. This is in rough agreement with previous findings
where a factor of two improvement was reported when EFT corrections are included [35]. To
demonstrate that our results are robust to the choice of scaling parameter, we have plotted
in Fig. 2 a comparison to the results obtained with md = (1 − n)/(3 + n), as suggested by
a self-similar solution within an EdS Universe. Furthermore, in Fig. 3 we plot the individual
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Figure 4. As with Fig. 1 but restricted to 2D [ see Eq.(5.11a)-Eq.(5.11b) ]. The parameters used for
the 2D calculation are same as those used for 3D.

contributions from the various terms in Eq. (5.10). It is apparent that the so-called ‘αβ’
terms, originating from the cross-correlation between the SPT δ(n) and counter-terms δ(n)

c ,
are the dominant contributors to the EFT bispectrum.

5.2.2 Projected or 2D surveys

Before the advent of redshift surveys, initial studies of galaxy clustering were performed
using projected (or 2D) galaxy surveys. Some of the earliest results in this directions were
obtained using the Lick Catalogue [91]. One of the most well known 2D galaxy surveys the
APM survey contained 1.3 × 106 galaxies and allowed the first clear studies of higher-order
correlation functions [92]. Indeed while redshift surveys allow one to probe the clustering
in 3D, even the current generation of 3D surveys do not contain a much larger number of
galaxies, though the situation is steadily improving. The main limitations of 2D surveys
comes from mixing of 3D modes due to projection which are at a different stages of non-
linearities. Indeed many deprojection algorithms have also been suggested [93]. The redshift
surveys of course in contrast suffer from mixing of density and velocity field characteristics
(see discussion in §4).

In order to compute the squeezed limits in the 2D case one utilises the same expressions
as for the 3D case but adjusts the average of the cosine angle to 〈µ2

bk〉 = 1/2. The SPT and
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Figure 5. (Left panel) Squeezed velocity divergence bispectrum Bθ̄(k,−k,−qb) for qb ≡ k3 = k/10,
for the both SPT (red, solid) and EFT (blue, dashed). (Right panel) Ratio of the EFT and SPT
squeezed bispectra. The expressions for various contributions are presented in Eq.(5.12)-Eq.(5.13).

EFT (c.f. Eq. (2.22)) squeezed limits are given by:

BSPT
2D

sq
≈
[

17

7
− n

2

]
P (k)P (k3) , (5.11a)

B
δ
(1)
c

sq
≈ −ξ 20− 7n

14
k2P (k)P (k3) ,

B
δ
(2)
c ,δ

sq
≈ −ξMd

48− 7n

14
k2P (k)P (k3) ,

B
δ
(2)
c ,e

sq
≈ −ξMd

[
4
ε1
ξ

+
2

3

ε2
ξ

+
1

3

ε3
ξ

]
k2P (k)P (k3) ,

B
δ
(2)
c ,αβ

sq
≈ −ξ

2
[
(56 + 44md + 8m2

d)− (11 + 4md)n
]

(2 +md)(9 + 2md)
k2P (k)P (k3) .

In contrast to the 3D case the ε2 and ε3 terms do not vanish, suggesting that 2D surveys
may be useful to break degeneracies between the EFT contributions. We have also used the
Limber approximation P (k) ≈ P (k⊥) as k = k‖ + k⊥ with k‖ � k⊥. The SPT and (total)
EFT contributions are plotted in Fig. 4. While the results above are derived for projected
galaxy surveys, the formulae are equally valid for, say, projected weak lensing surveys with
an appropriate choice for the selection functions.

5.3 Squeezed limit of the EFT velocity divergence bispectrum

Extension of the results for the squeezed limit of the density bispectrum given in Sec. 5.2 to
the velocity divergence may be easily inferred using the results of Sec. 2. In particular, the
SPT contribution of Eq. (2.21) gives

BSPT
θ̄

sq
≈
[

31

21
− n

3

]
P (k)P (k3) , (5.12)
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Figure 6. (Left panel) Squeezed bispectra Bδ(k,−k,−qb) for qb ≡ k3 = k/10 for SPT (solid)
and EFT (dashed). The cases of zero primordial non-Gaussianity fNL = 0 is plotted in orange,
while the local, equilateral and quasi-single field bispectra (added to the respective SPT or EFT
gravitational bispectrum) with fNL = 10 are plotted in blue, black and magenta, respectively. The
models are defined in Eq.(3.5a)-Eq.(3.5c). We have taken the following parameter values mg=1 and
γ = γi = 1. It is clear that the EFT corrections to the inflationary bispectrum contribution are
negligible compared to the effect on the gravitational bispectrum. The expressions from various terms
are listed in Eq.(5.14). (Right panel) Ratio of the various bispectra shown in the left panel to the
SPT-only contribution.

while the EFT-only contributions given in Eq. (2.24) result in the squeezed limits

B
θ̄
(1)
c

sq
≈ −ξ(2 +md)

[17− 7n

21

]
k2P (k)P (k3) , (5.13a)

B
θ̄
(2)
c ,δ

sq
≈ −ξ(3 +md)Md

[61− 7n

21

]
k2P (k)P (k3) , (5.13b)

B
θ̄
(2)
c ,e

sq
≈ −ξ(3 +md)Md

[
4
ε1
ξ

]
k2P (k)P (k3) (5.13c)

B
θ̄
(2)
c ,αβ

sq
≈ −ξ

4
[
(27 + 8md + 2m2

d)− (15 + 10md + 2m2
d)n
]

3(2 +md)(9 + 2md)
k2P (k)P (k3) . (5.13d)

Using the same choice of parameters as for Fig. 1, we plot, in Fig. 5, the SPT and EFT
predictions for the squeezed limit of the velocity divergence bispectrum. Again it is apparent
that EFT contributions can be significant for k & 0.05h/Mpc. This is significant in that
divergence of the peculiar velocity, θ, is known to be an important probe of ΩM [94] and thus
of theories of modified gravity.

5.4 Squeezed limit of the EFT bispectra of Primordial Non-Gaussianity

In Sec. 3 we described how primordial non-Gaussianity (PNG) may be incorporated into the
EFT framework. Our prediction for the additional contributions to the bispectrum were listed
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in Eq. (3.7), with the bispectra for the particular primordial models (local, equilateral and
quasi-single field) being considered for this paper listed in Eq. (3.5). The squeezed limits of
the EFT-only contributions are then given (where we recall our assumption that mg is the
scaling dimension for all of the EFT counterterms for PNG) in the angle-averaged case by

B
g(1)
PNG

sq
≈ 2γ(a)k2BSPT

PNG(k, k, k3) , (5.14a)

B
g(2)
PNG

sq
≈ γ(a)

mg(5 + 2mg)

3(1 +mg)(7 + 2mg)
(7 + n) k2P (k)P (k3) , (5.14b)

Bg1
PNG

sq
≈ 2γ1(a)k2P (k)P (k3) , (5.14c)

Bg2
PNG

sq
≈ −4

3
γ2(a)k2P (k)2 , (5.14d)

Bαβ
PNG

sq
≈ 4

3(1 +mg)(7 + 2mg)

(
33 + 42mg + 12m2

g − (7 + 4mg)n
)
P (k)P (k3) .(5.14e)

In Fig.-6 (Left panel) we show the squeezed bispectra Bδ(k,−k,−qb) for qb ≡ k3 = k/10 for
SPT (solid) and EFT (dashed) for the local, equilateral and quasi-single field models. The
cases of zero primordial non-Gaussianity are plotted in orange, while the local, equilateral and
quasi-single field bispectra (added to the respective SPT or EFT gravitational bispectrum)
with fNL = 10 are plotted in blue, black and magenta, respectively. We have chosen for sim-
plicity that γ, γ1, γ2 take values of 1h/Mpc and mg takes a value of unity. However, it is clear
that the EFT corrections to the inflationary bispectrum contribution are negligible compared
to the effect on the gravitational bispectrum, so the choices are relatively unimportant. This
agrees with the results of [37, 38]. The ratio of the various bispectra – individually shown
in the left panel – to the SPT-only contribution is plotted in the right panel, emphasising
that the key distinguishing region for primordial non-Gaussianity occurs on large scales; this
is most significant for the local model (scaling dimension ∆ = 2), with the quasi-single field
model showing mild uplift (∆ = 1), while distinguishing the equilateral model (∆ = 0) from
the gravitationally induced non-Gaussianity appears difficult. These results, which demon-
strate that EFT corrections to the primordial non-Gaussian bispectra are negligible, while
the measurement of PNG using large scale structure requires large scale observations, are
consistent with results in the literature [38, 95].

5.5 Squeezed limit of the RSD bispectrum

In Sec. 4 we recapitulated a discussion of the redshift-space distortion bispectrum in SPT
from [55] and demonstrated the extension to the effective field theory framework. In this
section we compute the squeezed limit of the various contributions to the bispectrum.

Parametrization of the squeezed limit.—As the distortion occurs along the radial direction,
additional angular dependencies become important, as listed in Eq. (4.5). One can express
the angular variables µi ≡ k̂i.x̂‖ in terms of µk ≡ k̂.x̂‖ and the cosines of the angles between
k, qa and qb described in Sec. 5.2 as,

µ1 = µk +
1

k
(qaµakµk − qaµa) + · · · , (5.15)

µ2 = −µk +
1

k
(qaµk + qbµbk − qaµaµk − qbµbµk) + · · · , (5.16)

µ3 = −µb . (5.17)
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Our squeezed limit involves again taking the limit qa, qb → 0 and then performing the angle
averaging with respect to k̂ and q̂b (in practice there is no dependence on q̂a in the limit).

Taking the squeezed limit of the RSD bispectrum.—First we consider the SQ1 and SQ2
terms listed in Eqs. (4.12a) and (4.13a) . The SPT contributions – where we recall the
parametrisation defined in (and below) Eq. (4.7) – give

BSQ11

sq
⊇
[

5 + 4ε

3
− n

3

]
P (k)P (k3) , (5.18a)

BSQ12

sq
⊇
[2

9
(5 + 4ε− n)

]
P (k)P (k3) , (5.18b)

BSQ13

sq
⊇
[ 1

225
(39 + 28ε− 11n)

]
P (k)P (k3) , (5.18c)

BSQ21

sq
⊇
[

5 + 4ε′ − n
9

]
P (k)P (k3) , (5.18d)

BSQ22

sq
⊇
[

2(65 + 44ε′ − 13n)

225

]
P (k)P (k3) , (5.18e)

BSQ23

sq
⊇
[

69 + 36ε′ − 17n

525

]
P (k)P (k3) , (5.18f)

As detailed in Sec. 4, only these contributions are affected by the EFT terms. Performing the
computations similarly to the SPT terms, one obtains additional contributions from effective
field theory to BSQ1 and BSQ2. These will be dominated by the αβ terms as usual which
gives

BEFT
SQ11

sq
⊇ ξ(a)

[
2

87− 11n+ (66− 4n)md + 12m2
d

3(2 +md)(9 + 2md)

]
k2P (k)P (k3) ,

BEFT
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d
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]
k2P (k)P (k3) , (5.19)

and

BEFT
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]
k2P (k)P (k3).(5.20)

The terms denoted BNLB and BFOG by contrast remain unchanged due to EFT terms at the
order we are computing, and their squeezed limits are given by [55]

BNLB,1
sq
≈ 2P (k)P (k3) , BNLB,2

sq
≈ 4

3
P (k)P (k3) , BNLB,3

sq
≈ 2

9
P (k)P (k3) ,

(5.21)
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and

BFOG,1
sq
≈
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1− n
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]
P (k)P (k3) , BFOG,6

sq
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13

175
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35

]
P (k)P (k3) . (5.22)

These results for the squeezed RSD bispectrum should prove useful for upcoming surveys such
as EUCLID or LSST who offer the possibility of more exact measurements of redshift-space
distortions. As for the velocity divergence, a key source of interest in these measurements
will be the possibility of probing the signature of modified gravity theories.

6 Conclusions and Future Prospects

Many alternatives methods have been developed in recent years to tackle the problem of
complete characterization and estimation of gravity induced (secondary) and primordial non-
Gaussianity at the level of bispectrum; these include estimators such as the skew-spectrum
[96], the line correlation function [97], modal decomposition methods [98–100] and the in-
tegrated bispectrum or the position-dependent power spectrum studied in this paper. The
integrated bispectrum probes the three point correlation function in the squeezed limit and
is linked to the well-known consistency relations.

While standard perturbation theory has been demonstrated to work well on large scales,
and high redshifts, in order to exploit the scope of upcoming data sets, it is necessary to in-
corporate the backreaction effects of UV physics. Typically regularized perturbation theory is
employed to improve the performance of standard perturbation theory, while semi-analytical
approaches such as the halo model have also been used to extend the reach of predictions
without requiring expensive N-body simulations. In this paper we have used the EFT ap-
proach which incorporates the effects of small scale physics by modelling their impact by
symmetry considerations to renormalise the density and velocity divergence, via an effective
stress-energy tensor, with parameters which are typically computed using small-scale numer-
ical simulations.

Previous studies of the consistency relations (or equivalently the angle averaged squeezed
bispectrum) have been performed using standard perturbation theory. In this paper we have
extended the results using EFT. Our main results are given in Sec. 5, where in Sec. 5.2 and
Sec. 5.3 we compute these statistics for the density and velocity divergence, for which the
computation of the bispectrum is recapitulated in Sec. 2. The consistency relations for the
density field in the case of a 2D projection survey are also presented in Sec. 5.2.2. We find that
EFT corrections to the consistency relations can become significant on relatively large scales
k & 0.05h/Mpc. Having described the computation of effective field theory corrections to the
bispectrum induced by models of primordial non-Gaussianity in Sec. 3, we have generalized
these relations to the case of primordial non-Gaussianity in Sec. 5.4. It is apparent that EFT
corrections to the standard formulae make negligible difference to the squeezed bispectrum. In
addition the squeezed limit of the RSD bispectrum (described in detail in Sec. 4) is described
in Sec. 5.5.

Our results can be used trivially to compute the position dependent power spectrum
or, equivalently, the integrated bispectrum. Such calculations can also be performed in real
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space where the position dependent two-point correlation functions and the related integrated
three-point correlation function (three-point correlation function in the squeezed limit) can be
used in real or redshift space. It is notable that the position-dependent correlation function
from the SDSS-III BOSS DR10 CMASS sample has been measured at a significance of 7.4σ
[101], highlighting the potential to strongly probe the consistency relations investigated here
as data sets continue to improve.

The methods described in this paper are complementary to the related cumulant corre-
lators [43]. The lowest order (two-to-one) cumulant correlators have been used to probe the
hybrid bispectrum involving the kinetic Sunyaev-Zeldovich (kSZ) effect and weak lensing in
[102]. The same approach was used to cross-correlate Lyman-α flux and weak lensing con-
vergence in [103]. The techniques elucidated here for computing the integrated bispectrum
and its real-space counterpart can also be used to probe such cross-correlations (Munshi et
al. 2017; in preparation). Finally, it should be noted that the redshift space distortion results
presented here have been computed using a flat-sky approximation. For future surveys with
large sky-coverage an expansion in spherical harmonics will be required to best extract the
available cosmological information.
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