
MNRAS 441, 800–808 (2014) doi:10.1093/mnras/stu614
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ABSTRACT
Dwarf galaxies and globular clusters may contain intermediate-mass black holes (103–105 M�)
in their cores. Estimates of ∼103 neutron stars in the central parsec of the Galaxy and similar
numbers in small elliptical galaxies and globular clusters along with an estimated high prob-
ability of millisecond (ms)-pulsar formation in those environments have led many workers to
propose the use of ms-pulsar timing to measure the mass and spin of intermediate-mass black
holes. Models of pulsar motion around a rotating black hole generally assume geodesic motion
of a ‘test’ particle in the Kerr metric. These approaches account for well-known effects like de
Sitter precession and the Lense–Thirring effect but they do not account for the non-linear effect
of the pulsar’s stress–energy tensor on the space–time metric. Here we model the motion of a
pulsar near a black hole with the Mathisson–Papapetrou–Dixon (MPD) equations. Numerical
integration of the MPD equations for black holes of masses 2 × 106, 105 and 103 M� shows
that the pulsar will not remain in an orbital plane with motion vertical to the plane being largest
relative to the orbit’s radial dimensions for the lower mass black holes. The pulsar’s out-of-
plane motion will lead to timing variations that are up to ∼10 μs different from those predicted
by planar orbit models. Such variations might be detectable in long-term observations of ms
pulsars. If pulsar signals are used to measure the mass and spin of intermediate-mass black
holes on the basis of dynamical models of the received pulsar signal, then the out-of-plane
motion of the pulsar should be part of that model.
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1 IN T RO D U C T I O N

The presence of astrophysical black holes (BHs) is inferred from
various observations, such as the powerful electromagnetic radia-
tion emitted by distant quasars. Although we have not yet ‘seen’
BHs directly, it will soon be possible to image the massive central
BH in the Galaxy (see Doeleman et al. 2008) and some nearby
galaxies, e.g. M87, using submm very long baseline interferometry
observations (see Asada & Nakamura 2012; Doeleman et al. 2012;
Dexter, McKinney & Agol 2012). At present, the strongest evidence
for a massive BH at the centre of the Galaxy comes from monitoring
the motions of stars in the Sgr A* region. These observations have
established that a large amount of unseen mass, ≈4.2 × 106 M�
(Ghez et al. 2008; Gillessen et al. 2009), is enclosed within a vol-
ume having a radius <0.01 pc at the Galactic Centre (see Eckart
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& Genzel 1997; Ghez et al. 1998). The simple explanation for this
unseen mass is a massive BH (see Schödel et al. 2002; Ghez et al.
2008; Gillessen et al. 2009). Naturally, we would ask if this massive
BH is rapidly rotating or it is slowly rotating. Knowing the BH’s
rotational rate has important astrophysical implications. It indicates
how the BH has evolved and perhaps how it was formed – whether
the BH was built up by the merging of smaller BHs or simply by
accreting a large amount of gas.

A rotating BH drags the space–time around it so stars and gas
respond differently to Kerr and Schwarzschild BHs. X-ray spec-
troscopy of relativistic lines has been used to determine the spin
of several BHs in active galactic nuclei (e.g. for MCG-60-30-15;
Iwasawa et al. 1996). Theoretical calculations (e.g. Kojima 1991;
Laor 1991) show that the profiles of relativistic emission lines, such
as the Fe Kα line emitted from the surface of the accretion disc
around a BH, depend on the BH’s spin. However, in practice the
reliability of the relativistic line method of BH spin measurement
depends also on how well we model the accretion flow and on how
well we understand the radiative processes that give rise to the di-
agnostic lines in the disc region close to the BH event horizon (see
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e.g. Fuerst & Wu 2007; Svoboda et al. 2009; Younsi, Wu & Fuerst
2012). It is always a challenging task to measure the spin of a BH
much less to measure it with accuracy, be it a stellar-mass BH in a
binary system or a supermassive BH in an active galactic nucleus.
As shown in theoretical calculations, the parameter space is actu-
ally degenerate for the relativistic X-ray line profiles (Kojima 1991;
Laor 1991; Fuerst & Wu 2004); thus, one needs to resolve this issue
properly to obtain a reliable BH spin measurement. As for the BH in
the Galactic Centre, the lack of X-ray activity (Baganoff et al. 2003)
in the current epoch implies an absence of an opaque gas accretion
disc on which the relativistic X-ray lines are expected to form. Al-
ternative methods for determining the BH spin are therefore much
needed.

Observations have shown correlations between the mass of cen-
tral BHs and the properties of the bulges of their host galaxies. In
particular, a relatively tight M–σ correlation is found for the nearby
big galaxies (Ferrarese & Merritt 2000; Gebhardt et al. 2000), where
M is the mass of the central BH and σ is the velocity dispersion of the
stars in the galactic bulge. For the Galaxy, the mass estimate of the
central BH and the measured velocity dispersion of the stars in
the Galactic bulge are consistent with the empirical M–σ rela-
tion derived for external galaxies (see Gültekin et al. 2009). The
most massive astrophysical BHs known to date have masses around
∼1.5 × 1010 M� (e.g. the central BH in NGC 1277; van den Bosch
et al. 2012). Nuclear BHs with masses below 106 M� in galaxies
are not firmly established by stellar dynamics or by reverberation
mapping (Peterson & Horne 2004), but there are observations in-
dicating that some Seyfert galaxies may contain nuclear BHs in
the mass range of 105–106 M� (Greene & Ho 2007; Xiao et al.
2011). The inclusion of small-bulge (low-mass) galaxies appears to
steepen the slope of the M–σ relation (Graham et al. 2011). It is still
unclear whether the least massive dwarf galaxies contain a central
BH (with Mbh ∼ 104 M�) similar to the big elliptical galaxies. The
lower mass limit for the central BHs in galaxies is not certain.

Further extrapolation of the M–σ relation to low-mass stellar
spheroids implies that globular clusters would have nuclear BHs
with mass ∼103–104 M� (see Lützgendorf et al. 2013). There have
been active searches for the intermediate-mass black holes (IMBHs,
black holes with masses ∼102–104M�) in globular clusters as well
as in dwarf galaxies. While there are claims of the discovery of
IMBHs in globular clusters, there are also counterclaims of non-
detection (see e.g. the discussions in van der Marel & Anderson
2010). It is of great importance to accurately measure black hole
masses in low-mass stellar spheroids and to properly resolve the
issues regarding the low end of the mass spectrum of non-stellar
black holes.

Here, in this work, we analyse the orbital motion of millisecond
pulsars (ms pulsars, fast spinning neutron stars) around a rotating
black hole taking into account the effect of the pulsar’s stress–energy
tensor on the Kerr metric of the black hole. The compactness of
neutron stars and the large mass ratios between nuclear black holes
and the neutron stars allow a point-particle approximation for the
neutron star, without compromising a proper treatment of the inter-
action between the spin of the neutron star and the black hole spin
as manifested by the interaction between the spin of the neutron
star and the the curvature of space–time induced by the black hole’s
gravity. Thus, the dynamics of these systems are well described by
the Mathisson–Papapetrou–Dixon (MPD) equations for spinning
test particles in an external space–time. We show how the orbital
dynamics of an ms pulsar is determined by spin–curvature coupling
when it revolves around a black hole and how the orbital dynamics
depend on the spin as well as the mass ratio between the black hole

and the pulsar. In particular, we show that motion of the pulsar out
of the usual orbital plane is substantial, relative to the orbital extent,
if the mass of the rotating black hole is low enough. We organize
the paper as follows. In Section 2, we present the formulation of
the dynamics of systems containing a spinning neutron star orbiting
around a massive black hole. In Section 3, we give the scheme for
solving the MPD equations and solutions of some example sys-
tems with parameters of astronomical interest. The significance of
such binary systems and resulting astrophysical implications are
discussed in Section 4. Throughout in this work, unless otherwise
stated, we use the natural unit system with c = G = 1, where c is
the speed of light and G is the gravitational constant. We also adopt
a signature of +2 for the space–time metric tensor.

2 SPI N INTERAC TI ON BETWEEN A FAST
S P I N N I N G N E U T RO N STA R A N D A B L AC K
H O L E

Consider a pulsar, a spinning neutron star, orbiting around a massive
black hole. As the black hole is much more massive than a neutron
star, i.e. Mbh � Mns, the pulsar can be treated as a test mass. The
pulsar’s motion is then determined by a background gravitational
field provided by the black hole and its dynamical interaction with
this field.

Let the mass of the pulsar (neutron star) be m (= Mns) and the
mass of the black hole be M (= Mbh). The neutron star has a radius
Rns, which is much smaller than the Schwarzschild radius of the
black hole, Rs(Mbh), and the orbital separation between the centre
of mass of the two objects is r. The 4-velocity of the centre of mass
of the pulsar is represented by

uμ = dxμ

dτ
, (1)

where τ is the proper time along its world line. The equation of
motion of the pulsar is given by

T μν
;ν = 0 , (2)

where Tμν is the energy–momentum tensor. The tensor can be ex-
panded into an infinite set of multipole moments (Dixon 1974). The
first two moments are the momentum vector pν and the spin tensor
sμν . Their corresponding equations of motion are

Dpμ

dτ
= −1

2
Rμ

ναβuνsαβ + Fμ ; (3)

Dsμν

dτ
= pμuν − pνuμ + T μν (4)

(Mathisson 1937; Papapetrou 1951; Dixon 1974). The Dixon force
Fμ and torque T μν are determined by the quadrupole and the
higher momentum of the pulsar, when it has a non-zero finite size.
A supplementary condition to the equations of motion (3) and (4)
is required for a proper specification of trajectory of the pulsar’s
centre of mass, and this is taken as

sμνpν = 0 . (5)

Note that other choices for the supplementary condition can also be
made in order to fully determine the equations of motion. The set
of equations (3) and (4) with the supplementary condition (5) are
known as the MPD equations (see Mashhoon & Singh 2006).

For m � M < r and Rns � r, the interaction is dominated by
the lowest order moments. As an approximation, we may ignore the
quadrupole and higher order moments and setFμ = 0 and T μν = 0
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in the MPD equations, resulting in the reduced MPD equations. This
leads to the usual expression for the mass of the pulsar

m = √−pμpμ , (6)

which is a constant of motion, as shown by taking the covariant time
derivative of (5) and contracting with Dpμ/dτ . The spin vector of
the pulsar is given by

sμ = − 1

2m
εμναβpνsαβ , (7)

where the Levi-Civita tensor εμναβ = √−gσμναβ , with the permu-
tation σ 0123 = 1. The spin tensor can be expressed in terms of the
spin vector

sμν = 1

m
εμναβpαsβ . (8)

It follows from the reduced MPD equations that

s2 = sμsμ = 1

2
sμνsμν , (9)

which is also a constant of motion, as shown from using (5).
As m � M < r, we have RM = s/m � r, where RM is the Møller

radius of the pulsar. This implies that the dipole–dipole interaction is
significantly weaker than the pole–dipole interaction, thus allowing
us to apply the approximation scheme of Chicone, Mashhoon &
Punsly (2005). The scheme is based on the condition that(

pμ

m
− uμ

)
∼ M

r

[ s

mr

]2
� 1. (10)

To the first order in s/(mr), pν ≈ muμ, i.e. the momentum and
velocity 4-vectors are parallel to each other. In a more intuitive
sense, this corresponds to the situation that the kinetic energy of the
pulsar is insignificant in comparison to the rest mass energy. With
this approximation, the reduced MPD equations become

Duμ

dτ
= − 1

2m
Rμ

ναβuνsαβ ; (11)

Dsμν

dτ
≈ 0; (12)

sμνu
ν ≈ 0 (13)

(Chicone et al. 2005; Mashhoon & Singh 2006). In the case of
a slowly spinning pulsar, the above equations are reduced to the
geodesic equation for the orbital motion of a point-like spinless
object in an external gravitational field due to a black hole (see
Ehlers & Geroch 2004).

3 O R B I TA L DY NA M I C S O F T H E SP I N N I N G
N E U T RO N STA R

The solution to the MPD equations has been derived for various
settings (e.g. Semerák 1999; Bini, de Felice & Geralico 2004;
Singh 2005, 2008; Mashhoon & Singh 2006; Kyrian & Semerák
2007; Plyatsko, Stefanyshyn & Fenky 2011). Mashhoon & Singh
(2006) investigated various solution schemes for Kerr black holes
and found that the approximation schemes may not always capture
all the essential aspects of spin multipole interactions for general
situations (such as those of astrophysical interest). In this work, we
consider a full numerical approach and integrate the reduced MPD
equations directly. For our calculations, the reduced MPD equations
take the following form:

dpα

dτ
= −	α

μνp
μuν + λ

(
1

2m
Rα

βρσ ερσ
μνs

μpνuβ

)
; (14)

dsα

dτ
= −	α

μνs
μuν + λ

(
1

2m3
Rγβρσ ερσ

μνs
μpνsγ uβ

)
pα; (15)

dxα

dτ
= uα = −pδuδ

m2

(
pα + 1

2

λ
(
sαβRβγμνp

γ sμν
)

m2 + λ
(
Rμνρσ sμνsβσ /4

)
)

(16)

(Singh 2005; Mashhoon & Singh 2006) with τ as the affine param-
eter. Although τ has the freedom to not be the proper time, here we
choose τ as the proper time such that gμνuμuν = −1 throughout
the motion of the orbiting pulsar. A dimensionless parameter λ is
introduced in the above equations to tag the terms for MPD spin–
curvature coupling, as in Singh (2005). For λ = 1, the contribution
of spin–curvature coupling to the evolution of the pulsar spin and
the orbital dynamics is included; for λ = 0 the contribution of spin–
curvature coupling is omitted and hence the evolution of the pulsar
spin is strictly due to parallel transport.

The space–time around a rotating black hole is given by the Kerr
metric, which is

− dτ 2 = −
(

1 − 2Mr

�

)
dt2 − 4aMr sin2 θ

�
dtdφ

+ �

�
dr2 + �dθ2 +

(
r2 + a2 + 2a2Mr sin2 θ

�

)

× sin2 θdφ2 (17)

in Boyer–Lindquist coordinates, where � = r2 + a2cos 2θ ,
� = r2 − 2Mr + a2, and the three vector (r, θ , φ) corresponds
to (pseudo-)spherical polar coordinates. The parameter a/M speci-
fies the spin of the black hole, with a/M = 0 corresponding to the
Schwarzschild black hole and a/M = 1 to the maximally rotating
Kerr black hole.

In this work, we consider three kinds of astrophysical black holes
with masses: (i) M = 2.0 × 106 M�, which is about the same as
the mass of the black hole in the Galactic Centre; (ii) M = 105 M�,
which is at the low end of the empirical M–σ relation for black
holes in galactic bulges and is similar to those of the lower mass
black holes of the Seyferts in the study of Greene & Ho (2007);
and (iii) M = 103 M�, which is the mass of the smaller expected
IMBHs in the globular clusters obtained by extrapolating the M–σ

relation. The pulsar has a mass m = 1.5 M� and a spin period
Ps = 1 ms. Its initial orbital radius r has values ranging from 10M
to 40M. Assuming prograde motion with respect to the spin of the
black hole, the initial orbital angular motion chosen for all cases is
J = Jcirc + �J, where

Jcirc =
[
1 + (

a
M

) (
M
r

)2 − a
M

(
M
r

)3/2
]
M√

M
r

[
1 − 3M

r
+ 2a

M

(
M
r

)3/2
] (18)

(Raine & Thomas 2005) is the orbital angular momentum for strictly
circular motion, with �J = 0.2 M to generate precessing quasi-
elliptical orbits beginning at periastron. The eccentricity of an orbit
is defined as e = (ra − rp)/(ra + rp), where ra is the radius of
the orbit at apastron and rp is the radius of the orbit at periastron.
For Keplerian orbits and orbits of test particles in a Schwarzschild
metric, the eccentricity is constant. For the orbits modelled here,
the eccentricity varies slightly from orbit to orbit. The values of
eccentricity for the cases considered here are given in Table 1.

Orbits of a pulsar around a slowly rotating (|a/M| = 0.1) black
hole with M = 2.0 × 106 M� at various initial distances from the
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Table 1. Eccentricities of the orbits. The numbers in parentheses denote values that vary from orbit to orbit.

Black hole spin ←−−−−−−−−−−−−a/M = 0.1−−−−−−−−−−−−→ −−−−−−−−−−−−→a/M = −0.1−−−−−−−−−−−−→
Black hole mass 103 M� 105 M� 2 × 106 M� 103 M� 105 M� 2 × 106 M�
e for r = 10M 0.1946(5) 0.1945(9) 0.1945(9) 0.2094(1) 0.2093(6) 0.2093(6)
e for r = 20M 0.106 62(6) 0.106 61(1) 0.106 61(1) 0.1085(5) 0.108 54(4) 0.108 54(3)
e for r = 30M 0.081 736 59(3) 0.081 7289(7) 0.081 728 90(5) 0.082 45(2) 0.082 445(6) 0.082 445(4)
e for r = 40M 0.068 784(3) 0.068 779(4) 0.068 77(9) 0.069 155(3) 0.069 150(3) 0.069 15(0)

Black hole spin ←−−−−−−−−−−−−a/M = 0.5−−−−−−−−−−−−→ ←−−−−−−−−−−−−a/M = −0.5−−−−−−−−−−−−→
Black hole mass 103 M� 105 M� 2 × 106 M� 103 M� 105 M� 2 × 106 M�
e for r = 10M 0.172(0) 0.1719(7) 0.1719(7) 0.2483(8) 0.2483(3) 0.2483(2)
e for r = 20M 0.103 19(8) 0.103 18(5) 0.103 18(5) 0.112 92(6) 0.112 90(7) 0.112 90(7)
e for r = 30M 0.080 41(5) 0.080 40(8) 0.080 40(8) 0.084 00(9) 0.084 000(5) 0.084 000(5)
e for r = 40M 0.068 088(7) 0.068 084(3) 0.068 084(2) 0.069 94(6) 0.069 940(5) 0.069 940(5)

Black hole spin ←−−−−−−−−−−−−a/M = 0.99−−−−−−−−−−−−→ ←−−−−−−−−−−−−a/M = −0.99−−−−−−−−−−−−→
Black hole mass 103 M� 105 M� 2 × 106 M� 103 M� 105 M� 2 × 106 M�
e for r = 10M 0.1531(8) 0.1531(5) 0.1531(5) 0.3195(1) 0.3194(3) 0.3194(3)
e for r = 20M 0.099 69(4) 0.099 68(3) 0.099 68(3) 0.119 33(5) 0.119 31(7) 0.119 31(8)
e for r = 30M 0.078 98(7) 0.078 98(1) 0.078 98(1) 0.086 156(5) 0.086 14(6) 0.086 14(6)
e for r = 40M 0.067 31(7) 0.067 31(3) 0.067 31(2) 0.071 008(6) 0.071 002(6) 0.071 002(6)

black hole’s centre had the following characteristics. At r = 40M,
the orbit is a precessing ellipse and the deviation from being el-
liptical can be regarded as a perturbation caused by the relativistic
orbital (de Sitter) precession. This result is not too surprising. For
a sufficiently large distance (i.e. r � M), relativistic effects are not
very prominent, and the spin-pole coupling between the pulsar and
black hole and the spin–orbit coupling are weak. In that case, we
expect that the orbital motion of the pulsar would be similar to that
of a planar Keplerian orbit in a Newtonian space–time. As the dis-
tance between the pulsar and the black hole decreases, the orbit will
further deviate from a simply precessing elliptical orbit. The orbit
begins to exhibit complexities at r = 20M. For smaller r, the orbital
motion can no longer be considered Keplerian in any approximate
sense. At r = 10M, relativistic spin coupling is clearly an impor-
tant factor in determining the pulsar’s orbital dynamics. For slowly
rotating black holes, there are only subtle differences between the
prograde and the retrograde orbits. The orbits of a pulsar around a
fast rotating (|a/M| = 0.99) black hole are more complex. At large
distances (r > 40M), the orbits are very similar to those of the slow-
ing rotating black hole. The differences between the fast rotating
and the slowly rotating black holes become more obvious at smaller
distances. At r = 10M, the differences between the prograde and the
retrograde orbits around a fast spinning black holes are easily dis-
tinguishable, with the retrograde orbits showing complex patterns
resembling that of the precession of elliptical orbits. Moreover, the
difference between the prograde orbits around a slowing rotating
and fast rotating black hole is also noticeable in terms of motion
out of the x–y plane. The motion of the pulsar in the λ = 0 case,
in which the spin–curvature coupling is not modelled, remains in
the x–y plane where it is similar to the x–y motion computed with
λ = 1.

Comparison between orbits of pulsars around a 105 M� black
hole with r = 10M for black hole spins |a/M| = 0.1, 0.5 and
0.99 revealed the following effects. The general trend is that the
complexity of the orbit increases with the black hole spin rate, and
the increase is more for the retrograde orbit than the prograde orbit.
The orbits of the pulsars around a 2.0 × 106 M� black hole and

a 103 M� black hole show only very slight differences from the
105 M� case.

The orbital dynamics of the pulsar depends on the mass ratio
between the central black hole and the pulsar, M/m. The orbits
are more complex for smaller M/m. Even in moderate conditions,
such as in systems with an orbital separation r = 30M and a black
hole spin |a/M| = 0.1, we can still distinguish the orbit for the
pulsars around the black holes with mass 103 M� from those of
M = 2.0 × 106 and 105 M�. For the more extreme conditions,
such as for systems with an orbital separation r = 10M and a black
hole spin |a/M| = 0.99 (Fig. 1), the orbits clearly show a strong
dependence on the mass ratio M/m, but the dependence is relative
as discussed next.

Fig. 2 shows the out-of-plane motion in terms of physical units
instead of in terms of mathematical M units. It is clear that the
z-range and the trajectory are independent of the M/m ratio. With
no spin–curvature coupling (λ = 0), the motion of the pulsar is
planar and does not leave the x–y plane. However, in relative terms,
the out-of-plane motion is smaller relative to the diameter of the
orbit for more massive black holes. This means that the effects of
spin–curvature coupling will become apparent in an observed pulsar
signal at higher inclinations for lower mass black holes. The effect
of the Kerr geometry on an emitted pulsar light signal from a neutron
star at superior conjunction depends on the M unit distance from
the black hole as it passes above or below the black hole on its way
to Earth. If a pulsar signal were interpreted without accounting for
spin–curvature coupling (λ = 0), then a low-mass black hole–pulsar
pair would appear to have a higher inclination than the actual value
while the difference for a million solar mass black hole–pulsar pair
would be much smaller between the λ = 0 and 1 models. The motion
of the neutron star’s spin axis direction is not appreciably affected
by the spin–curvature coupling with the de Sitter precession and
the Lense–Thirring effect being very much the same in both the
λ = 0 and 1 models. The physical amplitude of the out-of-plane
motion is, for our calculations, independent of the a/M ratio as well
(Fig. 3), although the exact path taken does depend on the black
hole spin. This means that the amplitude of the out-of-plane motion
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Figure 1. The orbit of a pulsar around a black hole for M = 2.0 × 106 M� (left-hand panels), 105 M� (middle panels) and 103 M� (right-hand panels). The
black hole spin parameter a/M = ±0.99 and the initial orbital separation r = 10M. The prograde orbits are shown in the top row and the retrograde orbits in the
bottom row. Positive a corresponds to a pulsar in a prograde orbit with respect to the black hole’s spin, and negative a corresponds to a pulsar in a retrograde
orbit. The centre of the black hole is located at (0, 0, 0). The orbital normal vector of the pulsar and the spin vector of the black hole are in parallel (for a
prograde pulsar orbit) or in anti-parallel (for a retrograde pulsar orbit) initially. The spin vector of the pulsar is initially oriented at a tilting angle of π/4 towards
the black hole. The dimensionless parameter λ is set to 1. In all cases, the pulsar does not stay in an orbital plane, the z motion being most obvious in the lower
mass black hole cases in these plots. The out-of-plane motion is due to the λ-dependent terms in the MPD equations (14), (15) and (16). In calculations with
λ = 0, the orbital motion is the same in the x–y plane as the cases shown here but the pulsar does not move out of the plane.

Figure 2. The projection of the orbit of a pulsar around a black hole on to the x–z plane for r = 10M, 20M and 40M. The z motion for separations in terms of
M, with the scale in km, is independent of the black hole mass (M = 2.0 × 106, 105 or 103 M�). The black hole spin parameter is |a/M| = 0.99, with prograde
orbits in the top row and retrograde orbits in the bottom row. Other parameters are the same as those in Fig. 1. Without spin–curvature coupling (λ = 0), the
neutron star would not lift out of the x–y orbital plane.

is entirely a function of the pulsar spin rate which is an unexpected
result.

The time course of the out-of-plane motion is shown in Fig. 4 for
three different values of a/M. Although the amplitude is similar,
the time courses are different. Varying the initial separation will
also result in different time courses with similar amplitudes for the
ms pulsar simulated here. The z signal is potentially observable
through variation in pulse arrival time over arrival times that would

result if the pulsar stayed in a planar orbit. Ray-tracing solutions and
simulations of the pulsar signal are beyond the scope of this work
but an order-of-magnitude effect may be estimated. For reasonable
viewing orbital inclinations (say i ∼ 45◦), the path length of the ray
from the pulsar to the Earth will vary by ∼±5 km from the path
length of a ray from a pulsar in an otherwise similar planar orbit
with a frequency that is roughly twice the pulsar’s orbital frequency.
Thus, frequencies outside of those predicted by models of planar
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Figure 3. The projection of the orbit of a pulsar around a slowly rotating black hole, black hole spin parameter a/M = +0.1, on to the x–z plane for initial
orbital separations of r = 10M, 20M and 40M. Vertical, z, motion amplitude is independent of central black hole mass. for M = 2.0 × 106 M� (left-hand
panel), 105 M� (middle panel) and 103 M� (right-hand panel). The amplitude of the vertical motion is similar for all the cases computed, from lower mass to
higher mass black holes, and from lower spin to higher spin black holes. For varying initial separations, the amplitude of all the cases is similar but the paths
are different.

Figure 4. Time course of the z-component of the pulsar motion. The top rows show the prograde cases and the bottom rows show the retrograde cases for
|a/M| = 0.1, 0.5, 0.99 from left to right for an initial r = 10M. The time courses are independent of the mass of the central black hole. Varying the initial
separation will vary the time course followed but the amplitude will be similar at ∼8 km.

orbital motion will be introduced into the pulsar signal. The light ray
path length change between planar and non-planar motion translates
to a timing change of the order of ±10 μs. Such timing changes
are readily detected in secular observations of pulsars, especially
ms pulsars (Lorimer 2008). The fastest orbital periods, with their
attendant Doppler shifts, of the models investigated here are about
2 s (it is not constant) for the pulsar in a prograde orbit at r = 10M
from a 103 M� black hole and about 10 s for r = 40M. The other
cases are less extreme with the 105 M� black hole cases having
periods of roughly 200 s for r = 10M and 900 s for r = 40M; the

2 × 106 M� case orbital periods range from roughly 4000 s for
r = 10M to 19 000 s for r = 40M. Our models predict similar
timing changes for all cases. The orbital period of the Hulse–Taylor
pulsar PSR J1915+1606 is ∼27 900 s (Weisberg, Nice & Taylor
2010), so observing ms pulsars in systems like those modelled
here presents no new technological challenge for the higher mass
black holes. Since pulsars emit at a wide range of frequencies,
detection of the faster orbiting systems should not be deterred by
their rapidly changing Doppler shifts, but the analysis of the data
may be challenging.
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Our calculations have demonstrated that potentially observable
orbital dynamics of an ms pulsar (a very fast spinning neutron star)
around a massive black hole is affected by modifications to the
space–time structure that define the black hole’s gravity caused by
the spin of the pulsar. The orbital motion of an ms pulsar and the
relative geometry as viewed from Earth depend on the spin of the
black hole and on the mass ratio of the black hole and the neutron
star. The potentially observable effects should be higher for high-
inclination, low-mass black holes that have high spin rates and for
pulsars in retrograde orbits around the black holes.

4 A STRO PHYSICAL IMPLICATIONS

4.1 ms pulsars as probes to the space–time around rotating
black holes

The use of pulsars to probe the space–time around black holes has
been proposed by many workers (e.g. Wex & Kopeikin 1999; Pfahl
& Loeb 2002; Wang et al. 2009; Liu et al. 2012). Generally, the pro-
posed diagnoses involve one of two approaches. The first considers
the effects of the black hole’s presence on the propagation of the
pulsar’s beamed emission, e.g. gravitational bending/lensing (e.g.
Wang et al. 2009; Nampalliwar et al. 2013) and Shapiro time delay
(e.g. Laguna & Wolszczan 1997). The second considers the spin pre-
cession (and nutation) of the pulsar induced by spin–orbit coupling
or by the spin interaction with the black hole (e.g. Wex & Kopeikin
1999; Liu et al. 2012). In both cases, the orbital motion of the pulsar
follows a geodesic in the space–time determined by the black hole.
For a spinning object orbiting around a rotating black hole along a
geodesic, one can construct two Hamiltonians, corresponding to the
spin–orbit coupling and to the spin–spin interaction with the black
hole, respectively, in the limits of slow motion and of a large mass
ratio between the black hole and the spinning object (Iorio 2012).
For a pulsar revolving around a massive galactic black hole, these
spin–orbit and spin–spin Hamiltonians perturb the pulsar’s Keple-
rian orbit and drive the pulsar’s spin to precess. It can be shown
that with a suitable choice for the alignment of the black hole spin
vector with respect to the azimuthal axis in the reference frame of
the observer, the conventional Lense–Thirring precession of the
Keplerian orbital elements of the pulsar can be derived from the
two Hamiltonians (see Iorio 2012). However, these Hamiltonians
do not take account of the spin–curvature coupling between the pul-
sar and the black hole. Spin–curvature coupling occurs physically
because the spin of the pulsar will modify the Kerr metric of the
space–time. In the presence of spin–curvature coupling, the pulsar’s
motion does not follow a Kerr space–time geodesic and this motion
is modelled by the MPD equation (14) without explicitly modifying
the Kerr metric. Using the MPD equations to model the ms-pulsar
motion around a rotating black hole gives proper consideration to
the spin–curvature coupling. The results in Section 3 are general,
and they recover the results derived from conventional treatments
of spin–orbit coupling and spin–spin interaction between the pulsar
and the black hole, by taking appropriate limits for the parameters.
For instance, the spin precession of the pulsar due to parallel trans-
port along the geodesic can be obtained from the MPD equations
(14), (15) and (16) in the limits of λ → 0 and M/m → ∞.

Pulsar timing is potentially a powerful tool for probing the space–
time around black holes, especially in the strong gravity regime (see
e.g. the review by Cordes et al. 2004). As indicated in the studies of
Wex & Kopeikin (1999) and Liu et al. (2012), measuring the pulsar
spin precessions can determine the rotation rates of the massive
central black holes in galaxies, such as that in the Galactic Cen-

tre, with good accuracy, Thus, pulsar timing provides an alternative
to the current methods of black hole spin determination, such as
X-ray line spectroscopy. In Section 3, we have shown that the spin
interaction between the pulsar and the black hole can also cause
substantial variations in the pulsar’s orbit (see Figs 1–3) in addition
to the well-understood pulsar spin precession (and nutation). These
variations are non-negligible, and they will modify the arrival time
of the pulsar’s emission pulses. Our calculations show that the com-
plexity and the relative amplitude of the orbital variations increase
with the black hole’s rotation when other parameters are kept con-
stant. The variations are dramatic when the pulsar is in a retrograde
orbit (see e.g. Fig. 1). At certain orbital separations, complex orbital
motions occur for a wide mass range covering that of the predicted
IMBHs in globular clusters and that of the central massive black
holes in galaxies.

The spin–curvature coupling between the pulsar and the black
hole causes the pulsar to deviate from Kerr geodesic motion.
The pulsar orbits show large-amplitude complex orbital variations,
which are easily distinguishable for pulsars orbiting around low-
mass black holes because of the larger ratio of the amplitudes of
the out-of-plane to in-plane motion. Since pulsars have a very nar-
row mass range around 1.5 M� (Lorimer 2008; Steiner, Lattimer
& Brown 2010; Lattimer 2011), knowing the mass ratio between
the black hole and the pulsar is essentially the same as knowing the
black hole mass. Thus, analyses of pulse arrival time modulations
caused by the orbital variation and the precession of the ms-pulsar
spin will give us very accurate measurements of the mass as well as
the rotation rate of the black hole that the pulsar is orbiting.

4.2 Pulsars around central black holes in spheroid systems

It is believed that a large population of stellar remnants reside
in a small parsec-scale region around Sgr A∗, the compact radio
source at the Galactic Centre. On one hand, studies (e.g. Freitag,
Amaro-Seoane & Kalogera 2006) have shown that there could be
as many as 103 neutron stars within a parsec from the Galactic
Centre. One the other hand, the density profile of stars near Sgr A∗

is different from the distribution expected for a dynamically relaxed
distribution of stars near a 106 M� black hole (Bartko et al. 2010)
leading to the prediction of a somewhat lower number of neutron
stars. Some of the these neutron stars would be in binaries; thus,
they would have been spun up by accretion (Alpar et al. 1982) to
become ms pulsars. Recent observations include the Swift discovery
of a soft gamma repeater (likely a magnetar) within ∼0.1 pc of
Sgr A∗ (Kennea, Barclay & Gelino 2013; Mori et al. 2013). A
magnetar plus an undetected pulsar population might indicate lower
numbers of ordinary pulsars (Dexter & O’Leary 2014); however,
others argue that such a conclusion is premature and argue for
a population of ∼103 neutron stars in the central parsec of the
Galaxy (Chennamangalam & Lorimer 2014). The number estimate
of ∼103 neutron stars in the central parsec of the Galactic Centre is
based on models assuming the presence of 20 000–40 000 stellar-
mass black holes in the same region (see Miralda-Escudé & Gould
2000). Without this cluster of black holes, the central concentration
of neutron stars could be significantly higher (Freitag et al. 2006).
Following this line of reasoning, we would expect that galaxies
with spheroids similar to that of our Galaxy would have about
1000 neutron stars around their central black holes. Large elliptical
galaxies would have larger central neutron-star populations while
dwarf spheroidal galaxies and small elliptical galaxies would have
smaller populations accordingly. Some of the neutron stars will
inevitably fall into the central black hole in some galaxies and it is
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possible that such galaxies will have pulsars in close orbits around
their central black holes. It is also possible that some pulsars are
actually in close orbits around the central black hole in our Galaxy,
although detecting them is a great technical challenge currently (see
Bates et al. 2011). If, however, the lower mass stars have a shallow
density profile as observed in the Galactic Centre, the absence of a
BH cusp would not necessarily imply a higher density of neutron
stars (Antonini & Merritt 2012), so the distribution of neutron stars
in galactic centres should be considered very uncertain.

Globular clusters are also known to contain a large number of
neutron stars. Because of mass segregation, the majority of the
neutron stars have sunken to the cluster cores. There is evidence
that the most massive globular clusters in our Galaxy contain more
than ∼1000 neutron stars. The retention of a large population of
neutron stars in globular clusters is usually explained by models
in which the progenitor stars of these neutron stars were in binary
systems that retained the neutron stars in spite of their supernova
kicks (Drukier 1996; Pfahl, Rappaport & Podsiadlowski 2002). ms
pulsars are believed to be remnant descendants of binary systems
(Alpar et al. 1982). A substantial fraction of pulsars in the globular
clusters are in fact ms pulsars (Camilo & Rasio 2005), and 30
pulsars with spin period shorter than 10 ms have been found in the
globular cluster Terzan 5 alone (Ransom et al. 2005; Ferraro 2011).
It has long been proposed that globular clusters could contain central
black holes with substantial masses (Bachall & Ostriker 1975; Silk
& Arons 1975). Extrapolation of the the M–σ relation predicts
that the central black holes in globular clusters would have masses
Mbh ∼ 103–104 M� (see Gebhardt, Rich & Ho 2002). There are
observational claims that there are central black holes in globular
clusters (e.g. Newell, Da Costa & Norris 1976; Gerssen et al. 2002;
Maccarone 2004), but there are also studies providing alternative
explanations (e.g. Illingworth & King 1977; Baumgardt et al. 2003;
Kirsten & Vlemmings 2012). The definitive search for IMBHs in
globular clusters is still ongoing.

The high number density of neutron stars in globular cluster cores
along with a large fraction of those neutron stars being ms pulsars
implies that there is a good chance that an ms pulsar is revolving
in a close orbit around an IMBH if there is, in fact, a single IMBH
present in globular cluster cores. Moreover, there is roughly a 50/50
chance that the pulsar is in a retrograde orbit since the stars in
globular clusters do not have strong preference for direction of
rotation. As shown in our calculations, ms pulsars orbiting around
103 M� black holes should have very distinguishable dynamical
signatures. From these signatures, we can infer the mass ratio of the
two objects, and hence the black hole mass accurately, as well as
the spin of the black hole.

Conventional methods for determining the masses of black holes
in spheroidal systems, such as stellar kinematics, are not effective
for more massive black holes. In contrast, pulse timing analyses of
spin interactions between pulsars and black holes are effective for
black holes below ∼106 M�, which is complimentary to the stellar
kinematic methods. The Square Kilometre Array Telescope, to be
in operation in the near future, will discover about 20 000 pulsars in
the Galaxy of which 6000 will be ms pulsars (Smits et al. 2009). It
will also allow a systematic search for ms pulsars which are beyond
our Galaxy and the two Magellanic Clouds. This sensitivity opens
up the opportunity to use pulsar timing to measure the masses of
central black holes in the Local Group galaxies and other nearby
galaxies, and in their globular clusters. Such pulsar timing would
thus settle the disputes regarding the existence of IMBHs and prop-
erly establish the low end of the M–σ relation for central black holes
and their host spheroids. The pulsar timing of spin precession, as

shown by other workers, e.g. Wex & Kopeikin (1999) and Liu et al.
(2012), and of spin–curvature-induced orbital variations, as shown
in this work, will also provide accurate measurement of the spins
of those black holes.

The MPD equations (11)–(13) are an approximation of the gen-
eral relativistic dynamics that would occur between a spinning black
hole and a spinning neutron star. In a complete, less tractable, treat-
ment, the space–time metric of the system would be a non-linear
combination of the Kerr metric of the spinning black hole and the
Kerr metric of the spinning neutron star, and the neutron star would
move along a geodesic in such a metric. A more complete treatment
would also model gravitational radiation so we need to be assured
that the gravitational wave time-scale is much longer than the dy-
namical scale of the orbital motion in order for the MPD model
to be a good approximation. The time-scale for the change in the
orbital period Porb due to gravitational radiation is

τgw ∼ 5 a4
orb

96 mM(m + M)
f (e)−1 (19)

(see e.g. Misner, Thorne & Wheeler 1973; Fang & Ruffini 1983),
where aorb is the orbital separation and f(e) is a function of the
orbital eccentricity, which is given by

f (e) = (1 − e2)−7/2

[
1 + 73

24
e2 + 37

96
e4

]
. (20)

Setting aorb = �M, we have

τgw

Porb
∼ 5

192π

� 5/2

f (e)

(
M

m

) (
M

m + M

)1/2

. (21)

In this work, we investigated systems with 103 ≤ M ≤ 2 × 106 M�
and 10M ≤ aorb ≤ 40M, so � ∼ (10–40) and M/m > 6 × 102.
Moreover, f(e) ∼ 1. Hence, τ gw/Porb ∼ (103–108) � 1, justifying
our employment of the MPD approximation. While gravitational
radiation loss is not substantial in single pulsar timing observations,
longer term observations must take into account the gravitational
radiation effects, such as changes in the orbital period.

The MPD equations provide a simple way of modelling the sig-
nificant out-of-plane motion of a pulsar orbiting a massive black
hole. Pulsars are also known to occur in pairs or as neutron-star bi-
naries in which one of the neutron stars is a pulsar (e.g. the famous
PSR B1913+16; Hulse & Taylor 1975). So there is the possibility
that similar neutron-star binaries also orbit massive black holes.
The motion of neutron-star binaries has been analysed recently
(Remmen & Wu 2013) in the rigid mass ring current approxima-
tion. However, under circumstances similar to those modelled here,
substantial out-of-plane motion of the binary neutron star would
occur as the pair orbited the black hole.

5 C O N C L U S I O N

Signals from pulsars orbiting in the strong field of moderate to mas-
sive black holes offer a means to determine the mass and spin of
the central black hole. The non-linear nature of the general rela-
tivistic field equations Gμν = 8πTμν means that the computation
of the motion of anything more than a test particle in the strong
field near a black hole generally requires numerical methods. In
particular, the mass and spin of an orbiting neutron star will change
the space–time geometry Gμν through its stress–energy tensor Tμν .
Until now, analysis of the motion of a pulsar near a black hole and
that motion’s effect on the observed pulsar signal have considered
the motion of the pulsar as a test particle moving along a geodesic in
the Kerr space–time of a rotating black hole. The effect of the mass
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and spin in the pulsar’s stress–energy tensor on the pulsar’s motion
had not been previously considered. Here we have demonstrate that
effect through the approximation given by the MPD equations.

The MPD equations used here consider the effect of the first
two moments of the pulsar’s stress–energy tensor on the pulsar’s
motion. Our computations for the astrophysically important cases
corresponding to IMBHs and the nuclear black holes of low-mass
galactic spheroids show that the pulsar’s spin leads to significant
motion out of the usual orbital plane. The extent of the out-of-plane
motion of a 1.5 M� pulsar becomes comparable to the extent of
the orbit’s radius for black holes of masses 103 M�. This motion
therefore needs to be accounted for to properly interpret the timing
of pulsar signals from a pulsar that is closely orbiting any IMBH
that may exist in globular cluster cores. Models of observed pulsar
timing that use the MPD equations will therefore provide accurate
measurements of masses and spins of central black holes in globular
clusters and nuclear black holes in the galactic spheroids at the low
end of the M–σ relation.

AC K N OW L E D G E M E N T S

We thank Roberto Soria for discussions on the mass spectrum of
astrophysical black holes. KW’s visit to University of Saskatchewan
was supported by the University of Saskatchewan’s Role Model
Speaker and Visiting Lecturer funds.

R E F E R E N C E S

Alpar M. A., Cheng A. F., Ruderman M. A., Shaham J., 1982, Nature, 300,
728

Antonini F., Merritt D., 2012, ApJ, 745, 83
Asada K., Nakamura M., 2012, ApJ, 745, L28
Bachall J. N., Ostriker J. P., 1975, Nature, 256, 23
Baganoff F. K. et al., 2003, ApJ, 591, 891
Bartko H. et al., 2010, ApJ, 708, 834
Bates S. D. et al., 2011, MNRAS, 411, 1575
Baumgardt H., Hut P., Makino J., McMillan S., Portegies Zwart S., 2003,

ApJ, 582, L21
Bini D., de Felice F., Geralico A., 2004, Class. Quantum Grav., 21, 5441
Camilo F., Rasio F. A., 2005, in Rasio F. A., Stairs I. H., eds, ASP Conf.

Ser. Vol. 328, Binary Radio Pulsars. Astron. Soc. Pac., San Francisco,
p. 147

Chennamangalam J., Lormier D. R., 2014, MNRAS, 440, L86
Chicone C., Mashhoon B., Punsly B., 2005, Phys. Lett. A, 343, 1
Cordes J. M., Kramer M., Lazio T. J. W., Stappers B. W., Backer D. C.,

Johnston S., 2004, New Astron. Rev., 48, 1413
Deoleman S. S. et al., 2008, Nature, 455, 78
Deoleman S. S. et al., 2012, Science, 338, 355
Dexter J., O’Leary R. M., 2014, ApJ, 783, L5
Dexter J., McKinney J. C., Agol E., 2012, MNRAS, 421, 1517
Dixon W. G., 1974, Phil. Trans. R. Soc. A, 277, 59
Drukier G. A., 1996, MNRAS, 280, 498
Eckart A., Genzel R., 1997, MNRAS, 284, 576
Ehlers J., Geroch R., 2004, Ann. Phys., 309, 232
Fang L. Z., Ruffini R., 1983, Basic Concepts in Relativistic Astrophysics.

World Scientific Press, Singapore
Ferrarese L., Merritt D., 2000, ApJ, 539, L9
Ferraro F. R., 2011, in Burgay M., D’Amico N., Esposito P., Pellizzoni

A., Possenti A., eds, AIP Conf. Ser. Vol. 1357, Radio Pulsars: An
Astrophysical Key to Unlock the Secrets of the Universe. Am. Inst.
Phys., New York, p. 147

Freitag M., Amaro-Seoane P., Kalogera V., 2006, ApJ, 649, 91
Fuerst S. V., Wu K., 2004, A&A, 424, 733
Fuerst S. V., Wu K., 2007, A&A, 474, 66

Gebhardt K. et al., 2000, ApJ, 539, L13
Gebhardt K., Rich R. M., Ho L. C., 2002, ApJ, 578, L41
Gerssen J., van der Marel R. P., Gebhardt P., Peterson R. C., Pryor C., 2002,

AJ, 124, 3270
Ghez A. M., Klein B. L., Morris M., Becklin E. E., 1998, ApJ, 509, 678
Ghez A. M. et al., 2008, ApJ, 689, 1044
Gillessen S., Eisenhauer F., Trippe S., Alexander T., Genzel R., Martin F.,

Ott T., 2009, ApJ, 692, 1075
Graham A. W., Onken C. A., Athanassoula E., Combes F., 2011, MNRAS,

412, 2211
Greene J. E., Ho L. C., 2007, ApJ, 670, 92
Gültekin K. et al., 2009, ApJ, 698, 198
Hulse R. A., Taylor J. H., 1975, ApJ, 195, L51
Illingworth G., King I. R., 1977, ApJ, 218, L109
Iorio L., 2012, Gen. Relativ. Gravit., 44, 719
Iwasawa K. et al., 1996, MNRAS, 282, 1038
Kennea J. A., Barclay T., Gelino D. M., 2013, ApJ, 770, L23
Kirsten F., Vlemmings W. H. T., 2012, A&A, 542, 44
Kojima Y., 1991, MNRAS, 250, 629
Kyrian K., Semerák O., 2007, MNRAS, 382, 1922
Laguna P., Wolszczan A., 1997, ApJ, 486, L27
Laor A., 1991, ApJ, 376, 90
Lattimer J. M., 2011, Ap&SS, 336, 67
Liu K., Wex N., Kramer M., Cordes J. M., Lazio T. J. W., 2012, ApJ, 747, 1
Lorimer D. R., 2008, Living Rev. Relativ., 11, 8
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