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ABSTRACT

General relativistic magnetohydrodynamic (GRMHD) flows along magnetic fields threading a black hole can be
divided into inflow and outflow parts, according to the result of the competition between the black hole gravity and
magneto-centrifugal forces along the field line. Here we present the first self-consistent, semi-analytical solution for
a cold, Poynting flux–dominated (PFD) GRMHD flow, which passes all four critical (inner and outer, Alfvén, and
fast magnetosonic) points along a parabolic streamline. By assuming that the dominating (electromagnetic)
component of the energy flux per flux tube is conserved at the surface where the inflow and outflow are separated,
the outflow part of the solution can be constrained by the inflow part. The semi-analytical method can provide
fiducial and complementary solutions for GRMHD simulations around the rotating black hole, given that the black
hole spin, global streamline, and magnetizaion (i.e., a mass loading at the inflow/outflow separation) are
prescribed. For reference, we demonstrate a self-consistent result with the work by McKinney in a quantitative
level.
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1. INTRODUCTION

Relativistic jets emerging from accreting black hole systems
have been observed in active galactic nuclei (AGNs), micro-
quasars (stellar mass black hole X-ray binaries), and
presumably gamma-ray bursts (GRBs). Observationally, the
bulk Lorentz factors Γ of jets in AGNs are 10 − 20 (Jorstad
et al. 2005; Cohen et al. 2007; Gu et al. 2009; Pushkarev
et al. 2009; Lister et al. 2013), and the values could be higher
for some blazars (see Krishna et al. 2006; Hovatta et al. 2009).
The Lorentz factors of micro-quasar jets are lower, mostly with
G ~ -2 10 (e.g., Corbel et al. 2002; Fender et al. 2004), but
still there are a few found to have G > 10 (see Miller-Jones
et al. 2006). Jets in gamma-ray bursters are supposed to be
ultra-relativistic, and their Lorentz factors can be as high as
~ -100 1000 (see, e.g., Lyubarsky 2010; Lyutikov 2011).
How jets become relativistic after being launched from nearby
black holes is a long-standing issue. Electromagnetic or
magnetohydrodynamic (MHD) mechanisms are frequently
invoked to extract energy and momentum from the black hole
and accretion disk (e.g., Meier et al. 2001, for reviews). One of
the key issues to be addressed is the potential of the MHD flow
acceleration up to a high bulk Lorentz factor of G > 10.

An ideal engine to power relativistic jets is a spinning black
hole. Close to the black hole, the rapid winding of the
azimuthal component in large-scale magnetic fields due to the
frame-dragging inside the black hole ergosphere results in a
counter torque (induced by the Lorentz force) against a black
hole rotation. The energy that the black hole spent to perturb
the field line can be propagated outward in the form of torsional
Alfvén waves, thus extracting the black hole energy electro-
magnetically (Blandford & Znajek 1977, hereafter BZ77).
However, because the environment around an accreting black
hole is not a perfect vacuum (contrary to the force-free
treatment in BZ77), the general relativistic magnetohydrody-
namics (GRMHD), which consist of electromagnetic and fluid

components, provide a more general picture for the dynamics
and structures of relativistic jets in both theoretical approaches
(e.g., Camenzind 1986a, 1986b, 1987; Takahashi et al. 1990;
Fendt & Camenzind 1996; Fendt & Greiner 2001; Fendt &
Ouyed 2004) and numerical simulations (e.g., Koide
et al. 1998, 2000; Mizuno et al. 2004; McKinney &
Gammie 2004; Hawley & Krolik 2006; McKinney 2006;
Beckwith et al. 2008; Tchekhovskoy et al. 2010, 2011;
Tchekhovskoy & McKinney 2012).
The overall configuration of an accreting black hole system

is schematically illustrated in Figure 1 (see also GRMHD
simulations for magnetized accretion, e.g., McKinney 2006;
McKinney & Gammie 2004; Hawley & Krolik 2006). Ordered,
parabolic lines are developed near the funnel, which is confined
by the corona and/or accretion flow. Due to the relative absence
of accreting materials, the funnel region is Poynting flux-
dominated (PFD). The fluid loading onto the field is
accelerated inward (or outward) if the black hole gravity force
is larger (or smaller) than the “magneto-centrifugal” forces
(e.g., Saḑowski & Sikora 2010, in the case of the accretion
disk). As pointed out in the theoretical work of Takahashi et al.
(1990), black hole rotational energy can be extracted outward
by a PFD GRMHD inflow. This is a direct result of the
electromagnetic components dominating the GRMHD flow,
and the electromagnetic component is responsible for extract-
ing the black hole energy, similar to the BZ77 process. The
outward energy flux, after being extracted from the black hole,
is expected to propagate continuously outward throughout the
magnetosphere from the inflow region to the outflow one. In
this paper, we focus on the PFD GRMHD flow in the funnel
region, including both the inflow and outflow parts.
For comparison, let us quickly consider the case when the

GRMHD flow becomes fluid-dominated. In that case, the
energy flux is dominated by the fluid component, and therefore
has an inward direction for inflow, but outward for outflow (see

The Astrophysical Journal, 801:56 (11pp), 2015 March 1 doi:10.1088/0004-637X/801/1/56
© 2015. The American Astronomical Society. All rights reserved.

1

http://dx.doi.org/10.1088/0004-637X/801/1/56


the energy flux direction shown in Figure 1). Such disconti-
nuity of the energy and momentum fluxes implies that the
outflow is accretion-powered, which is constrained by the
energy input from the disk/corona. The switch-on and switch-
off of the extraction of the black hole energy (inflow) may
closely relate to the launching and quenching of relativistic jets
(outflow) (e.g., Pu et al. 2012; Globus & Levinson 2013).

Prior to the GMRHD studies mentioned, Phinney (1983)
considered the inflow and outflow along a monopole field
jointly by the conservation of the total energy flux per flux
tube. In this pioneering work, they consider energy extraction
from the black hole via BZ77 process (the inflow part), and the
Michelʼs “minimum torque solution” (Michel 1969), in which
the fast(-magnetosonic) point is located at infinity (the outflow
part). We, however, suggest that a more realistic situation can
be considered: the black hole energy extraction process in the
framework of GRMHD, and a type of parabolic GRMHD flows
as a result of external pressure confinements provided by the
corona/accretion. Recent observational evidence also supports
this idea; nearby active radio galaxy, M87, exhibits the
parabolic streamline up to ~105 Schwarzschild radius (Asada
& Nakamura 2012).

Furthermore, we are interested in the case that the fast point
of the outflow is located at a finite distance. This consideration
is directly related the conversion from Poynting to kinetic
energy fluxes of the flow and therefore the jet acceleration.
Poloidal magnetic flux is required to diverge sufficiently
rapidly in order for most of the Poynting flux to be converted
into the kinetic energy flux beyond the fast point (also known
as the magnetic nozzle effect; e.g., (Camenzind 1989; Li
et al. 1992; Begelman & Li 1994; Takahashi & Shibata 1998).

Beskin & Nokhrina (2006) examine the acceleration of the
jet along a parabolic streamline by introducing a small
perturbation into the force-free field. As a result, the fast point
is located at a finite distance. This indicates how plasma
loading in the flow plays a role in accelerating the flow, as well
as a conversion from Poynting to kinetic/particle energies.
They consider the behavior of the outflow in the flat spacetime.
However, we are interested in both the inflow and outflow near
a black hole.
All of these theoretical works provide important pieces

toward a picture that includes the following process along the
field line: (i) in the inflow region the rotational energy of the
black hole is extracted outward by the GRMHD inflow, (ii) at
the the inflow/outflow separation surface the extracted energy
flux is carried out continuously, and (iii) in the outflow region
the flow passes the fast point, and hence the bulk Lorentz factor
increases. Although this picture has already been recognized in
the quasi-steady state in GRMHD simulations (e.g., McKinney
& Gammie 2004; Hawley & Krolik 2006; McKinney 2006), no
steady solution is available in the literature.
In this paper, we present the first semi-analytical work. We

consider the energy extraction from the black hole via the
GRMHD (inflow), and the perturbed force-free parabolic field
line in Beskin & Nokhrina (2006) (outflow). With given black
hole spin, field angular velocity, and magnetization at the
separation surface, we are able to to constrain the outflow
solution by the inflow solution. For reference, we adopt similar
parameters reported in the GRMHD simulation of McKinney
(2006; hereafter M06). Our semi-analytical solution passes all
the critical points (inner and outer, Alfvén, and fast points), and
agrees with the inflow and outflow properties along a mid-level
field line in M06.
The paper is organized as follows. In Section 2, we outline

the GRMHD formulation and the wind equation (WE). In
Section 3, with the consideration of the conservation of energy
flux in inflow and outflow region near the separation surface,
we discuss the matching condition to connect the inflow and
outflow part of a PFD GRMHD flow. In Section 4, we
introduce our model setup. We adopt similar parameters to
those reported by M06, and compare the solution obtained by
the matching condition with that of the time-averaged GRMHD
numerical simulation results in M06. Finally, a summary is
given in Section 5.

2. STATIONARY AXISYMMETRIC MHD
FLOW IN A KERR SPACETIME

2.1. Basic Formulae

The theory about stationary and axisymmetric ideal
GRMHD flows has been in several works
(Camenzind 1986a, 1986b, 1987; Takahashi et al. 1990; Fendt
& Camenzind 1996; Fendt & Greiner 2001; Fendt & Ouyed
2004). For completeness, in this section we summarize and
present the necessary formulae for this paper.
The natural unit system is used throughout this work. As

c = G = M = 1, the gravitational radius = =r GM c 1g
2 ,

where c is the speed of light, G is the gravitational constant,
and M is the mass of the black hole (conversions from the c.g.
s. units to the natural units for the physical variables here can
be found in Tables 3 and 4 in Pu et al. 2012). The flows occur
in a background Kerr spacetime, which is stationary and
axisymmetric. For a metric signature - + + +[ ], the Kerr

Figure 1. Schematic illustration of a Poynting flux–dominated (PFD) GRMHD
flow confined by the accretion flow and its corona. The outward-streaming
curves indicates ordered, large-scale magnetic fields that thread the black hole
event horizon. The inflows and the outflows (represented by thick white
arrows) are along the field lines, and are separated by the separation surface
(marked by a dashed line). The energy flux (represented by a gray arrow) is
outward in both the inflow and outflow regions, as the black hole rotational
energy is extracted and transported outward. The static limit (dashed curve)
and the light surface (solid curve) outside the black hole (black region) are also
shown.
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metric (in Boyer–Lindquist coordinates) reads

q q
f

q
f q
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S
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where ºa J is the angular momentum of the black hole,
D º - +r r a22 2, qS º +r a cos2 2 2 , and

qº - + A r a a( ) sin2 2 2 2 2 .
We also assume that the flow is cold. For a highly-relativistic

flow, the thermal pressure p is insignificant compared with the
rest-mass energy density and the kinetic energy density in the
fluid, and hence the cold limit is justified.

The flow is magnetized and the stress–energy tensor of the
fluid has two components:

= +n n nT T T , (2)μ μ μ
FL EM

where the fluid component is given by

r=n nT u u , (3)μ μ
FL

and the electromagnetic component by

=
æ
è
ççç -

ö
ø
÷÷÷

n g
g
n n ab

abT
π

F F g F F
1

4

1

4
, (4)μ μ μ

EM

where uμ is the four-velocity of the fluid and ρ is the rest-mass
energy density. The electromagnetic field tensor nFμ satisfies
Maxwellʼs equations, and the proper number density n ( r= m;
where m is the rest-mass of the particles) satisfies the mass
continuity equation.

Under the ideal MHD condition, a stationary and axisym-
metric flow obeys four conservation laws:

=( )nu 0, (5)μ
μ;

=nF u 0. (6)μ
μ

x =n
n( )T 0, (7)μ

μ

;

h =n
n( )T 0, (8)μ

μ

;

where x = ¶ ¶tμ and h f= ¶ ¶μ are the Killing vectors. These
conservation equations (Equations (5)–(8)) give four con-
served quantities along a streamline. By denoting the poloidal
stream function as qY r( , ), they are: (i) the angular velocity of
the field line, YΩ ( )F ; (ii) the particle number flux per unit
magnetic flux (mass loading), h Y( ); (iii) the total energy of the
flow per particle, YE ( ); and (iv) the total angular momentum
per particle, YL ( ) (Camenzind 1986a, 1986b, 1987; Takahashi
et al. 1990):

Y = =
f

q

qf

F

F

F

F
Ω ( ) , (9)F

tr

r

t

h Y =
-

= -
-

=
- -

qf

q

f

q

( )

g nu

F

g nu

F
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F
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Ω Ω
, (10)

r

r

t
F

r

h

h

Y = +

=- - -

=- -

q

f

E E E

μu
π

g F

μu
π

B

( )
Ω

4
Ω

4
, (11)

t
F r

t
F

FL EM

h

h

Y = +

= - -

= -

f
q

f
f

L L L

μu
π

g F

μu
B

π

( )
1

4

4
, (12)

r

FL EM

with q- = Sg sin . Here, = fu uΩ t is the fluid angular
velocity and μ is the relativistic specific enthalpy, which
becomes m in the cold limit. The covariant magnetic field
observed by a distant observer with =nu (1, 0, 0, 0) is given
by

º n ab
ab nB F u

1

2
, (13)μ μ

and its toroidal component is given by

q= - = D Sf
q

qB g F F( ) sin , (14)r
r

where n ab= -n ab g μ[ ]μ is the Levi-Civita tensor, and
n abμ[ ] is the completely antisymmetric symbol (see the
Appendix).
The outward energy flux in the flow is

= - = T nEu , (15)r
t
r r

and the outward angular momentum flux is

= - =f T nLu . (16)r r r

Splitting them into fluid (i.e., EFL and LFL) and the
electromagnetic components (i.e., EEM and LEM) gives

q

= +
= +

=- -
S

f
f q

  
nE u nE u

nμu u
π

B
A

Ω

4 sin
, (17)

r r r

r r

t
r F

FL EM

FL EM

,

and

= +
= +

=- +f

  


nL u nL u

nμu u
Ω

. (18)

r r r

r r

r
r

F

FL EM

FL EM

EM

As initially proposed by Takahashi et al. (1990), the case of
> 0r for inflow (which requires a negative total energy) is

known as the MHD Penrose process. For later studies, the term
is instead used to indicate a negative energy orbit of the fluid
component, > 0r

FL (e.g., Hirotani et al. 1992; Koide
et al. 2002; Semenov et al. 2004; Komissarov 2005; Koide &
Baba 2014).
The bulk Lorentz factor of the flow for a distinct observer

can be defined by

G = -g u . (19)tt
t

If all the energy in the Ponyting flux is converted to the fluidʼs
bulk (kinetic) energy at a large distance, the terminal Lorentz
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factor will be

r
G = =¥

E

μ u
. (20)

r

r

In addition, the angular velocity of the fluid at a large distance
will be

r
= =f

¥


u
L

μ u
. (21)

r

r

Equations (20) and (21) therefore provide the upper limit of
the terminal Lorentz factor and angular velocity of the fluid at
large distances.

2.2. Wind Equation

The streamline of the flow is represented by the function
qY =r( , ) const. The WE (i.e., the relativistic Bernoulli

equation) describing the fluid motion along the streamlines
can be obtained using the normalization condition = -a

au u 1.
The WE therefore has the form:

q+ =
æ

è
ççç

ö

ø
÷÷÷÷

u
E

μ
U r1 ( , ), (22)p g

2
2

where the poloidal component of the four-velocity is given by

=u u u , (23)p
j

j
2

with the summation over the poloidal indices q=j r{ , }. The
term qU r( , )g in the right-hand side of Equation (22), which is
evaluated along the magnetic field line in the calculation, is
related to the conserved quantities, and its explicit expression
depends on the assumed background spacetime (see Camen-
zind 1986a, 1986b, 1987; Fendt & Camenzind 1996; Fendt &
Ouyed 2004 for the Minkowski and Schwarzschild spacetimes;
and Takahashi et al. (1990); Fendt & Greiner (2001) for the
Kerr spacetime).

In a Kerr spacetime, we obtain

q =
- -

-( )
U r

K K K M K M

M K
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2
, (24)g

A A
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0 2 2
2

4
4

2
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(Takahashi et al. 1990), where
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The Alfvén Mach number MA is given by
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where the re-scaled poloidal field is
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Along the streamline several characteristic surfaces can be
defined. Their definition and properties are summarized in the
Appendix.
The conserved quantities E, L, and η can be expressed in

terms of three system parameters: (i) the launching point of the
flow, r ; (ii) the location of the Alfvén surface, rA; and (iii) the
magnetization parameter at the launching point, s. Explicitly,
the relations are

= -
+

+
f ff

f

L

E

g g

g g

Ω

Ω
, (30)

t F

tt t F
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1
, (32)

p
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2

where =E E μ˜ , the flux functionF = -B gp , andF denotes
that it is evaluated at = r r . In terms of these parameters, the
Mach number can be written as

s
=

é

ë
ê
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ù

û
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ú

M
μ

m
u g

f
, (33)A p

1 2

where = F Ff . Note that =u 0p at = r r has been assumed
in deriving the relation (31). In addition, the relation (32)
implies that knowing the mass loading η is equivalent to
knowing the s.
In the cold limit, the WE is a polynomial equation of 4th

order in up:

å =
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where s= - C g f2 (Fendt & Greiner 2001).

3. MATCHING CONDITION OF THE
INFLOW AND OUTFLOW

In the work of Phinney (1983), the matching of the inflow
and outflow parts of the flow is constrained by the conservation
of the energy flux per magnetic flux in the inflow and outflow
region

h h=E E( ) ( ) . (35)inflow outflow

4
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Remember that η and E of the inflow and outflow are both
constant.

Consider Equation (35) at the separation surface, rs, for PFD
flow ( » E E EEM FL), we further consider

h h=- +( ) ( )E E( ) ( ) , (36)inflow EM outflow EM

to be the matching condition of the inflow and outflow. The
superscripts “−” (or “+”), respectively, denote the physical
value computed at the location very close to rs in the inflow (or
outflow) region, that is,  -r rs (or  +r rs ). After some
algebra, Equation (36) can also be expressed as

=- + ( ) ( ) , (37)r r
EM EM

or

=f f
- +( ) ( )

π
B

π
B

Ω

4

Ω

4
. (38)F F

Equation (37) implies that the matching condition we adopt is
equivalent to the statement: the outward Poyting energy flux is
continuous at the separation surface.5 Equation (38) reveals
that such condition guarantees that the toroidal field is
continuous at the separation point, provided that ΩF is the
same constant in the inflow and outflow region.

It is interesting to note that the matching condition does not
require that η or EEM should be continuous when crossing
=r rs. That is, if we define

d
h
h

s
s

º = =
+

-

+

-




( )
( )
E

E

( )

( )

( )

( )
, (39)inflow

outflow

EM

EM

δ is not necessary for unity. The last relation in Equation (39)
is obtained with the help of Equation (32). Nevertheless, the
outflow can still be properly constrained by the inflow even
with the uncertainty of δ.

Consider a flow along a prescribed, hole-threading poloidal
field line with some specific angular velocity field. Znajek
(1977) showed that, due to the regularity requirement at the

event horizon, = + -+r a1 1 2 , the derivative of the stream
function Ψ is finite and fB satisfies

q q
q

= -
+

+
- Yf q+

+

+
( ) ( )B r

r a

r a
, sin

cos
Ω Ω , (40)H F

2 2

2 2 2 ,

where ΩH is the angular velocity of the hole. As a result, f
-B( )

is insensitive to different value of s -
( ) ( »f

-B( ) const.). From
dynamical point of view, this can be understood by the fact that
the fast point of a PFD GRMHD inflow is always located close
to the black hole event horizon (Appendix).

For outflow, however, there is no constraint at infinity, and
therefore f

+B( ) depends on s +
( ) more strongly. Again, from a

dynamical point of view, the relatively strong dependence can
be understood by the fact that the fast point of the outflow can
vary from finite distance to infinity. Because the uncertainty of
the δ is introduced by the uncertainty of s -

( ) , instead of s +
( )

(see also Section 4.2), the outflow can still be well constrained.
The matching condition then constrains the outflow by singling
out the outflow solution that satisfies =f f

- +B B( ) ( ) .

4. FLOW ALONG A PARABOLIC FIELD LINE WITH A
FINITE-DISTANCE FAST POINT

4.1. Model Setup

In general, the field configuration should be consistently
determined by solving the trans-field equation (i.e., the Grad–
Shafranov equation). The trans-field equation in cold limit
involves the stream function Ψ, and the derivative of the
conserves quantities, Yd dΩF , h Yd d , ydE d , ydL d (Nitta
et al. 1991; Beskin & Par’ev 1993). However, solving the
trans-field equation analytically is very challenging and beyond
the scope of this paper.
On the other hand, we are interested in the case where the

fast point of the outflow is located at a finite distance. It is
therefore essential to consider an additional modification on the
original force-free field line due to the MHD flow. We leave a
better consideration of field configuration for a future work,
and adopt the streamline function in Beskin & Nokhrina (2006)
as the prescribed parabolic field

Y = Y + f , (41)0

where Y0 is the the flat spacetime parabolic force-free field
generated by the toroidal surface current distribution,
= +I C πr r4 (1 Ω )F

2 1 2, on equatorial plane (Blandford 1976;
Lee & Park 2004),

qY = -- ( )πC
r cos

Ω
sinh Ω (1 ) , (42)

F
F0

1

and

q=   f πC rΩ sin , 1 (43)F

is the perturbation introduced by the MHD effect. The constant
C is assumed to be unity. Note that by the help of the relation

= + +- x x xsinh ( ) ln ( 1 )1 2 , Y0 is proportional to
q-r (1 cos ), which is the same as the dominating term of

the parabolic field in BZ77.6 In addition,  =B· 0 is
guaranteed. It is shown in Beskin & Nokhrina (2006) that,
although Y  f 10 on the (outer) fast surface, the perturba-
tion method is not applicable beyond the fast point. As a
result, we can only discuss the flow solution up to the outer fast
point.
The following assumptions for a PFD GRMHD flow along a

hole-threading field line are considered. First, we assume
=r rs. The assumption of =r rs and =∣ u 0p r ensures up

has a smooth transition from <u 0p (inflow) to >u 0p

(outflow). Second, to guarantee the flow is PFD, we require
s  1 (see also section 3.4.1 of Fendt & Greiner 2001 for an
estimation) and  1. Furthermore, we assume ϵ is constant
along field lines. The higher the value of s, the more
magnetically dominated the flows are.
Among the parameter space we seek the parameter set

h E L{Ω , , , }F , which gives a similar time-averaged GRMHD
simulation result in M06 for comparison. We therefore focus
on a spinning black hole with its dimensionless spin =a 0.9

5 c.f. Equation (35) gives =- + ( ) ( )r r .

6 Due to a similar toroidal surface current distribution, =I C πr4 on the
equatorial plane, the parabolic force-free field around a black hole considered
in BZ77, q q qY = - + + - +r{ (1 cos ) 2(1 cos )[1 ln(1 cos )]}

C

2
, also

follows qY µ -r (1 cos ) at large distance. This is one of the solutions of
the source-free Maxwell equation in Schwarzschild spacetime,

Y + Y =
q q

q
q

- ( )( ) 0r
r

r r

(1 2 )

sin ,
,

1

sin
,

,
2

; while Equation (42) is one of the

solutions of the source-free Maxwell equation in flat spacetime,
Y + Y =

q q
q q( ) ( ) 0r r

r

1

sin , ,
1

sin
, ,2

.
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and a field line that threads the event horizon at mid-latitude,
q = 60 . As mentioned in Section 2.2, the set h E L{Ω , , , }F
can be equivalently determined by s r r{Ω , , , }F A . We adopt

=r rs (assumed) and =Ω 1 2 ΩF H (similar to the result of
M06) in both inflow and outflow region. Then we determine s
and rA (note that once rA is determined, the location of the fast
surface is determined accordingly) by the constraint (i)

~E E( ) 10EM FL
2 near the separation surfacesimilar to the

case in M06,7 and (ii) the matching condition.
We note that »Ω 1 2 ΩF H is self-consistently obtained in a

steady PFD GRMHD flow solution for a monopole field
geometry (Beskin & Kuznetsova 2000), while it may not be
relevant for a parabolic field geometry. BZ77 examined the
parabolic streamline in which ΩF decreases when shifting the
angle from close to the pole to equatorial plan. In M06, the field
geometry becomes almost monopolar in the vicinity of the
horizon, so that »Ω 1 2 ΩF H is observed along the field line
(see also Beskin 2009). In the present paper, although the
parabolic field is prescribed as a global field geometry, we
nevertheless adopt the constant value of 1 2 ΩH in our fiducial
solution for convenience.

4.2. Matching the Inflow and Outflow

Consistent solutions for PFD inflow and outflow along a
field line are obtained iteratively until the matching condition is
satisfied. For each s, because ΩF (=Ω 2H ) and r (determined
by where ¢ =K 00 along the field line; see the Appendix) are
known, we can solve WE (Equation (34)) for the flow solution
by requiring the physical solution to pass through the fast
surface. For example, for the case = 0.065, the profiles of

f
-B( ) and f

+B( ) as a function of s -
( ) and s +

( ) , respectively,
are shown in Figure 2.

A consistent inflow/outflow solution exists when a suitable
set s s- +  ( , ( ) , ( ) ) is applied. As mentioned in Section 3, the
tendency is for »f

-B( ) const. to result in multiple choices of

s -( ) such that =f f
- +B B( ) ( ) is satisfied. This leads to certain

amount of freedom for choosing the value for δ. For simplicity,
d = 1 is assumed, so s s s= =- +∣  ( ) . We can read from
Figure 2 that =f f

- +B B( ) ( ) is satisfied when
s =  ( , ) (0.065, 13700).

By the same method, for any specific value of ϵ (or s), there
is a corresponding s (or ϵ) that satisfies the matching
condition. The quantitative relation shows that as s increases,
ϵ also increases. This implies that, because there is more mass
loading onto the field, the field progressively bunches up
toward the rotational axis of the black hole. Finally, after s is
chosen by the matching condition, the parameter set

s r r{Ω , , , }F A of the inflow/outflow part of the solution is
uniquely determined. The relaxation of the assumption d = 1 is
discussed at the end of Section 4.3.2.

4.3. Self-Consistent Inflow/Outflow Solution

4.3.1. Flow Properties

We adopt the parameter set s =  ( , ) (0.065, 13700) as
the fiducial model parameters, because the resulting flow
solution satisfies our requirement ~∣ E E( ) 10rEM FL

2 (Sec-
tion 4.1). The conserved quantities, h E L{Ω , , , }F , of our
fiducial flow solution are shown in Table 1. The mass loading η
changes sign according to ur and Y q, (Equation (10)) in inflow
and outflow regions. Because the sign has no specific meaning,
the absolute value h∣ ∣ is shown. By the assumption d = 1,
h h=∣ ∣ ∣ ∣( ) ( )inflow outflow (Equation (39)).
In the inflow region ( <u 0r ), both E < 0 and L < 0 indicate

that the energy and angular momentum of the black hole is
extracted outward ( > 0r and > 0r ). E μ of the outflow
gives the maximum possible value of the terminal Lorentz
factor (Equation (20)). Although =- +E E( ) ( )EM EM under the
assumption d = 1, the absolution value of = +E E EEM FL for

Figure 2. Toroidal field, fB , as a function of magnetization parameter, s, near the separation surface, rs for the inflow (left) and outflow (right) part of the solution.
The superscript “−” and “+” denote the value computed at  -r rs and  +r rs , respectively. The matching conditions constrain the outflow by the inflow; that is,
singling out the outflow solution that satisfies =f f

+ -B B( ) ( ) (see Sections 3.2 and 4.2). When d = 1 ( s s=- +
 ( ) ( )  13700), the matching condition is always

satisfied.

Table 1
Conserved Quantities of the Fiducial Flow Solutions

a = 0.9
( = 0.065, s  13700)a with d = 1

Inflow Outflow

h Y∣ ∣ m( ) ´ -7 10 5

YE μ( ) - 112 114
YL μ( ) - 720 724
YΩ ( )F 0.157

Note.
a A consistent inflow/outflow solution is obtained when a suitable set s ( , ) is
applied, such that the matching condition is satisfied (see Sections 3 and 4.2).

7 In top panel of Figure 7 of M06 G G¥ ¥
(EM) (MA) is ~103 (see M06 for

definitions), which is equivalent to ~E E 10EM FL
2 in terms of the definition in

this paper. Note that our definition of EEM is π4 smaller than G¥
(EM) used in

M06. The factor of π4 is absorbed into the definition of nF μ in M06.
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the inflow is slightly smaller than the value for the outflow.
This is because, in the inflow region, the fluid component EFL
(or LFL) has an opposite sign with the electromagnetic
component EEM (or LEM), partly canceling the electromagne-
tically extracted energy (or angular momentum); whereas in
the outflow region, the fluid and electromagnetic components
have the same sign, both carrying the energy and angular
momentum outward. The general properties of different
physical components for PFD inflows and outflows are
provided in Table 2.

The extraction of black hole rotation energy by the GRMHD
inflow is also indicated by the location of the inflow Alfvén
surface. A remarkable feature in GRMHD is the existence of a
negative energy region; once the Alfvén surface of an inflow
resides inside such a region, the black hole energy is extracted
outward (Takahashi et al. 1990). The inner boundary of the
negative energy region is the inner light surface, and the outer
boundary is defined by + =fg g Ω 0tt t F . Thus, the region must
be inside the ergosphere, where gtt > 0. As the flow becomes
increasingly PFD, the location of the Alfvén surface moves
toward the light surface, finally entering the negative energy
region (see the Appendix). For PFD GRMHD inflow, the fast
surface is located very close to, and almost coincides with, the
black hole event horizon. This is why the PFD inflow solutions
are all similar, as mentioned in Section 3. In Figure 3 we plot
the locations of the Alfvén surface and fast surface of the flow,
which share the same features mentioned previously.

4.3.2. Radial Structure

Let us now show the fiducial flow solution up to the fast
surface in Figure 4, and compare the result (especially Figures
7 and 8) in M06. The top panel of Figure 4 shows the opening
angle of the prescribed field, which roughly follows a single
power law q µ -r 0.52, which is in general more collimated
compared to the result of M06. The locations of the
characteristic surfaces overlap onto the profile. The Alfvén

surfaces are located close to the light surfaces, and the inner
fast surface is located close to the horizon. Note that in M06 the
opening angle has different slope at a different radial range (see
Figure 10 of M06). Instead, our prescribed field line follows a
single power law. Nevertheless, with similar requirements at
the separation surface ( ~∣ E E( ) 10rEM FL

2), the fast surface of
the outflow is located at several hundred rg from the black hole,
which is similar to the result of M06.
The second panel of Figure 4 shows the profiles of the

electromagnetic energy component EEM and the fluid energy
component EFL (both normalized by μ), and the Lorentz factor
G. Inside the ergosphere, gtt < 0, G is ill-defined. Therefore,
only the profile segments outside the ergosphere are plotted. At
large distances,  -g 1tt , G  - =u E μt FL . In addition, for
a PFD flow, » E E EEM FL when launching, so the
maximum possible value of the terminal Lorentz factor,
G = »¥ E μ E μEM near the separation surface. As a result,
the profile of Γ along the streamline is therefore related to
the conversion from EEM to EFL. In the acceleration region
( r50 g), Γ roughly followsµr0.6, which is similar to the result

of M06, and the analytical result of G µ r0.5 obtained in Beskin
& Nokhrina (2006). It is expected that a further acceleration
takes place beyond the fast surface due to the magnetic nozzle
effect (e.g., Camenzind 1989; Li et al. 1992). The conversion
efficiency from Poynting to kinetic energy, which can be
approximated by G G¥, is closely related to the location of the
fast surface. For example, when the fast surface is located at
infinity, G G »¥ 0. For the outflow solution, G G¥  0.1 up to
the fast surface, which is located at~ r300 g. It is also interesting
that the flow has already reached modest Lorentz factors
(G ~ 5) at the fast surface, and most of the Poynting energy
has not yet been converted to kinetic energy. Note that, despite
the final value of Γ at the fast surface is similar to the result in
M06, the Poynting energy in M06 at fast surface has already
experienced a significant decay (more than one order of
magnitude) up to the fast surface. The reason why the fluid
energy is not correspondingly increasing may be due to
dissipative processes. In the inner region beneath the separation
surface, - = u E μ 1t FL , as expected because the fluid is
strongly bounded by the black holeʼs gravity. In the outer
region beyond the separation surface, - >u 1t , which implies
that the fluid is unbound and an outflow occurs.
Similar to the energy conversion between the fluid and the

electromagnetic components, the increase of the fluid compo-
nent of the angular momentum LFL is at the expense of the
electromagnetic component of the angular momentum LEM.
The profiles of LFL and LEM (normalized by μ) are shown in
the third panel of Figure 4. Again, the profile of the fluid
component = fL μ uFL is consistent with result of M06, but
the decreases of the Poynting component in the simulation are
much larger than our semi-analytical solution.
The radial and polar components of the four-velocity of the

flow, ur and qu , can be calculated from Equations (10) and (23),
with up determined by the WE. The other two components of the

four-velocity, ut and fu , can be obtained by solving

- + = -f( )μ u u E LΩ Ω , (44)t F F

subject to the normalization = -a
au u 1. The velocity compo-

nents ur and qu change signs across =r rs, while the velocity
components fu and ut remain positive in both the inflow and
outflow regions. The angular velocity of the fluid, = fu uΩ t,

Table 2
Properties of PFD GRMHD Flow Along the Same Hole-Threading Field Line

Inflow Solution Outflow Solution

ur <0 >0
qu >0 <0
fu >0 >0
ut >0 >0

E = EFL + EEM <0 >0
EFL >0 >0
EEM <0 >0

L = LFL + LEM <0 >0
LFL >0 >0
LEM <0 >0

 r = FL
r + EM

r >0 >0
a r

FL <0 >0
 r
EM >0 >0

Note.
a For a stationary GRMHD inflow solution along a hole-threading field line, 
r
FL < 0 is satisfied. In contrast, for an inflow along a non-hole-threading field
line during transient phase,  r

FL > 0 is possible (e.g., Koide et al. 2002;
Komissarov 2005).
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which follows the black holeʼs rotation, is however always
positive along the magnetic field line. At the separation surface,

= =qu u 0r , and hence =Ω ΩF .
The radial and toroidal components of the orthonormal

velocity at large distance are given by

=u g u¯ , (45)r
rr

r

=f
ff

fu g u¯ (46)

as shown in the fourth panel of Figure 4. The profile of ūr is
quite similar to the result in M06, but fū has a relatively steeper
profile compared to the simulation result. We suppose that this
is related to the field configuration beyond the fast point, where
we are not able discuss in current prescribed field
configuration.

The orthonormal components of the magnetic fields at a
large distance can be defined by

=B g B¯ , (47)r
rr

r

=f
ff

fB g B¯ . (48)

Note that B̄r is given initially when solving the WE, and fB̄ ,
which is not initially known, can be determined after solving
the WE. The bottom panel of Figure 4 shows the profile of the
pitch angle, f- ∣ ∣B Btan ( ¯ ¯ )r1 . Because Br and fB are both
functions of gtt (see the Appendix), they quickly decrease and
change sign when entering the ergosphere ( >g 0tt ). As a

result, ∣ ∣B̄r and f∣ ∣B̄ are ill-defined close to the black hole, and
we only plot the profile in the region where <g 0tt . The reason
why the pitch angle profile in M06 does not have this problem
should be related to the definition of the field. The explicit
form of the magnetic field we adopt is provided in the
Appendix. Nevertheless, at far region (e.g., the outflow
region), spacetime becomes more flat and the differences of
the definition are less important, our result agrees with the
result of M06. The locations where = f∣ ∣ ∣ ∣B B¯ ¯r are close to the
light surface. At a large distance, ∣ ∣B̄r is well-described by

» f
ff∣ ∣ ∣ ∣B B R g¯ ¯r

L , where =R 1 ΩFL , as also obtained
in M06.

At the end of this section, we discuss how the flow solution
would change if we adopt a δ, which also satisfies the matching
condition, but does not equal to unity. Keep in mind that the
outflow solution is well constrained by the matching condition,
and the uncertainty of δ is due to the degeneracy of the inflow
solutions (Section 3). As a result, the outflow solution will
remain the same if a different value of δ is adopted. For the

Figure 3. Characteristic points of a fiducial PFD GRMHD inflow. Toward the
black hole: Alfvén surfaces (filled cyan triangles), light surfaces (empty green
circles), and fast surfaces (filled blue squares). The event horizon and static
limit (the outer boundary of the ergosphere) are shown by the thin solid and
dashed lines, respectively. Field lines are represented by the thick solid line.
The Alfvén surfaces are located inside the the negative energy region (shaded
region), implying that the black hole energy is extracted outward.

Figure 4. Fiducial PFD GRMHD flow solution properties along a field line.
Top panel: jet opening angle of the prescribed field. Location of characteristic
surfaces are also shown: separation point (plus sign), light surfaces (empty
circles), Alfvén surfaces (filled triangles), and fast surfaces (filled squares).
The thin vertical line indicates the angular profile of the static limit (gtt = 0).
Second panel: electromagnetic energy component (upper solid line), EEM, and
fluid energy component (lower solid line), EFL, of the total energy
= = +E const E E. EM FL, in unit of fluid rest-mass energy. The profile of Γ

is shown only when gtt < 0 (dashed line). Third panel: electromagnetic (upper
solid line), LEM, and fluid (lower solid line), LFL components of total angular
momentum, = = +L L Lconst. EM FL. Fourth panel: the orthonormal velo-
cities ūr and fū . Bottom panel: the pitch angle of the orthonormal field,

f- ∣ ∣B Btan ( ¯ ¯ )r1 (solid line), which is well-described by ff
- ∣ ∣R gtan ( )L

1

(dashed line) at large distance, where =R 1 ΩL F . Because the orthonomal
field is related to gtt and becomes ill-defined near the black hole, the pitch angle
is only shown when <g 0tt . Along the field line, the location of the event
horizon, the static limit, and the separation point are indicated by the vertical
solid, dotted–dashed, and dashed lines, respectively.
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PFD GRMHD flow, because the location of the Alfvén surface
is always located near the inner light surface and the fast
surface is always located close to the horizon, the flow
dynamics will therefore be similar. That is, q fu u u u, , ,r t, and
therefore =-E μ utFL and = fL μ uFL will remain almost

unchanged. In addition, Br (prescribed) and fB (constrained by
the Znajekʼs condition on horizon described in Section 3) will
also remain similar. The electromagnetic component, EEM and
LEM, due to the dependence of hµ1 , follow ∣ E( )EM inflow

=∣ ∣E( )EM outflow L( )EM inflow h=∣ ∣L( ) ( )EM outflow outflow
h d=∣( ) 1inflow .

5. SUMMARY

A semi-analytical scheme is presented to investigate the
cold, PFD GRMHD flow solution along a Kerr black hole–
threading field. The continuity of the outward Poynting
energy flux across the separation surface is used as the
matching condition to connect the inflow and outflow parts of
a PFD GRMHD flow solution. We consider the parabolic
field line of Beskin & Nokhrina (2006), and therefore the
resulting flow passes through all the critical points at a finite
distance.
With similar black hole spin, angular velocity of the field,

and magnetization at the separation surface, we are able to
obtain a specific parameter set s r r{Ω , , , }F A that gives inflow
and outflow solutions in agreement with the time-averaged flow
properties along a mid-level field line reported in the GRMHD
simulation of M06.
In this current work, due to the limitation of the prescribed

field configuration, we can only discuss the flow solution up to
the outer fast surface.
Compared to the approaches of GRMHD and the general

relativistic force-free electrodynamics (GRFFE; e.g., McKin-
ney & Narayan 2007) numerical simulation, the semi-analytical
approach provides a complementary understanding of the
relativistic jets, in the sense that the numerical dissipative
process is absent, and the fluid component is included. The
stationary solution obtained by the scheme can also be
provided as a reference of the time-averaged GRMHD jet
behavior in numerical simulations.
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gaciones Cientificas in Spain, administered through grant
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the Ministry of Science and Technology of Taiwan under the
grant NSC 100-2112-M-007-022-MY3 and MOST 103-2112-
M-007-023-MY3, and by ERC Synergy Grant “BlackHole-
Cam: Imaging the Event Horizon of Black Holes.”

APPENDIX A
NOTES ON THE MAGNETIC FIELD

Here we present the explicit form of the magnetic field. The
covariant magnetic field defined in Equation (13)

xº n ab
ab nB F

1

2
, (A1)μ μ

can be alternatively written as

xº n ab
ab nB F

1

2
, (A2)μ μ

where n ab= -n ab g μ[ ]μ , and n ab= -n ab
-

 μ[ ]μ
g

1 , with

q- = Sg sin . Because x =n (1, 0, 0, 0) and
x =n fg g( , 0, 0, )tt t , we can quickly read from the above

definitions that =B 0t , but ¹B 0t .

Figure 5. Determining the location of the light surfaces and the separation
surface for a field line. Top: contour plot of K0 for the case a = 0.9 and

=Ω Ω 2F H . The black area represents the region enclosed by the black hole
event horizon. The contour of K0 = 0 is indicated by the solid line and the
contours in the region K0 > 0 are indicated by the dotted lines, with values at
K0 = 0.1, 0.2, K, 0.8, 0.9. The thick solid line is a representative large-scale,
black hole–threading field line. The two green circles indicate the locations of
the light surfaces, which correspond to K0 = 0, and the red cross indicates the
location of the the separation surface at which ¢ =K 00 . Bottom: the value of K0

along the field line. The locations of the light surfaces and separation surface
are indicated by the same symbols.
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The components of the magnetic field are therefore given by

= - qfB g F , (A3)r

= -
+

-
f

qfB
g g

g
F

Ω
, (A4)r tt F t

= - -q
fB g F , (A5)r

=
+

-
q f

fB
g g

g
F

Ω
, (A6)

tt F t
r

and

= -f
qB g F , (A7)r

= -
-

f
qB

g

g
F . (A8)tt

r

With the relations

q
= -

+

D
qf qq f

qfF g
g g

F
Ω

sin
, (A9)

tt F t

2

q
= -

+

D
f f

fF g
g g

F
Ω

sin
, (A10)r rr tt F t

r2

=q qq
qF g g F , (A11)r rr

r

one can check =B g Br rr
r, =q qq

qB g B , and =f ff
fB g B . Note

that, although nFμ is finite at all regions, Bμ is ill-defined near a
Kerr black hole because gtt changes sign when entering the
ergosphere.

At large distance, the metric becomes Minkowski spacetime
in spherical coordinates,

q q f= - + + +ds dt dr r d r dsin , (A12)2 2 2 2 2 2 2 2

and q- =g r sin2 . In this limit, the orthonormal field has the
form

q
º = qfB g B

r
F¯ 1

sin
, (A13)r

rr
r

2

q
º = -q

qq
q

fB g B
r

F¯ 1

sin
, (A14)r

º =f
ff

f
qB g B

r
F¯ 1

. (A15)r

APPENDIX B
CHARACTERISTIC SURFACES

In the following we outline the characteristic surfaces of cold
GRMHD flow, including the light surfaces, the separation
surface, and the Alfvén and fast surfaces.

B.1 Light Surfaces

The surfaces defined by =K 00 are the light surfaces. There
are two light surfaces in a black-hole magnetosphere: the outer
and the inner light surfaces. In the regions outside the light
surfaces (where K0 < 0) the fluid streams radially to avoid the
toroidal velocity exceeding the speed of light. The outer light
surface is formed in the same manner as the light cylinder in a
pulsar magnetosphere, but it does not necessarily have a

cylindrical shape in a Kerr spacetime. The inner light surface is
formed due to strong gravity. Only when the black hole and the
field line are not rotating does the inner light surface coincide
with the black hole event horizon.

B.2 Separation Surface

In the cold limit the fluid acceleration along a field line, u′p
(where prime denotes the derivative along the flow stream-
line), changes direction at a certain point. The location, rs, at
which the change occur, forms a separation surface
(Takahashi et al. 1990; Hirotani et al. 1992). The fluid,
starting with negligible velocity at rs, is accelerated inward
inside the separation surface, creating an inflow. It is however
accelerated outward outside the surface and develops an
outflow.
The separation surface is inside the region bounded between

the two light surfaces, and is determined via searching for
where K0

′ = 0 along each flow streamline in the calculations.
Figure 5 shows how rs on a specific field line (flow streamline)
is determined in the demonstrative case with

=K a K( , Ω ) (0.9, Ω 2)F H0 0 , (where ΩH is the angular velocity
of the black hole and +r is the radius of the outer event
horizon). The location where =K 00 and ¢ =K 00 along the
field line can be read from the contours of K0, which are part of
the light surfaces and the separation surface, respectively. Note
that the locations of the light surfaces and the separation
surfaces are independent of the flow parameters, such as the
mass loading, because they are determined only by K a( , Ω )F0

and its derivative, ¢K0.

B.3 Critical Surfaces for Cold GRMHD Flows

Critical points appear when D vanishes in the expression of
¢ =u N D(ln )p . In the cold limit, there are two critical points.

The Alfvén critical point corresponds to where up is equal to
the poloidal Alfvén speed, i.e.,

Y =u r
B

πμn
K( ; )

4
, (B1)

p
AW
2

2

0

and the fast magnetosonic critical point corresponds to where
up equals the fast magnetosonic speed, i.e.,

q
Y = +

D
f

u r u
B

πμn
( ; )

4 sin
(B2)FM

2
AW
2

2

2

(see Takahashi et al. 1990).
At the Alfvén surface

=M K . (B3)A r
2

0 A

Setting =u up
2

AW
2 yields

h=
n

πμ
K

4
. (B4)0

2

Because n and η are positive, >K 00 at the Alfvén surface. The
Alfvén surfaces are therefore constrained inside the region
bounded by the light surfaces (where K0 = 0). In addition,
K0→ 0 as h  0, implying that the Alfvén surfaces approach
the light surfaces when mass loading decreases.
Since the flow must be super-Alfvénic outside the light

surfaces (when shocks are absent), would the flows down-
stream, outside the light surfaces eventually reach fast
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magnetosonic speeds? The answer is different for inflows and
outflows. For the inflow, the magnetosonic speed is certainly
reached, as causality requires that the flow speed must surpass
all the possible characteristic speeds before the flow would
enter the black hole event horizon (Takahashi et al. 1990). For
the outflow, whether or not the flow speed will reach the fast
magnetosonic speed depends on how fast the field decays along
the flow (Takahashi & Shibata 1998).

If the fast surface exists, the physical flow solution for the
WE can be uniquely determined after specifying three of the
conserved quantities, and searching for the last one until the the
flow can smoothly pass the fast surface. (see, e.g., Appendix C
in Pu et al. (2012) for the case of inflow as a demonstration).
At the fast surface, where =u up

2
FM
2 , we have

q
h

æ

è

ççççç
+

D

ö

ø

÷÷÷÷÷
=

fn

πμ
K

B

B4 sin
. (B5)

p
0

2

2 2
2

By Equation (10), all else being equal, a relatively smaller η is
expected to produce a stronger fB (µ qFr ) (see Pudritz
et al. 2006 for a Newtonian version of this MHD feature).
As a result, a smaller K0 is required to satisfy Equation (B5)
when a smaller mass loading is applied. That is, the location of
the fast surface moves farther away from the light surface as the
mass loading decreases. For a GRMHD inflow, the location of
the fast surface gets closer to the event horizon.
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