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Summary 
A recent study finds that separate populations of neurons in inferotemporal cortex code for predictions 
and prediction errors, providing evidence for predictive coding theories of perception. 
 
Main text 
More than a century ago, Helmholtz described perception as a process of unconscious inference — i.e. 
trying to infer the most likely causes of our sensory inputs given our prior knowledge of the world. In 
recent decades, interest in this perspective has been rekindled by new insights from computer science 
and neuroscience, leading to theories on how the brain could accomplish such inference. One highly 
influential theory is ‘predictive coding’ [1, 2], according to which cortical regions constantly generate 
hypotheses (or ‘predictions’) about the likely causes of their inputs. For instance, when presented with 
the stimulus in Figure 1A, a region specialised in processing simple geometrical shapes may generate the 
hypothesis of a white triangle partially occluding three black circles [3]. In addition to representing these 
predictions, each cortical region also encodes how they differ from current sensory inputs. These 
‘prediction errors’ allow for efficient updating of hypotheses. This coding scheme can account for many 
properties of how neurons behave in early visual cortex [2, 4], and has received indirect support from 
neuroimaging [3, 5–8] and electrophysiology [9, 10] in humans, and from electrophysiology in monkeys 
[11]. However, to date there has been a noticeable lack of evidence for a central tenet of predictive 
coding theory, and one that distinguishes it from other theories of perceptual inference [12] — that 
predictions and prediction errors are explicitly and separately represented within a given cortical region 
(Figure 1B). Consistent with the theory, a new study measuring single unit responses in macaques 
reports encoding of predictions and prediction errors by separate neural populations in inferotemporal 
cortex (IT) [13]. 
In their study, Bell and colleagues [13] presented monkeys with images of faces and fruits, while a latent 
variable — not revealed to the monkeys — determined the relative probability of each image category. 
Despite the implicit nature of this manipulation, neural responses in IT (known to be involved in 
processing complex visual stimuli) were strongly modulated by image predictability. First, averaged over 
all face-responsive cells, neural firing rates were higher for unexpected vs. than expected faces, 
consistent with the encoding of prediction errors. Second, multivariate analyses revealed that 
population activity encoded the probability of a face occurring, even before an image was presented. 
Thus, IT encodes both predictions about upcoming sensory input, as well as the mismatch between 
these predictions and the input that was actually received (Figure 1C).  
One strong prediction made by predictive coding theories is that these two signals, predictions and 
prediction errors, are represented in separate populations of neurons. One way to establish this would 
be to record from neurons in different cortical layers: In the theory, predictions generated by a cortical 
region are sent back to explain its inputs from lower-level regions, and thus they should reside in 
feedback-providing deep layers; prediction errors, on the other hand, are sent forward as input to 
higher-level regions, and thus should reside in superficial layers [1, 14]. Bell and colleagues did not 
measure the cortical depth of the neurons from which they recorded, but they did address this issue in a 
different way: by examining the relationship between the signals across neurons. Although the strength 
of neurons’ face (vs. fruit) preference correlated positively with both their encoding of the a priori 
likelihood of a face appearing (i.e., prediction) and their enhanced response for unexpected vs. expected 
faces (i.e., prediction error), there was strikingly no correlation between prediction and prediction error 
encoding across neurons. In other words, the population of face-sensitive neurons appeared to consist 
of two orthogonal subpopulations, one encoding predictions and the other prediction errors.  



Future efforts should now be directed toward characterising and localising these subpopulations. One 
possible explanation for subpopulations of neurons sharing tuning preferences (here, faces) but 
encoding different variables could be that they reside in different layers of the same columns. That is, 
neurons within a cortical column are usually tuned for the same visual features, but they differ in their 
(feedforward, lateral, and feedback) connectivity, and may thus receive and transmit different messages 
from and to different cortical regions [12, 14]. This leads to the testable prediction that each cortical 
column contains both prediction and prediction error neurons, in different layers. One exciting prospect 
is that human fMRI studies are beginning to uncover layer-specific BOLD responses, allowing for the 
study of these neuronal subpopulations noninvasively in humans [15, 16]. Such future work, both in 
animals and humans, will shed more light on the exact neural circuitry that implements perceptual 
inference. This is particularly important because several implementations of predictive coding have been 
proposed, differing in the nature of feedback connections (inhibitory vs. excitatory) and the localisation 
of prediction and prediction error neurons [1, 2, 4, 14]. 
One somewhat surprising feature of the prediction signals revealed by Bell and colleagues is their long-
lasting nature. The signal starts before the image is presented, but continues until well after image onset 
(~500 ms). In other words, the a priori likelihood of a face appearing is still being encoded even after an 
image of a piece of fruit has been presented, whereas one might expect that the prediction error caused 
by this image would have led to immediate updating of the face prediction. That is, after a fruit has been 
presented, the likelihood of it being a face is zero. One possibility is that the prediction lingers in 
anticipation of upcoming trials. More generally, it remains an open question whether this temporal 
profile reflects the statistical structure of this particular experiment — with face probability being 
modulated by a slowly changing variable, as opposed to being cued one a trial-by-trial basis — or 
whether this is a general feature of the cortical encoding of predictions. Prediction signals would indeed 
be expected to evolve more slowly than prediction error signals, since the former integrate over the 
latter [14], but perhaps not quite at this timescale. 
Another important question is which brain regions are responsible for keeping track of probabilities and 
regularities in the environment. This is likely to depend strongly on the type of regularity and its 
timescale, but several candidate regions have been proposed. For instance, the hippocampus can 
extract statistical regularities from sensory inputs, generate predictions based on these regularities, and 
send them to visual cortex [17, 18]. Alternatively, regions of prefrontal cortex have also been argued to 
generate sensory predictions [19, 20]. 

Predictive coding offers a different perspective than traditional theories of sensory processing on the 

type of information represented in sensory neurons. It suggests that neurons do not simply encode 

features of their bottom-up input, but rather hypotheses about what is out there in the world, as well as 

the mismatch between these hypotheses and current sensory data. The new study by Bell and 

colleagues brings us one step closer to understanding the neural circuitry underlying this process of 

perceptual inference, and suggests exciting new avenues for uncovering the neural basis of perception. 
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Figure 

 

 
Figure 1. Perceptual inference implemented through predictions and prediction errors. 

(A) The Kanizsa illusion, an example of perceptual inference. (B) A simple predictive coding circuit, with 

separate neurons encoding predictions (P) and prediction errors (PE). (C) Bell and colleagues 

manipulated the probability of upcoming images being faces (vs. fruits) over time (top panel, yellow 

trace). Thus, images of faces could be presented either when they were expected or when they were 

unexpected. Separate subsets of IT neurons encoded the a priori probability of a face appearing (P 

signal, middle panel), and the unexpectedness of face presentations (PE signal, lower panel). 
 


