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ABSTRACT

We investigate video classification via a 3D deep convolu-
tional neural network (CNN) that directly ingests compressed
bitstream information. This idea is based on the observa-
tion that video macroblock (MB) motion vectors (that are
very compact and directly available from the compressed
bitstream) are inherently capturing local spatio-temporal
changes in each video scene. Our results on two standard
video datasets show that our approach outperforms pixel-
based approaches and remains within 7 percentile points from
the best classification results reported by highly-complex
optical-flow & deep-CNN methods. At the same time, a
CPU-based realization of our approach is found to be more
than 2500 times faster in the motion extraction in compar-
ison to GPU-based optical flow methods and also offers 2
to 3.4-fold reduction in the utilized deep CNN weights com-
pared to recent architectures. This indicates that deep learn-
ing based on compressed video bitstream information may al-
low for advanced video classification to be deployed in very
large datasets using commodity CPU hardware. Source code
is available at http://www.github.com/mvcnn.

Index Terms— video coding, classification, deep learning

1. INTRODUCTION

Compressed video content is the prime asset of online me-
dia services such as Netflix, Amazon Prime Video, YouTube
and Vimeo. The 2015-2020 Cisco Visual Networking Index
report estimates that, by 2020, compressed video bitstreams
will occupy more than 82% of all IP traffic, with one mil-
lion minutes of video crossing the network every second [1].
Alas, all such compressed video bitstreams remain the least-
manageable elements of the big data ecosystem. This diffi-
culty stems primarily from two aspects: (i) all state-of-the-
art methods for high-level semantic description in images and
video require compute-intensive decoding, followed by com-
plex pixel-domain processing, such as optical flow calcula-
tions [2, 3]; (ii) while recent proposals based on deep neural
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networks have shown very promising results on pixel-domain
image and video classification and retrieval [2, 3], the high
resolution & high frame-rate nature of decoded video and the
format inflation (from standard to super-high definition, 3D,
multiview, etc.) require highly-complex deep neural networks
that impose massive computation and storage requirements
[4]. To address these issues, we propose a three-dimensional
deep convolutional neural network (CNN) that directly lever-
ages on compressed macroblock (MB) motion information.
We compensate for the sparsity of these MB motion vec-
tors with larger temporal extents. Our experiments with two
widely-used datasets show that competitive classification re-
sults are obtained against the state-of-the-art, with processing
speed that is found to be orders-of-magnitude higher than all
previous approaches based on pixel-domain video. This paves
the way for exabyte and zettabyte-scale video datasets to be
newly-discovered and analysed over commodity hardware1.

2. RELATED WORK

The state-of-the art in video classification is held by multi-
layer neural networks using dense optical flow [2, 3, 7, 8].
Rather than hand-crafting features and filters to recognize dif-
ferent actions in video, these networks learn useful features
from large amounts of labeled data. The dense temporal tra-
jectories from optical flow are computed at a fine scale (e.g.
per pixel) and precisely track motion through the video.

The inherent problem with optical flow-based methods is
that optical flow is expensive to compute. Tran et al. [9] re-
port runtime for a Brox [5] GPU implementation at only 1 fps.
The recent proposal of Ilg et al. [6] reduces the optical flow
estimation runtime overhead by training a network to estimate

1The 1999 science fiction film The Matrix is based on the premise of an
interconnected digital simulation of the entire real-world human experience,
called the Matrix. A section of the film script, where the main character, Neo,
learns about the Matrix, reads: Neo stares at the endlessly shifting river of
information, bizarre codes and equations flowing across the face of the monitor.
Neo: Do you always look at it encoded? Cypher: Have to. The image translators
sort of work for the construct programs, but there’s way too much information to
decode the Matrix. You get used to it, though. Your brain does the translating. I
don’t even see the code. All I see is blonde, brunette, and redhead.

http://www.github.com/mvcnn


Fig. 1: Example of motion information for the MPI-Sintel
dataset. The H.264/AVC MB motion vectors are correlated
with optical flow extracted from decoded video frames [5][6]
and the ground-truth motion available for this synthetic video.

the optical flow from consecutive frame pairs. Regardless of
these improvements, training and testing these networks still
requires full video decoding and further processing for opti-
cal flow estimation. This overhead is the largest bottleneck in
the deployment of action recognition on big video datasets or
on real-time video analysis within conversational services. To
overcome the overhead of video decompression, compressed-
domain action recognition approaches were studied by Kan-
torov et al. [10]. Their work is related to ours as it makes use
of motion compensation parameters from the compressed-
domain. However, as their work is based on Bag-of-Words
methods, it relies on a very limited number of features, which
has detrimental effects on classification accuracy.

In this paper, we focus on single-stream networks; although
two-stream or fusion-based networks have been shown to
offer superior results [7, 8], these approaches incur signifi-
cant increase to the network complexity for diminishing re-
turns in classification accuracy. For example, Feichtenhofer
et al. [8] report using up to 181.42M parameters for less
than 6.7 percentile points increase in accuracy in the UCF101
dataset. Therefore, while the extension of our approach to
multi-stream networks is possible, e.g., by also considering
other video bitstream elements such as NAL unit sizes [11],
we leave this as a topic for future research.

3. OPTICAL FLOW ESTIMATION BASED ON
MACROBLOCK MOTION INFORMATION

In video compression standards like MPEG/ITU-T
AVC/H.264, HEVC [11], as well as open-source video codecs
like Theora, Google VP8/VP9 and AOMedia Video 1, the
input video frames are coarsely divided into macroblocks
(MBs), which form the basis for inter (and intra) prediction.
Inter-predicted MBs are (optionally) partitioned into blocks
that are predicted via motion vectors representing the dis-
placement from matching blocks in previous or subsequent
frames. MB motion information can be extracted from a com-

pressed video bitstream using FFMPEG’s libavcodec
[12] library, which supports most MPEG/ITU-T standards
used in practice. As shown in Fig. 1, such motion vectors
can be interpreted as noisy approximations of the underlying
motion [13][10]. The quality of MB-based motion estimation
is thus correlated with the size of the macroblock, the video
resolution and the utilized search parameters, e.g., search
window and availability of fractional-pixel motion vector
information.

4. PROPOSED FRAMEWORK FOR
COMPRESSED-DOMAIN CLASSIFICATION

In this section we describe the proposed framework for train-
ing a 3D deep CNN based on MB motion vectors. For both
training and testing with the proposed approach, no decoding
of any video to its pixel-domain representation is performed.

4.1. Network Input

For our CNN input, we extract and retain only P-type MB mo-
tion vectors, i.e., uni-directionally predicted MBs. This is be-
cause, during our experimentation, we found that training on
both P and B-type (bi-directionally predicted) motion vectors
incurs substantial increase in complexity with marginal im-
provement in classification accuracy. This is attributed to the
fact that, for the utilized datasets, B-type MB motion vectors
were found to be very sparse in nature or contain informa-
tion that is mostly redundant if P-type MB motion vectors are
available. The standard UCF-101 [14] and HMDB-51 [15]
datasets are composed of 320 × 240 RGB pixels per frame.
For a frame comprising P-type MBs, a block size of 8 × 8
pixels results in a motion vector field Φ ∈ RW×H×K of di-
mension 40 × 30 × 2, where W × H is the motion vector
spatial resolution and the number of channels K = 2 is rep-
resentative of the δx and δy motion vector components.

In order to compensate for the low spatial resolution W ×
H , we take a long temporal extent of motion vectors over
T > 100 consecutive P frames. This is contrary to recent
work using high-resolution optical flow [2, 16], which typ-
ically ingest only a few frames per input (typically around
10). This is because, even with the latest GPU hardware, a
long temporal extent cannot be processed without sacrificing
the spatial resolution of the optical flow [2, 16]. On the other
hand, given that our MB motion vector input is inherently
low-resolution, it is amenable to a longer temporal extent,
which is more likely to include the entirety of relevant action
that is essential for the correct classification of the video. For
example, we have found that the accuracy increases greatly
for UCF-101 evaluated on our 3D CNN when moving from 10
to 100 frames, but eventually plateaus when T becomes suf-
ficiently large such that the input extends to almost all P-type
frames of the majority of video files of the dataset. There-
fore, we fix the temporal extent T to 160, which is roughly
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Fig. 2: 3D CNN architecture: the blue, orange and yellow blocks represent convolutional, pooling and fully-connected layers;
F is the filter size for the convolutional layers (or window size for pooling), formatted as width× height × time; S is the
filter/window stride; D is the number of filters (or number of hidden units) for the convolutional and fully-connected layers.

the average number of P-frames per video in UCF-101.
In order to make our network input independent of the

video resolution, we use a fixed spatial size N × N which
is cropped/resized from Φ; in this paper we set N = 24. Our
final network input Φ̂ ∈ RN×N×K×T is thus 4D and can be
ingested by a 3D CNN. As exemplified in numerous works
[16, 9], the advantage of using a 3D CNN architecture with
a 4D input, versus stacking the frames as channels and us-
ing a 3D input of size N × N × KT with a 2D CNN, is that,
rather than collapsing to a 2D slice when convolving within
the CNN, we preserve the temporal structure during filtering.

4.2. Network Architecture

Our 3D CNN architecture is illustrated in Fig. 2. All con-
volutions and pooling are spatiotemporal in their extent. 3D
pooling is performed over a 2×2×2 window with spatiotem-
poral stride of 2. The first two convolutional layers use 3D fil-
ters of size 3× 3× 3 to learn spatiotemporal features. With a
24×24×2×160 motion vector input, the third convolutional
layer receives input of size 6×6×2×10. Therefore, we set the
filter size of the third, fourth and fifth convolutional layers to
2× 2× 2, as this is sufficiently large to encompass the spatial
extent of the input over the three layers whilst minimizing the
number of parameters. In order to maintain efficiency when
training/evaluating, we also use a temporal stride of 2 in the
first and second convolutional layers to quickly downsize the
motion vector input; in all other cases we set the stride to 1 for
convolutional layers. All convolutional layers and the FC6 &
FC7 layers use the parametric ReLU activation function [17].

It is important to note that our network has substantially
less parameters and activations than other architectures us-
ing optical flow. In particular, our 3D CNN stores 29.4 mil-
lion weights. For comparison, ClarifaiNet [18] and similar
configurations that are commonly used for optical-flow based
classification [2, 19] require roughly 100 million parameters.

4.3. 3D CNN Training

We train the network using stochastic gradient descent with
momentum set to 0.9. The initialization of He et al. [17] is
extended to 3D and the network weights are initialized from
a normal distribution with variance inversely proportional to
the fan-in of the filter inputs. Mini-batches of size 64 are gen-
erated by randomly selecting 64 training videos. From each of
these training videos, we choose a random index from which

to start extracting the P-frame MB motion vectors. From this
position, we simply loop over the P-type MBs in temporal
order until we extract motion vectors over T consecutive P
frames. This addresses the issue of videos having less than
T total P frames, e.g., cases where the video is only a few
seconds long. For UCF-101, we train from scratch; the learn-
ing rate is initially set to 10−2 and is decreased by a factor
of 0.1 every 30k iterations. The training is completed after
70k iterations. Conversely, for HMDB-51, we compensate
for the small training split by initializing the network with
pre-trained weights from UCF-101 (split 1). The learning rate
is initialized at 10−3 and decayed by a factor of 0.1 every 15k
iterations, for 30k iterations.

To minimize the chance of overfitting due to the low spa-
tial resolution of these motion vector frames and the small
size of the training split for both UCF-101 and HMDB-51,
we supplement the training with heavy data augmentation.
To this end, we concatenate the motion vectors into a single
W×H×2T volume and apply the following steps; (i) a multi-
scale random cropping to fixed size Nc × Nc × 2T from this
volume, by randomly selecting a value for Nc from N × c
with c ∈ {0.5, 0.667, 0.833, 1.0}; as such, the cropped vol-
ume is randomly flipped and spatially resized to N ×N ×2T ;
(ii) zero-centering the volume by subtracting the mean motion
vector value from each motion vector field Φ, in order to re-
move possible bias; the δx and δy motion vector components
can now be split into separate channels, thus generating our
4D network input Φ̂. During training, we additionally regu-
larize the network by using dropout ratio of 0.8 on the FC6
and FC7 layers together with weight decay of 0.005.

4.4. Testing

During testing, per video, we generate 10 random volumes of
temporal size T from which to test on. Per volume, we use the
standard 10-crop testing [20], cropping the four corners and
the center of the image to size N×N×2×T and considering
both horizontally flipped and unflipped versions. As such,
we average the scores over the 10 crops and 10 volumes to
produce a single score for the video.



Input
Runtime per frame (ms)

% P EPE
Decoding Flow Estimation

Proposed 0 0.05 (CPU) 62 15.26
Brox 5.60 (CPU) 6270 (GPU) – 6.32

FlowNet2 5.60 (CPU) 123 (GPU) – 3.14

Table 1: Motion field estimation accuracy and runtime results
for the proposed approach, Brox [21] and FlowNet2 [6]. % P:
Percentage of video frames encoded as P-frames; EPE: end-
point error.

5. EXPERIMENTAL RESULTS

5.1. Speed and End-Point Error of MB Motion Vectors

Table 1 presents results from our MB motion vector extrac-
tion against the ground truth and the Brox [21] and FlowNet2
[6] optical flow estimations that were respectively used by [2]
and [6]. All end-point error (EPE) and runtime results were
measured on the MPI Sintel dataset using an Amazon EC2
instance running on a quadcore Intel’s Xeon E2686 V4 (2.3
GHz). Since the CNN architecture downsamples and quan-
tizes the optical flow before using it [2], we measure the EPE
of the optical flow estimations at the resolution and quanti-
zation settings used by the CNN. Under these settings, the
EPE of the proposed approach remains low-enough to indi-
cate high correlation with the ground-truth and optical-flow
based methods. At the same time, the proposed approach
is more than 2500 times faster than FlowNet2 (0.05 ms vs.
128.60 ms per frame), as it does not decode the video to the
pixel domain and does not perform any optical flow calcula-
tions. Given that GPU instances require more than 9 times
the cost of CPU instances (e.g., AWS prices at the time of this
writing), this leads to more than 23000 times lower cost under
a cloud-based deployment.

5.2. Datasets used for Video Classification

Evaluation is performed on two standard action recognition
datasets, UCF-101 [14] and HMDB-51 [15]. UCF-101 is a
popular action recognition dataset, comprising 13K videos
from 101 action categories. Each video is: approximately
10 seconds in duration, 320 × 240 pixels per frame, at 25
frames per second (fps). HMDB-51 is a considerably smaller
dataset, comprising only 7K videos from 51 action categories,
with the same spatial resolution as UCF-101, and at 30 fps.

5.3. Evaluation Protocol and Results

For each dataset we follow the testing protocol of Section 4.4
and compute the average accuracy over the three training/test
splits provided. Each UCF-101 training split consists of ap-
proximately 9.5K videos, whereas each HMDB training split
has 3.7K videos. Table 2 presents the results. It is evident that
our proposal outperforms the RGB-based version of SSCNN

Framework Input Complexity Accuracy (%)
Size #A, #W (×106) UCF HMDB

Proposed 242×2× 160 4.0, 29.4 77.5 49.5

SSCNN-Brox [2] 2242×20 2.0, 90.6 83.7 54.6
SSCNN+ [2] 2242×3 2.0, 90.6 73.0 40.5

LTC-Brox [3] 582×2×100 42.1, 12.2 82.6 56.7
LTC-Mpegflow [3] 582×2×60 25.3, 10.6 63.8* –

SFCNN+ [16] 1702×3×10 1.80 , 26.7 65.4 –

C3D+ [9] 1122×3×16 30.2, 63.7 82.3 –

Table 2: Comparison with state-of-the-art single-stream net-
works. “Proposed” stands for the MB motion vectors ex-
tracted from a high-bitrate version of the videos. Complexity
is reported with respect to millions of activations and weights
(#A, #W), summed over conv, pool and FC layers in the uti-
lized deep CNN of each approach. Entries marked with * use
split 1; otherwise accuracy is averaged over the 3 splits for
each dataset. Methods marked with “+” utilize decoded RGB
frames instead of motion information.

[2], LTC-Mpegflow [3] and SFCNN [16]. It is worth noting
that unlike LTC-Mpegflow, which considers I, P and B-frames
and optionally applies temporal interpolation, we are able to
achieve superior accuracy solely based on a P-frame volume
input. Moreover, LTC-Mpegflow requires significantly more
time in processing due to the larger input resolution and sig-
nificantly more activations in the lower convolutional layers.
Specifically, the runtime to process a batch of size 32 on a sin-
gle K80 GPU with the proposed CNN architecture and LTC-
Mpegflow was found to be 65 examples/s and 12 examples/s
respectively. Our proposal is outperformed by SSCNN-Brox
and LTC-Brox (both using highly-complex optical flow), as
well as the RGB-based C3D [9], by up to 7 percentile points.
We mainly attribute the gap in performance to the short dura-
tion of the videos in the datasets (i.e., lack of enough P frames
to train with) and the low resolution of the utilized material.
Importantly, with the exception of SSCNN+ [2], our approach
is allowing for more than 2.5-fold reduction in the input size
and/or more than two-fold reduction in the number of activa-
tions and weights against the competing methods.

6. CONCLUSION

We propose a 3D convolutional neural network architecture
for video classification that utilizes compressed-domain mo-
tion vector information for record-breaking speed, at the cost
of modest loss in accuracy. Given the observed performance
within the two standard benchmark datasets, further work
in this area (and the utilization of higher-resolution video
datasets that are more representative of today’s video stream-
ing landscape) may close the gap between our approach and
these methods. Such approaches may find important applica-
tions in big data classification and retrieval systems.
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