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ABSTRACT
We present the first “clipped” cosmic shear measurement using data from the Kilo-Degree
Survey (KiDS-450). “Clipping” transformations suppress the signal from the highest density,
non-linear regions of cosmological fields. We demonstrate that these transformations improve
constraints on S8 = σ8(Ωm/0.3)0.5 when used in combination with conventional two-point
statistics. For the KiDS-450 data, we find that the combined measurements improve the con-
straints on S8 by 17%, compared to shear correlation functions alone. We determine the expec-
tation value of the clipped shear correlation function using a suite of numerical simulations,
and develop methodology to mitigate the impact of masking and shot noise. Future improve-
ments in numerical simulations and mass reconstruction methodology will permit the precise
calibration of clipped cosmic shear statistics such that clipping can become a standard tool in
weak lensing analyses.

Key words: Gravitational lensing: weak – Cosmology: observations – Cosmology: cosmo-
logical parameters – Surveys

1 INTRODUCTION

The use of two-point statistics in extracting information from cos-
mological fields has been eminently successful to date. Obser-
vations of the CMB temperature and polarisation power spectra
(Planck Collaboration et al. 2018), weak lensing shear-shear cor-
relation functions (Hildebrandt et al. 2017; Troxel et al. 2017) and
shear-shear/convergence power spectra (Köhlinger et al. 2017; van
Uitert et al. 2018), for example, have placed meaningful constraints
on the cosmological model, helping forge our current understand-
ing of the Universe. However, some degree of tension has emerged
between state-of-the-art results from the weak lensing and CMB
cosmological probes. Constraints from the Kilo Degree Survey
(KiDS; Hildebrandt et al. 2017) and the Canada France Hawaii
Telescope Lensing Survey (CFHTLenS; Heymans et al. 2013),
whilst consistent with each other are in some tension with those
of the Planck Collaboration (Planck Collaboration et al. 2018). The
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Year 1 cosmology results from the Dark Energy Survey (Troxel
et al. 2017; DES Collaboration et al. 2017) “bridge the gap” be-
tween the aforementioned studies, being broadly in agreement with
all, as is also the case with the Nine-Year Wilkinson Microwave
Anisotropy Probe (WMAP9; Hinshaw et al. 2013). On the other
hand, the cosmic shear measurements from the Deep Lens Survey
(DLS; Yoon et al. 2018) are fully consistent with Planck and are in
some tension with KiDS and CFHTLenS. The range of results on
this subject highlights the necessity for more precise and accurate
cosmological parameter constraints, thereby affirming whether or
not the existing tension is a signature of an exotic form of dark en-
ergy or new physics within our Universe (see for example Joudaki
et al. 2017). It is with regards to this necessity that we review our
employment of two-point statistics for cosmology.

When considering alternatives to two-point statistics, the
computational- and time-intensiveness of collecting and reducing
observations in the era of precision cosmology must also be con-
sidered. Two-point statistics alone fail to exploit the full wealth of
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2 Giblin et al.

information within these expensive datasets, on account of the pres-
ence of regions of non-linear gravitational collapse. Consequently,
it is crucial that we employ all possible statistical tools to capitalise
on the available datasets.

Indeed, the sub-optimality of two-point statistics has driven re-
search involving non-Gaussian statistics. Counting the abundance
of convergence peaks, known as “peak statistics” (Jain & Van Waer-
beke 2000), as well as extending the cosmological analysis to third
and higher order statistics (Takada & Jain 2002; Bernardeau 2005;
Kilbinger & Schneider 2005; Semboloni et al. 2011a; Fu et al.
2014) have been shown to yield improved constraints on cosmol-
ogy. In addition, one can perform transformations to enhance the
linearity of the cosmological field in question, improving the ca-
pacity of two-point statistics to contrain cosmology. For example,
Neyrinck et al. (2009) and Seo et al. (2011) found various logarith-
mic transformations are sufficient for this purpose.

In particular, “clipping” transformations have been shown to
be beneficial to a number of analyses. Clipping truncates the peaks
above a given threshold within a density field, thereby suppress-
ing the contributions of high-density regions to the power spec-
trum. This methodology was successfully applied to galaxy num-
ber counts within numerical simulations, and found to increase
the range of Fourier modes in which the power spectrum and bis-
pectrum can be related with tree-level perturbation theory, leading
to precise determination of the galaxy bias and the amplitude of
matter perturbations σ8 (Simpson et al. 2011, 2013). Furthermore,
Simpson et al. (2016a) clip galaxy number counts from the Galaxy
and Mass Assembly Survey (GAMA), to reduce the impact of non-
linear processes and galaxy bias on the analysis, allowing for reli-
able constraints on the rate of growth of structure in the Universe.
Wilson (2016) employed clipping in estimating the growth rate of
structure from the VIMOS Public Extragalactic Redshift Survey as
part of a redshift-space distortion analysis. Lombriser et al. (2015)
also demonstrate that clipping density fields allows for modified
gravity models to more easily be distinguished from concordance
cosmology.

Clipping can also be combined with standard cosmological
statistics, as demonstrated by Simpson et al. (2016b, henceforth
‘S15’) in a weak lensing analysis. They truncate the peaks in sim-
ulated fields of the projected surface density, i.e. the convergence,
and measure the effect on the convergence power spectrum. The
objective of clipping in this context is to reduce the correlations
between the Fourier modes in the convergence power spectrum in
order to unlock previously inaccessible cosmological information.
An alternative interpretation of the information gain in clipping, is
that it is analogous to that which is found in peak statistics analy-
ses, since both methods selectively target high-density regions. Via
a Fisher matrix analysis, S15 predict the constraints on the ampli-
tude of matter perturbations, σ8, and the matter density parame-
ter, Ωm, one would obtain from the “clipped” and the conventional
“unclipped” convergence power spectra. They find that clipping en-
genders a small clockwise rotation of the clipped contours relative
to the unclipped, breaking the degeneracy in the Ωm-σ8 parame-
ter space (see Figure 2 of S15). The consequence of this is that
when the contours from the two power spectra are combined (tak-
ing into account the cross-covariance of the clipped and unclipped
statistics, so as to avoid double-counting) the constraints on Ωm

and σ8 are increased overall by more than a factor of three. More-
over, clipping is found to be more constraining than the alternative
logarithmic transforms proposed by Neyrinck et al. (2009).

A crucial aspect of clipping convergence fields containing re-
gions of non-linear gravitational collapse, is the fact that there cur-
rently exists no analytical prescription for the clipped statistics one
will subsequently measure. This means that numerical simulations
are necessary for establishing their cosmological dependence. This
is not a disadvantage specific to clipping, given that peak statis-
tics (Jain & Van Waerbeke 2000; Kacprzak et al. 2016; Martinet
et al. 2018) and higher order statistics (Takada & Jain 2002; Sem-
boloni et al. 2011a), similarly necessitate simulations for calibra-
tion. What is more, simulations are also required for investigat-
ing the behaviour of standard cosmological statistics on non-linear
scales (Smith et al. 2003; Takahashi et al. 2012).

In this work we apply clipping to weak lensing convergence
fields measured from the first 450 square degrees of r-band data
from the Kilo-Degree Survey (hereafter ‘KiDS-450’). In contrast
to S15, rather than determine the effect of clipping on the conver-
gence power spectrum, we investigate for the first time the proper-
ties of the clipped two-point shear correlation functions. This is to
facilitate a direct comparison of the clipped statistics to the conven-
tional shear correlation functions used in constraining cosmology
in the Hildebrandt et al. (2017) analysis. By exploring the cosmo-
logical dependence of clipping with the Dietrich & Hartlap (2010,
hereafter ‘DH10’) simulations, and by measuring the covariance
of these new statistics using the Scinet Light Cone Simulations
(SLICS) from Harnois-Déraps et al. (2018), we constrain the cos-
mology of the KiDS-450 data. We also characterise how clipping
is affected by masking and shape noise, and demonstrate how these
can be accounted for. The format of this paper is as follows; in
Section 2 we discuss the KiDS-450 data and the N -body simula-
tions at our disposal, in Section 3 we explain our methodology for
measuring the clipped shear correlation functions and discuss cali-
bration corrections, in Section 4 we present our results, and finally
we conclude in Section 5.

2 DATA AND SIMULATIONS

The Kilo Degree Survey (KiDS) is an ESO public survey which
will span 1350 square degrees upon completion. KiDS observes
with the VLT Survey Telescope (VST) in the ugri bands, with
science goals pertaining to cosmology and galaxy evolution. In
this paper we focus on the KiDS-450 data release, containing the
first 450 square degrees of four-band coverage (Hildebrandt et al.
2017, hereafter ‘H17’). The KiDS-450 data is divided between five
patches, G9, G12, G15, G23 and GS (de Jong et al. 2017) and con-
sists of lensfit (Miller et al. 2013) shear estimates for ∼15 million
galaxies. The effective number of galaxies per square arcminute
in the data is 8.53 and the galaxy ellipticities have a dispersion of
σe = 0.29 per component. The photometric redshifts of the back-
ground galaxies are estimated from the four-band photometry using
the Bayesian photometric redshift BPZ code from Benı́tez (2000),
as described in Hildebrandt et al. (2012). In addition, three different
techniques for calibrating the effective redshift distribution n(z)
are investigated in H17 and found to produce consistent cosmic
shear results. In constraining the KiDS-450 cosmology in this anal-
ysis, we adopt the method favoured in H17 – the weighted direct
calibration (“DIR”). This follows the methodology of Lima et al.
(2008), where a subsample of galaxies with spectroscopic redshifts
are reweighted such that the photometric observables (e.g. colours,
magnitudes) of the reweighted sample match the larger sample of
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Table 1. A comparison of the specifications of the SLICS and DH10 suites used in this paper. These simulations are used for estimation of the covariance, and
the dependence on cosmological parameters, of the clipped shear correlation functions, ξclip

± , respectively.

SLICS DH10

Science case Covariance Matrices Cosmological Dependence
Cosmologies 1 158
Realisations per cosmology 932 35(Fiducial)+1(Other)
Lightcone area [deg2] 100 36
Box size [Mpc/h]3 5053 1403

Particles 15363 2563

Particle Mass [M�] 4.17 × 109 9.3 × 109–8.2 × 1010
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Figure 1. The 158 cosmologies of the DH10 simulations in the Ωm-σ8

plane (triangles), colour coded by S8 = σ8(Ωm/0.3)0.5. The fiducial cos-
mologies of DH10 and SLICS are shown by the black star and magenta
diamond, respectively. The cyan circle and grey square designate the best-
fit (Ωm, σ8) determined from the KiDS-450 data in H17, and from the
TT+lowE analysis of the Planck data in Planck Collaboration et al. (2018),
respectively.

galaxies with photometric redshifts only. The reweighted spectro-
scopic redshift distribution is then taken to be representative of the
whole sample. We refer the reader to Kuijken et al. (2015) for more
technical discussion of the survey.

The shapes of galaxies in KiDS-450, characterised by two
ellipticity components, are measured with the lensfit algorithm
(Miller et al. 2013) from the r-band data, as described in Fenech
Conti et al. (2017). Lensfit models the point spread function (PSF)
at the pixel level for individual exposures, and then measures the
ellipticity components by fitting a PSF-convolved disc and bulge
model to each galaxy via a likelihood-based method. Weights for
the shape measurement are then derived from the likelihood sur-
face. We calibrate the shape measurements with the additive and
multiplicative corrections detailed in Appendix D of H17. The for-
mer correction is determined empirically by averaging the observed
ellipticities in the data, whereas the latter is quantified with image
simulations resembling the KiDS-450 r-band.

The absence of an analytical prescription for clipped statis-

tics means that in order to use clipping to constrain cosmological
parameters, we require a suite of numerical simulations for various
cosmologies to determine how clipping responds to changes in said
parameters. In addition, this task requires that the covariance of our
clipped statistic is accurately measured, which necessitates a large
number of independent realisations for a given cosmology. These
requirements are at odds with one another; given the computational
expense, simulators typically must choose between producing sim-
ulations for a large range of cosmological configurations, or pro-
ducing many realisations for a single cosmology. Therefore we are
compelled to use two different simulation suites to satisfy these two
criteria – DH10 and SLICS.

The DH10 suite (Dietrich & Hartlap 2010) consists of numer-
ical N -body simulations ran with the TREEPM code GADGET-2
(Springel 2005) and initial conditions generated with the Eisenstein
& Hu (1998) transfer function. There are 192 DH10 simulations
spanning 158 different flat ΛCDM cosmologies. Each simulation
has 2563 dark matter particles in a box with sides of length 140
h−1Mpc, evolved from z = 50 to z = 0. The lightcone area per
simulation is 6×6 square-degrees, and the particle mass varies from
mp = 9.3× 109M� for Ωm = 0.07, to mp = 8.2× 1010M� for
Ωm = 0.62. 35 of the simulations have the fiducial cosmologi-
cal parameters given by π0 = (Ωm = 0.27,ΩΛ = 0.73,Ωb =
0.04, σ8 = 0.78, ns = 1.0, h = 0.7). The remaining 157 cos-
mologies, each of which comprise a singleN -body simulation, dif-
fer only in Ωm and σ8, the range of which is displayed in Figure 1.
Hence, in this work we only demonstrate the power of clipping in
constraining S8 = σ8(Ωm/0.3)0.5, which probes the Ωm-σ8 pa-
rameter space in the direction approximately perpendicular to the
degeneracy between these parameters, for a flat ΛCDM Universe.
These constraints are obtained with the other cosmological param-
eters fixed to their fiducial values.

Catalogues of the noise-free shear components for galaxies are
produced by ray-tracing through each DH10 N -body simulation.
This consists of propagating light rays through the matter distribu-
tion constructed by the N -body simulation, from galaxies with a
given distribution in redshift. The matter distribution exists in the
form of mass snapshots at various redshifts; the deflection of light
rays by these mass planes determines the shear of the mock galax-
ies. Five pseudo-independent shear catalogues are obtained for a
given simulation by ray-tracing through five different random an-
gles. Thus, in this work we are using 35 × 5 shear catalogues for
the fiducial cosmological parameters, and 1 × 5 shear catalogues
for the remaining 157 cosmologies.

In order to measure the covariance of clipped statistics, we
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4 Giblin et al.

employ the public1 Scinet Light Cone Simulations (SLICS) of
Harnois-Déraps et al. (2018). The SLICS suite evolved 15363 par-
ticles of mass mp = 4.17 × 109M�, from z = 120 to z = 0 in a
box with sides of length 505 h−1Mpc. They were created using the
CUBEP3M N -body code (Harnois-Déraps et al. 2013), with ini-
tial conditions selected from the Zel’dovich displacement of parti-
cles based on a transfer function from CAMB (Lewis et al. 2000).
The SLICS consist of just three cosmologies and are therefore un-
able to determine the cosmological dependence of clipping. How-
ever, on account of there being 932 realisations of 100 deg2 light
cones for the fiducial cosmology (Ωm = 0.2905, ΩΛ = 0.7095,
Ωb = 0.0473, h = 0.6898, σ8 = 0.826 and ns = 0.969), SLICS
are very well suited to covariance estimation. In this work we use
only the SLICS with the fiducial cosmology, and assume that the
covariance measured from these realisations is robust to changes in
cosmology. This is a commonly made approximation, as neglecting
the cosmological dependence of the covariance has been shown to
have little effect on the best-fit value of S8 if the fiducial cosmol-
ogy is sufficiently close to that of the best-fit (Eifler et al. 2009).
In our case, the SLICS cosmological parameters are close to the
best-fit from the H17 analysis of the KiDS-450 data, the fiducial
cosmology of DH10, and the best-fit from Planck Collaboration
et al. (2018), as is shown in Figure 1. Thus our approximation of a
cosmology-independent covariance matrix is reasonable given the
data we are working with. A comparison of the DH10 and SLICS
specifications is presented in Table 1. Both suites consist of dark
matter particles only.

The fact that galaxies can be intrinsically aligned through
gravitational interaction, rather than have their alignments induced
by weak gravitational lensing, poses a systematic bias to cosmo-
logical inference (Bridle & King 2007). In order to reduce the in-
fluence of intrinsic alignments in this work, we follow Benjamin
et al. (2013) and restrict our analysis to the 0.5–0.9 photometric
redshift range in the KiDS-450 data. Within this tomographic in-
terval, the density of source galaxies is 3.32 gal/arcmin2 and the
galaxy ellipticities have a dispersion of σe = 0.28 per compo-
nent. We downsample the SLICS and DH10 mock catalogues so
as to have the same source density and redshift distribution of the
data, which we take to be the KiDS-450 DIR-calibrated redshift
distribution (H17), which has mean and standard deviation of 0.76
and 0.29, respectively, in our chosen redshift bin. We also intro-
duce Gaussian-distributed galaxy ellipticities to the mocks, with
standard deviation, σe, equal to that of the KiDS-450 data. We do
not truncate the Gaussian distribution to ellipticites between -1 and
1, since less than 0.05% of mock galaxies are allocated elliptici-
ties outside of this range, and their contributions to the correlation
functions are negligible. We also verified that using ellipticities di-
rectly sampled from the distribution in the data, instead of from
a Gaussian, does not affect our results. Matching the shape noise
(which in this work we use to refer to all factors contributing to the
measured galaxy shape, bar the shear itself) and source densities,
means that the noise in the covariance matrices and the clipped
predictions from the mocks reflect that of KiDS-450. The effect
of baryonic physics on the shear correlation functions is another
source of bias in weak lensing analyses (Semboloni et al. 2011b),
and could in principle affect clipped statistics differently than the
unclipped. For this first proof-of-concept analysis however, we do
not contend with baryonic effects in this work.

1 SLICS N -body simulations; http://slics.roe.ac.uk

3 METHODOLOGY

In this Section, we describe the pipeline in which we apply clipping
transformations to the mocks and KiDS-450 data, and subsequently
measure the “clipped” two-point shear correlation functions ξclip

± .
Measuring these statistics allows for a comparison to the conven-
tional “unclipped” shear correlation functions, which are directly
calculated from the observed galaxy ellipticities in the data. We be-
gin with a very brief summary of the key steps in our method for
easy referral. We discuss these steps in greater detail in the Sections
that follow.

• Our pipeline takes as input catalogues of the ellipticities and po-
sitions of galaxies. We project these onto a Cartesian grid of pixels
with a resolution of 5 arcseconds, smooth these maps with a Gaus-
sian filter and reconstruct the projected surface mass density, i.e.
the convergence, κ, following Kaiser & Squires (1993).
• We subject these convergence maps to clipping; anywhere the

convergence exceeds a certain threshold value, we set the conver-
gence equal to that threshold.
• The resulting “clipped” convergence map is subtracted from the

“unclipped” thereby generating a map containing the projected sur-
face density exceeding the threshold, and zeroes elsewhere. On this
“residual” convergence map, we invert the mass reconstruction pro-
cess and recover the shear corresponding to these projected peaks.
• This “residual” shear is subtracted from the original shear val-

ues yielding the “clipped” shear. From the clipped shear, we calcu-
late the clipped shear correlation functions, ξclip

± , using TREECORR

(Jarvis 2015). To measure the unclipped shear correlation func-
tions, ξunclip

± , we feed the catalogues of the observed ellipticities
to TREECORR directly.
• We repeat this process for successive SLICS realisations to mea-

sure the covariance of the ξclip
± and ξunclip

± statistics, and for succes-
sive DH10 realisations to determine the cosmological dependence
of the ξclip

± .

3.1 Mass reconstruction

In order to clip the densest non-linear regions from our analysis, we
first produce maps of the projected surface mass density, or con-
vergence, κ, using the methodology of Kaiser & Squires (1993,
‘KS93’ hereafter). In this analysis, the process of “mass recon-
struction” begins with the observed ellipticities, which can be writ-
ten in the complex form εobs = εobs

1 + iεobs
2 (Seitz & Schneider

1996). The observed ellipticities have contributions from the re-
duced shear g, the intrinsic ellipticity εint and the shape measure-
ment noise η via

εobs =
g + εint

1 + g∗εint
+ η , (1)

where g∗ is the complex conjugate of g. The reduced shear is re-
lated to the shear γ and the convergence κ by g = γ/(1 − κ). In
a weak lensing analysis, we assume that the magnitudes of both
the shear and the convergence are much smaller than unity, such
that the average of the observed ellipticities 〈εobs〉 ' g ' γ. In
this case, it is possible to reconstruct the convergence from the ob-
served ellipticities via the KS93 inversion method. We begin with
the gravitational deflection potential Ψ(θ). This is related to the
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KiDS-450: Enhancing cosmic shear with clipping transformations 5

convergence κ for a particular source redshift and angular coordi-
nate on the sky θ = (θ1, θ2), via Poisson’s equation,

∇2Ψ(θ) = 2κ(θ) , (2)

where Ψ(θ) is given by the line of sight integral over the 3D matter
gravitational potential Φ,

Ψ(θ) =

∫ χs

0

dχ′
fK(χ− χ′)
fK(χ)fK(χ′)

Φ
[
fK(χ′)θ, χ′

]
. (3)

Here χ is the comoving radial distance, χs is the comoving radial
distance to the source, and fK(χ) is the comoving angular diameter
distance. The potential Ψ(θ) is related to the shear components
γi(θ) via

γi(θ) = DiΨ(θ) , (4)

where

(
D1

D2

)
=

1

2

(
∂2/∂θ1∂θ1 − ∂2/∂θ2∂θ2

2∂2/∂θ1∂θ2

)
, (5)

and ∂ denotes partial derivatives. Combining equations 2 and 4 and
taking the Fourier transform yields

γ̃i(`) = Fi(`)κ̃(`) , (6)

where

(
F1

F2

)
≡
(

(`1
2 − `22)/`2

2`1`2/`
2

)
, (7)

and ` = (`1, `2) is the 2D Fourier conjugate of θ.

From equation 6 we see that, in principle, either γ̃1(`)/F1(`)
or γ̃2(`)/F2(`) would suffice to give an estimate of κ̃(`), which
can then be inverse-Fourier transformed to recover κ(θ). Both
F1(`) and F2(`) vanish for particular directions however, so in-
stead we sum over the γ̃i(`) components weighted by Fi(`) to ob-
tain the convergence,

2∑
i=1

Fi(`)γ̃i(`) =

2∑
i=1

|Fi(`)|2κ̃(`) = κ̃(`) , (8)

where we have employed the fact that
∑2
i=1 |Fi(`)|

2 is equal to
unity (Kaiser 1992). An inverse-Fourier transform is performed to
reconstruct the κ(θ) map, the real part of which contains the E-
modes, whereas the imaginary part contains the B-modes2 (Schnei-
der et al. 2002a).

The KS93 mass reconstruction can be summarised in the fol-
lowing:

• The shear is projected onto a Cartesian grid and smoothed with a
Gaussian filter with width σs to reduce the impact of mask features
(which removes artefacts) on the reconstruction.

2 Hildebrandt et al. (2017) and van Uitert et al. (2018) report significant
B-modes within the KiDS-450 data but as these are at such a low-level in
comparison to the E-mode signal we do not consider them in this analysis.

• A border of zero values is added to the smoothed shear map, in-
creasing the dimensions by 1 deg on each side, before Fourier trans-
forming the field. The border serves to reduce edge effects in the
transform (Van Waerbeke et al. 2013).
• κ̃(`) is computed via equation 8.
• An inverse-Fourier transform is performed to reconstruct the κ(θ)

map.

The steps we take in mass reconstruction follow this recipe. How-
ever, in this analysis we are working with real data and simulations
tailored to the data in terms of the redshift distribution, source den-
sity and galaxy shape noise. Our observed ellipticities (see equation
1), smoothed with the Gaussian filter, are treated as an unbiased
estimator for the shear and take the place of γ in the above equa-
tions. Furthermore, the KiDS-450 data has masked regions leading
to gaps in the observed patches. The Gaussian smoothing accounts
for the number of masked pixels within the smoothing window,
to minimise the bias in the resultant smoothed ellipticity (see Van
Waerbeke et al. 2013, for more details). The effect of masking on
the clipped shear correlation functions ξclip

± is discussed in Section
3.4.1. We refer to the width of the Gaussian smoothing filter as the
smoothing scale, σs, hereafter.

The KS93 methodology has been shown to be accurate for rel-
atively small fields (. 100 deg2) which may be approximated as
flat (Van Waerbeke et al. 2013). Other mass reconstruction methods
do exist; for example Seitz & Schneider (1996) generalise the KS93
technique into the lensing regime where the κ � 1 approxima-
tion no longer holds, whereas Chang et al. (2017) conduct curved-
sky mass reconstruction with a spherical harmonic formalism. The
KS93 methodology is sufficiently accurate for our purposes how-
ever, since the KiDS-450 patches, DH10 mocks and SLICS are well
described by the flat-sky approximation, and the convergence is
sufficiently small (see Section 3.3). Future clipping analyses, espe-
cially those involving datasets with larger sky coverage, will require
these improved methodologies. Convergence maps for the KiDS-
450 patches created following KS93 are presented in Appendix C.

3.2 Clipping methodology

After the convergence field is generated it is clipped if above a
given threshold κc according to

κclip
s (θ) =

{
κc, if κs(θ) ≥ κc

κs(θ), otherwise
, (9)

where the ‘s’ subscript is used to denote fields either directly
smoothed with the Gaussian filter, or those derived from fields
which have been directly smoothed. We calculate the “residual”
convergence ∆κs, given by

∆κs(θ) = κs(θ)− κclip
s (θ). (10)

The ∆κs map features the projected surface density exceeding the
threshold κc, and zeroes elsewhere. We subject this map to an in-
version of the mass reconstruction process following equation 6.
This generates the “residual” ellipticity maps ∆εs, which exhibit
the strongest signal around the positions of the peaks, and weaker
signal elsewhere. The residual ellipticities are defined on a grid;
in order to obtain ∆εs at the locations of the galaxies in the orig-
inal, “unclipped” ellipticity catalogue, θg, we perform 2D linear
interpolation from the ∆εs maps. The clipped ellipticity εclip

s is the
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difference between the observed (unclipped) ellipticity εobs and the
residual ellipticity ∆εs,

εclip
s (θg) = εobs(θg)−∆εs(θg). (11)

It is inadvisable to recover the clipped ellipticity, εclip
s , by con-

ducting inverse mass reconstruction directly on the clipped con-
vergence map, κclip

s . This is because κclip
s has been affected by

smoothing in all regions where the convergence is below the clip-
ping threshold κc (those regions with convergence above κc are set
to the constant threshold itself), and smoothing incurs a loss of sig-
nal. This corresponds to ∼90% of the area of κclip

s being affected
by smoothing, for the κc and smoothing scale, σs, values we iden-
tify in Section 3.3. In contrast, if we invert the mass reconstruction
on the ∆κs, only∼10% of the area of which is smoothed, and sub-
tract the ∆εs from the unsmoothed observed ellipticities, εobs, we
minimise the impact of smoothing on our overall signal.

After computing the clipped ellipticity components via equa-
tion 11, using TREECORR (Jarvis 2015) we calculate estimators
for the clipped and unclipped angular shear correlation functions in
nine logarithmically spaced angular bins, θ, with bin centres from
0.78 to 219 arcmin. We define these estimators, within a single to-
mographic bin, accordingly

ξ̂±(θ) =

∑
ab wawb [εt(θg,a)εt(θg,b) ± ε×(θg,a)ε×(θg,b)]∑

ab wawb
,

(12)
where the summation is over pairs of galaxies a and b positioned at
angular coordinates θg,a/b, within an interval ∆θ about the angular
separation θ (Bartelmann & Schneider 2001). The εt and ε× terms
designate the tangential- and cross- components of the clipped el-
lipticities (in the case of the ξ̂clip

± estimator) or the observed elliptic-
ities (in the case of the unclipped estimator ξ̂unclip

± ) measured rela-
tive to the vector θg,a − θg,b connecting the galaxy pairs. w is the
weight ascribed to the measurement of the ellipticity components,
which comes from the lensfit algorithm in the case of KiDS-450
(refer to Section 2 for more details) or takes the value of unity in the
case of the mocks. We treat the observed ellipticities, a combination
of the shear and shape noise via equation 1, in the mocks and data
as unbiased estimators for the shear. Accordingly we treat ξ̂unclip

±
as an unbiased estimator of the theoretical unclipped shear corre-
lation functions, ξunclip

± , defined in equation 13. Consequently, in
this work we follow H17 and refer to the estimators for the un-
clipped shear correlation functions simply as the unclipped shear
correlation functions, and omit thênotation. There is currently no
established theoretical prediction for ξclip

± . Thus it is not meaning-
ful to include thênotation nor “estimator” prefix for our measured
clipped statistics, and we similarly drop this nomenclature hence-
forth. However, we encourage the reader not to regard the clipped
statistics measured from the mocks as unbiased estimators of the
clipped measurement made in the absence of shape noise (as we
do with the unclipped statistic). The clipped statistics we measure
not only depend on the level of shape noise, but also the clipping
threshold and level of smoothing applied in the analysis (see Sec-
tion 3.3).

The theoretical unclipped shear correlation functions ξunclip
±

are related to the convergence power spectrum Pκ(`) via

ξunclip
± (θ) =

1

2π

∫
d` ` Pκ(`) J0,4(`θ) , (13)

where the zeroth J0(`θ) and fourth J4(`θ) order Bessel functions
of the first kind are used for ξunclip

+ and ξunclip
− respectively. The

convergence power spectrum Pκ(`) is in turn related to the matter
power spectrum Pδ(`) via

Pκ(`) =

∫ χH

0

dχ
q(χ)2

fK(χ)2
Pδ

(
k =

[`+ 1/2]

fK(χ)
, χ

)
, (14)

where χH is the comoving radial distance to the horizon and k is
the Fourier conjugate of χ. Here we have used the flat-sky first-
order extended Limber approximation, which is sufficiently accu-
rate for the KiDS-450 data (see Kilbinger et al. 2017). The lensing
efficiency, q(χ), is defined as

q(χ) =
3H2

0 Ωm

2c2
fK(χ)

a(χ)

∫ χH

χ

dχ′ n(χ′)
fK(χ′ − χ)

fK(χ′)
, (15)

where a is the scale factor, n(χ) is the probability density of galax-
ies as a function of χ, H0 is the Hubble constant and c is the speed
of light.

Constraining the cosmology of the KiDS-450 data requires co-
variance matrices for the clipped and unclipped ξ±. We measure the
covariance of these statistics across N ∼900 independent SLICS
realisations. The ith and j th elements of the covariance matrices are
given by

C±(θi, θj) =

N∑
k

(ξk±(θi)− ξ±(θi))(ξ
k
±(θj)− ξ±(θj))

N − 1
, (16)

where ξ±(θi) refers to either the mean clipped or mean unclipped
ξ±, acrossN realisations each numerated by k, within the ith angu-
lar separation bin, given by

∑N
k ξ

k
±(θi)/N . When computing the

auto-covariance of the clipped (or unclipped) statistic, all correla-
tion functions in equation 16 correspond to ξclip

± (or ξunclip
± ). When

computing the cross-covariance between the clipped and unclipped,
the ξ± correspond to clipped in one bracket, and to unclipped in the
other. In order to constrain the cosmology of KiDS-450, we scale
the covariance matrices measured from SLICS by the ratio of the
areas of SLICS and KiDS-450 (Schneider et al. 2002b). We note
that this is an approximation and does not account for the survey
geometry, as is discussed in Troxel et al. (2018). Correlation coeffi-
cient matrices, calculated from the SLICS covariance matrices, are
present in Appendix A.

3.3 Choosing the clipping threshold and smoothing scale

In a clipping analysis, the values of the convergence threshold, κc,
at which peaks are truncated and the width of the Gaussian with
which the ellipticity maps are smoothed, i.e. the smoothing scale
σs, are free parameters. Thus an important aspect of clipping is to
identify values which are appropriate for the data one wishes to
analyse. Suitable choices of these parameters depend on the depth
and resolution of the data. These parameters are also degenerate
with one another; for a given value of κc, a lower level of smooth-
ing results in more of the convergence field exceeding the clipping
threshold. Similarly, for a fixed σs, lesser values of κc correspond to
more aggressive clipping. The interplay of these parameters means
that the optimal values for constraining cosmology are costly to
determine. Consequently, in this work we only determine values
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Figure 2. Upper: PDF of the convergence κ from 50 SLICS reali-
sations in magenta and a Gaussian fit in dashed blue. The percent-
age deviations between the Gaussian fit and the PDF(κ) at κ =

(0.005, 0.010, 0.015, 0.020), shown by the dashed lines, are detailed in
the legend. Middle: the fractional difference between the Gaussian fit and
the SLICS PDF(κ). Lower: The PDFs of the five KiDS-450 patches and
their average.

which are well suited to the KiDS-450 data. We also investigate
the effect of different choices of the smoothing scale and clipping
threshold on the clipped correlation functions.

We first establish a clipping threshold which targets the most
non-linear regions of the field, without over-clipping the linear
field. An intuitive way of doing this is to first fix the smoothing
scale and determine where the PDF of the convergence deviates
from Gaussian. However, we find that even for relatively large val-
ues of the smoothing scale, the KiDS-450 PDF(κ) is too noisy for
this test. We therefore use the SLICS, the fiducial Ωm and σ8 of
which are similar to the best-fit values from the H17 analysis of
the KiDS-data (see Figure 1). In Figure 2 we compare the PDF(κ)
measured from 50 SLICS with a smoothing scale of 6.6 arcmin (up-
per panel), to those from the five KiDS-450 patches (lower panel).
We overplot vertical dashed lines at κ = 0.005, 0.010, 0.015 and
0.020 and detail the deviations between a Gaussian fit and the
SLICS PDF(κ) at these convergence values in the legend. The mid-
dle panel shows the fractional difference between the Gaussian fit
and the SLICS PDF(κ). We find that in the range −0.005 ≤ κ ≤
0.005, the PDF of the SLICS convergence is well described by the
Gaussian, but deviations of a few percent arise at κ & 0.010. At
the high-end tail of the convergence, the SLICS PDF is consider-
ably non-Gaussian, differing by & 30%. This suggests that a clip-
ping threshold κc & 0.010 is appropriate for isolating non-linear
features of the field.

In setting the value of σs, one should aim to reduce the promi-
nency of peaks caused solely by noise fluctuations, but not to the
extent that we lose a significant amount of the cosmological in-
formation. A comparison of the SLICS convergence maps when
clipped at different smoothing scales, with and without intrinsic
galaxy shape noise, serves as a useful visual indicator of whether
σs is appropriate for the data. Figure 3 illustrates the unclipped (left
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Figure 3. Unclipped (left hand panels) and clipped (right hand panels;
κc = 0.010) convergence maps for a single 100 deg2 SLICS. For the upper
two panels, the smoothing scale, σs, is equal to 2.2 arcmin. Comparison of
these panels shows that the features in both the clipped and unclipped con-
vergence maps for a noise-free field (σe = 0) change dramatically with the
inclusion of KiDS-450 level shape noise (Gaussian distributed with width
σe = 0.28). The lower two panels however have σs = 6.6 arcmin. Com-
parison of these panels shows that the clipped/unclipped maps change less
dramatically with the inclusion of shape noise if the smoothing scale is set
to the higher level. This suggests that using σs = 2.2 arcmin results in the
clipping of mainly pure noise features, and that σs = 6.6 arcmin is a more
appropriate level of smoothing for clipping the KiDS-450 cosmological sig-
nal.

column) and clipped (right column) convergence fields from a sin-
gle 100 deg2 SLICS realisation, with a smoothing scale of 2.2 ar-
cmin (upper two panels) and 6.6 arcmin (lower two panels). We
chose these values of σs, simply to illustrate the substantial differ-
ences in the clipped convergence fields these scales facilitate. The
first and third panels have no shape noise (σe = 0), whereas the
second and fourth panels have shape noise at the level of KiDS-450
(Gaussian distributed with mean zero and σe = 0.28). The clipped
fields here have a convergence threshold of κc = 0.010. Compar-
ing the first and second panels, smoothed with σs = 2.2 arcmin, we
see that the features within the clipped and unclipped maps change
dramatically when shape noise is introduced. The third and fourth
panels however show that the maps change less dramatically with
the inclusion of shape noise when the smoothing scale is set to 6.6
arcmin. This indicates that the higher of the two smoothing scales
is better suited to SLICS and by extension the data.
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Figure 4. The mean unclipped (solid grey) and clipped (other solid colours) ξ+ correlation functions measured from the SLICS realisations. The dashed black
line is the theoretical unclipped prediction from equation 13. The left hand panels display θξ+, the right hand the measurements normalised to the unclipped
statistic from SLICS. The annotation in the lower right hand corner of each panel specifies which of the parameters are held constant in the calculations. The
upper panel is concerned with variations in the clipping threshold, κc, with fixed smoothing scale, σs, and shape noise characteristics, σe. The middle and
lower panels present variations in the smoothing scale and shape noise respectively. The magenta line in all cases depicts the measurement for the fiducial
parameters: κc = 0.010, σs = 6.6 arcmin and σe = 0.28. The error bars are the error on the mean measurement.

An additional test of whether the chosen (κc, σs) combination
is suitable comes from inspection of the clipped and unclipped cor-
relation functions. The optimal choices for these parameters will
facilitate clipping of the non-linear regions exclusively, leaving the
linear signal untouched. In this case, the unclipped and clipped ξ+
should converge on the larger, linear angular scales. In Figure 4,
we present how the ξclip

+ measured from the SLICS are affected
by variations in the clipping threshold, smoothing scale and the
galaxy shape noise. Similar trends are seen for the ξclip

− statistic
at higher angular scales (we refer the reader to Section 4). The left
hand panels in this figure display θξ+, where ξ+ is the mean un-
clipped (in solid grey) or clipped (other colours) correlation func-
tion measured from the SLICS realisations. The right hand pan-
els display the various correlation functions normalised to that of
the unclipped. In calculating the error on the ratios, we take into
account the cross-covariance between the clipped and unclipped
statistics. The magenta line on all panels is the same and corre-
sponds to κc = 0.010, σs = 6.6 arcmin with KiDS-450 level shape
noise.

The upper panel of Figure 4 illustrates the effect of increasing
the clipping threshold from κc = 0.005 to 0.010 to 0.015, whilst
the smoothing scale is fixed to 6.6 arcmin and the shape noise is
fixed to the KiDS-450 level. On average, 26±3% of the area of the
field is clipped in the case of the most aggressive clipping thresh-
old, κc = 0.005, and 3± 1% is clipped in the case of the least ag-
gressive, κc = 0.015. We see that when adopting κc = 0.005, the
clipped signal exhibits a large reduction in power at angular scales

around 6 arcmin and a failure to converge with the unclipped at the
larger angular scales. The power deprecation is caused by overly
aggressive clipping; subtracting too much of the shear signal en-
genders anticorrelations in the ξclip

+ . The excess power at large θ
is caused by the smoothing transferring small-scale power to larger
scales. This effect is illustrated by considering the convolution of
a single δ-function with a Gaussian smoothing kernel; the signal is
spread by an extent given by the width of the Gaussian. This panel
suggests that κc = 0.010 and 0.015 are more appropriate thresh-
olds as they better recover the large scale behaviour of the ξunclip

+ .

The variations in the ξclip
+ when the smoothing scale is altered,

whilst κc is fixed to 0.010 and the shape noise is fixed to KiDS-
450 level, are shown in the middle panel of Figure 4. We note the
lack of convergence between the unclipped and the clipped signal
with σs = 4.4 arcmin, indicating over-clipping of the convergence
field. We also see that the angular scale at which the loss of power
in the ξclip

+ is maximised translates right with increasing smoothing
scale. This is due to the loss of signal incurred from smoothing over
features of this angular size. The upper and middle panels of Figure
4 illustrate the importance of identifying a clipping threshold and
smoothing scale which are high enough to diminish the clipping
of pure noise features, but low enough to avoid smoothing out the
cosmological content in the clipped statistic.

The lower panel of Figure 4 illustrates the sensitivity of the
ξclip
+ to the shape noise, whilst κc and σs are fixed to 0.010 and 6.6

arcmin respectively. Where σe > 0 the shape noise is sampled from
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a Gaussian distribution with width equal to σe, whereas σe = 0
refers to a measurement made in the absence of shape noise. Shape
noise sampled from the broader Gaussian with σe = 0.4, causes
greater proportions of the convergence map to exceed the clipping
threshold and hence we see a greater reduction in the power after
clipping. This demonstrates the importance of matching the shape
noise properties of galaxies in the mocks to the data in order to get a
simulated model of the clipped correlation functions. We also note
that we see only a small reduction in the power in the shape-noise-
free clipped relative to the unclipped, suggesting that most of the
clipped content is shape noise rather than non-linear regions. Nev-
ertheless, we find that this small amount of clipping of non-linear
cosmological signal, is sufficient for informing the parameter in-
ference with some independent information, as evidenced by the
constraints obtained in Section 4 and the cross-correlation coeffi-
cient matrices in Appendix A.

Having quantified the effect of different choices of the clip-
ping threshold and smoothing scale with the SLICS, in clipping
the KiDS-450 data we adopt the most aggressive clipping param-
eters that satisfy our requirement that the clipped and unclipped
ξ+ converge within 1σmean, where σmean is the error on the mean
measurement, on large angular scales. This is in order to maximise
the difference between the clipped and unclipped statistics and thus
enhance the cosmological parameter constraints. Henceforth we set
κc = 0.010 and σs = 6.6 arcmin, and conduct clipping with these
parameters on the KiDS-450 data and all simulations.

3.4 Calibration Corrections

In this section we discuss various calibration corrections which are
necessary in order to use clipping to constrain cosmological param-
eters in this proof-of-concept study. These corrections, necessitated
by the imperfect mass reconstruction due to the presense of masks,
as well as the the finite box size and low level bias in the simula-
tions, are not intrinsic to the clipping methodology.

3.4.1 Mask bias

Real data is subjected to masking, which complicates all methods
seeking to transform the density field. This is because it is unclear
how to interpret regions where the density field is unknown. In or-
der to investigate how masking affects the clipped correlation func-
tions, we take a 5 × 10 deg2 section of the G9 mask (H17) and
concatenate it with a copy of itself, in order to fit the 10× 10 deg2

field of view of SLICS. We apply the resultant mask to each of the
realisations.

As expected, the change in the ξunclip
± from SLICS when a

mask is applied is small, in line with the sampling variance on the
measurement. However we find considerable deviations between
the measurements of ξclip

± from the masked and unmasked SLICS.
Figure 5 shows the fractional difference between the masked and
unmasked clipped and unclipped ξ± measured from the SLICS
with κc = 0.010 and smoothing scale of 6.6 arcmin. The frac-
tional difference for the ξunclip

± (in grey) differs from zero by less
than 5% across all angular scales whereas that of the clipped (ma-
genta) features considerable deviations at angular scales below 20
arcmin. Deviations of similar magnitude and shape arise when we
use masks which have different geometry but reduce the field area
by similar amounts. We refer to the influence which the mask has
on the clipped measurements as the mask bias.
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Figure 5. The effect of the mask bias for the clipped and unclipped ξ+ (up-
per) and ξ− (lower) from SLICS. The grey curve shows the fractional dif-
ference between the masked and the unmasked ξunclip

± – the fact that this
curve has a 5% consistency with zero across all angular scales illustrates
that the ξunclip

± is fairly unaffected by masking. The magenta curve shows

the fractional difference between the masked and unmasked ξclip
± – the sig-

nificant deviation from zero illustrates the biasing caused by the mask. The
orange curve displays the fractional difference between the masked ξclip

± ,
once corrected for the bias with 100 noise realisations via the methodology
discussed in the text, and the unmasked ξclip

± . The correction reduces the

mask bias to . 5% in the case of the ξclip
+ ; the ξclip

− however still suffers
residual mask-bias at a level of ∼10% between 20 and 50 arcmin after we
employ our masking correction. The clipped measurements were made with
κc = 0.010 and σs =6.6 arcmin, and the error bars are measured from the
SLICS realisations.

The mask bias arises from the way we handle masks and edge
effects in mass reconstruction. We follow the methodology of Van
Waerbeke et al. (2013) by setting the convergence to zero in regions
where more than 50% of the volume of the Gaussian smoothing
window is centred on masked pixels. Where masked regions coin-
cide with high convergence regions, this process causes the conver-
gence surrounding the masked regions to be underestimated, and
the overall power in the ξclip

± statistics to be diminished. This does
not affect the ξunclip

± since no mass reconstruction is performed in
arriving at these measurements. This issue is not a problem intrin-
sic to clipping, so much as it is a general issue with mass recon-
struction methodology in the presence of masks. This is an active
topic of research (see for example VanderPlas et al. 2012; Liu et al.
2014; Jullo et al. 2014; Chang et al. 2017) and rigorously solving
this problem is beyond the scope of this paper. We instead opt to
numerically calibrate and correct for the effect of the mask on our
clipped statistics.

We find that for κc = 0.010 and σs = 6.6 arcmin, mask bias
is negligible in the absence of galaxy shape noise. Consequently,
we assume that for our chosen clipping threshold and smoothing
scale, the mask bias is dependent on the level of shape noise and
the mask geometry, and independent of the cosmology. This is a
reasonable assumption given the statistical power of KiDS-450.
Our assumption prompts us to investigate the effect of the mask on
fields consisting of pure galaxy shape noise and zero lensing. We
model the mask bias correction to the clipped correlation function
as

mask bias = ξ±
mask, noise − ξ±no-mask, noise , (17)
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where ξ±mask, noise and ξ±no-mask, noise are the average measurements
from fields of pure Gaussian shape noise, with mean zero and
σe = 0.28, which are masked/unmasked respectively. By subtract-
ing the mask bias correction from the clipped correlation functions
calculated with a mask applied, we find that the influence of the
mask can be mostly corrected for.

Figure 5 displays the ξclip
± corrected for the mask bias (mod-

elled in equation 17), using 100 noise fields, in orange. The mask
applied here is that of the G9 patch reformatted to fit the SLICS
lightcone, but we verify that we obtain the same results for the cor-
rected ξclip

± if we apply a different mask to the SLICS and recom-
pute the correction specific to said mask. We find that the corrected
ξclip
+ is consistent with the measurement made in the absence of

masking to within 5%. Although the corrected ξclip
− is much closer

to the unmasked than the masked measurement, we find that the
mask bias remains present at a∼10% level at angular scales of∼30
arcmin. A larger number of noise realisations does not reduce the
mask bias further, implying that a more sophisticated treatment of
the masks is critical if clipping is to be used in future cosmological
analyses. The residual mask bias affecting the ξclip

− measurement,
combined with the fact that ξunclip

− is the least powerful shear cor-
relation function in terms of constraining cosmological parameters,
motivates us to continue in this analysis using the ξclip

+ and ξunclip
+

statistics only.

We proceed to compute and correct the mask bias for each
of the KiDS-450 patches individually. The corrections for each of
the patches are similar, which is expected given the masks cause
a similar reduction in effective area per patch. All clipped correla-
tion functions from KiDS-450, presented in this paper and used in
the likelihood analysis in Section 4, have been corrected for mask
bias, whereas all those from the simulations were computed with-
out masks applied. As this is a proof-of-concept, we do not prop-
agate the error on the mask bias through to the cosmological con-
straints with KiDS-450, as we want to see the improvement ob-
tained through clipping in a scenario where the mask bias is under
control.

3.4.2 Finite box effects

The DH10 simulations span a broad range in the Ωm-σ8 parame-
ter space at the cost of having a small number of realisations per
cosmology and a small box size relative to the SLICS (see Figure
1 and Table 1 for details). In simulations, the finite size of the box
means that the matter power spectrum Pδ(k, χ), appearing in equa-
tion 14, is limited by two scales: kmin = 2π/Lbox, where Lbox is
the size of the simulation box, and kmax = 2π/Lres, where Lres

is the smallest scale which can be resolved in the simulation. The
missing modes with k < kmin cause the unclipped shear corre-
lation functions expressed in equation 13 to lose power at large
angular scales (see for example Harnois-Déraps & van Waerbeke
2015). Similarly, the missing modes with k > kmax engender a
loss of power at small θ. The effect of the resolution of DH10 is
not prominent at the angular scales probed by our measured shear
correlation functions, as is evidenced by the consistency between
the theoretical and mock ξunclip

+ at angular scales < 10 arcmin,
shown in Figure 6. On the other hand, the k-modes absent due to
the box size do cause the DH10 ξunclip

+ to be underestimated on
angular scales > 10 arcmin. We therefore need to correct for the
effect of the finite box in order to constrain the cosmology of the
real Universe using the DH10 ξclip

+ measurements.
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Figure 6. Upper: the noise-free ξunclip
+ measured for the fiducial cosmol-

ogy of the DH10 simulations (data points), the theoretical prediction from
a non-truncated box (dark blue; equation 13), and the theoretical prediction
from a truncated box of size Lbox = 250h−1Mpc (magenta). The error
bars on the data points come from the dispersion across the 175 realisations
(35 simulations × 5 ray-tracing angles) for this cosmology. The difference
between the dark blue and magenta lines is the finite box correction we ap-
ply to the DH10 measurement. Lower: the fractional difference between the
theoretical ξunclip

+ predictions and the DH10 measurement.

We obtain cosmology- and angular-scale-dependent correc-
tions for the finite box effect on ξunclip

+ by measuring the differ-
ence between the theoretical prediction from equation 13 in a non-
truncated box, and the prediction within a box of size Lbox. For
these predictions we use the NICAEA code from Kilbinger et al.
(2009) with the HALOFIT model from Smith et al. (2003), since
it is a better match to the DH10 ξunclip

+ than that of Takahashi
et al. (2012). The correction for the loss of power at large angu-
lar separations, due to the finite box, is robust to the choice of
HALOFIT model however, since Smith et al. (2003) and Takahashi
et al. (2012) converge at these scales.

The obvious choice for the size of the truncated box used in
calibrating the finite box effect is that in which the DH10 were
created, 140 h−1Mpc. The theoretical ξunclip

+ from a box of this
size however overestimates the loss of power at large θ seen in
DH10. This is because the simulations are constructed as a light-
cone through the box, resulting in a smooth decay in the power,
in contrast to a sharp cutoff at the Lbox scale. We follow Sellentin
et al. (2017), by modelling the finite box effect with an effective
cutoff, performing a χ2 fitting of the theoretical ξunclip

+ for differ-
ent values of the box size to the shape-noise-free mean measure-
ment from the fiducial DH10 cosmology. We fit the box size for
the fiducial cosmology only, on account of there being the largest
number of realisations and thus the lowest sampling variance over-
all (though we stress that the corrections we apply are specific to
each cosmology). We use the covariance matrix measured from the
175 realisations for the fiducial DH10 cosmology, rather than the
one from SLICS, since the former will better describe the uncer-
tainty on DH10. Furthermore, we use only the five angular sepa-
ration points > 10 arcmin in the fitting as we are most interested
in finding the effective box size that best describes the large-scale
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behaviour of the mocks where the effect of the finite box size be-
comes relevant. We find that the ξunclip

+ for the fiducial cosmology
of DH10 is best described by the prediction in an effective box size
of 250 h−1Mpc. This prediction, shown by the magenta curve in
Figure 6, fits the DH10 measurement well, with a χ2 of 4.99 for
the 4 degrees of freedom. The correction for the finite box size for
this cosmology is the difference between the theoretical prediction
from the non-truncated box (shown in dark blue), and the truncated
box prediction.

The lack of a theoretical prediction for ξclip
+ limits our infer-

ence of the finite box effect for this statistic. We assume therefore
that the loss of power in the clipped correlation functions due to the
finite box effect is equal to that of the unclipped, and so the cali-
bration correction we derive for the unclipped correlation functions
per cosmology, is applicable also to the clipped. This assumption is
likely to be valid since the effect of the finite box is most prominent
on scales where ξunclip

+ and ξclip
+ converge. We also test how much

the marginalised means and 68% confidence intervals on the cos-
mological parameters change when the finite box correction is in-
cluded/omitted and find that the effect is small and does not change
our conclusions. This approach is suitable for this proof-of-concept
analysis and the correction can easily be circumvented in the future
with the use of larger simulations such as the Mira Titan suite (Heit-
mann et al. 2016).

We compute individual calibration corrections for each of the
158 DH10 cosmologies, using the box size fit to the fiducial cos-
mology. We then additively scale up the whole angular separation
range of the clipped and unclipped ξ+ from the simulations (the
small scales remaining practically unchanged by the calibration).
An additive, rather than a multiplicative, correction is appropri-
ate for accounting for the missing k-modes in the integration over
Pδ(k, χ) in equation 14. The correction we apply also has the ben-
efit of not inflating the noise in the DH10 predictions.

The SLICS are also affected by the limitations of a finite box,
though the box size is larger than that of DH10, engendering a loss
of power at the largest angular scales that is of order 10-30% (we
refer the reader to the ratio of the theoretical and SLICS ξunclip

+

shown in Figure 4). In general the covariance that we calculate
from SLICS will be affected by the loss of power in the correla-
tion functions, but since the correction for the finite box in DH10
has a very small impact on the cosmological parameter constraints,
and this effect is much smaller for SLICS, we therefore treat the
SLICS covariance matrices as unbiased by the box size. We note
however that returning to the effect of the finite box on covariance
estimation is an important topic for future work.

3.4.3 Cosmological bias

In Figure 6 we show that the fiducial DH10 cosmology reproduces
the expected ξunclip

+ , modulo a small correction for the finite box
effect on large scales. In the upper panel of Figure 7 we compare
noise-free measurements of ξunclip

+ , corrected for the box size, with
theoretical predictions (equation 13), now for the full range of 158
cosmologies spanned by the DH10 simulations. Binning the rela-
tive difference by the input cosmology S8 (see colour-bar) we see
a trend where the low S8 simulations tend to underestimate ξunclip

+

by∼7% between angular separations of 1 and 110 arcmin, whereas
high S8 simulations overestimate by∼10% in this range. The cause
of this cosmological bias, which is present irrespective of whether
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Figure 7. Upper panel: the fractional difference between the 158 shape-
noise-free DH10 ξunclip

+ measurements and the theoretical predictions
(equation 13) binned in terms of S8 = σ8(Ωm/0.3)0.5, with the colours
designating the mean S8 in each bin. We see that the low S8 measurements
underestimate ξunclip

+ , whereas the high S8 measurements overestimate.
Lower panel: the same measurements but corrected for the cosmological
bias via the methodology discussed in the text. Any remaining bias can be
compared to the uncertainty on the clipped predictions (shaded grey) that is
included in our analysis when using the DH10 simulations.

the finite box correction is applied, is currently unknown. Uncover-
ing its origin is part of an on-going analysis where we are building
a next generation of varying cosmology lensing simulations. How-
ever, the bias is less than the level of uncertainty due to shot noise
and sampling variation in the DH10 ξclip

+ predictions (see Section
3.5) that increases from 5 to ∼100% over the full angular range,
shown by the grey shaded region in the lower panel. It is therefore
accounted for, to some extent, in our clipped analysis that includes
an error budget to account for this level of uncertainty in the DH10
predictions. Nevertheless, we employ a correction scheme to ensure
that this systematic does not artificially contribute to the improve-
ments yielded by the combined clipped-and-unclipped analysis.

We determine a cosmological bias correction by averaging the
relative difference between the shape-noise-free DH10 and theoret-
ical ξunclip

+ between 1 and 60 arcmin, where the bias varies slowly,
in each of the five S8 bins shown in Figure 7. This produces a
smooth mean-bias function which monotonically increases from
−5% in the lowest S8 bin to +8% in the highest. We obtain the
mean-bias for each of the 158 DH10 cosmologies by linearly in-
terpolating/extrapolating from this function for the simulation S8

values. The corrected ξunclip
+ is obtained by multiplicatively scal-

ing the DH10 measurements by 1/[1 + b(S8)], where b(S8) is the
mean-bias corresponding to the S8 value of a given simulation.
The relative differences between the corrected DH10 ξunclip

+ and
the theoretical measurements are shown in the lower panel of Fig-
ure 7 for the five S8 bins, and can be compared to the uncertainty
included in the clipped predictions ξclip

+ (shaded grey), which is
incorporated in our cosmological parameter constraints.

As was the case with the finite box effect (Section 3.4.2), it is
not possible to ascertain the extent to which the clipped predictions
are affected by the cosmological bias in DH10, owing to the lack of
a theoretical clipped statistic. Hence we again assume that the ξclip

+

is biased in the same way as the corresponding ξunclip
+ measure-

ment. We find that our conclusions are not significantly changed

MNRAS 000, 000–000 (0000)



12 Giblin et al.

however if the cosmological bias is unaccounted for; the combined
clipped-and-unclipped analysis increases the constraining power by
20%, instead of 15% when the bias is corrected. We note that this
bias was unaccounted for in the peak statistics analyses of DH10,
Kacprzak et al. (2016) and Martinet et al. (2018), and their results
will likely be affected.

3.5 Cosmological dependence of clipping

Although there is a large number of shear catalogues for the fidu-
cial DH10 cosmology (35 independent simulations × 5 pseudo-
independent catalogues corresponding to 5 different ray-tracing an-
gles), there exist only 5 catalogues for the remaining 157 cosmolo-
gies. The average ξclip

± , measured across each set of non-fiducial
DH10 cosmologies, is therefore more significantly impacted by
shot noise in comparison to the fiducial set. In the case of the
unclipped correlation functions one can simply turn off the noisy
galaxy ellipticities. However, as is discussed in Section 3.3, we find
that the clipped correlation functions are critically dependent on the
shape noise. This necessitates the inclusion of shape noise such that
the noise properties of the mocks match the data.

In order to reduce the impact of the shot noise whilst still in-
cluding the effects of the galaxy shape noise, we determine the
clipped correlation functions from DH10 with different realisations
of the shape noise. We find that averaging ξclip

+ across 75 or more
noise realisations is sufficient for the measurement from each of
the individual catalogues of the fiducial DH10 cosmology to sta-
bilise. This averages away any bias in the measurement caused by
a single realisation of the shape noise. We proceed to compute 75
noise realisations per catalogue for all of the DH10 cosmologies;
the ξclip

+ for each cosmology appearing in the likelihood analysis is
the average over these. The remaining source of noise in the DH10
mocks is then the sampling variance across different catalogues of
a given cosmology. In order to include this source of uncertainty
in our likelihood analysis, we measure the covariance across the
175 clipped and unclipped ξ+ from the fiducial DH10 cosmology,
each of which is averaged across 75 noise realisations, via equation
16. These covariance matrices, which are at the level of 5% in the
first angular separation bin (0.8 arcmin), increasing to ∼100% in
the last bin (220 arcmin; see Figure 7), encompass our uncertainty
on the model, both in terms of sampling variance and cosmological
bias (see Section 3.4.3). We add this error in quadrature to the error
measured from the SLICS which describes the uncertainty in the
data itself. This is discussed in more detail in Section 4.1.

In the upper panel of Figure 8 we present the clipped (upper),
unclipped (middle), and the ratio (lower) for all of the DH10 cos-
mologies, each of which is averaged over the 75 realisations of the
shape noise, with κc = 0.010 and σs = 6.6 arcmin. All mea-
surements have been corrected for the finite box effect and the cos-
mological bias (Sections 3.4.2 and 3.4.3). In general the power in
the ξclip

+ increases with S8 in a similar capacity to the ξunclip
+ . The

prominent reduction in power at angular scales∼5 arcmin is also a
common feature for all of the cosmologies. We observe a number
of the low S8 cosmologies with small or negative ratios at small
angular separations. This effect is not caused by these cosmolo-
gies experiencing a greater degree of clipping; indeed we see that
in general less of the field is clipped for lower S8 cosmologies as
expected. Rather, this is the result of these fields being dominated
by shape noise. Smoothing these fields correlates the shape noise,
and clipping then leads to a reduction in power and even anticorre-
lations to be seen in the ξclip

+ for these low S8 cosmologies. This
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Figure 8. Upper panels: θξclip
+ , θξunclip

+ and the ratio for all of the
DH10 cosmologies, each of which is averaged over 75 shape noise reali-
sations, colour-coded by S8. The clipping threshold and smoothing scale
are κc = 0.010, σs = 6.6 arcmin respectively, selected via the method-
ology in Section 3.3. The low clipped-to-unclipped ratios seen at < 10
arcmin for low S8 cosmologies are brought about by clipping shape noise
only. Lower panels: the same measurements but with zero shape noise. The
low S8 cosmologies are not subject to clipping in this case, and the clipped
and unclipped ξ+ converge at all angular scales. All measurements have
been corrected for the finite box effect and cosmological bias (see Sections
3.4.2-3.4.3).

is not observed in the higher S8 measurements which have higher
signal to noise, and consequently maintain larger power in the cor-
relations throughout the clipping pipeline. In the case of the low S8

cosmologies, smaller values of σs and κc would have been more
suitable for the clipped analysis.

The lower panel of Figure 8 shows these measurements in the
absence of shape noise, to verify that in this case the low S8 cos-
mologies experience no clipping, and the ξclip

+ and ξunclip
+ converge

at all scales. Intuitively we see lower clipped-to-unclipped ratios
as S8 increases, due to the greater degree of clipping of the cos-
mological signal. As with the shape-noise-free ξclip

+ from SLICS
presented in Section 3.3, we see once again that clipping the non-
linear signal causes only a small change in the correlation functions
relative to the unclipped, but this small effect is ample for consider-
ably informing the parameter inference (see Section 4). This high-
lights the importance of selecting a smoothing scale and clipping
threshold which are well suited to the properties of the data, in or-
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Figure 9. The clipped and unclipped ξ+ (upper) and ξ− (lower) for KiDS-450 (data points) relative to those from the fiducial cosmology of SLICS. The left
hand panels display θξ±, the right hand the ratio of the clipped and unclipped measurements. The errors plotted for SLICS are that of the mean measurement.
The error bars on KiDS-450 are equal to those of SLICS scaled by the ratio of the effective unmasked areas. The mock and the data were clipped with the
fiducial parameters κc = 0.010 and σs = 6.6 arcmin.

der to clip the cosmological signal rather than just the noise. One
need not alter κc and σs for our analysis however; the cosmologies
in the extreme S8 tail, are flagged as ill-fitting cosmologies to the
data in our likelihood analysis, by virtue of the low power correla-
tions/anticorrelations brought about by clipping noise only.

4 RESULTS

In Figure 9 we present the ξclip
± measured from KiDS-450 and

SLICS produced with a clipping threshold of κc = 0.010 and
smoothing scale σs = 6.6 arcmin (see Section 3.3). The left hand
panels of this figure display θξ±, the right displays the measure-
ments normalised to the unclipped. The error bars come from the
SLICS covariance (rescaled to the effective area of KiDS-450 in
the case of the data), and we include the cross-covariance between
the clipped and unclipped in the error on the ratios. We see similar
trends in the clipped measurements between the mock and the data,
which is expected given that SLICS are tailored to reflect KiDS-
450.

4.1 Likelihood analysis

We proceed to the likelihood analysis to constrain S8 =
σ8(Ωm/0.3)0.5, with the other parameters fixed to the DH10 fidu-
cial values, Ωb = 0.04, ns = 1.0 and h = 0.7. We use only
the clipped and unclipped ξ+, omitting the ξ− for the reasons ar-
gued in Section 3.4.1, and all nine θ-bins, logarithmically spaced
from ∼0.8 to ∼220 arcmin. The products required to constrain

these cosmological parameters are the clipped and unclipped auto-
and cross-covariance matrices from SLICS, which describe the un-
certainty on the data, those measured from the fiducial cosmology
of DH10, which describe the uncertainty on the predictions them-
selves, and the ξclip

+ predictions from DH10. Rather than use the
ξunclip
+ from DH10 in the likelihood analysis, we use the more

accurate theoretical predictions (see equation 13) evaluated at the
DH10 cosmologies, from NICAEA, which are free of the noise and
low-level cosmological bias (Section 3.4.3) present in the simu-
lations. When constraining the cosmology of a test dataset from
DH10 of known cosmology, we use the HALOFIT model from
Smith et al. (2003), as this matches these simulations more closely
than the HALOFIT model from Takahashi et al. (2012). However,
when constraining the cosmology of KiDS-450 we use the latter
model, since it better describes the ξunclip

+ on small, non-linear
angular scales. We find that the combined clipped-and-unclipped
analyses improve cosmological parameter constraints over the un-
clipped alone, irrespective of whether we use the simulated or the-
oretical ξunclip

+ . This is discussed further in Appendix B1. We also
find that the combined constraints are an improvement upon the
unclipped irrespective of which θ-scales are used in the likelihood
analysis. The improvements do however tend to zero when the an-
gular scales are restricted to the range where the clipped and un-
clipped converge.

The Bayesian posterior probability distribution for a particular
set of cosmological parameters π given a data vector d is given by

p(π|d) =
L(d|π)p(π)

E
, (18)
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where L(d|π) is the likelihood, p(π) is the prior probability of
the cosmological parameter configuration π and E is the evidence,
which normalises the integral of the posterior over all possible val-
ues of π to unity. We adopt a wide tophat prior over π which goes
to zero where the likelihood becomes very small. Hence, in this
case the posterior probability is simply proportional to the likeli-
hood given by

L(d|π) ∝ exp

(
−1

2
[d−m(π)]ᵀ Σ−1 [d−m(π)]

)
, (19)

where the model prediction m(π) represents either the theoretical
ξunclip
+ from equation 13, or the ξclip

+ from DH10. The data vec-
tor d of course takes the form of the clipped and unclipped ξ+
from the data. Σ is the true covariance matrix describing the uncer-
tainties affecting statistical inference. When computing the com-
bined clipped-and-unclipped constraints, Σ is built out of the auto-
covariance matrices for the unclipped and clipped ξ+, as well as
the cross-covariance between them. Typically, uncertainties arise
from the sampling variance in the data; here, we approximate this
with the covariance matrix, Cdata, measured from the SLICS and
rescaled to the effective area of the data. However, in this analysis
we also have uncertainty on the clipped model predictions owing to
the noise in the DH10 simulations. We incorporate these two inde-
pendent sources of error by assuming Σ ' C = Cdata + Cmodel,
where Cmodel describes the covariance of the predictions m(π).
The clipped auto-covariance component of Cmodel is measured
across the various noise realisations for each of the catalogues for
the fiducial DH10 cosmology, as is discussed in Section 3.5. Using
the theoretical predictions from equation 13 for ξunclip

+ , which are
free of noise, causes the unclipped auto-covariance, as well as the
clipped-unclipped cross-covariance components within Cmodel to
be zero. If we were to use the DH10 unclipped predictions instead,
these elements are non-zero, and are again measured from these
mocks (see Appendix B1). In this case, comparison of the diagonal
elements of the clipped and unclipped parts of Cdata and Cmodel,
reveals that Cdata, and hence the survey size of KiDS-450, is the
dominant source of uncertainty, by a factor of ∼20 in the lowest
angular separation bin, decreasing to ∼2 in the largest bin.

Although the approximated covariance, C, is assumed to be
an unbiased estimate of the true covariance, Σ, since it is calcu-
lated from simulations featuring noise, its inverse, C−1, is a bi-
ased estimate of Σ−1 which appears in equation 19. This means
that one cannot readily substitute C−1 into this expression. Hartlap
et al. (2007) advocate a correction whereby the inverse covariance
is rescaled3 according to,

Ĉ−1 =
N −D − 2

N − 2
C−1. (20)

Here N is the number of simulations employed in estimating the
covariance matrix C containing D × D elements. In our analysis
C is the summation of Cdata and Cmodel, each of which have dif-
ferent Hartlap correction factors. This complicates efforts to obtain
an unbiased estimate of the inverse covariance. However, the num-
ber of realisations, N , used to calculate the two matrices (906 for
the data4, 175 for the clipped model) greatly exceeds D, the num-
ber of θ bins in our correlation functions, (equal to 9 in the case of

3 Although see Sellentin & Heavens (2016) for a more rigorous correction
scheme.
4 After our clipping pipeline was run on these 906 SLICS realisations,

the separate clipped and unclipped analyses, and 18 for the com-
bined). Thus Cdata and Cmodel are sufficiently well estimated for
us to safely neglect the Hartlap correction in our likelihood analy-
sis.

Our cosmological constraints derive from an evaluation on a
fine grid within the parameter space. In the case of the clipped anal-
ysis, we obtain 2D likelihood surfaces by interpolating from the
DH10 cosmologies onto Ωm-σ8 and Ωm-S8 grids. Our 1D con-
straints on S8 are then obtained by marginalising in the Ωm-S8

space. Although we have a theoretical prescription for the ξunclip
+

as a function of cosmology (equations 13–14), we chose to also in-
terpolate the theoretical unclipped model from the DH10 cosmolo-
gies in order to facilitate a direct comparison between the clipped
and unclipped results.

An open question is whether this interpolation should be per-
formed at the level of the clipped and unclipped ξ+ or at the level of
the likelihoods. If one interpolates the model, the cosmological pa-
rameter constraints are dependent on the square of any systematic
bias which could potentially reside in the interpolation, whereas the
dependence is only linear if one interpolates the likelihoods. We
try both methods and find that extrapolating the likelihoods outside
of the range of the DH10 cosmologies, is more reliable than ex-
trapolating the model. Thus in this Section, we present the results
having interpolated the DH10 likelihoods. We demonstrate in Ap-
pendix B2 however, that overall our conclusions are unchanged for
a range of different interpolation schemes. We follow Martinet et al.
(2018) and interpolate from the DH10 cosmologies using radial ba-
sis functions, employing the scipy.interpolate.Rbf Python function
set to the multiquadratic model5. Whereas the unclipped predic-
tions are noise-less and come from theory, the clipped predictions,
from DH10 have added uncertainty. Consequently, the interpolated
clipped and combined likelihoods are fairly noisy, featuring spuri-
ous spikes which fracture the 68% and 95% clipped and combined
contours. We apply a small amount of smoothing in the interpola-
tion to reduce this effect and obtain cohesive contours. So that the
clipped and combined contours can be directly compared to the un-
clipped, we apply the same level of smoothing when interpolating
the unclipped predictions also. We verify with the unclipped statis-
tic that the interpolation does not considerably affect the recov-
ered cosmology relative to a standard grid-based likelihood method
without interpolation.

4.2 Cosmological constraints

4.2.1 DH10 constraints

Before constraining the cosmology of the KiDS-450 data, we in-
vestigate the power of combining the clipped and unclipped ξ+
statistics for a case where the cosmology is already known. Since
we only have clipped measurements at the cosmologies of the vari-
ous simulations at our disposal, the natural choice for the “data” in
this test is the clipped and unclipped ξ+ corresponding to the fidu-
cial DH10 cosmology. Specifically, we take a subset of the simu-
lations with this cosmology spanning 360 deg2, the unmasked area
of KiDS-450, as the data. We also omit the ξclip

+ and ξunclip
+ with

26 more where added to the ensemble presented in Harnois-Déraps et al.
(2018). Given the negligible impact this would have on our analysis, we did
not include them.
5 https://docs.scipy.org/doc/scipy/reference/
generated/scipy.interpolate.Rbf.html
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Figure 10. The unclipped (orange), clipped (magenta) and combined
(black) 68% and 95% confidence intervals for the fiducial cosmology from
DH10 (shown by the yellow star) in the Ωm-σ8 and Ωm-S8 parameter
spaces. We use only a subset of the fiducial cosmology simulations for the
data vector in this test, corresponding to a KiDS-450-like survey of 360
deg2. The unclipped contours are smooth as their theoretical expectation
value is noise-free. In contrast the clipped likelihood is interpolated across
sparse measurements from DH10. The resulting clipped and combined con-
tours are therefore noisy in comparison to the unclipped constraints.

the fiducial cosmology from the predictions, such that there is no
“perfect match” between the predictions and the data we are con-
straining the cosmology of, as is the case when working with real
data. All cosmological constraints presented hereafter have the cor-
rections for the finite box size and cosmological bias applied, not
only to the predictions, but also to the data from DH10. We have
verified that we better recover the known input cosmology with
these calibrations included.

The upper panel of Figure 10 shows the clipped (magenta), un-
clipped (orange) and combined (black) 68% and 95% constraints
on the fiducial DH10 cosmology, in the Ωm-σ8 parameter space.
The lower panel of this Figure shows the constraints in the Ωm-S8

Table 2. The marginalised means and 68% confidence intervals on S8 =
σ8(Ωm/0.3)0.5 for a subset of independent DH10 simulations with the
fiducial cosmology spanning 360 deg2. The improvements in the constraint
over the unclipped are presented in bold to the nearest percentage.

Input S8 = 0.740
Unclipped 0.725 ± 0.042

Clipped 0.710 ± 0.037 (11%)

Combined 0.710 ± 0.033 (22%)

parameter space, where S8 = σ8(Ωm/0.3)0.5. We note first of all
that we do not see the clockwise rotation of the clipped contours
relative to the unclipped, predicted by S15. In answer to this, we
remind the reader that this prediction was for a Euclid-like 5000
deg2 survey, whereas our constraints correspond to a 360 deg2 sur-
vey. It is possible that a rotation becomes evident given smaller
error bars. If we were to scale the covariance on the data, Cdata,
so as to correspond to a survey of Euclid-like proportions, the co-
variance on the clipped predictions from DH10, Cmodel, becomes
the dominant source of uncertainty. This prevents us from making
a meaningful prediction for the cosmological constraints for a sur-
vey of this size. In the future, larger simulation suites will facilitate
interesting predictions for larger size surveys.

The combined constraints shown in Figure 10 recover the in-
put cosmology, offering a significant improvement on the unclipped
constraints. For example, the combined 95% confidence intervals
are 18% and 29% smaller in area than those of the unclipped, in
the Ωm-σ8 and Ωm-S8 parameter spaces, respectively. In compar-
ison, the clipped contours are of comparable size to the unclipped
in either parameter space.

Table 2 displays the marginalised mean and 68% confidence
intervals on S8 from the clipped, unclipped and combined contours
in the Ωm-S8 plane. The improvement in the size of the confidence
intervals offered by the combined analysis relative to the unclipped
is 22%. This improvement, which is not changed considerably by
the corrections for the finite box effect and cosmological bias in
DH10, is indicative of the independent information in the clipped
and unclipped statistics. Indeed, this is evidenced by the cross-
correlation coefficient matrices presented in Appendix A.

The clipped analysis alone yields S8 constraints which are
11% tighter than the unclipped. For the clipped analysis to out-
perform the unclipped, the loss of information in clipping must be
outweighed, by either the gain of phase information on the peaks,
or the improvement in the clipped statistic for probing the more
linear, clipped field. In this test however, we find that the success
of the clipped analysis relative to the unclipped depends on the de-
tails of our interpolation scheme (see Appendix B2). The combined
analysis consistently outperforms the unclipped in constraining the
cosmology of the DH10 dataset however, with all interpolations
considered.

4.2.2 KiDS-450 constraints

After verifying that the combined clipped-and-unclipped analyses
improve cosmological parameter constraints with a mock dataset,
we proceed to constrain the cosmology of the KiDS-450 data. Fig-
ure 11 displays the 68% and 95% confidence regions in the Ωm-σ8
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Figure 11. The unclipped (orange), clipped (magenta) and combined
(black) 68% and 95% confidence intervals for the KiDS-450 data in the
Ωm-σ8 and Ωm-S8 parameter spaces. The yellow star depicts the best-
fit cosmological parameters from the H17 cosmic shear analysis. The un-
clipped contours are smooth as their theoretical expectation value is noise-
free. In contrast the clipped likelihood is interpolated across sparse mea-
surements from DH10. The resulting clipped and combined contours are
therefore noisy in comparison to the unclipped constraints.

and Ωm-S8 parameter spaces for this dataset. The best-fit cosmol-
ogy from the H17 cosmic shear analysis is designated by the yellow
star. Once again we have applied the finite box and cosmological
bias calibration corrections to the clipped predictions from DH10.
We have also interpolated from the DH10 cosmologies with radial
basis functions, and applied the same degree of smoothing as in
Figure 10. The slight discontinuities in the tails of the clipped and
combined contours in the Ωm-σ8 space, seen also by Martinet et al.
(2018) in their analysis involving the DH10 mocks, are a product
of the sparsity of the simulated cosmologies, and disappear if we
apply a greater degree of smoothing.

In both the Ωm-σ8 and Ωm-S8 parameter spaces, we see that
the clipped and combined contours are consistent with the best fit

Table 3. The marginalised means and 68% confidence intervals on S8 =
σ8(Ωm/0.3)0.5 for KiDS-450. The improvement in the constraint over the
unclipped are presented in bold to the nearest percentage. We remind the
reader that the results of this work are not directly comparable to the H17
result, owing to the differences in the analyses discussed in the text.

H17 S8 = 0.745
+0.038
−0.038

Unclipped 0.754 ± 0.036
Clipped 0.760 ± 0.051

Combined 0.734 ± 0.030 (17%)

cosmological parameters from H17, despite the differences in the
analyses. In addition to accounting for more systematics, the H17
result was obtained using four tomographic bins in the 0.1–0.9 pho-
tometric redshift range, as opposed to our single 0.5–0.9 bin. H17
also used both the ξunclip

+ and ξunclip
− , but omitted the largest two

and smallest three θ bins for these statistics, respectively. In the
Ωm-σ8 and Ωm-S8 parameter spaces shown in Figure 11, the 95%
confidence intervals from the combined analysis are about 13% and
10% smaller than the unclipped, respectively, whereas those of the
clipped analysis are considerably larger. There are a number of ex-
tra sources of noise when working with the KiDS-450 data, which
could cause the clipped contours to inflate relative to the unclipped,
in contrast to what was observed when working with the DH10 data
vector. These include galaxy shape measurement, baryonic effects
and n(z) uncertainties; this is discussed further in Appendix B2.2.

The marginalised constraints on S8 from the Ωm-S8 plane are
shown in Table 3; again bold percentages detail improvements in
the confidence intervals relative to the unclipped. As we saw with
the DH10 data vector in Section 4.2.1, the combined analysis offers
improvements on the unclipped constraint, by 17%. This is com-
parable to the ∼20% improvement in S8 found by Martinet et al.
(2018) when constraining the KiDS-450 cosmology with combined
peak statistics and standard shear correlation functions.

5 CONCLUSIONS

In this paper we have performed a proof-of-concept analysis
demonstrating that clipping transformations, which suppress the
contribution from overdense regions to the weak lensing signal, can
be used alongside a conventional “unclipped” cosmic shear anal-
ysis to improve cosmological parameter constraints. Our pipeline
reconstructs the projected surface mass density, performs clipping,
determines the shear corresponding to the overdensities, and ob-
tains “clipped” shear correlation functions. We have experimented
with the threshold controlling the severity of the clipping transfor-
mation, and the smoothing employed in mass reconstruction, and
found values well suited to the KiDS-450 dataset.

There is currently no analytical prediction for clipped statis-
tics as a function of cosmology, and so we calibrate the clipped
shear correlation functions with numerical simulations spanning a
broad range of Ωm and σ8. Consequently, we show that the com-
bined clipped-and-unclipped analysis facilitates tighter constraints
on S8 = σ8(Ωm/0.3)0.5, at fixed values of Ωb, ns and h, than
the conventional unclipped analysis alone. For a mock dataset with
known cosmology, we find that the 68% confidence interval on
S8 is improved upon the unclipped by 22%. In the case of the
KiDS-450 data, the improvement is 17%. The combined constraints
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from clipping could improve further given optimisation for the clip-
ping threshold and mass reconstruction smoothing scale, though we
leave this for future work on account of the computational cost.

The DH10 mocks with the calibration corrections are suffi-
ciently accurate for modelling in this work. However, the limi-
tations of the mocks that we have examined here do impact the
improvement reported for clipping and are likely to affect peak
statistic studies also, reinforcing our conclusion that the success
of these new statistics is intimately linked with the future accu-
racy and abundance of cosmological simulations. With new suites
of simulations, the level of improvement seen in our joint analysis
will increase in the future, as it will no longer be limited by the
∼7–100% uncertainty that we currently include with DH10 predic-
tions. We note that a joint analysis of peak counts, cosmic shear
and clipping both peaks and voids, also poses an interesting topic
for further investigation.

Our best-fit S8 = 0.734 ± 0.030 for the KiDS-450 data, in-
ferred from a single photometric redshift bin in the range 0.5–0.9,
is in good agreement with the tomographic cosmic shear analy-
sis of H17, who found S8 = 0.745 ± 0.038. We note that H17
marginalised over Ωb, ns, h whereas our constraints are made at
fixed values of these parameters. In the future, larger suites of nu-
merical simulations will permit investigation of how clipped statis-
tics vary with these cosmological parameters. H17 also marginalise
over photometric redshift uncertainties, the effects of baryons and
intrinsic alignments, which we have not contended with here. In or-
der for clipping to become a standard tool for constraining cosmol-
ogy, work must be done to fold these extra systematic uncertainties
into the clipped analysis. Finally, mass reconstruction methods with
a more sophisticated handling of the masks are needed to reduce the
bias imposed by this essential part of the clipping pipeline. Never-
theless, the results obtained in this work robustly demonstrate that
clipping improves constraining power and should be explored in
future cosmic shear analyses.
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APPENDIX A: SLICS COVARIANCE MATRICES

Our likelihood analysis for cosmological parameters necessitates
auto-covariance matrices for the clipped and unclipped statistics, as
well as the cross-covariance between the two. Non-Gaussianity in
cosmological density fields engenders correlations between the dif-
ferent angular scales probed by these measurements which are not
well described by theory. Therefore we use the SLICS numerical
simulations to model these covariance matrices. From the SLICS
covariance matrices, defined in equation 16, we calculate correla-
tion coefficient matrices, defined as

CC±(θi, θj) =
C±(θi, θj)√

C±(θi, θi)× C±(θj , θj)
, (A1)

where C±(θi, θj) represents either the auto-covariance matrices
for the ξunclip

± or ξclip
± statistics, or the cross-covariance matrix be-

tween the clipped and unclipped statistics. In the correlation coeffi-
cient matrix, the covariance is normalised to a value of unity for the
strongest positive correlations on the leading diagonal, and values
between -1 and 1 for all other elements.

In Figure A1, we display correlation coefficient matrices for
the clipped and unclipped ξ+ in the upper panel, and for the ξ−
in the lower panel. Each of these matrices are built out of the fol-
lowing components. The auto-correlation coefficient matrix for the
unclipped statistic is in the lower-left corner, the clipped is in the
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Figure A1. The correlation coefficient matrices measured from SLICS (fea-
turing shape noise typical of KiDS-450) for the clipped and unclipped ξ+
(upper panel) and ξ− (lower panel). Each panel consists of the following
components. Lower left: the auto-correlations for the ξunclip

± . Upper right:

the auto-correlations for the ξclip
± . Upper-left (and lower-right): the cross-

correlations between ξunclip
± and ξclip

± (and its transpose).

upper-right corner, the matrix describing the cross-correlation co-
efficients between these two statistics is in the upper-left, and its
transpose is in the lower-right.

The fact that many of the off-diagonal elements of these ma-
trices are non-zero (varying in the range -0.1 to 0.8 in either panel),
indicates the need for simulations in order to model the correlations
not only across angular scales, but also the correlations between the
clipped and unclipped statistics. The cross-correlation matrices re-
veal that the clipped and unclipped statistics are not perfectly cor-
related and thus contain some independent information. It is also
interesting to note that the clipped auto-correlation matrices seem
to feature slightly weaker correlations between scales around ∼10
arcmin and ∼100 arcmin in the upper and lower panels respec-
tively, than the unclipped auto-correlation matrices. This is consis-
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tent with the clipped field being more Gaussian than the unclipped.
We note that the correlation between the clipped and unclipped
measurements does not tend to unity on the largest scales probed
in this analysis. This is a reflection of that fact that the largest-scale
clipped and unclipped measurements for our fiducial analysis also
do not converge. We find that for a less aggressive clipping thresh-
old, (see the upper panel in Figure 4), both the cross-correlation
coefficients and the ratio between the clipped and unclipped mea-
surements do however converge to unity as expected. For our fidu-
cial set-up we would expect perfect correlation between the clipped
and unclipped signals to occur on scales that are larger than we can
currently test with the SLICS or KiDS-450 survey area.

APPENDIX B: COSMOLOGICAL CONSTRAINTS

B1 Sensitivity to the unclipped predictions

In Section 4.2.1, we use the theoretical ξunclip
+ from equation 13 to

constrain the cosmology of the subset of DH10 simulations with
the fiducial cosmology spanning 360 deg2. We could alternatively
have used the unclipped predictions from the simulations them-
selves, though these predictions are subject to the finite box effect,
cosmological bias and additional uncertainty, as discussed in Sec-
tions 3.4.2, 3.4.3 and 3.5 respectively. The noise-free theoretical
predictions (e.g. from NICAEA) are a more suitable choice for con-
straining cosmology where such predictions are available (which is
of course not so, in the case of the clipped statistic). Nevertheless,
we verify that one still obtains improved cosmological constraints
in the combined analysis irrespective of whether we employ the
theoretical or simulated ξunclip

+ .

Figure B1 compares the marginalised means and 68% confi-
dence intervals on S8 from the Ωm-S8 parameter space when we
use the unclipped predictions from equation 13 and from DH10.
These constraints are clearly consistent with one another and the
input S8, but differ in their details, as is shown in Table B1. The
theoretical unclipped better recovers the input S8 indicating again
that they should be used over DH10 whenever possible. One conse-
quence of this choice however, is that we find it leads to a ∼ 0.4σ
difference in the mean marginalised constraints on S8 when com-
paring the clipped and unclipped analyses in Table B1. Given
the high correlation between these two statistics, shown in Fig-
ure A1, we would expect better agreement, which we indeed find
when using the DH10 measurements for both the clipped and un-
clipped predictions. In this case the mean S8 agree to within 0.05σ.
When using DH10 for both the clipped and unclipped predictions,
our finding that the combined clipped-and-unclipped analyses im-
proves cosmological parameter constraints holds but in this case the
level of improved constraining power decreases to 12%. We find
these conclusions are robust to different realisations of the DH10
data vector.

B2 Sensitivity to the interpolation method

Qualitatively our finding that the combined clipped-and-unclipped
analyses improves cosmological parameter constraints holds irre-
spective of how we choose to interpolate from the DH10 cos-
mologies onto the Ωm-σ8 and Ωm-S8 grids. Quantitatively how-
ever there is a dependence of the marginalised constraints on these
choices, particularly for the highly degenerate Ωm and σ8 parame-
ters. This is to be expected given the level of noise in the predictions
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Figure B1. The marginalised means and 68% confidence intervals on S8

from the Ωm-S8 plane for the DH10 fiducial cosmology data vector, de-
pending on whether the ξunclip

+ derive from equation 13 or from the DH10
mocks themselves. The input S8 is designated by the horizontal green line.
The corrections for the finite box size and cosmological bias have been ap-
plied to the predictions from DH10.

Table B1. The marginalised means and 68% confidence intervals on the
DH10 data vector from Figure B1 expressed in tabular form. Improvements
over the unclipped confidence intervals are detailed in bold to the nearest
percentage. The corrections for the finite box size and cosmological bias
have been applied to the predictions from DH10.

Theoretical Unclipped DH10 Unclipped

Input S8 = 0.740

Unclipped 0.725 ± 0.042 0.708 ± 0.041
Clipped 0.710 ± 0.037 (11%) 0.710 ± 0.037 (8%)

Combined 0.710 ± 0.033 (22%) 0.709 ± 0.036 (12%)

and the sparsity with which the predictions are sampled across the
parameter space. We find that the measurement of S8 is the least
sensitive to the interpolation scheme adopted, motivating the use of
this statistic to highlight the benefit of clipping throughout this pa-
per. In this Appendix we compare our marginalised S8 constraints
for KiDS-450 and the DH10 mock data for four different interpo-
lation methods.

B2.1 DH10 constraints

The first method we consider for interpolating the likelihoods from
the DH10 simulations, is the interpolation with radial basis func-
tions (RBFs), smoothing the contours as described in Section 4.
Secondly, we have the RBF interpolation with no contour smooth-
ing. Thirdly, we have simple 2D linear interpolation. We also con-
sider the results of interpolating the clipped and unclipped DH10
ξ+ statistics, for each θ bin individually, rather than the likeli-
hoods, onto the Ωm-S8 plane. We use the smoothed-RBF method
when interpolating the correlation functions in this comparison. By
comparing the theoretical ξunclip

+ with those extrapolated outside of
the range of the DH10 cosmologies, we find that the extrapolation
of the correlation functions is inaccurate. Thus we impose a prior
which sets the likelihoods calculated from the extrapolated clipped
and unclipped ξ+ to zero. Since we find good agreement between
theory and the mocks when we extrapolate the unclipped likeli-
hoods instead of the unclipped correlation functions, we do not im-
pose this prior when performing the likelihood-interpolations. In-
deed, we find it does not change our results significantly when it is
imposed.
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Table B2. The marginalised means and 68% confidence intervals on S8 for the DH10 data vector from Figure B2 expressed in tabular form. Improvements
over the unclipped confidence intervals are detailed to the nearest percentage in bold.

RBF+Smooth RBF 2D Lin Int ξ+-Int

Input S8 = 0.740

Unclipped 0.725 ± 0.042 0.725 ± 0.043 0.727 ± 0.040 0.727 ± 0.040
Clipped 0.710 ± 0.037 (11%) 0.717 ± 0.039 (9%) 0.718 ± 0.039 (3%) 0.724 ± 0.041

Combined 0.710 ± 0.033 (22%) 0.713 ± 0.034 (21%) 0.716 ± 0.033 (17%) 0.726 ± 0.035 (12%)

RBF+Smooth RBF 2D Lin Int ξ+-Int0.66
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Unclipped
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Figure B2. The marginalised means and 68% confidence intervals on S8

from the Ωm-S8 plane for the DH10 fiducial cosmology data vector, via dif-
ferent intepolation methods listed on the horizontal axis. From the left-hand
side, the first three methods are likelihood-interpolations. “RBF+Smooth”
refers to the likelihood-interpolation with radial basis functions and con-
tour smoothing. “RBF” refers to this interpolation with no smoothing, and
“2D Lin Int” designates simple 2D linear interpolation. “ξ+-Int” refers to
interpolating the clipped and unclipped shear correlation functions, instead
of the likelihoods, again with the smoothed-RBF method. The input S8 is
designated by the horizontal green line. The corrections for the finite box
size and cosmological bias have been applied to the ξclip

+ predictions from

DH10. The ξunclip
+ predictions come from equation 13 and are calculated

using NICAEA.

Figure B2 and Table B2 present a comparison of the
marginalised means and 68% confidence intervals on S8 for the
DH10 dataset. Featured, are the three likelihood-interpolations
methods and one ξ+-interpolation method. Clearly all of the
marginalised constraints from the different ways of interpolating
are consistent with one another, and with the true cosmological pa-
rameters to < 1σ. We see that the combined analysis invariably is
an improvement upon the unclipped, with 68% confidence intervals
that are between 12% and 22% tighter. The combined analysis also
yields improvements on Ωm and σ8, of 28% and 24% respectively,
in the standard analysis with the DH10 dataset presented in Section
4. Though the greater sensitivity of these results to the interpolation
scheme means that we ascribe more confidence in our measurement
of S8.

B2.2 KiDS-450 constraints

The marginalised constraints on the KiDS-450 data fluctuate more
than those on the DH10 data vector across the different inter-
polation schemes (described in Section B2.1). This is to be ex-
pected given that KiDS-450 features extra sources of noise, such as
galaxy shape measurement, baryonic effects and n(z) uncertainties
which have not been accounted for in this proof-of-concept analy-
sis. These may engender spurious peaks in the interpolated like-
lihoods which bias some interpolation methods more than others.

RBF+Smooth RBF 2D Lin Int ξ+-Int0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82

S
8

KiDS-450

Unclipped

Clipped

Combined

Figure B3. The same as Figure B2 but for the KiDS-450 data. The light-
green region corresponds to the 68% confidence region from the H17 cos-
mic shear analysis.

What is more, the nuisance cosmological parameters Ωb, ns and
h are almost certainly mismatched between the data and the pre-
dictions. In principle this could affect the ξclip

+ differently than the
ξunclip
+ predictions.

We find that the improvements over the unclipped found in the
combined marginalised S8 constraints, displayed visually in Figure
B3 and numerically in Table B3, are consistent for the interpola-
tion schemes which incorporate smoothing, “RBF+Smooth” and
“ξ+-Int”, between 14% and 17%. The interpolation schemes with-
out smoothing however, “RBF” and “2D Lin Int”, yield little to
no improvement in the combined constraints. This is because the
interpolated clipped and combined likelihoods for the KiDS-450
dataset are reasonably noisy, and the methods without smoothing
are more strongly affected by this. The smoothing reduces the im-
pact of spurious noise spikes in the likelihoods biasing the parame-
ter constraints. Thus we regard the constraints obtained with these
interpolations as more accurate, and maintain that the improvement
found by combining the clipped and unclipped analyses is around
the 17% level for the KiDS-450 data.

APPENDIX C: KIDS-450 MASS MAPS

In Figures C1 and C2 we present convergence maps for the North
and South KiDS-450 patches respectively. In producing these
maps, we follow the mass reconstruction methodology of Kaiser &
Squires (1993) as detailed in Section 3.1. The maps are smoothed
with a Gaussian filter with width σs = 6.6 arcmin, and the regions
exceeding the clipping threschold κc = 0.010 are highlighted with
the green contours. We follow Van Waerbeke et al. (2013) and set
the convergence to zero in regions where more than 50% of the
Gaussian smoothing window is centred on masked pixels.
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Table B3. The same as Table B2 but for the KiDS-450 data. Improvements over the unclipped confidence intervals are detailed to the nearest percentage in
bold. We remind the reader that the results of this work are not directly comparable to the H17 result, owing to the differences in the analyses discussed in the
text.

RBF+Smooth RBF 2D Lin Int ξ+-Int

H17 S8 = 0.745
+0.038
−0.038

Unclipped 0.754 ± 0.036 0.754 ± 0.038 0.754 ± 0.035 0.755 ± 0.036

Clipped 0.760 ± 0.051 0.798 ± 0.067 0.789 ± 0.063 0.773 ± 0.052
Combined 0.734 ± 0.030 (17%) 0.740 ± 0.035 (6%) 0.744 ± 0.036 0.749 ± 0.031 (14%)
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Figure C1. Maps of the convergence, κ, for the three KiDS-450 North patches, G9 (upper), G12 (middle) and G15 (lower). The maps have been smoothed
with a Gaussian filter with width σs = 6.6 arcmin. Unobserved/masked regions are given zero convergence, as is described in the text. The regions highlighted
by the green contours, exceed the clipping threshold, κc = 0.010, and are therefore clipped in our pipeline. The clipped regions make up 12 ± 1% of the
effective area of the five KiDS-450 patches.
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Figure C2. The same as Figure C1 but for the two KiDS-450 South patches, GS (upper), and G23 (lower).
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