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Abstract We present a model of how neural representations of egocentric spatial experiences in

parietal cortex interface with viewpoint-independent representations in medial temporal areas, via

retrosplenial cortex, to enable many key aspects of spatial cognition. This account shows how

previously reported neural responses (place, head-direction and grid cells, allocentric boundary-

and object-vector cells, gain-field neurons) can map onto higher cognitive function in a modular

way, and predicts new cell types (egocentric and head-direction-modulated boundary- and object-

vector cells). The model predicts how these neural populations should interact across multiple brain

regions to support spatial memory, scene construction, novelty-detection, ‘trace cells’, and mental

navigation. Simulated behavior and firing rate maps are compared to experimental data, for

example showing how object-vector cells allow items to be remembered within a contextual

representation based on environmental boundaries, and how grid cells could update the viewpoint

in imagery during planning and short-cutting by driving sequential place cell activity.

DOI: https://doi.org/10.7554/eLife.33752.001

Introduction
The ability to reconstruct perceptual experiences into imagery constitutes one of the hallmarks of

human cognition, from the ability to imagine past episodes (Tulving 1985) to planning future scenar-

ios (Schacter et al., 2007). Intriguingly, this ability (also known as ‘scene construction’ and ‘episodic

future thinking’) appears to depend on the hippocampal system (Schacter et al., 2007;

Hassabis et al., 2007; Buckner, 2010), in which direct (spatial) correlates of the activities of single

neurons have long been identified in rodents (O’Keefe and Nadel, 1978; Taube et al., 1990a;

Hafting et al., 2005) and more recently in humans (Ekstrom et al., 2003; Jacobs et al., 2010). The

rich catalog of behavioral, neuropsychological and functional imaging findings on one side, and the

vast literature of electrophysiological research on the other (see e.g. Burgess et al., 2002), promises

to allow an explanation of higher cognitive functions such as spatial memory and imagery directly in

terms of the interactions of neural populations in specific brain areas. However, while attaining this

type of understanding is a major aim of cognitive neuroscience, it cannot usually be captured by a

few simple equations because of the number and complexity of the systems involved. Here, we

show how neural activity could give rise to spatial cognition, using simulations of multiple brain areas

whose predictions can be directly compared to experimental data at neuronal, systems and behav-

ioral levels.

Extending the Byrne, Becker and Burgess model of spatial memory and imagery of empty envi-

ronments (Burgess et al., 2001a; Byrne et al., 2007), we propose a large-scale systems-level model

of the interaction between Papez’ circuit, parietal, retrosplenial, and medial temporal areas. The

model relates the neural response properties of well-known cells types in multiple brain regions to

cognitive phenomena such as memory for the spatial context of encountered objects and mental

navigation within familiar environments. In brief, egocentric (i.e. body-centered) representations of

the local sensory environment, corresponding to a specific point of view, are transformed into
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viewpoint-independent (allocentric or world-centered) representations for long-term storage in the

medial temporal lobes (MTL). The reverse process allows reconstruction of viewpoint-dependent

egocentric representations from stored allocentric representations, supporting imagery and

recollection.

Neural populations in the medial temporal lobe (MTL) are modeled after cell types reported in

rodent electrophysiology studies. These include place cells (PCs), which fire when an animal traverses

a specific location within the environment (O’Keefe and Dostrovsky, 1971); head direction cells

(HDCs), which fire according to the animal’s head direction relative to the external environment, irre-

spective of location (Taube and Ranck, 1990; Taube et al., 1990a; Taube et al., 1990b); boundary

vector cells (Lever et al., 2009); henceforth BVCs), which fire in response to the presence of a

boundary at a specific combination of distance and allocentric direction (i.e. North, East, West,

South, irrespective of an agent’s orientation); and grid cells (GCs), which exhibit multiple, regularly

spaced firing fields (Hafting et al., 2005). Evidence for the presence of these cell types in human

and non-human primates is mounting steadily (Robertson et al., 1999; Ekstrom et al., 2003;

Jacobs et al., 2010; Doeller et al., 2010; Bellmund et al., 2016; Horner et al., 2016;

Nadasdy et al., 2017).

The egocentric representation supporting imagery has been suggested to reside in medial parie-

tal cortex (e.g. the precuneus; Fletcher et al., 1996; Knauff et al., 2000; Formisano et al., 2002;

Sack et al., 2002; Wallentin et al. (2006); Hebscher et al., 2018). In the model, it is referred to as

the ‘parietal window’ (PW). Its neurons code for the presence of scene elements (boundaries, land-

marks, objects) in peri-personal space (ahead, left, right) and correspond to a representation along

the dorsal visual stream (the ‘where’ pathway; Ungerleider, 1982; Mishkin et al., 1983). The parie-

tal window boundary coding (PWb) cells are egocentric analogues of BVCs (Barry et al., 2006;

Lever et al., 2009), consistent with evidence that parietal areas support egocentric spatial process-

ing (Bisiach and Luzzatti, 1978; Nitz, 2009; Save and Poucet, 2009; Wilber et al., 2014).

The transformation between egocentric (parietal) and allocentric (MTL) reference frames is per-

formed by a gain-field circuit in retrosplenial cortex (Burgess et al., 2001a; Byrne et al., 2007;

Wilber et al., 2014; Alexander and Nitz, 2015; Bicanski and Burgess, 2016), analogous to gain-

field neurons found in posterior parietal cortex (Snyder et al., 1998; Salinas and Abbott, 1995;

Pouget and Sejnowski, 1997; Pouget et al., 2002) or parieto-occipital areas (Galletti et al., 1995).

Head-direction provides the gain-modulation in the transformation circuit, producing directionally

modulated boundary vector cells which connect egocentric and allocentric boundary coding neu-

rons. That this transformation between egocentric directions (left, right, ahead) and environmentally-

referenced directions (nominally North, South, East, West) requires input from the head-direction

cells found along Papez’s circuit (Taube et al., 1990a; Taube et al., 1990b) is consistent with its

involvement in episodic memory (e.g. Aggleton and Brown, 1999; Delay and Brion, 1969).

During perception the egocentric parietal window representation is based on (highly processed)

sensory inputs. That is, it is driven in a bottom-up manner, and the transformation circuit maps the

egocentric PWb representation to allocentric BVCs. When the transformation circuit acts in reverse

(top-down mode), it reconstructs the parietal representation from BVCs which are co-active with

other medial temporal cell populations, forming the substrate of viewpoint-independent (i.e. allocen-

tric) memory. This yields an orientation-specific (egocentric) parietal representation (a specific point

of view) and constitutes the model’s account of (spatial) imagery and explicit recall of spatial configu-

rations of known spaces (Burgess et al., 2001a; Byrne et al., 2007). Figure 1 depicts a simplified

schematic of the model.

To account for the presence of objects within the environment, we propose allocentric object vec-

tor cells (OVCs) analogous to BVCs, and show how object-locations can be embedded into spatial

memory, supported by visuo-spatial attention. Importantly, the proposed object-coding populations

in the MTL map onto recently discovered neuronal populations (Deshmukh and Knierim, 2013;

Hoydal et al., 2017). We also predict a population of egocentric object-coding cells in the parietal

window (PWo cells: egocentric analogues to OVCs), as well as directionally modulated boundary and

object coding neurons (in the transformation circuit). Finally, we include a grid cell population to

account for mental navigation and planning, which drives sequential place cell firing reminiscent of

hippocampal ‘replay’ (Wilson and McNaughton, 1994; Foster and Wilson, 2006; Diba and Buz-

sáki, 2007; Karlsson and Frank, 2009; Carr et al., 2011) and preplay (Dragoi and Tonegawa,

2011; Ólafsdóttir et al., 2015). We refer to this model as the BB-model.
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Methods
Here, we describe the neural populations of the BB-model and how they interact in detail. Technical

details of the implementation, equations, and parameter values can be found in the Appendix.

Receptive field topology and visualization of data
We visualize the firing properties of individual spatially selective neurons as firing rate maps that

reflect the activity of a neuron averaged over time spent in each location. We also show population

activity by arranging all neurons belonging to one population according to the relative locations of

their receptive fields (see Figure 2A–C), plotting a snapshot of their momentary firing rates. In the

case of boundary-selective neurons such a population snapshot will yield an outline of the current

sensory environment (Figure 2C). Naturally, these neurons may not be physically organized in the

same way, and these plots should not be confused with the firing rate maps of individual neurons

(Figure 2D). Hence, population snapshots (heat maps) and firing rate maps (Matlab ‘jet’ colormap)

are shown in distinct color-codes (Figure 2).
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Figure 1. Simplified model schematic. (A) Processed sensory inputs reach parietal areas and support an

egocentric representation of the local environment (in a head-centered frame of reference). Retrosplenial cortex

uses current head or gaze direction to perform the transformation from egocentric to allocentric coding. At a

given location, environmental layout is represented as an allocentric code by activity in a set of BVCs, the place

cells (PCs) corresponding to the location, and perirhinal neurons representing boundary identities (in a familiar

environment, all these representations are associated via Hebbian learning to form an attractor network). Black

arrows indicate the flow of information during perception and memory encoding (bottom-up). Dotted arrows

indicate the reverse flow of information, reconstructing the parietal representation from view-point invariant

memory (imagery, top-down). (B) Illustration of the egocentric (left panel) and allocentric frame of reference (right

panel), where the vector s indicates South (an arbitrary reference direction) and the angle a is coded for by head

direction cells, which modulate the transformation circuit. This allows BVCs and PCs to code for location within a

given environmental layout irrespective of the agent’s head direction (HD). The place field (PF, black circle) of an

example PC is shown together with possible BVC inputs driving the PC (broad grey arrows).

DOI: https://doi.org/10.7554/eLife.33752.002

Bicanski and Burgess. eLife 2018;7:e33752. DOI: https://doi.org/10.7554/eLife.33752 3 of 45

Research article Neuroscience

https://doi.org/10.7554/eLife.33752.002
https://doi.org/10.7554/eLife.33752


The parietal window
Perceived and imagined egocentric sensory experience is represented in the ‘parietal window’ (PW),

which consists of two neural populations - one coding for extended boundaries (‘PWb neurons’), and

one for discrete objects (‘PWo neurons’). The receptive fields of both populations lie in peri-personal

space, that is are tuned to distances and directions ahead, left or right of the agent, tile the ground

alloc. agent position

2x2 m

1 m

PC rate map

0 2x [m]

0

2

y
 [

m
]

BVC rate map

0 2x [m]

cell#

c
e
ll
#

PBVC/PW RFs

A1

PWb
rates

RL

Ahead

Behind

BVC
rates

EW

N

S

0 44
cell#

0

44

c
e
ll
#

PC rates

PC RFs
A2

B1 C1

B2

C2

D1 D2

11

00

Figure 2. Receptive field topology and visualization of neural activity. (A1) Illustration of the distribution of receptive field centers (RFs) of place cells

(PCs), which tile the environment. (A2) Receptive fields of boundary responsive neurons, be they allocentric (BVCs) or egocentric (PWb neurons), are

distributed on a polar grid, with individual receptive fields centered on each delineated polygon. Two example receptive fields (calculated according to

Equation 14) are overlaid (bright colors) on the polar grids for illustration. Note that each receptive field covers multiple polygons, that is neighboring

receptive fields overlap. The polar grids of receptive fields tile space around the agent (red arrow head at center of plots), that is they are anchored to

the agent and move with it (for both BVCs and PWb neurons). In addition, for PWb neurons the polar grid of receptive fields also rotates with the agent

(i.e. their tuning is egocentric). (B1) As the agent (black arrowhead) moves through an environment, place cells (B2) track its location. (B2) Snapshot of

the population activity of all place cells arranged according to the topology of their firing fields (see A1). (C1,2) Snapshots of the population activity for

BVCs and boundary selective PW neurons (PWb), respectively. Cells are again distributed according to the topology of their receptive fields (see A2),

that is each cell is placed at the location occupied by the centre of its receptive field in peri-personal space (ahead is shown as up for PW neurons;

North is shown as up for BVCs). See Section on the transformation circuit, Video 1, and Figure 2—figure supplement 1 for the mapping between PW

and BVCs patterns via the transformation circuit. (D1,2) Unlike snapshots of population activity, firing rate maps show the activity of individual neurons

averaged over a whole trial in which the agent explores the environment, here for a place cell (D1) and for a boundary vector cell with a receptive field

due East (D2, tuning distance roughly 85 cm).

DOI: https://doi.org/10.7554/eLife.33752.003

The following figure supplement is available for figure 2:

Figure supplement 1. Caption: Illustration of single cell coding in the retrosplenial transformation circuit.

DOI: https://doi.org/10.7554/eLife.33752.004

Bicanski and Burgess. eLife 2018;7:e33752. DOI: https://doi.org/10.7554/eLife.33752 4 of 45

Research article Neuroscience

https://doi.org/10.7554/eLife.33752.003
https://doi.org/10.7554/eLife.33752.004
https://doi.org/10.7554/eLife.33752


around the agent, and rotate together with the agent (Figure 2A2, Figure 3). Reciprocal connec-

tions to and from the retrosplenial transformation circuit (RSC/TR, see below) allow the parietal win-

dow representations to be transformed into allocentric (orientation-independent) representations

(i.e. boundary and object vector cells) in the MTL and vice versa. Intriguingly, cells that encode an

egocentric representation of boundary locations (akin to parietal window neurons in the present

model) have recently been described (Hinman et al., 2017).

The agent model and perceptual drive
An agent model supplies perceptual information, driving the parietal window in a bottom-up man-

ner. The virtual agent moves along trajectories in simple 2D environments (Figure 2B1). Turning

motions of the agent act on the head direction network to shift the activity packet in the head direc-

tion ring attractor. Egocentric distances to environmental boundaries in a 180-degree field of view in

front of the agent are used to drive the corresponding parietal window (PWb) neurons. The retro-

splenial circuit (section "The Head Direction Attractor Network and the Transformation Circuit")

transforms this parietal window activity into BVC activity, which in turn drives PC activity in the pat-

tern-completing MTL network (O’Keefe and Burgess, 1996; Hartley et al., 2000). Thus, simplified

perceptual drive conveyed to the MTL allows the model to self-localize in the environment based

purely on sensory inputs.

The medial temporal lobe network
Spatial context
The medial temporal lobe (MTL) network for spatial context is comprised of three interconnected

neural populations: the PCs and BVCs code for the position of the agent relative to a given bound-

ary configuration, and perirhinal neurons code for the identity (e.g. texture, color etc) of boundaries
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Figure 3. The agent model and population snapshots for object representations. (A) Top panel: The egocentric field of view of the agent (black arrow

head). Purple boundaries fall into the forward-facing 180 degree field of view and provide bottom-up drive to the parietal window (PWb; not shown,

but see Figure 2C2). The environment contains two discrete objects (green circles). Bottom panel: Allocentric positions of the agent (black triangle)

and objects (green circles). (B) Object-related parietal window (PWo) activity (top panel) and OVC activity (bottom panel) due to object 2, South-East of

the agent, at time T1. (C) PWo activity (top panel) and OVC activity (bottom panel) due to object 1, North-East of the agent, at time T2. A heuristically

implemented attention model ensures that only one object at a time drives the parietal window (PWo). (D) Illustration of the encoding of an object

encountered in a familiar environment. Dashed connections are learned (as Hebbian weight updates) between active cells. Solid lines indicate

connections learned in the training phase, representing the spatial context. Note that place cells (PCs) anchor the object representation to the spatial

context.

DOI: https://doi.org/10.7554/eLife.33752.006
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(PRb neurons). Identity has to be signaled by cells separate from BVCs because the latter respond to

any boundary at a given distance and direction.

Discrete objects
The allocentric object code is comprised of two populations of neurons. First, similarly to extended

boundaries, the identity of discrete objects must be coded for by perirhinal neurons (PRo neurons).

Second, we hypothesize an allocentric representation of object location, termed object vector cells

(OVCs), analogous to BVCs (Figure 3B), with receptive fields at a fixed distance in an allocentric

direction.

Interestingly, cells which respond to the presence of small objects and resemble OVCs have

recently been identified in the rodent literature (Deshmukh and Knierim, 2013; Hoydal et al.,

2017), and could reside in the hippocampus proper or one synapse away. Although we treat them

separately, BVCs and OVCs could in theory start out as one population in which individual cells spe-

cialize to respond only to specific types of object with experience (e.g. to small objects in the case

of OVCs; see Barry and Burgess, 2007).

The role of perirhinal neurons
OVCs, like BVCs and parietal window (PWo and PWb) neurons signal geometric relations between

object or boundary locations and the agent, but not the identity of the object or boundary. OVCs

and BVCs fire for any object or boundary occupying their receptive fields. Conversely, an object’s or

boundary’s identity is indicated, irrespective of its location, by perirhinal neurons. They lie at the

apex of the ventral visual stream (the ‘what’ pathway; Ungerleider, 1982; Mishkin et al., 1983;

Goodale and Milner, 1992; Davachi, 2006; Valyear et al., 2006) and encode the identities or sen-

sory characteristics of boundaries and objects, driven by a visual recognition process which is not

explicitly modeled. Only in concert with perirhinal identity neurons does the object or boundary

code uniquely represent a specific object or boundary at a specific direction and distance from the

agent.

Connections among medial temporal lobe populations
BVCs and OVCs have reciprocal connections to the transformation circuit, allowing them to be

driven by perceptual inputs (‘bottom up’), or to project their representations to the parietal window

(‘top down’).

For simulations of the agent in a familiar environment, the connectivity among the medial tempo-

ral lobe populations which comprise the spatial context (PCs, BVCs, PRb neurons) is learned in a

training phase, resulting in an attractor network, such that mutual excitatory connections between

neurons ensure pattern completion. Hence, partial activity in a set of PCs, BVCs, and/or PRb neurons

- will re-activate a complete, previously learned representation of spatial context in these popula-

tions. OVCs and PRo neurons are initially disconnected from the populations that represent the spa-

tial context. The simulated agent can then explore the environment and encode objects into

memory along the way.

The head direction attractor network and the transformation circuit
Head direction cells (HDCs) are arranged in a simple ring-attractor circuit (Skaggs et al., 1995;

Zhang, 1996). Current head direction, encoded by activity in this attractor circuit, is updated by

angular velocity information as the agent explores the environment. The head direction signal ena-

bles the egocentric-allocentric transformation carried out by retrosplenial cortex.

Because of their identical topology, the PWb/BVC population pair and the PWo/OVC population

pair can each make use of the same transformation circuit. For simplicity we illustrate its function via

BVCs and their PWb counterparts. The retrosplenial transformation circuit (RSC/TR) consists of 20

sublayers. Each sublayer is a copy of the BVC population, with firing within each sublayer also tuned

to a specific head-direction (directions are evenly spaced in the [0360] degree range). That is, indi-

vidual cells in the transformation circuit are directionally modulated boundary vector cells, and con-

nect egocentric (parietal) PWb neurons and allocentric BVCs (in the MTL) in a mutually consistent

way. All connections are reciprocal. For example, a BVC with a receptive field to the East is mapped

onto a PWb neuron with a receptive field to the right of the agent when facing North, but is mapped
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onto a PWb neuron with a receptive field to the left of the agent when facing South. Similarly, a

PWb neuron with a receptive field ahead of the agent is mapped onto a BVC with a receptive field

to the West when facing West but is mapped onto a BVC with a receptive field to the North when

facing North. Figure 2C depicts population snapshots that are mapped onto each other by the

transformation circuit (also see Video 1), while Figure 2—figure supplement 1 illustrates the con-

nections and firing rate maps at the single cell level. We hypothesize that the egocentric-allocentric

transformation circuit is set up during development (see Appendix for the setup of the circuit).

Bottom-up vs top-down modes of operation
During perception, the egocentric parietal window representation is based on sensory inputs (‘bot-

tom-up’ mode). The PW representations thus determine MTL activity via the transformation circuit.

‘Running the transformation in reverse’ (‘top-down’ mode), that is reconstructing parietal window

activity based on BVCs/OVCs, is the BB-models account of visuo-spatial imagery. To implement the

switch between modes of operation, we assume that the balance between bottom-up and top-down

connections is subject to neuromodulation (see e.g. Hasselmo, 2006); Appendix, Equation 3 and

following). For example, connections from the parietal window (PWb and PWo) populations to the

transformation circuit and thence onto BVCs/

OVCs are at full strength in bottom-up mode, but

down-regulated to 5% of their maximum value in

top-down mode. Conversely, connections from

BVCs/OVCs to the transformation circuit and

onwards to the parietal window are down-regu-

lated during bottom-up perception (5% of their

maximum value) and reach full strength only dur-

ing imagery (top-down reconstruction).

Embedding object-representations
into a spatial context: attention
and encoding
Unlike boundaries, which are hard-coded in the

simulations (corresponding to the agent moving

in a familiar environment), object representations

are learned on the fly (simulating the ability to

remember objects found in new locations in the

environment).

As noted above (section "The Role of Perirhi-

nal Neurons"), to uniquely characterize the ego-

centric perceptual state of encountering an

object within an environment requires the co-acti-

vation of perirhinal (PRo) neurons (signaling iden-

tity) and the corresponding parietal window

(PWo) (signaling location in peripersonal space).

Moreover, maximal co-firing of only one PRo neu-

ron with one PWo neuron (or OVC, in allocentric

terms) at a given location is required for an

unambiguous association (Figure 3A–C). If multi-

ple conjunctions of object location and identity

are concurrently represented then it is impossible

to associate each object identity uniquely with

one location - that is, object-location binding

would be ambiguous. To ensure a unique repre-

sentation, we allow the agent to direct attention

to each visible object in sequence (compare

Figure 3B and C; for a review of attentional

mechanisms see VanRullen, 2013). This leads to

Video 1. Surface plots (heat maps) visualize theneural

activity of populations of cells. The video shows a

visualization of the simulated neural activity in the

retrosplenial transformation circuit as a simulated agent

moves in a simple, familiar environment (See Figure 2-

figure supplement 1 for further details). Individual

sublayers of the transformation circuit are shown in a

circular arrangement around the head direction ring.

Head direction cells track the agent’s heading and

confer a gain modulation on the retrosplenial

sublayers. The transformation circuit then drives

boundary vector cells (see main text). Surface plots

(heat maps) visualize the neural activity of populations

of cells. Individual cells correspond to pixels/polygons

on the heat maps (compare to figures). Cells are

arranged according to the distribution of their

receptive fields; however, this arrangement does not

necessarily reflect anatomical relations. Bright colors

indicate strong firing. Abbreviations: PWb, Parietal

Window, egocentric boundary representations (ahead

is up); HDCs, Head Direction Cells; TR, Retrosplenial

transformation sublayers; BVCs, Boundary Vector Cells

(North is up); egoc. agent view, egocentric field of view

of the agentwithin the environment, purple outlines

denote visibleboundary segments which correspond to

sensoryinputs to the PWb (ahead is up); alloc. agent

position, allocentric position of the agent in the

environment (North is up).

DOI: https://doi.org/10.7554/eLife.33752.005
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a specific set of PWo, OVC and PRo neurons, corresponding to a single object at a given location,

being co-active for a short period while connections between MTL neurons develop (including those

with PCs, see Figure 3D). Then, attention is redirected and a different set of PWo, OVC and PRo

neurons becomes co-active. We set a fixed length for an attentional cycle (600 time units). However,

we do not model the mechanistic origins of attention. Attention is supplied as a simple rhythmic

modulation of perceptual activity in the parietal window.

To encode objects in their spatial context the connections between OVCs, PRo neurons and cur-

rently active PCs are strengthened. By linking OVCs and PRo neurons to PCs, the object code is

explicitly attached to the spatial context because the same PCs are reciprocally connected to the

BVCs that represent the geometric properties of the environment (Figure 3D). A connection

between PRo neurons and HDCs is also strengthened to allow recall to re-instantiate the head direc-

tion at encoding during imagery (see Simulation 1.0 below).

Finally, if multiple objects are present in a scene we do not by default encode all perceivable

objects equally strongly into memory. We trigger encoding of an object when it reaches a threshold

level of ‘salience’. In general, ‘salience’ could reflect many factors; here, we simulate relatively few

objects and assume that salience becomes maximal at a given proximity, and prevent any further

learning thereafter.

Imagery and the role of grid cells
Grid cells (GCs; Hafting et al. 2005) are thought to interface self-motion information with place cells

(PCs) to enable vector navigation (Kubie and Fenton, 2012; Erdem and Hasselmo, 2012;

Bush et al., 2015; Stemmler et al., 2015), shortcutting, and mental navigation (Bellmund et al.,

2016); Horner et al. 2016). Importantly, both self-motion inputs (via GCs) and sensory inputs (e.g.

mediated via BVCs and OVCs) converge onto PCs and both types of inputs may be weighted

according to their reliability (Evans et al., 2016). GCs could thus support PC activity when sensory

inputs are unreliable or absent. Here, GC inputs can drive PC firing during imagined navigation (see

Section Novelty Detection (Simulations 1.3, 1.4)), whereas perceived scene elements, mediated via

BVC and OVCs, provide the main input to PCs during unimpaired perception.

We include a GC module in the BB-model that, driven by heuristically implemented mock-motor-

efference signals (self-motion signals with suppressed motor output), can update the spatial memory

network in the absence of sensory inputs. The GC input allows the model to perform mental naviga-

tion (imagined movement through a known environment). By virtue of connections from GCs to PCs,

the GCs can shift an activity bump smoothly along the sheet of PCs. Pattern completion in the

medial temporal lobe network then updates the BVC representation according to the shifted PC

representation. BVCs in turn update the parietal window representation (top-down), smoothly shift-

ing the egocentric field of view in imagery (i.e. updating the parietal window representations) during

imagined movement. Thus, self-motion related updating (sometimes referred to as ‘path integra-

tion’) and mental navigation share the same mechanism (Tcheang et al., 2011).

Connection weights between GCs and PCs are calculated as a simple Hebbian association

between PC firing at a given coordinate (according to the mapping shown in Figure 2A,B) and pre-

calculated firing rate maps of GCs (7 modules with 100 cells each, see Appendix for details).

Model summary
An agent employing a simple model of attention alongside dedicated object-related neural popula-

tions in perirhinal, parietal and parahippocampal (BVCs and OVCs) cortices allow the encoding of

scene representations (i.e. objects in a spatial context) into memory. Transforming egocentric repre-

sentations via the retrosplenial transformation circuit yields viewpoint-independent (allocentric) rep-

resentations in the medial temporal lobe, while reconstructing the parietal window representation

(which is driven by sensory inputs during perception) from memory is the model’s account of recall

as an act of visuo-spatial imagery. Grid cells allow for mental navigation. Figure 4 shows the com-

plete schematic of the BB-model, see Figure 2—figure supplement 1 for details of the RSC trans-

formation circuit.
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Quantification
To obtain a measure of successful recall or of novelty detection (i.e. mismatch between the per-

ceived and remembered scenes), we correlate the population vectors of the model’s neural popula-

tions between recall (the reconstruction in imagery) and encoding. These correlations are compared

to correlations between recall and randomly sampled times as the agent navigates the environment

in bottom-up mode. This measure of mismatch could potentially be compared to experimental

measures of overlap between neuronal populations (e.g. Guzowski et al., 1999) in animals, or ‘rep-

resentational similarity’ measures in fMRI, e.g. Ritchey et al., 2013).

Simulations
In this section, we explore the capabilities of the BB-model in simulations and derive predictions for

future research. Each simulation is accompanied by a Figure, a supplementary video visualizing the

time course of activity patterns of neural populations, and a brief discussion. In Section Discussion,

we offer a more general discussion of the model.

Top-Down

Bottom-Up

PWb

HD
cells

Rotation 

velocity

Translational velocity

BVCs

PRb   PRo
Identity

Place

cells

EC
Grid cells

Medial Temporal network

Sensory

inputs

PWo

egocentric frame

Attention

model

OVCs

RSC
HD-modulated

trans-

formation

Inh

allocentric

frame

* *

*

*

* Agent model

Figure 4. The BB-model. ‘Bottom-up’ mode of operation: Egocentric representations of extended boundaries (PWb) and discrete objects (PWo) are

instantiated in the parietal window (PWb/o) based on inputs from the agent model while it explores a simple 2D environment. Attention sequentially

modulates object-related PW activity to allow for unambiguous neural representations of an object at a given location. The angular velocity of the

agent drives the translation of an activity packet in the head direction ring attractor network. Retrosplenial cortex (RSC) carries out the transformation

from egocentric representations in the PW to allocentric representations in the MTL (driving BVCs and OVCs). The transformation circuit consists of 20

sublayers, each maximally modulated by a specific head direction while the remaining circuit is inhibited (Inh). In the medial temporal lobe network,

perirhinal neurons (PRb/o) code for the identity of an object or extended boundary. PCs, BVCs and perirhinal neurons are reciprocally connected in an

attractor network. Following encoding after object encounters, PCs are also reciprocally connected to OVCs and PRo neurons. ‘Top-down’ mode of

operation: Activity in a subset of PCs, BVCs, and/or perirhinal neurons spreads to the rest of the MTL network (pattern completion) by virtue of intrinsic

connectivity. With perceptual inputs to the PW disengaged (i.e. during recollection), the transformation circuit reconstructs parietal window (PWb/o)

activity based on the current BVC and OVC activity. Updating PCs via entorhinal cortex (EC) GC inputs allows for a shift of viewpoint in imagery.

DOI: https://doi.org/10.7554/eLife.33752.007
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Figure 5. (A) Bottom-up mode of operation. Population snapshots at the moment of encoding during an encounter with a single object in a familiar

spatial context. Left to right: PWb/o populations driven by sensory input project to the head-direction-modulated retrosplenial transformation circuit

(RSC/TR, omitted for clarity, see Video 1 and Figure 2—figure supplement 1); The transformation circuit projects its output to BVCs and OVCs; BVCs

and PRb neurons constitute the main drive to PCs; perirhinal (PRb/o) neurons are driven externally, representing object recognition in the ventral visual

stream. At the moment of encoding, reciprocal connections between PCs and OVCs, OVCs and PRo neurons, PCs and PRo neurons, and PRo neurons

and current head direction are learned (see Figure 3D). Right-most panels show the agent in the environment and the PC population snapshot

representing current allocentric agent position. (B) Top-down mode of operation, after the agent has moved away from the object (black triangle, right-

most panel). Current is injected into a PRo neuron (bottom right of panel), modelling a cue to remember the encounter with that object. This drives PCs

associated to the PRo neuron at encoding (dashed orange connections show all associations learned at encoding). The connection weights switch

globally from bottom-up to top-down (connections previously at 5% of their maximum value now at 100% and vice versa; orange arrows). PCs become

the main drive to OVCs, BVCs and PRb neurons. BVC and OVC representations are transformed to their parietal window counterparts, thus

reconstructing parietal representations (PWb/PWo) similar to those at the time of encoding (compare left-most panels in A and B). That is, the agent

has reconstructed a point of view embodied by parietal window activity corresponding to the location of encoding (red triangle, right-most panel). Heat

maps show population firing rates frozen in time (black: zero firing; white: maximal firing).

DOI: https://doi.org/10.7554/eLife.33752.008
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Encoding of objects in spatial memory and recall (Simulation 1.0)
We let the agent model explore the square environment depicted in Figure 3A. However, the spa-

tial context now contains an isolated object (Figure 5). During exploration, parietal window (PWb)

neurons activate BVCs via the retrosplenial transformation circuit (RSC/TR), which in turn drive place

cell activity. Similarly, when the object is present PWo neurons are activated, which drive OVCs via

the transformation circuit. At the same time, object/boundary identity is signalled by perirhinal neu-

rons (PRb/o). When the agent comes within a certain distance (here 55 cm) of an object, the follow-

ing connection weights are changed to form Hebbian associations: PRo neurons are associated with

PCs, HDCs, and OVCs; OVCs are associated with PCs and PRo neurons (also see Figure 3D); PCs

are already connected to BVCs (in a familiar context). The weight change is calculated as the outer

product of population vectors of the corresponding neuronal populations (yielding the Hebbian

update), normalized, and added to the given weight matrix.

After the agent has finished its assigned trajectory, we test object-location memory via object-

cued recall. That is, modeling some external trigger to remember a given object (e.g. ‘Where did I

leave my keys?’), current is injected into the PRo neuron coding for the identity of the object to-be

recalled. By virtue of learned connections, the PRo neuron drives the PCs which were active at

encoding. Pattern completion in the MTL recovers the complete spatial context by driving activity in

BVCs and PRb neurons. The connections from PRo neurons to head direction cells (Figure 3D)

ensure a modulation of the transformation circuit such that allocentric BVC and OVC activity will be

transformed to yield the parietal representation (i.e. a point of view) similar to the one at the time of

encoding. That is, object-cued recall corresponds to a full reconstruction of the scene when the

object was encoded. Figure 5 depicts the encoding (Figure 5A) and recall phases (Figure 5B) of

simulation 1.0. Video 2 shows the entire trial. To facilitate matching simulation numbers and figures

to videos, Table 1 lists all simulations and relates them to their corresponding figures and videos.

Recollection in the BB-model results in visuo-spatial imagery of a coherent scene from a single

viewpoint and direction, that is it implements a process of scene construction (Burgess et al.,

2001a; Byrne et al., 2007; Schacter et al., 2007; Hassabis et al., 2007; Buckner, 2010) at the neu-

ronal level. A mental image is re-constructed in the parietal window reminiscent of the perceptual

activity present at encoding. Note that during imagery BVCs (and hence PWb neurons, Figure 5B)

all around the agent are reactivated by place cells, because the environment is familiar (the agent

having experienced multiple points of view at each location during the training phase). We do not

simulate selective attention for boundaries (i.e. PWb neurons), although see Byrne et al., 2007.

Similar tasks in humans appear to engage the

full network, including Papez’ circuit, where head

direction cells are found (for review see

Taube, 2007); retrosplenial cortex (where we

hypothesize the transformation circuit to be

located) (Burgess et al., 2001a; Lambrey et al.,

2012; Auger and Maguire, 2013; Epstein and

Vass, 2014; Marchette et al., 2014; Shine et al.,

2016); medial parietal areas (Fletcher et al.,

1996; Hebscher et al., 2018); parahippocampus

and hippocampus (Hassabis et al., 2007;

Addis et al., 2007; Schacter et al., 2007;

Bird et al., 2010); and possibly the entorhinal

cortex (Atance and O’Neill, 2001;

Bellmund et al., 2016; Horner et al. 2016; also

see Simulation 4.0).

At the neuronal level, a key component of the

BB-model are the object vector cells (OVCs)

which code for the location of objects in peri-per-

sonal space. In Figure 5 the cells are organized

according to the topology of their receptive

fields in space, with the agent at the center (also

compare to Figure 2A2). However, in rodent

Video 2. This video shows a visualization of the

simulated neural activity as the agent moves in a

familiar environment and encounters a novel object.

The agent approaches the object and encodes it into

long-term memory. Upon navigating past the object

the agent initiates recall, reinstating patterns of neural

activity similar to the patterns present during the

original object encounter. Recall is identified with the

re-construction of the original scene in visuo-spatial

imagery (see main text). Please see caption of Video 1

for abbreviations.

DOI: https://doi.org/10.7554/eLife.33752.010
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experiments individual spatially selective cells (like PCs or GCs) are normally visualized as time-inte-

grated firing rate maps. We ran a separate simulation with three objects in the environment to exam-

ine firing rate maps of individual cells. OVCs show firing fields at a fixed allocentric distance and

angle from objects (Figure 6). The BB-model predicts that OVC-like responses should be found as

close as one synapse away from the hippocampus and were introduced as a parsimonious object

code, analogous to BVCs and exploiting the existing transformation circuit. However, these rate

maps show a striking resemblance to similar data from cells recently reported in the hippocampus of

rodents (Figure 6C, compare to Deshmukh and Knierim, 2013). While Deshmukh and Knierim

(2013) found these cells in the hippocampus, the object selectivity of these hippocampal neurons

may have been inherited from other areas, such as lateral entorhinal cortex (Tsao et al., 2013), para-

hippocampal cortex (due to their similarities to BVCs) or medial entorhinal cortex (Solstad et al.,

2008; Hoydal et al., 2017).

Anatomical connections between the potential loci of BVCs/OVCs and retrosplenial cortex (the

suggested location of the egocentric-allocentric transformation circuit) exist. BVCs have been found

in the subicular complex (Lever et al., 2009), and the related border cells and OVCs in medial ento-

rhinal cortex (Solstad et al., 2008; Hoydal et al., 2017). Both areas receive projections from retro-

splenial cortex (Jones and Witter, 2007), and project back to it (Wyss and Van Groen, 1992).

Papez’ circuit lesions induce amnesia (Simulations 1.1, 1.2)
Figure 5 depicts the model performing encoding and object-cued recall. However, the model also

allows simulation of some of the classic pathologies of long-term memory. Lesions along Papez’ cir-

cuit have long been known to induce amnesia (Delay and Brion, 1969; Squire and Slater, 1978;

1989; Parker and Gaffan, 1997; Aggleton et al., 2016). Thus, lesions to the fornix and mammilary

bodies severely impact recollection, although recognition can be less affected (Tsivilis et al., 2008).

In the context of spatial representations, Papez’ circuit is notable for containing head direction cells

(as well as many other cell types not in the model). That is, the mammillary bodies (more specifically

the lateral mammillary nucleus, LMN), anterior dorsal thalamus, retrosplenial cortex, parts of the sub-

icular complex and medial entorhinal cortex all contain head direction cells (Taube, 2007;

Sargolini et al., 2006). Thus, lesioning Papez’ circuit removes (at least) the head direction signal

from our model, and is modeled by setting the input from head direction cells to the retrosplenial

transformation circuit (RSC/TR) to zero.

In the bottom-up mode of operation (perception), the lesion removes drive to the transformation

circuit and consequently to the boundary vector cells and object vector cells. That is, the perceived

location of an object (present in the egocentric parietal representation) cannot elicit activity in the

MTL and thus cannot be encoded into memory (Figure 7). Some residual MTL activity reflects input

from perirhinal neurons representing the identity of perceived familiar boundaries (i.e. recognition

mediated by perirhinal cells is spared). In the top-down mode of operation (recall) there are two

effects: (i) Since no new elements can be encoded into memory, post-lesion events cannot be

recalled (anterograde amnesia; Simulation 1.1, Figure 7A, Video 5); and (ii) For pre-existing memo-

ries (e.g. of an object encountered prior to the lesion), place cells (and thus the remaining MTL pop-

ulations) can be driven via learned connections from perirhinal neurons (e.g. when cued with the

object identity; Simulation 1.2, Figure 7B, Video 6), but no meaningful egocentric representation

can be instantiated in parietal areas, preventing episodic recollection/imagery. Equating the absence

of parietal activity with the inability to recollect is strongly suggested by the fact that visuo-spatial

imagery in humans relies on access to an egocentric representation (as in hemispatial representa-

tional neglect; Bisiach and Luzzatti, 1978). Simulations 1.1 and 1.2 show that the egocentric neural

correlates of objects and boundaries present in the visual field persist in the parietal window only

while the agent perceives them (they could also be held in working memory, which is not modelled

here). Note that perirhinal cells and upstream ventral visual stream inputs are spared, so that an

agent could still report the identity of the object.

Quantification, robustness to noise and neuron loss
Figure 8A shows correlations between population vectors of neural patterns during imagery/recall

and those during encoding for Simulation 1.0 (Object-cued recall; Figure 5). OVCs and PCs exhibit

correlation values close to one, indicating faithful reproduction of patterns. BVC correlations are
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somewhat diminished because recall reactivates all boundaries fully, compared to a field of view of

180 degrees during perception with limited reactivation of cells representing boundaries outside the

field of view. PW neurons show correlations below one because at recall reinstatement in parietal

areas requires the egocentric-allocentric transformation (i.e. OVC signals passed through retrosple-

nial cells), which blurs the pattern compared to perceptual instatement in the parietal window (i.e.

imagined representations are not as precise as those generated by perception).

To test the model’s robustness with regard to firing rate noise and neuron loss, we perform two

sets of simulations (modifications of Simulation 1.0, object-cued recall). In the first set we randomly

chose cells in equal proportions in all model areas (except HDCs) to be permanently deactivated

and assess recall into visuo-spatial imagery. Up to 20% of the place cells, grid cells, OVCs, BVCs,

Table 1. List of simulations, their content, corresponding Figures and videos

Simulation no. Content Related figures Video no.

0 Activity in the transformation circuit Figure 2—figure supplement 1 1

1.0 Object-cued recall Figures 5 and 6,8A 2

1.0n1 Object-cued recall with neuron loss Figure 8B 3

1.0n2 Object-cued recall with firing rate noise Figure 8C 4

1.1 Papez’ circuit Lesion (anterograde amnesia) Figure 7A 5

1.2 Papez’ circuit Lesion (retrograde amnesia) Figure 7B 6

1.3 Object novelty (intact hippocampus) Figure 9A 7

1.4 Object novelty (lesioned hippocampus) Figure 9B 8

2.1 Boundary trace responses Figure 10A,B,C 9

2.2 Object trace responses Figure 10D 10

3.0 Inspection of scene elements in imagery Figure 11 11

4.0 Mental Navigation Figure 12 12

5.0 Planning and short-cutting Figure 13 13

DOI: https://doi.org/10.7554/eLife.33752.009
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Figure 6. Firing fields of object vector cells. (A) Firing rate maps for representative object vector cells (OVCs), firing for objects with a fixed allocentric

location and direction relative to the agent. Object locations superimposed as green circles. Note that the objects have different identities, which

would be captured by perirhinal neurons, not OVCs. Compare to Figure 4 in Deshmukh and Knierim, 2013. White lines point from objects to firing

fields. Red dotted line added for comparison with B. (B) Distribution of the objects in the arena and an illustration of a possible agent trajectory.
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parietal and retrosplenial neurons were deactivated. Head direction cells were excluded because of

the very low number simulated (see below). Although we do not attempt to model any specific neu-

rological condition, this type of simulation could serve as a starting point for models of diffuse dam-

age, as might occur in anoxia, Alzheimer’s disease or aging. The average correlations between the

population vectors at encoding versus recall are shown in Figure 8B.

The ability to maintain a stable attractor state among place cells and head direction cells is critical

to the functioning of the model, while damage in the remaining (feed-forward) model components

manifests in gradual degradation in the ability to represent the locations of objects and boundaries

(see accompanying Video 3). For example, if certain parts of the parietal window suffer from neuron

loss, the reconstruction in imagery is impaired only at the locations in peri-personal space encoded

Figure 7. Papez’ circuit lesions. (A) In the bottom-up mode of operation (perception), a lesion to the head direction circuit removes drive to the

transformation circuit and consequently to the boundary vector cells (BVCs) and object vector cells (OVCs). A perceived object (present in the

egocentric parietal representation, PWo) cannot elicit activity in the MTL and thus cannot be encoded into long-term memory, causing anterograde

amnesia. Place cells fire at random locations, driven by perirhinal neurons. (B) For memories of an object encountered before the lesion, place cells can

be cued by perirhinal neurons, and pattern completion recruits associated OVC, BVCs and perirhinal neurons, but no meaningful representation can be

instantiated in parietal areas, preventing episodic recollection/imagery (retrograde amnesia for hippocampus-dependent memories).

DOI: https://doi.org/10.7554/eLife.33752.012
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by the missing neurons (indeed, this can model representational neglect; Byrne et al., 2007), see

also Pouget and Sejnowski, 1997). The place cell population was more robust to silencing than the

head-direction population (containing only 100 neurons), simply because greater numbers of neu-

rons were simulated, giving greater redundancy. As long as a stable attractor state is present, the

model can still encode and recall meaningful representations, giving highly correlated perceived and

recalled patterns (Figure 8B).

The model is also robust to adding firing rate noise (up to 20% of peak firing rate) to all cells. Cor-

relations between patterns at encoding and recall remain similar to the noise-free case, see

Figure 8C. Videos 3 and 4 show an instance from the neuron-loss and firing rate noise simulations

respectively.

Figure 8. Correlation of neural population vectors between recall/imagery and encoding. (A) In the intact model, OVCs and place cells exhibit

correlation values close to one, indicating faithful reproduction of patterns. (B) Random neuron loss (20% of cells in all populations except for the head

direction ring). (C) The effect of firing rate noise. Noise is also applied to all 20 retrosplenial transformation circuit sublayers (as is neuron loss;

correlations not shown for clarity). Firing rate noise is implemented as excursions from the momentary firing rate as determined by the regular inputs to

a given cell (up to peak firing rate). The amplitudes of perturbations are normally distributed (mean 20%, standard deviation 5%) and applied

multiplicatively at each time step). White bars show the correlation between the neural patterns at encoding vs recall (RvE), while black bars show the

average correlation between the neural patterns at recall vs pattern sampled at random times/locations (here every 100 ms; RvRP). Each bar is averaged

over 20 separate instances of the same simulation (with newly drawn random numbers). Error bars indicate standard deviation across simulations.

DOI: https://doi.org/10.7554/eLife.33752.013

Video 3. This video shows the same scenario as

Video 2 (object-cued recall), however, with 20%

randomly chosen lesioned cells per area. The agent

moves in a familiar environment and encounters a

novel object. The agent approaches the object and

encodes it into long-term memory. Upon navigating

past the object, the agent initiates recall, reinstating

patterns of neural activity similar to the patterns

present during the original object encounter. Please

see caption of Video 1 for abbreviations.

DOI: https://doi.org/10.7554/eLife.33752.014

Video 4. This video shows the same scenario as

Video 2 (object-cued recall), however, with firing rate

noise applied to all neurons (max. 20% of peak rate).

The agent moves in a familiar environment and

encounters a novel object. The agent approaches the

object and encodes it into long-term memory. Upon

navigating past the object the agent initiates recall,

reinstating patterns of neural activity similar to the

patterns present during the original object encounter.

Please see caption of Video 1 for abbreviations.

DOI: https://doi.org/10.7554/eLife.33752.015

Bicanski and Burgess. eLife 2018;7:e33752. DOI: https://doi.org/10.7554/eLife.33752 15 of 45

Research article Neuroscience

https://doi.org/10.7554/eLife.33752.013
https://doi.org/10.7554/eLife.33752.014
https://doi.org/10.7554/eLife.33752.015
https://doi.org/10.7554/eLife.33752


Novelty detection (Simulations 1.3,
1.4)
In the model, hippocampal place cells bind all

scene elements together. The locations of these

scene elements relative to the agent are encoded

in the firing of boundary vector cells (BVCs) and

object vector cells (OVCs). Rats show a spontane-

ous preference for exploring novel/altered stimuli

compared to familiar/unchanged ones. We simulate one of these experiments (Mumby et al.,

2002), in which rats preferentially explore one of two objects that has been shifted to a new location

within a given environment, a behavior impaired by hippocampal lesions. In Simulations 1.3 and 1.4,

the agent experiences an environment containing two objects, one of which is later moved. We

define a mismatch signal as the difference in firing of object vector cells during encoding versus

recall (modelled as imagery, at the encoding location), and assume that the relative amounts of

exploration would be proportional to the mismatch signal.

With an intact hippocampus (Figure 9; Video 7), the moved object generates a significant novelty

signal, due to the mismatch between recalled (top-down) OVC firing and perceptual (bottom-up)

OVC firing at the encoding location. That detection of a change in position requires the hippocam-

pus is consistent with place cells binding the relative location of an object (via object vector cells) to

perirhinal neurons signalling the identity of an object.

Hippocampal lesions are implemented by setting the firing rates of hippocampal neurons to zero.

A hippocampal lesion (Figure 9; Video 8) precludes the generation of a meaningful novelty signal

because the agent is incapable of generating a coherent point of view for recollection, and the

appropriate BVC configuration cannot be activated by the now missing hippocampal input. Connec-

tions between object vector cells and perirhinal neurons (see Figure 3D) can still form during encod-

ing in the lesioned agent. Thus some OVC activity is present during recall due to these connections.

However, this activity is not location specific. Without the reference frame of place cells and thence

BVC activity this residual OVC activity during recall can be generated anywhere (see Figure 9F–H). It

only tells the agent that it has seen this object at a given distance and direction, but not where in

the environment it was seen. Hence, the mismatch signal is equal for both objects, and exploration

Video 5. This video shows a visualization of the

simulated neural activity as the agent encounters an

object and subsequently tries to engage recall similar

to Simulation 1.0 (Video 2). However, a lesion to the

head direction system (head direction cells are found

along Papez’ circuit) precludes the agent from laying

down new memories, because the transformation

circuit cannot drive the medial temporal lobe. That is

the transformation circuit cannot instantiate OVC/BVC

representations derived from sensory input for

subsequent encoding, leading to anterograde amnesia

in the model agent (see main text). Please see caption

of Video 1 for abbreviations.

DOI: https://doi.org/10.7554/eLife.33752.016

Video 6. This video shows a visualization of the

simulated neural activity as the agent moves through

an empty environment and tries to engage recall of a

previously present object. A lesion to the head

direction system (head direction cells are found along

Papez’ circuit) has been implemented similar to

Simulation 1.1 (Video 5). The agent is supplied with the

connection weights learned in Simulation 1.0 (Video 2),

where it has successfully memorized a scene with an

object. That is, the agent has acquired a memory

before the lesion. However, even though cueing with

the object re-activates the correct medial temporal

representations, due to the lesion no reinstatement in

the parietal window cannot occur, leading to

retrograde amnesia for hippocampus-dependent

memories in the model agent. Note, it is hypothesized

that a cognitive agent only has conscious access to the

egocentric parietal representation, as suggested by

hemispatial representational negelct (Bisiach and

Luzzatti, 1978) (see main text). Please see caption of

Video 1 for abbreviations.

DOI: https://doi.org/10.7554/eLife.33752.017
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time would be split roughly evenly between them. However, if the agent happens to be at the same

distance and direction from the objects as at encoding, then perceptual OVC activity will match the

recalled OVC activity (Figure 9G,H), which might correspond to the ability of focal hippocampal

amnesics to detect the familiarity of an arrangement of objects if tested from the same viewpoint as

encoding (King et al., 2002; but see also Shrager et al., 2007).

Rats also show preferential exploration of a familiar object that was previously experienced in a

different environment, compared with one previously experienced in the same environment, and this

Figure 9. Detection of moved objects via OVC firing mismatch. (A) Two objects are encoded from a given location (left). After encoding, object one is

moved further North. When the agent returns to the encoding location, the perceived position of object one differs from that at encoding (blue line,

middle panel). When the agent initiates recall (right) the perceived location of object 1 (green filled circle) and its imagined location (end point of blue

line) differ. (B) PC activity is the same in all three circumstances, that is PC activity alone is insufficient to tell which object has moved. (C-D) The

perceived location as represented by OVCs during perception (C; objects 1 and 2 sampled sequentially at times T1, T2) and during recall (D; objects 1

and 2 sampled sequentially at times T3, T4). Blue circle in panel D indicates the previously perceived position of object 1. Inset bar graphs show the

concurrent activity of perirhinal cells (PRo). (E) The mismatch in OVC firing results in near zero correlation between encoding and recall patterns for

object 1 (black bar), while object 2 (white bar) exhibits a strong correlation, so that object one would be preferentially explored. Note, the correlation

for object two is less than 1 because of the residual OVC activity of the other object (secondary peaks in both panels in D, driven by learned PC-to-OVC

connections). (F) A hippocampal lesion removes PC population activity, so that OVC activity is not anchored to the agent’s location at encoding. (G-H)

An incidental match between learned and recalled OVC patterns can occur for either object at specific locations (red arrow heads in second panel in

G), but otherwise mismatch is signaled for both objects equally and neither object receives preferential exploration.
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preference is also abolished by hippocampal

lesions (Mumby et al., 2002; Eacott and Nor-

man, 2004; Langston and Wood, 2010). We

have not simulated different environments (using

separate place cell ensembles), but note that

‘remapping’ of PCs between distinct environ-

ments (i.e. much reduced overlap of PC popula-

tion activity; e.g. Bostock et al., 1991;

Anderson and Jeffery, 2003; Wills et al., 2005) suggests a mismatch signal for the changed-con-

text object would be present in PC population vectors. Initiating recall of object A, belonging to

context 1, in context 2, would re-activate the PC ensemble belonging to context 1, creating an imag-

ined scene from context one which would mismatch the activity of PCs representing context two

during perception. A hippocampal lesion precludes such a mismatch signal by removing PCs.

Finally, it has been argued that object recognition (irrespective of context) is spared after hippo-

campal but not perirhinal lesions (Aggleton and Brown, 1999; Winters et al., 2004; Norman and

Eacott, 2004) which would be compatible with the model given that its perirhinal neuronal popula-

tion signals an object’s identity irrespective of location.

‘Top-down’ activity and trace responses (Simulations 2.1, 2.2)
Simulations 1.3 and 1.4 dealt with a moved object. Similarly, if a scene element (a boundary or an

object) has been removed after encoding, probing the memorized MTL representation can reveal

trace activity reflecting the previously encoded and now absent boundary or object.

Section (Bottom-up vs top-down modes of operation) summarizes how top-down and bottom-up

phases are implemented by a modulation of connection strengths (see Figures 1 and

Video 7. This video shows a visualization of the

simulated neural activity in a reproduction of the object

novelty paradigm of Mumby et al., 2002; detecting

that one of two objects has been moved). The agent is

faced with two objects and encodes them (sequentially)

into memory. Following some behavior one of the two

objects is moved. Note, in real experiments the animal

is removed for this manipulation. In simulation, this is

unnecessary. Once the agent has returned to location

of encoding, it is faced with the manipulated object

array. The agent then initiates recall for objects one

and two in sequence. The patterns of OVC re-

activation can be compared to the corresponding

patterns during perception (population vectors

correlated, see main text). For the moved object, the

comparison signals a change (near zero correlation).

That object would hence be preferentially explored by

the agent, and the next movement target for the agent

is set accordingly (see main text). Please see caption of

Video 1 for abbreviations.

DOI: https://doi.org/10.7554/eLife.33752.019

Video 8. should be compared to Video 7. It shows a

reproduction of the object novelty paradigm of

Mumby et al., 2002; detecting that one of two objects

has been moved). The agent is faced with two objects

and encodes an association between relative object

location (signaled by OVCs) and object identity

(signaled by perirhinal neurons) - see Video 7 for

encoding phase. Due to the hippocampal lesion, these

associations cannot be bound to place cells. Once one

of the two objects is moved (compare to Simulation

1.3) the agent initiates recall and the patterns of OVC

re-activation are compared to the corresponding

patterns during perception (population vectors

correlated, see main text). Recall is initiated at two

distinct locations to highlight the following effect of the

lesion: Since associations between OVCs and perirhinal

neurons are not bound to a specific environmental

location a comparison of OVC patterns between

perception and recall signals mismatch everywhere for

both objects except for the two special locations at

which imagery is engaged in the video. At each of

those locations, the neural pattern due to the learned

association happens to coincide with the pattern

during perception for one of the two objects. Hence no

object can be singled out for enhanced exploration.

Match and Mismatch is signaled equally for both

objects (see main text). Please see caption of Video 1

for abbreviations.
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4, Materials and methods section Embedding Object-representations into a Spatial Context: Atten-

tion and Encoding, and Appendix). During perception, the ‘top-down’ connections from the MTL to

the transformation circuit and thence to the parietal window are reduced to 5% of their maximum

strength, to ensure that learned connections do not interfere with on-going, perceptually driven

activity. During imagery, the ‘bottom-up’ connections from the parietal window to the transforma-

tion circuit and thence to the MTL are reduced to 5 percent of their maximum strength.

In rodents, it has been proposed that encoding and retrieval are gated by the theta rhythm

(Hasselmo et al., 2002): a constantly present modulation of the local field potential during explora-

tion. In humans, theta is restricted to shorter bursts, but is associated with encoding and retrieval

(Düzel et al., 2010). If rodent theta determines the flow of information (encoding vs retrieval) then it

may be viewed as a periodic comparison between memorized and perceived representations, with-

out deliberate recall of a specific item in its context (that is, without changing the point of view). In

Simulations 2.1 and 2.2, we implement this scenario. There is no cue to recall anything specific, regu-

lar sensory inputs are continuously engaged, and we periodically switch between bottom-up and

top-down modes (at roughly theta frequency) to allow for an on-going comparison between percep-

tion and recall. Activity due to the modulation of top-down connectivity during perception
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Figure 10. ‘Top-down’ activity and ‘trace’ responses. (A) An environment containing a small barrier (red outline) has been encoded in the connection

weights in the MTL, but the barrier has been removed before the agent explores the environment again. (B) Activity snapshots for PWb (B1), BVC (B2)

and PC (B3) populations during exploration. The now absent barrier is weakly represented in parietal window activity due to the periodic modulation of

top-down connectivity during perception, although ‘bottom-up’ sensory input due to visible boundaries still dominates (see main text). (C1) High gain

for top-down connections yields BVC firing rate maps with trace fields due to the missing boundary. Left: BVC firing rate map. Right: An illustration of

the BVC receptive field (teardrop shape attached to the agent at a fixed allocentric direction and distance) with the agent shown at two locations where

the cell in the left panel fires maximally. (C2) Same as C1 for a cell whose receptive field is tuned to a different allocentric direction. (D1) Similarly to the

missing boundary in A, a missing object (small red circle) can produce ‘trace’ firing in an OVC (D2). Every time the agent traverses the location from

which the object was encoded (large red circle in D1), learned PC-to-OVC connections periodically reactivate the associated OVC. (D3) The same PCs

also re-activate the associated perirhinal identity cell (PRo), yielding a spatial trace firing field for a nominally non-spatial perirhinal cell (red circle).
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propagates to the parietal window representations (PWb/o), allowing for a detection of mismatch

between sensorily driven and imagery representations.

In Simulation 2.1, the agent has a set of MTL weights which encode the contextual representation

of a square room with an inserted barrier (i.e. a barrier was present in the training phase). However,

when the agent explores the environment, the barrier is absent (Figure 10A). Due to the modulation

of top-down connectivity, the memory of the barrier (in form of BVC activity) periodically bleeds into

the parietal representation during perception (Figures 10B1, 2 and 3 and Video 9). The resultant

dynamics carry useful information. First, letting the memory representation bleed into the perceptual

one allows an agent, in principle, to localize and attend to a region of space in the egocentric frame

of reference (as indicated by parietal window activity) where a change has occurred. A mismatch

between the perceived (low bottom-up gain) and partially reconstructed (high bottom-up gain) rep-

resentations, can signal novelty (compare to Simulations 1.3, 1.4), and could underlie the production

of memory-guided attention (e.g. Moores et al., 2003; Summerfield et al., 2006). Moreover, the

theta-like periodic modulation of top-down connectivity causes the appearance of ‘trace’ responses
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Figure 11. Inspecting scene elements in imagery. The agent encounters two objects. (A) Activity in PWo (left) and OVCs (right) populations when the

agent is attending to one of the two objects during encoding. Both objects are encoded sequentially from the same location (time index 0.22 in

Video 11). The agent then moves past the objects. (B) Imagery is engaged by querying for object 1, raising activity in corresponding PRo neurons (far

right) and switching into top-down mode (similar to Simulation 1.0, Figure 5 and Video 2), leading to full imagery from the point of view at encoding.

Residual activity in the OVC population at the location of object 2 (encoded from the same position, that is driven by the same place cells) translates to

weak residual activity in the PWo population. (C) Applying additional current (i.e. allocating attention) to the PWo cells showing residual activity at the

location of object 2 (leftmost blue arrow) and removing the drive to the PRo neuron corresponding to object 1 (because the initial query has been

resolved) leads to a build-up of activity at the location of object two in the OVC population (blue arrow between PWo and OVC plots). By virtue of the

OVC to PRo connections (blue between OVC and Pro plots), the PRo neuron for object two is driven (and inhibits PRo neuron 1, right-most blue

arrows). Thus, the agent has inferred the identity of object 2, after having initiated imagery to visualize object 1, by paying attention to its egocentric

location in imagery.
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in BVC firing rate maps, indicating the location of previously encoded, now absent, boundary ele-

ments (Figures 10C1 and 2)

Simulation 2.2 (Figures 10D1,D2 and Video 10) shows similar’ trace’ responses for OVCs. The

agent has a set of MTL weights which encode the scene from Simulation 1.0 (Figure 5) where it

encountered and encoded an object. The object is now absent (small red circle in Figure 10D1), but

the periodic modulation of top-down connectivity reactivates corresponding OVCs, yielding trace

fields in firing rate maps. This activity can bleed into the parietal representation during perception

(e.g. at simulation time 9:40-10:00 in Video 6), albeit only when the location of encoding is crossed

by the agent, and with weaker intensity than missing boundary activity (the smaller extent of the

OVC representation leads to more attenuation of the pattern as it is processed by the transforma-

tion circuit).

Interestingly, perirhinal identity neurons, which normally fire irrespective of location, can appear

as spatially selective trace cells due to the periodic modulation of top-down connectivity at the loca-

tion of encoding. Figure 10D3 shows the firing rate map of a perirhinal identity neuron. Every time

the memorized representation is probed (high top-down gain), if the agent is near the location of
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Figure 12. Mental navigation with grid cells. Left to right: allocentric agent position (black triangle) and recent trajectory (black dashed line); PWo,

OVC, and PC population snapshots; GC input to PCs (i.e. GC firing rates multiplied by connection weights from GCs to PCs); PRo neurons. The

rightmost panel indicates which objects have been encoded. (A) The agent is exploring the environment and has just encoded the second object into

memory (right-most bar chart). Object one has been encoded near the start of the trajectory. (B) After encoding the third object and moving past it, the

agent initiates imagery, recalling object one in its spatial context (top-down mode) from a point of view West of object 1, facing East (red triangle). (C)

Mock motor efference shifts GC activity (dashed arrow on GC input to PCs) and thence drives the PC activity bump representing (imagined) agent

location. The allocentric (BVCs) and egocentric (PWb) boundary representation follow suit (see main text and Video 12). As the PC activity bump

passes the location at which object 3 was encoded, corresponding OVC activity is elicited by learned connections (and is transformed into PWo activity

(solid orange arrows indicate GCs updating PCs, PCs updating OVCs, etc). NB object 3 appears in the reconstructed scene ahead-right of the agent

(PWo snapshot, second panel), despite being encoded ahead-left of the agent when it moved southwards from object 2 toward object 3. The

corresponding perirhinal neuron is also driven to fire by PCs (orange arrow in PRo panel).
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encoding, the learned connection from PCs to perirhinal cells (PRo) lead to perirhinal firing for the

absent object, yielding a spatial trace firing field for this nominally non-spatial cell.

The presence of some memory-related activity during nominally bottom-up (perceptual) process-

ing can have benefits beyond the assessment of change discussed above. For instance, additional

activity in the contextual representations (BVCs, PC, PRb neurons) due to pattern completion in the

MTL can enhance the firing of BVCs coding for scene elements outside the current field of view. This

activity can propagate to the PW, as is readily apparent during full recall/imagery (Figure 5) but is

also present in weaker form during perception. Such activity may support awareness of our spatial

surrounding outside of the immediate field of view, or may enhance perceptually driven representa-

tions when sensory inputs are weak or noisy.

Sampling multiple objects in imagery (Simulation 3.0)
Humans can focus attention on different elements in an imagined scene, sampling one after another,

without necessarily adopting a new imagined viewpoint. This implies that the set of active PCs need

not change while different objects are inspected in imagery. Moreover, humans can localize an

object in imagined scenes and retrieve its identity (e.g. ‘What was next to the fireplace in the restau-

rant we ate at?”).

In Simulation 1.0 (encoding and object-cued recall, Figure 5), in addition to connection weights

from perirhinal (PRo) neurons to PCs and OVCs, the reciprocal weights from OVCs to PRo neurons

were also learned. These connections allow the model to sample and inspect different objects in an

imagined scene. To illustrate this we place two objects in a scene and allow the agent to encode

Video 9. This video shows a visualization of the

simulated neural activity as the agent moves in a

familiar environment. However, a previously present

boundary has been removed. The agent is supplied

with a periodic (akin to rodent theta) modulation of the

top-down connection weights (please see main text).

The periodic modulation of these connections allows

for a probing of the memorized spatial context without

engaging in full recall and reveals the memory of the

environment to be incongruent with the perceived

environment. BVC activity due to the memorized (now

removed) boundary periodically ’bleeds’ into the

egocentric parietal window ¨representation, in principle

allowing the agent to attend to the part of environment

which has undergone change (location of removed

boundary). Time integrated neural activity from this

simulation yields firing rate maps which show traces of

the removed boundary (see Figure 10 in the

manuscript). Note, the video is cut after 1 min to

reduce filesize. The full simulation covers approximately

300 s of real time. Please see caption of Video 1 for

abbreviations.

DOI: https://doi.org/10.7554/eLife.33752.022

Video 10. This video shows a visualization of the

simulated neural activity as the agent moves in a

familiar environment. However, a previously present

(and encoded) object has been removed. The agent is

supplied with a periodic (akin to rodent theta)

modulation of the top-down connection weights

(please see main text). The periodic modulation of

these connections allows for a probing of the

memorized spatial context. With every passing through

the encoding location OVC activity (reflecting the now

removed object) and perirhinal activity is generated by

place cells covering the encoding location. This re-

activation yields firing rate maps which show traces of

the removed object in OVCs, and induces a spatial

firing field for the nominally non-spatially selective

perirhinal neuron (compare to Figure 10 in the

manuscript). Note, the video is cut after 1 min to

reduce filesize. The full simulation covers approximately

300 s of real time. Please see caption of Video 1 for

abbreviations.
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both visible objects from the same point of view. Encoding still proceeds sequentially. That is, our

attention model first samples one object (boosting its activity in the PW) and then the other.

We propose that encoded objects that are not currently the focus of attention in imagery can

attract attention by virtue of their residual activity in the parietal window (weak secondary peak in

the PWo population in Figure 11B). Thus, any of these targets can be focused on by scanning the

parietal window and shifting attention to the corresponding location (e.g. ‘the next object on a

table’). Boosting the drive to such a cluster of PWo cells in the parietal window leads to
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Figure 13. Planning, taking and imaging a trajectory across an unexplored area. The agent is located in an environment where the direct trajectory

between two salient locations (purple dots, left column) covers an unexplored part of the environment. PCs potentially firing in the unexplored area

(‘reservoir cells’) receive only random connections from GCs (see unstructured grid cell input in column 5). Left to right panel columns: allocentric agent

position (triangle); PWb, BVC, PC population rates; GC inputs to PCs (see Figure 12); and (B-D only) firing of ‘reservoir’ PCs along the trajectory (x axis),

stacked and ordered by time of peak firing along the trajectory (y axis). (A) Starting situation. (B) Phase 1; imagined movement across the obstructed

space leads to preplay-like activity in reservoir PCs (rightmost panel). Red arrow indicates the reservoir PCs are driven by grid cells. No egocentric

representation can be generated from BVCs because ‘reservoir’ PCs have no connections to BVCs, that is they are not yet part of the MTL attractor. (C)

Phase 2; the barrier is removed and the agent navigates the trajectory in real space. GCs again drive PCs (thick grey arrow), so the temporal sequence

of reservoir cell activity in (A) is recapitulated in the spatial sequence of PC activity. Sensory inputs drive the PW (bottom-up mode) and hence BVCs

(grey arrow between panels 2 and 3). Hebbian learning proceeds between PCs and BVCs (dashed grey line), and from GCs to PCs (reinforcing the drive

from GCs to PCs, grey arrow between panels 4 and 5). (D) Phase 3; having traversed the novel part of the environment, the agent initiates imagery and

performs mental navigation along the newly learned trajectory. The learned connections now instantiate the correct BVC and PW activity in top-down

mode (orange arrows indicating flow of information, similar to Figure 12).
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corresponding activity in the OVC population (via the retrosplenial transformation circuit). The

learned connection from OVCs to perirhinal PRo neurons will then drive PRo activity corresponding

to the object which, at the time of encoding, was at the location in peripersonal space which is now

the new focus of attention. Mutual inhibition between PRo neurons suppresses the previously active

PRo neuron. The result is a top-down drive of perirhinal neurons (as opposed to bottom-up object

recognition), which allows inferring the identity of a given object. That is, by shifting its focus of

attention in peripersonal space (i.e. in the parietal window) during imagery the agent can infer the

identity of scene elements which it did not initially recall.

Figure 11 and Video 11 show sequential (attention-based) encoding, subsequent recall and

attentional sampling of scene elements. The agent sequentially encodes two objects from one loca-

tion (Figure 11A), moves on until both objects are out of view, and engages imagery to recall object

one in its spatial context (Figure 11B). The agent can then sample object two by allocating attention

to the secondary peak in the parietal window (boosting the residual activity by injecting current in

the PWo cells corresponding to the location of object 2). This activity spreads back to the MTL net-

work, via OVCs, driving the corresponding PRo neuron (Figure 11C). Thus, the agent infers the iden-

tity of object 2, by inspecting it in imagery. Attention ensures disambiguation of objects at

encoding, while reciprocity of connections in the MTL is necessary to form a stored attractor in spa-

tial memory.

Grid cells and mental navigation (Simulation 4.0)
The parietal window neurons encode the perceived spatial layout of an environment, in an egocen-

tric frame of reference, as an agent explores it (i.e. a representation of the current point of view). In

imagery, this viewpoint onto a scene is reconstructed from memory (top-down mode as opposed to

bottom-up mode). We refer to mental navigation as internally driven translation and rotation of the

viewpoint in the absence of perceptual input. In Simulation 4.0, we let the agent encode a set of

objects into memory and then perform mental navigation with the help of grid and head direction

cells.

Grid cell (GC) firing is thought to update the

location represented by place cell firing, driven

by signals relating to self-motion (O’Keefe and

Burgess, 2005; McNaughton et al., 2006;

Fuhs and Touretzky, 2006; Solstad et al.,

2006). During imagination, we suppose that GC

firing is driven by mock motor-efference signals

(i.e. imagined movement without actual motor

output) and used to translate the activity bump

on the sheet of place cells. Pattern completion in

the MTL network would then update the BVC

population activity accordingly, which will spread

through the transformation circuit and update

parietal window activity. That is, mock motor

efference could smoothly translate the viewpoint

in imagery (i.e. scene elements represented in

the parietal window flow past the point of view of

the agent). Similarly, mock rotational signals to

the head direction attractor could rotate the

viewpoint in imagery. Both together are sufficient

to implement mental navigation.

GCs are implemented heuristically, approxi-

mating the output of more sophisticated models

(e.g., Burgess et al., 2007; Burak and Fiete,

2009; Bush and Burgess, 2014). Firing rate

maps for 7 modules of 100 cells each are pre-cal-

culated (see Appendix), providing the firing rates

of GCs as a function of location. GC to PC

weights are pre-calculated as Hebbian

Video 11. This video shows a visualization of the

simulated neural activity as the agent sequentially

encodes two objects into long-term memory. Upon

navigating past the objects the agent initiates recall,

cueing with the first object. The OVC representations

of both objects are bound to the same place cells.

These place cells thus generate a secondary peak in

the OVC representation corresponding to the non-

cued object. This activity propagates to the parietal

window. Allocating attention to this secondary peak in

the egocentric parietal representation (i.e. injecting

current), propagates back to OVCs, which then drive

the perirhinal cells for the non-cued object. That is, the

agent infers the identity of the second object which is

part of the scene (see main text). Please see caption of

Video 1 for abbreviations.
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associations (to simulate a familiar environment),

where the connection strength is maximal if the

center of a PC’s receptive field coincides with

(one of) the GC’s firing peaks. During (bottom-

up) perception and navigation, GC input provides

a small contribution to PC activity, which is mainly

determined by BVC inputs (O’Keefe and Bur-

gess, 1996; Hartley et al., 2000; Lever et al.,

2009), to highlight the ability of the model to

self-localize based on sensory inputs. Stronger

grid cell input simply makes the location estimate

more stable without detriment to the model. In

the absence of reliable sensory information

strong GC inputs are required to make PCs fire

reliably (Bush et al., 2014; Poucet et al., 2014;

Evans et al., 2016). Imagery is an extreme case

of this situation, where no sensory input is pro-

vided to PCs. Consequently, GC input is up-regu-

lated during imagery (similar to other

connections in the switch from bottom-up to top-

down modes), constituting a major input to PCs.

This GC input can then translate the agent’s view-

point in imagery (via their effect on PCs) without

directly affecting the transformation circuit.

Figure 12 and Video 12 show an example of

mental navigation. The agent approaches three

objects in sequence, encodes them into memory

and then initiates recall cued by object 1. From

that (imagined) location, it initiates mental navi-

gation in a straight line. GCs shift the PC activity

bump along the trajectory. The allocentric

boundary representation (BVCs) follows the shift-

ing PCs (due to pattern completion) and the ret-

rosplenial transformation circuit (RSC/TR) translates the shifting BVC representation into a shifting

(i.e. ‘flowing past the agent’) egocentric representation of boundary distance (imagery of motion in

an imagined scene, not shown in Figure 12, however, see Video 12). Importantly, the imagined tra-

jectory takes the agent through the area of space at which object three was encoded, however this

time coming from a novel direction. The transformation circuit nevertheless instantiates the correct

activity in the parietal window for object 3, making it appear to the agent’s right, instead of to it’s

left (as during its original encoding, coming from object 2). Not only does the object populate the

imagined scene as the agent mentally navigates past it, the event also generates an imagined repre-

sentation which has never been experienced by the agent.

Translating an established BVC pattern due to updated perceptual input (in response to real

motion) also translates the PC activity bump. In fact, this is how perceptual information updates the

estimate of position (self-localization) in a familiar environment (PWbfiRSCfiBVCfiPC) in the

model. Similarly, shifting the activity pattern across PCs via GCs in mental navigation can update the

parietal window (PWb) during mental navigation (GCfiPCfiBVCfiRSCfiPWb). With this account of

mental exploration of different routes (including potentially novel imagined experiences; see next

section), the model provides a neural implementation of important aspects of ‘scene construction’

(Hassabis et al., 2007) and ‘episodic future thinking’ (Schacter et al., 2007), although these con-

cepts also extend beyond the capabilities of the model (see Discussion). The inclusion of GCs allows

for a parsimonious account of mental navigation in humans, consistent with observation of grid-like

activity during imagined movement through familiar environments (Bellmund et al., 2016; Horner

et al. 2016).

Video 12. This video shows a visualization of the

simulated neural activity as the agent performs a

complex trajectory and encodes three objects into

long-term memory along the way. Upon navigating

past the third object the agent initiates recall, cueing

with the first object, and subsequently performs mental

navigation (imagined movement in visuo-spatial

imagery) with the help of grid cells. Grid cells update

the place cell representation along the trajectory. The

egocentric parietal representation is updated along the

imagined trajectory, that is scene elements are flowing

past the point of view of the agent. Note, the imagined

trajectory does not correspond to a previously taken

route. Nevertheless, when the imagined trajectory

takes the agent past the encoding location of object 3,

it is instantiated in the OVC and PWo representations

(see main text). Grid cell firing rates are shown

multiplied by their connection weights to place

cells. Please see caption of Video 1 for

further abbreviations.
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Shortcutting and ‘preplay-like’ activity (Simulation 5.0)
It is a small step from imagined movement to planned navigation. GCs have been suggested to

compute the vector to a goal location from the current location (see Kubie and Fenton, 2012;

Erdem and Hasselmo, 2012; Bush et al., 2015; Stemmler et al., 2015), a capability necessary to

explain the ability to take a shortcut across previously unexplored territory (Tolman, 1948). We pro-

pose that this ability is based on mental (vector-based) navigation supported by GCs. In Simulation

5, we let the agent explore a novel part of the environment, extending a pre-existing representation

of a spatial context. Simulation 5.0 consists of three distinct phases: planning movement across a

previously unvisited area to a reward location (phase 1); actual navigation of this shortcut (phase 2);

and finally mental navigation across the now familiar area (phase 3).

In phase 1, the agent generates a trajectory along the shortest path to the goal using GCs (i.e. a

straight line where the barriers happened to be in the way, Figure 13B). However, unlike in Simula-

tion 4.0 (Figure 12), this process differs from mental navigation since the unexplored part of the

environment is devoid of any meaningful PC-BVC connections and so a scene cannot be generated

in the parietal window (PWb). Extending the medial temporal lobe (MTL) representations requires

incorporating additional place cells into the MTL attractor. These (future) place cells are referred to

as ‘reservoir cells’ and have no relationship to physical space yet, so visualizing their firing rates in a

topographic manner is not possible. However, as the agent generates a trajectory towards its goal

using GCs, sparse random GC-to-PC connections cause a subset of the reservoir cells to fire

(Figure 13B and Video 13). The activity of reservoir cells does not form an attractor bump, as PC-

PC connections have not been learned, but their firing is normalised to a level of activity similar to

when an attractor bump is present (implemented by an adaptive feedback current, see Appendix).

In Figure 13B (rightmost panel) reservoir cells are ordered according to their time of maximum firing

along the imagined trajectory.

In phase 2, the barriers are removed and the agent performs the previously imagined trajectory

in real space, using the novel shortcut. The same GCs are active along the trajectory and hence the

same reservoir cells which fired before exploring the area, now fire in a spatial sequence along the

actual trajectory. Since the agent is now actively perceiving its environment BVCs are driven in a bot-

tom-up manner and Hebbian-like plasticity can strengthen connections between BVCs and reservoir

cells as they fire along the trajectory (an analogous mechanism should also associate perirhinal neu-

rons, which is omitted here). Hence, the reservoir

cells have now effectively become place cells,

with firing fields tied to the agent’s location in

space (Figure 13C and Video 13). Figure 13C

(rightmost panel) shows place cell activity along

the trajectory during phase 2. Crucially, these

cells are plotted in the order of activity shown

during the previous imagined navigation

(Figure 13B), indicating ‘pre-play-like’ behavior,

in that the sequence of PC firing seen prior to

first exploration is subsequently recapitulated

during actual navigation (Figure 13C;

Dragoi and Tonegawa, 2011; Ólafsdóttir et al.,

2015).

Finally, in phase 3, the agent initiates imagery

and performs mental navigation along the short-

cut (i.e. recalls the episode of traversal), demon-

strating that the MTL representation has been

extended, and that a scene can be generated

(Figure 13D and Video 13). The newly learned

connections from reservoir PCs to BVCs complete

the MTL representation of the spatial context

and the transformation circuit reinstates the cor-

responding parietal window (PWb) representa-

tion (imagery, Figure 10D, panel 2).

Video 13. This video shows a visualization of the

simulated neural activity as the agent performs mental

navigation across a blocked shortcut. Newly recruited

cells in the hippocampus exhibit activity reminiscent of

preplay. Upon removal of the barrier the agent

traverses the shortcut and associates the newly

recruited hippocampal cells with the perceptually

driven activity in the MTL. Subsequent mental

navigation across the short cut yields activity in

hippocampal cells reminiscent of replay (see main text).

Grid cell firing rates are shown multiplied by their

connection weights to place cells. Please see caption

of Video 1 for further abbreviations.
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The ability to plan a route by driving a sweep of PC activity with a sweep of GC activity via estab-

lished GC-PC connections (Figures 12–13) could relate to the observation of ‘forward sweeps’ of

PC activity during navigation (Johnson and Redish, 2007; Pfeiffer and Foster, 2015) and ‘replay’

during rest (Wilson and McNaughton, 1994; Foster and Wilson, 2006; Diba and Buzsáki, 2007;

Karlsson and Frank, 2009; Carr et al., 2011). However, both of these phenomena, and the ‘pre-

play-like’ activity discussed above, occur at compressed timescales in experimental animals. Thus,

modeling forward sweeps, replay or pre-play would require a spiking neuron model able to capture

the faster time scale of the sharp-wave ripple events associated with replay and pre-play, and the

theta sequences associated with forward sweeps (Burgess et al., 1994; Skaggs et al., 1995;

Gupta et al., 2012).

Discussion
We propose a model of how sensory experiences, which are ultimately egocentric in nature, are

transformed into viewpoint-invariant representations for long-term spatial memory in the medial

temporal lobe (MTL) via processing in parietal and retrosplenial cortices. According to the model,

imagery and recollection of scenes correspond to the re-construction of egocentric representations

in parietal areas (the parietal window, PWb/o) from MTL representations. The MTL is the repository

of viewpoint-invariant knowledge which is used to generate spatially coherent scenes by retrieving

information consistent with perception from a single location and orientation. Pattern completion

(via attractor dynamics) implements retrieval of a neural representation across the MTL, while head-

direction cells enable the translation into egocentric coordinates via a retrosplenial transformation

circuit, making use of gain-field neurons (Snyder et al., 1998; Galletti et al., 1995; Pouget and Sej-

nowski, 1997). Thus, for example, unilateral lesions in parietal regions could cause perceptual hemi-

spatial neglect, and unilateral lesions to parietal or retrosplenial cortex could cause representational

hemispatial neglect (in imagery) for a scene for which the MTL representation is complete

(Bisiach and Luzzatti, 1978; see also Pouget and Sejnowski, 1997; Burgess et al., 2001a;

Byrne et al., 2007).

The model can be used to account for human spatial cognition at the level of single neurons far

from the sensory periphery: Place cells, head direction cells, gain-field neurons, boundary- and

object-vector cells (BVCs and OVCs), and grid cells. Future work should try to integrate the present

account of spatial cognition with recent progress concerning spatial coding in parietal areas

(Nitz, 2006; Nitz, 2009; Nitz, 2012; Harvey et al., 2012; Whitlock et al., 2012; Raposo et al.,

2014; Vedder et al., 2017), and a broader view of retrosplenial function (e.g., Alexander and Nitz,

2015; Alexander and Nitz, 2017). Notably, BVCs were predicted by an early predecessor of the

present model (Hartley et al., 2000; Burgess et al., 2001a). Here, we have introduced OVCs to

show how items introduced into a familiar environment may be coded for and incorporated into

long-term memory. Intriguingly, OVC-like responses have been reported recently (Deshmukh and

Knierim, 2013; Hoydal et al., 2017). We also explored how long-term memory might be probed to

assess novelty. Finally, we incorporated grid cells and investigated their role in exploratory behavior

and mental navigation. We can thus begin to frame abstract notions such as episodic future thinking

and scene construction in terms of neural mechanisms, although we note that these concepts extend

beyond our model to include completely fictional scenes/scenarios (Burgess et al., 2001a;

Hassabis et al., 2007; Schacter et al., 2007).

Recall of objects in a spatial context
We have proposed that items/objects are associated to a given (spatial) context via place cells,

which index the local sensory panorama, including local objects. Attaching representations of dis-

crete objects (in the form of object vector cell activity) to a contextual representation via place cells

aligns well with neuropsychological experiments that show position specificity in visual object mem-

ory (Hollingworth, 2007). In such experiments, object memory is superior when the target object is

presented at the same position in the scene as it had been viewed originally (also see object novelty

Simulations 1.3, 1.4). The hippocampus in particular has been implicated in combining information

about objects, locations, and contexts (Warburton and Brown, 2010; Eacott and Gaffan, 2005;

Barker and Warburton, 2015), consistent with the model. Similarly, studies suggest the
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hippocampus and precuneus are necessary for maintaining object-location binding even in working

memory (Piekema et al., 2006; Olson et al., 2006).

The direction-independence of place cell firing in open environments implies that all possible

local views at a given location could be associated with the corresponding place cells, potentially

encompassing the boundaries in all directions around that location. Only by supplying head (or

gaze) direction, and transforming the activity to the parietal window, a specific point of view can be

represented. Note that given the anatomical loci of head direction cells along Papez circuit, the role

of head direction as a modulatory factor in the egocentric-allocentric transformation (modeled as

within retrosplenial cortex) provides a good explanation for impaired episodic memory resulting

from Papez circuit lesions (Figure 7; Delay and Brion, 1969; Squire and Slater, 1978;

1989; Parker and Gaffan, 1997; Aggleton et al., 2016; Tsivilis et al., 2008). It also explains why

permanent landmarks should evoke stronger responses in retrosplenial cortex (Auger et al., 2012),

because permanent landmarks provide a more stable directional reference for the transformation cir-

cuit (see also Bicanski and Burgess, 2016). In summary, head direction cells likely serve to specify a

direction of view, and not a movement direction (Raudies et al., 2015), which could instead be

expressed in the firing phase of grid cells or place cells (Maurer et al., 2014; Cei et al., 2014).

The encoding strategy for objects allows an agent to reactivate the set of place cells which were

active when the object was encountered and thus reconstruct the local view at encoding in the parie-

tal window. This models the explicit recollection of a spatial scene populated with objects as an act

of visuo-spatial imagery. It provides an explanation for the neural activity seen in the MTL, retrosple-

nial cortex and precuneus during imagery for familiar scenes (Burgess et al., 2001a; Hassabis et al.,

2007; Schacter et al., 2007). The agent could also use the place cells activated during imagery as

‘goal cells’ and use grid cells to calculate a vector to navigate to the remembered location

(Bush et al., 2015); not simulated here), accounting for the role of the MTL in goal-directed naviga-

tion (e.g. reviewed in Burgess et al., 2002).

The present model of explicit recall for items in context is a small step on the long road to under-

standing episodic memory at the neuronal level. However, not all memories for items requires recon-

struction of a spatial scene. Recall of factual information (semantic memory) is not modeled, while

memory for the attributes of an object irrespective of its context would require only perirhinal

involvement. The BB-model only applies to imagery for coherent spatial scenes, and suggests that

this is necessary for episodic recollection in which the past event is ‘re-experienced’ (Tulving, 1983),

and certainly for remembering the spatial context of encountering an object.

Key components of the model are the ‘bottom-up’ transition from egocentric perceptual repre-

sentations to allocentric MTL representations and the ‘top-down’ transition from MTL representa-

tions back to egocentric imagery. By informing perception in a top-down manner, the MTL can

effectively predict perceptual input in familiar environments, allowing novelty detection and enhanc-

ing perception with remembered information. If we view imagery as a top-down reconstruction of

perceptual representations, the MTL together with the retrosplenial transformation circuit could be

seen as a generative model for scenes, consistent with generative models of memory such as

(Káli and Dayan, 2001). It has been proposed that the bottom-up/top-down transition between

encoding and retrieving occurs rhythmically at the frequency of the theta rhythm (Hasselmo et al.,

1996; Burgess et al., 2001a; Hasselmo et al., 2002; Byrne et al., 2007; Douchamps et al., 2013).

Theta might underlie a periodic probing of memorized representations; however, full recollection in

imagery can last for long periods of time and need not correspond to specific phases of theta in

humans (Düzel et al., 2010).

Mnemonic effects of newly learned connections and ‘trace cells’
We have proposed (Figure 10) that the relative strength of top-down and bottom-up connections

can change smoothly and under control of the agent (e.g. via the release of a neuromodulator) to

allow memory representations to influence neural activity during perception. This allows the agent

to localize and attend to a region of space in the egocentric frame of reference where a given scene

element used to be located, even if it has subsequently been moved, changed or removed. More-

over, the neural activity caused by increasing top-down connections can signal where the environ-

ment has changed. Interestingly, Tsao et al. (2013) recently reported ‘trace cells’ in lateral

entorhinal cortex, whose firing reflects the previous presence of a now missing object, while related

‘mis-place’ cells have been reported in CA1 (O’Keefe, 1976).
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We have shown that nominally non-spatially selective cells like perirhinal identity neurons can

manifest a spatial trace firing field when re-activation occurs at the encoding location (Figure 10D3).

This may help to reconcile the notion that lateral entorhinal cortex processes non-spatial information

(Van Cauter et al., 2013; Hargreaves et al., 2005) with the spatial responses of trace cells

(Tsao et al., 2013) in lateral entorhinal cortex. However, the trace cells of Tsao et al. (2013) do not

fire when the object is present, but only in the subsequent absence of the object. Thus they might

signal the mismatch between the remembered object and its absence, that is reflecting a compari-

son of perceptually driven and memory driven firing of the model perirhinal cells.

Finally, even in the absence of changes to the memorized spatial configuration, mnemonic repre-

sentations can enhance perception, for example allowing the firing of cells coding for scene ele-

ments outside the current field of view. This activity is supported by pattern completion in the MTL,

and may support people’s awareness of the presence of boundaries or objects outside of their field

of view within a familiar environment.

Attention
Although we do not model the mechanistic origins of attention (see e.g. Itti and Koch, 2001), atten-

tional modulation in the present model is crucial for unambiguous representations of multiple

objects within a scene. If multiple objects are encoded from the same viewpoint, multiple OVC and

perirhinal (PRo) neurons can be co-active, precluding the formation of a unique representation for

each object-location conjunction, that is, precluding the solving the object-location binding problem.

Thus, we require the objects to be sampled rhythmically and encoded sequentially in the parietal

window (Figures 3 and 11), consistent with experimental literature suggesting rhythmic and sequen-

tial sampling (VanRullen et al., 2007; Landau and Fries, 2012; for review see VanRullen, 2013). If

attentional cycles have a limited duration, then there may be insufficient time for activity to build up

in the corresponding neuronal populations and support robust encoding into memory if there are

too many objects within a scene, producing a capacity limit (see also Lisman and Idiart, 1995;

Bays and Husain, 2008).

The attentional modulation described above can also act in imagery (within the parietal window),

allowing the agent to inspect different parts of an imagined scene (see also Byrne et al., 2007). The

model proposes that, in the absence of perceptual inputs, perirhinal neurons can be driven in a top-

down fashion from hippocampus, thus reinstating an activity pattern in perirhinal cortex similar to

the one present at encoding. Only the co-firing of these perirhinal neurons (PRo) and the corre-

sponding BVCs and OVCs provides a unique representation of a given object in a given context, at a

given location. The proposed binding of OVCs and PRo neurons, subject to attention, might also

provide a functional interpretation of the hippocampus’ role in memory-guided attention (e.g.,

Summerfield et al., 2006).

Mental navigation, short-cutting, and planning
The model suggests a role for grid cell activity in human spatial cognition. Since both self-motion

related inputs (via grid cells) and sensory inputs converge onto place cells, grid cells can update the

point of view and allow an agent to translate its imagined location. If imagery can inform degraded

perception (e.g. in the dark), obstacles can be identified and a suitable path can be planned. Thus,

although mental navigation cannot be equated with path integration, we suggest that they reflect a

common grid cell-dependent mechanism, which is required when sensory inputs are absent or unreli-

able. Indeed, humans likely make use of spatial imagery even in apparently non-visual tasks such as

triangle completion in darkness (Tcheang et al., 2011), and there is evidence for grid-like brain

activity during mental navigation (Bellmund et al., 2016; Horner et al. 2016).

The model of mental navigation provides a mechanistic neural-level account of some aspects of

‘scene construction’ and ‘episodic future thinking’ (Schacter et al., 2007; Hassabis et al., 2007;

Buckner, 2010) with regard to familiar spaces. Mental navigation allows an agent to test future

behavior, like the approach of a target from a new direction as depicted in Video 12. This suggests

that the same neural infrastructure involved in scene perception and reconstruction also subserves

planning and hypothesis testing (e.g. asking ‘Which way should I go?’ or ‘What would I encounter if I

went that way?’). If grid cells (acting on place cells) change the point of view during imagined move-

ment this must be reconciled with the relationships between grid cells and place cells seen during
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periods of rest or planning (see e.g., Ólafsdóttir et al., 2016; O’Neill et al., 2017; Trettel et al.,

2017; Buzsáki and Chrobak, 1995).

Grid cells have been proposed to support the computation of vectors to a goal (Kubie and Fen-

ton, 2012; Erdem and Hasselmo, 2012; Bush et al., 2015; Stemmler et al., 2015). That is, they

can plan trajectories across known and potentially unknown terrain (shortcuts). We proposed that

grid cells recruit new hippocampal cells (future place cells) in previously unexplored parts of a famil-

iar environment (Figure 13 and Video 13). Planning a trajectory across unexplored space engenders

preplay-like activity in place cells (Dragoi and Tonegawa, 2011; Ólafsdóttir et al., 2015), whereas

mental navigation is reminiscent of ‘replay’ (Wilson and McNaughton, 1994; Foster and Wilson,

2006; Diba and Buzsáki, 2007; Karlsson and Frank, 2009; Carr et al., 2011) or ‘forward sweeps

(Johnson and Redish, 2007; Pfeiffer and Foster, 2015), although the faster propagation speed

(e.g. during sharp wave ripples) of these sequences of place cell activity are beyond the scope of the

present model. Nevertheless, the model suggests that sweeps of activity in the grid cell population

may play are role in these aspects of place cell firing, and could correspond to route planning

(Kubie and Fenton, 2012; Erdem and Hasselmo, 2012; Bush et al., 2015; Yamamoto and Tone-

gawa, 2017).

Conclusions
It has been argued that the MTL-retrosplenial-parietal system supports the construction of coherent

scenes (Burgess et al., 2001b; Byrne et al., 2007; Hassabis et al., 2007; Schacter et al., 2007;

Buckner, 2010). However, if recollection corresponds to the (re-)construction of something akin to a

perceptual experience (the defining characteristic of episodic memory; Tulving 1985), then this pla-

ces strong spatial constraints on how episodic memory works. A vast number of different combina-

tions of information could be retrieved from the body of long-term knowledge in the MTL, but only

a small subset would be consistent with a single point of view, making the episodic ‘re-experiencing’

of events or visuo-spatial imagery congruent with perceptual experiences. The BB-model combines

this insight with established knowledge and new hypotheses about how location, orientation, and

surrounding environmental features are associated and represented by neural population activity.

This account includes functional roles for the specific firing characteristics of diverse populations

of spatially selective cells across multiple brain regions, and distinguishes the egocentric representa-

tions supporting conscious (re-)experience from the more abstract (allocentric) representations

involved in supporting computations. The resultant systems-level account provides a strong concep-

tual framework for considering the interplay between structures in the MTL, retrosplenial cortex,

Papez circuit’ and parietal cortex in support of spatial memory. It follows Tulving’s theoretical speci-

fication of episodic memory, and - spanning Marr’s theoretical, algorithmic and implementational

levels (Marr and Poggio, 1976) - bridges the gap between a neuropsychological description of spa-

tial cognition (founded on behavioral and functional imaging data) and the neural representations

supporting it.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.33752.031

BB-Model Details

Neuron model
All neuron populations in the BB-model, with the exception of for grid cells, are composed of

rate-coded neurons and implemented according to the following equations.

x
tþ1

i ¼ x
t
i þ

dt

t
k
t
i (1)

r
tþ1

i ¼ 1

1þ exp �2bi x
tþ1

i �ai

� �� � (2)

Where x is the vector of activations (Equation 1, vectors/matrices displayed in bold) for all

neurons belonging to the population marked by the subscript i (e.g. PCs, BVC, etc.). Within a

population all neurons are identical. The superscript indicates the temporal dimension, with

t + 1 referring to the updated state variable for the next time step (step size dt). t is the decay

time-constant of the rate equation. The sigmoid with parameters a, b (Equation 2) serves as a

non-linearity to map activations onto firing rates. The term ki in Equation 1 contains all

population specific inputs. Equations 3 through 13 summarize the inputs to the model

populations.

kPC ¼�xPC þ’PC;PCWPC;PCrPC þ Pmod’BVC;PCWBVC;PCrBVC

þ’PRb;PCWPRb;PCrPRb þ’OVC;PCWOVC;PCrOVC

þImod’PRo;PCWPRo;PCrPRoþ’GC;PCWGC;PCrGC þ IFB

(3)

Here (and below) Wi,j is the matrix of connection weights from population i to j, ’i,j is a gain

factor, and rj refers to the vector of firing rates of population j. IFB is a feedback current

ensuring a set total of activity in the place cell sheet (numerical value 15). Imod and Pmod refer

to neuromodulation for bottom-up vs top-down modes of operation, and the mode is set

determined externally. that is setting these values according to behavioural needs of the agent

(perception vs imagery/recollection) implements the switch between bottom-up and top-down

modes. Pmod is one in bottom-up mode of operation and 0.05 in top-down mode. Imod is 0.05

in bottom-up mode of operation and one in top-down mode. Abbreviations: PC; place cells,

BVC; boundary vector cells, OVC; object vector cells; PRb; boundary selective perirhinal

neurons, PRo; object selective perirhinal neurons, PW; parietal window neurons, TR;

transformation circuit neurons, HDC; head direction cells, GC; grid cells.

kBVC ¼�xBVC þBImod’PC;BVCWPC;BVCrPC þ’BVC;PCWBVC;PCrBVC

þ’PRb;BVCWPRb;BVCrPRbþ B�1 Pmod’TRb;BVCWTR;BVC

P

20

i¼1
rTRbi

(4)

kOVC ¼�xOVC þ’OVC;OVCWOVC;OVCrOVC þB Imod’PC;OVCWPC;OVCrPC

þ B Imod’PRo;OVCWPRo;OVCrPRoþ B�1 Pmod’TRo;OVCWTR;BVC

P

20

i¼1
rTRoi

(5)

B is the ‘bleed’ parameter for a smooth modulation of bottom-up vs top-down connectivity,

during perception (simulations 2.1, 2.2). Sums over transformation sublayers run from 1 to 20,

the number of distinct sublayers (see description of transformation circuit in main text and

below).

kPRb ¼�xPRb þ Imod’PC;PRbWPC;PRbrPC þ’BVC;PRbWBVC;PRbrBVC þ IPRb (6)
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kPRo ¼�xPRoþ’PRo;PRoWPRo;PRorPRo þ’PC;PRoWPC;PRorPC

þ’OVC;PRoWOVC;PRorOVC þ IPRoþ Icue
(7)

Icue is an externally supplied (i.e. not causally determined by other model components)

trigger current to initiate recall in imagery.

IPRo and IPRb are externally supplied inputs to perirhinal identity neurons that represent the

result of a recognition process along the ventral visual stream which is not explicitly modelled,

and both inputs are only present in bottom-mode (i.e. during perception). IPRo is binary (object

attended and present vs not attended/not present), while the magnitude of IPRb depends

linearly on the extent of the boundary that is visible and its distance to the agent.

kPWb ¼�xPWb �PWbbath
P

rPWb þ B�1
I
agent
PWb

þ B Imod’TR;PWb

P

20

i¼1
WTR;PWbirTRi

(8)

kPWo ¼�xPWo �PWobath
P

rPWoþB�1
I
agent
PWo

þ B Imod’TR;PWo

P

20

i¼1
WTR;PWoirTRi

(9)

PWb/obath is an inhibitory input based on the total activity in the PWb/o population (sum of

the population vector in Equations 8 and 9). IPWb/o
agent refers to the sensory/perceptual

inputs to the PWb/o populations. That is, these input currents are generated in response to

the presence of boundaries/objects in the field of view in order to be injected into the

corresponding populations.

rIP ¼ 1þ exp �2bIP ’HD;IP

X

rHD �aIP

� �� �� ��1

(10)

connects onto the different sublayers of the transformation circuit (small hexagon in

Figure 4), ensuring suppression of activity in all sublayers except where the positive

modulatory input from HDCs ensures that inhibition is overcome.

k
i
TRb ¼�x

i
TRb �TRbbath

P

r
i
TRb þ’HD;TRbW

i
HD;TRbrHD

þ’IP;TRbrIPþ Imod’BVC;TRbWBVC;TRbrBVCþ
B�1 Pmod’PWb;TRW

i
PWb;TRrPWb for i � 1; . . .20f g

(11)

k
i
TRo ¼�x

i
TRo �TRobath

P

r
i
TRo þ’HD;TRoW

i
HD;TRorHD

þ’IP;TRorIPþ Imod’OVC;TRoWOVC;TRorOVCþ
B�1 Pmod’PWo;TRoW

i
PWo;TRorPWo for i � 1; . . .20f g

(12)

The superscript i in Equations 11 and 12 refers to the individual sublayers of the

retrosplenial transformation circuit (i ranging from 1 to 20). For convenience and in order to

visualize object (item) and boundary (contextual) related representations separately the

transformation is applied separately to the PWb/o representations but the same connectivity is

used. TRb/obath are analogous to PWb/obath.

ll�kHD ¼�xHD þ’HD;HDWHD;HDrHDþ Icue’PRo;HDWPRo;HDrPRo

þ’rotcwWrotrHDþ’rotccwW
0
rotrHD

(13)

cw and ccw in Equation 13 are 0 or 1 depending on whether on the agent is performing a

clockwise or counterclockwise turn, respectively. The scaling factor ’rot is set to ensure a

match between the agent’s rotations speed and the translation of the activity packet in the

head direction ring attractor.

The firing rate dynamics of GCs are not modelled. GCs exist as firing rate maps which span

the environment. GC rates are sampled from these rate maps by looking up the pixel value

closest to the agent’s location. See section Grid cell rate maps, mental navigation, and preplay

setup for the generation of the grid maps.

See Appendix 1—table 1 for population sizes.
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Appendix 1—table 1. Model Parameters. Top to bottom: a, b sigmoid parameters; ’

connection gains; F constants subtracted from given weight matrices (e.g. PC to PC connections)

to yield global inhibition; bath parameters; range thresholds for object encoding; l learning rates

for simulation 5; S sparseness of connections for reservoir PCs; s�, s# spatial dispersion of the

rate function for BVCs. The additive constant (s� = (r + 8) * s0) corresponds to half the range of

BVC grid and prevents s� from converging to zero close to the agent. Ni population sizes.

Products of numbers reflect geometric and functional aspects. E.g. receptive fields of PCs tile 2

� 2 m arena with 44 � 44 cells. Polar grids are given by 16 radial distance units (see A.2) and 51

angular distance units. For the transformation circuit this number is multiplied by the number of

transformation sublayers, that is 20.

a 5

b 0.1

aIP 50

bIP 0.1

jPWb-TR 50

jTR-PWb 35

jTR-BVC 30

jBVC-TR 45

jHD-HD 15

jHD-IP 10

jHD-TR 15

jHDrot 2

jIP-TR 90

jPC-PC 25

jPC-BVC 1100

jPC-PRb 6000

jBVC-PC 440

jBVC-PRb 75

jPRb-PC 25

jPRb-BVC 1

jGC-PC 3

jPWo-TR 60

jTR-PWo 30

jTR-OVC 60

jOVC-TR 30

jPC-OVC 1.7

jPRo-OVC 6

jPC-PRo 1

jOVC-PC 5

jOVC-oPR 5

jPRo-PC 100

jPRo-PRo 115

jinh-PC 0.4

jinh-BVC 0.2

jinh-PRb 9

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

a 5

jinh-PRo 1

jinh-HD 0.4

jinh-TR 0.075

jinh-TRo 0.1

jinh-PW 0.1

jinh-OVC 0.5

jinh-PWo 1

FPC-PC 0.4

FBVC-BVC 0.2

FPR-PR 9

FHD-HD 0.4

FOVC-OVC 0.5

FPRo-PRo 01

PWbath 0.1

PWbath 0.2

TRbath 0.088

Object enc. threshold 18 cm

Object enc. Threshold (3.1) 36 cm

lGC-resPC 0.65*10̂�5

lresPC-BVC 0.65*10̂�5

lBVC-resPC 0.65*10̂�5

SGC-resPC 3%

SresPC-resPC 6%

s� (r + 8) * s0

s0 0.08

s# 0.2236

NPC 44 � 44

NBVC 16 � 51

NTRb/o 20 � 16�51

NOVC 16 � 51

NPRb/o Dependent on simulation environment

NPWb/o 16 � 51

NIP 1

NHD 100

NGC 100 per module

Nreservoir 437

DOI: https://doi.org/10.7554/eLife.33752.032

Receptive fields of place cells and boundary vector cells
In the training phase for the contextual representation (see section Connection Profiles) BVC

and PWb neurons have activation functions of the following type. If a boundary segment is

located at the coordinates (r,#), then the activity of each boundary selective cell is

proportional to the distance of its receptive field from that boundary segment. If (�i, #i) are

the polar coordinates of the receptive field of the i-th BVC or PWb neuron, then the firing

rate r is calculated according to the following equation:
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riBVC ¼ 1

�
exp � #a

i �#a

s#

� �2
 !

exp � �i� �

s�

� �2
 !

(14)

where s# and s� define the spatial dispersion of the rate function r. The radial dispersion

increases with distance (i.e. s� is a function of the radius; see e.g. Barry and Burgess 2007).

The radial separation of distance bins (see Figure 2A2) increases linearly from 0.21 to

1.71 along the radius of length 16 distance units (corresponding to approx. 145 cm for the 2

� 2 m environment). Internal to the model a distance unit is given by 2/NPC (see place cell

resolution below). The same function is used to calculate the perceptual input to the parietal

window due to objects and boundaries during simulation and to calculate activations of

parietal window neurons and retrosplenial cells during the setup of the transformation circuit

(see below). The receptive fields of BVCs, OVCs, PWb, PWo neurons and retrosplenial cells

tile the space in polar coordinates with a radial resolution of 1 receptive fields per arbitrary

distance unit (range: 0–16, see above) and an angular resolution of 51 receptive fields over

2p radians.

Similarly, to set up the PC weights in the training phase PC rates are calculated via the

following equation:

riPC ¼ exp
xi� xð Þ2þ yi� yð Þ2

0:52

 !

(15)

where (x,y) is the location of the agent and (xi,yi) the location of the receptive field of the PC

in question. The firing fields of PCs tile the environment in a Cartesian grid with resolution

0.5 (i.e. two PCs per arbitrary distance unit). However, note that during simulations PCs are

never driven by this activation function. Only BVCs, PR neurons and GCs drive PCs during

simulation, unlike PWb/o neurons which must receive sensory/perceptual inputs in bottom-

up mode.

Connection profiles
The encoding procedure (section Bottom-up vs top-down modes of operation) describes

how object related connections are learned. The contextual representation of BVC, PC and

PRb neurons, as well as the connections to and from the transformation circuit are set up in a

training phase prior to running any simulations. To set up the transformation circuit randomly

oriented boundary segments are chosen (20.000 times per transformation sublayer for a total

of 400.000 instances), and the corresponding firing rates (calculated according to

Equation 14) for PWb neurons and the transformation circuit sublayers are instantiated. For

each transformation circuit sublayer the randomly generated activity pattern is rotated by a

different angle (rotation angle chosen from 20 evenly spaced head directions). Connection

weights are then calculated as outer products of the population vectors, yielding a matrix of

Hebbian-like associations between the populations. The connections from the retrosplenial

transformation circuit to BVCs are one-to-one connections between BVCs and the cells in

each of the 20 transformation sublayers (i.e. the connections are given by the identity matrix)

since this connection only needs to convey the outcome of the gain modulation across the

RSC sublayers. That is, rotations of activity patterns occur on the connection to and from the

parietal window. Video 1 shows all sublayers of the transformation circuit, subject to gain

modulation from HDCs as a simulated agent navigates a simple environment, see also

Figure 2—figure supplement 1. The entire transformation of egocentric boundary inputs to

BVCs effectively constitutes a model of BVC generation from sensory inputs. Finally,

connections between HDCs and the 20 transformation circuit sublayers are calculated

algorithmically, by associating each sublayer with one of 20 evenly spaced HD activity bumps

on the head direction ring.

With a functioning transformation circuit, and after specifying the location and extent of

extended boundaries in the environment, the agent is placed at a random location and

orientation in the environment and the activations of BVCs and PCs are calculated via
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equations 14 and 15. PRb activations are instantiated based on the identity of the visible

landmark segments. Connection weights between these three populations (supporting the

contextual representation) are again calculated as outer products of the corresponding

population vectors, yielding matrices of Hebbian-like associations between the populations.

Weights are normalized such that the sum total of weights converging on a given target

neuron is 1, which is assumed to be the result of some homeostatic process, a widely agreed

upon feature of synaptic plasticity (Keck et al., 2017). Weights are scaled by scalar gain

factors ’i (see Appendix 1—table 1) to produce appropriate responses in targets of afferent

connections.

Grid cell rate maps, mental navigation, and preplay setup
Grid cells are implemented as firing rate maps. Each map consists of a matrix of the same

dimensions as the PC sheet (44 � 44 pixels) and is computed as 60 degrees offset,

superimposed cosine waves using the following set of equations.

b0 ¼
cos 0ð Þ
sin 0ð Þ

� �

b1 ¼
cos p

3

� �

sin p
3

� �

 !

b2 ¼
cos 2p

3

� �

sin 2p
3

� �

 !

(16)

zi ¼ Rjbi Fx
!þ x

!
offset

� �

(17)

rGC ¼max 0;cos z0ð Þþ cos z1ð Þþ cos z2ð Þð Þ (18)

Here b0, b1 and b2 are the normal vectors for the cosine waves. Rj is the standard 2D

rotation matrix where the index j ranges from 1 to 7 and refers to the rotation angle of the

matrix (7 random orientations for 7 grid modules, here 0, p/3, p/4, p/2, p/6, 1.2p, 1.7p). F is

the frequency of the grids, starting at 0.0028*2p. The scales of successive grids are related

by the scaling factor
ffiffiffi

2
p

(Stensola et al. 2012). For each grid scale offsets are sampled

uniformly along the principle axes of two adjacent equilateral triangles on the grid (i.e. the

rhomboid made of 4 grid vertices).

Motion through GC maps (i.e. a GC sweep) during mental navigation and preplay is

implemented by sampling the GC rate along the imagined trajectory superimposed on the

GC rate map. The firing rate value (i.e. the pixel of the rate map) is determined by rounding

the x and y values of the imagined trajectory to the nearest integer value. This sampling is

equivalent to a shift of a hexagonal pattern of activation on a 2D sheet of entorhinal cells, as

suggested in mechanistic models of grid cells (Burak and Fiete, 2009).

For simulation 5.0 (planning; Video 13 and Figure 13) the reservoir place cells are

supplied with random afferent connections from grid cells (sparseness 3%), and are also

randomly interconnected amongst themselves (sparseness 6%). Place cells representing the

familiar context and reservoir PCs inhibit each other (inhibitory connections 50% stronger

than the default inhibition among place cells representing the context). Weights among

reservoir place cells are normalized to the mean of the total amount of positive weights

converging onto a typical place cell representing the familiar context. Grid cell weights to

reservoir place cells are similarly normalized (80% stronger than default). These additions

suffice to produce random, preplay-like activity in reservoir place cells as soon as the central

peak of the grid cell ensemble begins to drive the reservoir. The inhibitory connections to

and from the context network assure that either the reservoir place cells or the context

network wins out. No changes to the adaptive feedback current are necessary (IFB in

Equation 3). Finally, during preplay connections from BVCs and perirhinal neurons to place

cells are turned off to avoid interference which can arise due to the very simple layout of the

environment (many boundary configurations experienced by the agent are similar). No other

changes to the default model are necessary. To visualize the spatio-temporal sequence of

the firing of reservoir place cells during the three phases of simulation 5.0 (planning,

perception, recall; see main text) the firing of reservoir cells is recorded along the imagined
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or real trajectory, and stacked (rightmost panels in Figure 13) to yield figures akin to typical

preplay/replay experiments. The firing rates are normalized and thresholded at 10% of the

maximum firing rate for clarity. That is, cells that do not fire, or fire at very low rates are not

shown. Due to learning during the actual traversal of the novel part of the environment

(phase 2, perception) some cells can increase their firing rate above the threshold. As a

consequence the number of cells which is plotted in the stacked rate maps grows marginally

between phase 1 (preplay) and phase 2. However, ordering PCs in phases 2 and 3 according

to the sequence derived from the preplay is done before thresholding. Hence the correct

order derived from phase 1 (preplay) is applied to the cells recorded in phases 2 and 3.

Agent and attention models
To ensure an unambiguous representation of an object at a given location (see main text) we

implement a heuristic model of directed attention. A fixed length for an attentional cycle

(600 ms) is allocated and divided by the number of visible objects, yielding a time per object

tO. The PWo population is then driven for tO ms with the cueing current IagentPWo (see

Equation 9) for each visible object in sequence.

The agent moves in straight lines within the environment, following a path defined by a

list of coordinates. Upon reaching a target the rotation towards the next subgoal is

performed, followed by the next segment of translation. The rotational velocity is implicitly

given by a fixed offset of the translation weights for the HD ring attractor (approximately 18

degrees; see e.g. Zhang, 1996; Song and Wang, 2005; Bicanski and Burgess, 2016 for

more sophisticated methods of integrating rotational velocity). Translational velocity is fixed

at 25 cm per second.

The agent model is agnostic about the size of the arena and nature of the agent. It can be

viewed as rodent like agent or alternatively a human-like agent. The environment is covered

by 44 � 44 PCs. that is 1/44 of the length/width of the environment corresponds to one

distance unit. Assuming a timestep of e.g. 1ms and an arena size of approximately 2 � 2 m2

for a rodent-like agent yields a translation speed of approximately 10 cm/s. Assuming a

human-like agent in an environment of approximately 10 � 10 m2 yields a translation speed

of approximately 56 cm/s, corresponding to a slow paced walk for a human subject. In either

case the speed is orders of magnitude below the time scale of neural rate dynamics.
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