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Abstract

Translation in cognitive neuroscience remains beyond the horizon, brought no

closer by supposed major advances in our understanding of the brain. Unless Invited Referees
our explanatory models descend to the individual level—a cardinal requirement 1 2
for any intervention—their real-world applications will always be limited.

Drawing on an analysis of the informational properties of the brain, here we version 1 'y W
argue that adequate individualisation needs models of far greater published report report

dimensionality than has been usual in the field. This necessity arises from the 21 May 2018

widely distributed causality of neural systems, a consequence of the
fundamentally adaptive nature of their developmental and physiological
mechanisms. We discuss how recent advances in high-performance
computing, combined with collections of large-scale data, enable the

1 Michel Thiebaut de Schotten ,

Sorbonne University, France

high-dimensional modelling we argue is critical to successful translation, and Sorbonne University, France

urge its adoption if the ultimate goal of impact on the lives of patients is to be o

achieved. o Tor D. Wager, University of Colorado
Boulder, USA

Keywords

Translation, high-dimensional inference, causality, neuroimaging, cognitive

. . . Discuss this article
neuroscience, machine learning.

Comments (0)

Corresponding author: Parashkev Nachev (p.nachev@ucl.ac.uk)

Author roles: Nachev P: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology, Visualization, Writing — Original
Draft Preparation, Writing — Review & Editing; Rees G: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology,
Visualization, Writing — Original Draft Preparation, Writing — Review & Editing; Frackowiak R: Conceptualization, Formal Analysis, Funding
Acquisition, Investigation, Methodology, Visualization, Writing — Original Draft Preparation, Writing — Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: PN is funded by a Health Innovation Challenge Fund award (HICF-R9-501, WT-103709) and the UCLH NIHR Biomedical
Research Centre.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2018 Nachev P et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Nachev P, Rees G and Frackowiak R. Lost in translation [version 1; referees: 2 approved] F1000Research 2018, 7
:620 (doi: 10.12688/f1000research.15020.1)

First published: 21 May 2018, 7:620 (doi: 10.12688/f1000research.15020.1)

Page 1 of 13


https://f1000research.com/articles/7-620/v1
https://orcid.org/0000-0002-2718-4423
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.15020.1
http://dx.doi.org/10.12688/f1000research.15020.1
https://f1000research.com/articles/7-620/v1
https://orcid.org/0000-0002-0329-1814
http://dx.doi.org/10.12688/f1000research.15020.1
http://dx.doi.org/10.12688/f1000research.15020.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.15020.1&domain=pdf&date_stamp=2018-05-21

The question

Cognitive neuroscience is yet to produce applications of major
clinical impact. If its relative immaturity is to blame, we need
merely wait. But if its approach is fundamentally ill-suited, we
could be left waiting forever. We must therefore consider how
well the means of cognitive neuroscience support translational
ends. Such consideration cannot be expected to emerge sponta-
neously from the field itself, for neuroscience evolves under the
selective pressure of supposed understanding, not the collateral
of mechanistic insight translation is widely perceived to be.
Nor may we presume the obstacles to translation to be pecu-
liar to each cognitive subfield and unlikely to be illuminated by
a general analysis: it is possible they lie within the proximal,
cardinal steps common to all of neuroscience. Here we examine
this possibility, show it to be overwhelmingly likely, and outline
how neuroscience must change if it is to deliver real-world patient
impact.

Translation and individualisation

Most societies give primacy to the individual person, imposing
collective interests only with reluctance. This is especially true
of healthcare, where the object of clinical action is archetyp-
ally the individual and the group only secondarily. To take a
striking example, we could overnight revolutionize popula-
tion outcomes in acute stroke by intervening with thrombolytic
therapy at the kerbside, bypassing delays that hospital transfer
for diagnostic computed tomographic scans inevitably introduce
(Wardlaw e al., 1997). But however compelling the
population statistics, such a manoeuvre is rendered uncon-
scionable by the resultant death or greater disability of the
10% of patients with primary intracerebral haemorrhage
(Qureshi er al., 2009). Even where the stakes are less sharply
polarised, it remains difficult to implement any treatment whose
individual benefit is only crudely probabilistic, for all inter-
ventions have a cost: both personal and financial. Moreover,
since populations merely summarise effects on individuals,
the greater the individual variation, the lesser the population-
level impact. Both constitutively and politically, translational
success or failure is thus critically dependent on our ability to
individualise our interventions.

How is individuality determined? Consider by way of illustra-
tion that most personal part of the body, the face (Figure 1).
Though one feature may sometimes be uniquely idiosyn-
cratic, to distinguish a face from another generally requires the
conjunction of many features, even when all redundancy is
eliminated. Such irreducibly high intrinsic dimensionality is
conveniently captured by the notion of minimum description
length (Rissanen, 1978) — intuitively, the most compressed
complete description of a system. This quantity sets a hard limit
on the minimal complexity of any model that must distinguish
one state or instance of a system from another to perform its
task. No matter how clever the mathematics, a machine vision
model tasked with (say) classifying the sex of a face will always
perform badly when starved of input features because no small
subset of features contains the necessary information; con-
versely, even a relatively unsophisticated model with sufficient
capacity will perform well, given enough data (Parkhi er al.,
2015; Schroff er al., 2015; Zhou et al., 2015). It should come
as no surprise that face coding in the primate brain takes a
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Figure 1. Dimensionality and individualisation. The face of the
Roman Emperor Hostilian (top left) is poorly described by the
canonical face of all Roman Emperors (top right), which is—by
definition—not identical with any of the individual faces from
which it is derived. Furthermore, the individuality of a face is better
captured by a low-precision, high-dimensional parameterisation
(bottom left), than it is by a high-precision, low-dimensional
parameterisation such as the inter-pupillary distance (bottom
right). The photograph of Hostilian is reproduced with the kind
permission of Dr William Storage.

high-dimensional approach, deriving identity by projecting a
multiplicity of features onto a compacted representational space
(Chang & Tsao, 2017). Now our concern is not individuation
simpliciter but the individuation of causal mechanisms of
predictive or prescriptive utility. For this we need a causally
constrained extension of the concept of minimal description
length: what we here term a minimal causal field. To see how this
is specified requires a brief examination of biological causality.

Neural causation

We have a natural intellectual predisposition to causal models
with two cardinal features: economy and seriality (Hacker,
2007). This is a consequence partly of reasoning by analogy and
partly of practicability. The intelligible, mechanistically pellucid
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processes we observe in the non-organic world and exploit in the
machines we build tend to have few parameters of causal sig-
nificance, arranged sequentially. It seems natural to apply the
same approach to biology, indeed inevitable, for a causal model
with (say) a thousand parameters is intellectually intractable.
When we insist on identifying necessary and sufficient links
within a more or less serial chain, it is because no other option
has been open to us.

But whereas this notion of causation is adequate for understand-
ing simple, serially organised systems, it does not scale with
complexity. In complex systems, where a multiplicity of factors
is jointly brought to bear on the outcome, each individual
factor becomes an insufficient but necessary part of a set of
factors that are unnecessary but sufficient for the result: an INUS
condition (Mackie, 1974). To give an adequately explanatory
account it is necessary to specify a causal field of many such INUS
conditional factors that interact in complex ways (see Figure 2).

Do neural systems require such a complexity of causal specifi-
cation? Consider the far simpler behaviour of artificial neural
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networks, such as deep-learning architectures in which layers
of laterally connected units are hierarchically arranged in an
end-to-end error-minimising stack (Goodfellow er al., 2016;
LeCun er al., 2015). Taking the input-output transformation pro-
duced by such a network as its “function”, we can test the causal
contribution of sets of network nodes by examining the functional
consequences of deactivating them, essentially performing arti-
ficial neural network lesion-deficit mapping (Adolphs, 2016;
Rorden & Karnath, 2004). When a trained network is subjected
to such drop-out (Gal & Ghahramani, 2016; Le Cun er al.,
1989; Srivastava er al., 2014; Wan et al., 2013), the degradation
of any output is gradual, and often proportionate with the mass
of deactivated nodes but varying with their identity in a com-
plex manner that precludes the identification of a “critical” node,
or even a clear ranking of the material contribution of
individual nodes. Causality is constitutionally distributed in a
way any conventional description simply cannot capture; only a
causal field specification will do (Mackie, 1974).

The widespread use of drop-out in the deep-learning litera-
ture shows causally distributed architectures learn complex
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Figure 2. Causal fields. Distributed causality is elegantly illustrated by the behaviour of artificial neural networks trained to transform an
input into an output by optimising the weights of a stack of fully connected nodes. Here the input-output transformation is causally dependent
on the nodes and their connections, for it cannot occur without most of them. But when the network is large, its dependence on any limited
subset of nodes will be low. This is not because there is a reserve of unused nodes, but because the causality of the system is constitutionally
distributed. Inactivating (in black) a set of nodes (large circles) or their connections (small circles) will thus degrade performance broadly in
proportion to their number and not necessarily their identity. Causality thus becomes irreducible to any simple specification of necessity and
sufficiency. Instead, each node becomes an insufficient but necessary part of an unnecessary but sufficient set of factors: an INUS condition.
An adequate description of the causality of the system as a whole then requires specification of the entire causal field of factors: no subset
will do, and no strong ranking need exist between them. If the architecture of real neural networks makes such causality possible—and
it certainly does—we need to be capable of modelling it. But this is more than just a theoretical possibility. It is striking that encouraging
distributed causal architectures through dropping nodes or connections during training dramatically improves the performance of artificial
neural networks. And, of course, real neural substrates often exhibit remarkable robustness to injury, a phenomenon conventionally construed
as “reserve”, but since no part of the brain lies in wait, inactive, distributed causality is a more plausible explanation.
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input-output transformations better than other systems exam-
ined to date (Goodfellow er al., 2016). They are also more
robust to damage, an important consideration for any biologi-
cal system. However, there is no need to appeal to plausibility in
our argument: to the extent that a node contributes to function it
must be causally relevant. It is inconceivable that the observed
complexity of real neural systems is merely epiphenomenal to
a much simpler underlying causal organisation. In any event,
since we cannot assume the minimal causal field is small,
we need to consider how to model it when it is irreducibly large.

Mapping causal fields

In seeking to understand the causality of any complex system,
we must distinguish between causally relevant and incidental
variation. Though rarely acknowledged, the approach to mak-
ing such a distinction depends critically on a cardinal assumption
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about a system’s structure. If we assume the organisation of
a particular brain network is fundamentally the same across
people—i.e. it is monomorphous—individual variation may
be treated as noise. The population mean will then be the
best available guide to the fundamental mechanism and to
its expression in individuals. This is an implicit assumption
behind the vast majority of studies in cognitive neuroscience
where a set of estimates, derived from a small group, are con-
sidered to reveal general truths about the brain. But if, at some
causally critical level, the neural organisation is not the same
across people—i.e. it is polymorphous—individual variation
cannot be treated as noise and the population mean will be
a poor guide, both to mechanism and individual behaviour
(see Figure 3). The distinction between monomorphous and
polymorphous organisation is crucial because it radically alters the
optimal inferential approach. We suggest the common assumption

driving
wheel

Neighbourhood

Figure 3. Monomorphous vs polymorphous systems. Where the fundamental architecture of a biological system is the same, our best guide
will be the simple mean of the population, for each individual will differ from it randomly. Studying such monorphous systems is illustrated by
adding random noise to an image of a specific watch mechanism, and then averaging across 45 noisy instances. The underlying architecture
is thereby easily revealed. Where the solution in each individual differs locally, illustrated by taking a family of 45 different watch mechanisms
of the same brand, the population mean is a very poor guide, for individual variability is no longer noise but the outcome of a plurality of
comparably good solutions. We must instead define local regularities of organisation, here done by t stochastic neighbour embedding of
the images into a two dimensional latent space, revealing characteristic features of each family of solutions. Given that neural systems are
complex, stochastically initiated, and optimised by feedback, polymorphous architectures are likely to dominate, mandating a data-driven,

neighbourhood-defining approach to modelling.
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of a monomorphous architecture of the brain is unjustified—both
empirically and theoretically—and must be discarded, for the
following reasons.

The genetic information gap

A neural architecture can be shared across individuals only as
far as it is identically specified by the genome, the environment,
and their interaction. The constitutive variability of the environ-
ment leaves the genome as the primary driver of inter-individual
homology. Genomic information content is information theo-
retically limited by the number of base pairs and the range
of nucleotide options at each locus. If we implausibly (Rands
et al., 2014) assume every locus is both functional and
material to the operations of the brain, so that no section is
redundant, we have only ~6 x 10° bits of information, roughly
the content of an old compact disc. Even if all this informa-
tion is used to specify the minimal causal field of a human brain,
leaving none for the rest of the body, we remain unable to meet
even the most conservative estimates of the brain’s complex-
ity. A commonly offered prenatal estimate, ~10" bits, derived
from the number of synapses in the brain (Huttenlocher &
Dabholkar, 1997; Tang er al., 2001), implausibly assumes a
synapse can only encode one bit at any one time, and that neu-
ral connectivity is the only differentiator. This is equivalent
to treating a neuron rather like a transistor in a modern compu-
ter-processing unit, distinguished from its neighbours only by
the role assigned to it. In short, we are not faced with an infor-
mation gap but more an information chasm. The conclusion is
that a great deal of the functional architecture of the brain
cannot be monomorphous, for the necessary information simply is
not there.

Creating polymorphous architectures

The brain cannot violate the laws of physics, so how can
complexity arise from so relatively impoverished an initial
specification? Theoretically the simplest approach is to inject
randomness (Matsuoka, 1992) at the outset of development,
allowing a complex order to emerge downstream through
feedback learning.

Such stochastic initiation is evident in normal neural devel-
opment, where as many cells face an orchestrated death, at
great structural and energetic cost to the organism, as survive
into adulthood (Lossi & Merighi, 2003). Seemingly playing a
compound game of “Russian roulette cum musical chairs”,
developing neurons are subjected to an environmentally depend-
ent selection process, determined only once development
is in play. The process is not fully specified in the genome,
or else the redundant neurons would never be born. The
biologically dominant prohibition of regeneration in the central
nervous system, far from being mysterious, is necessary where
the organising information emerges during development, and is
therefore stored only in the final product itself.

Equally, the ubiquity of neural feedback learning is evident in
the way recurrence is so densely woven into the neural fabric.
One-way brain pathways are an exception, not the rule (Bressler
& Menon, 2010). It could not be otherwise, for learning—here

F1000Research 2018, 7:620 Last updated: 23 AUG 2018

neural learning—is the only way an order more complex than
the initial genetic specifications could conceivably arise.

Now a stochastically-initiated, feedback-learning system, with
multiple tuneable parameters, will inevitably have many different
solutions for the same target input/output transformation.
It is therefore bound to be polymorphous. Crucially, there
need be no mechanism for regularising such solutions across
individuals to impose a higher, species-level order, for no such
order need exist, even if it could be imposed. An organism
adapts its structure in response to errors only within its own
input-output transformations, not those of others; biology does
not do federated learning (McMahan ez al., 2016).

Though our concern is to define the bounds of biological pos-
sibility our models must be able to cover, it is natural to seek
empirical evidence of biological plausibility. The only credible
evidence can come from a system that has been comprehen-
sively characterised. Since our claim is about under-estimating
complexity, we may as well pick a simple one. Consider, the
gut of the lobster, or rather the stomatogastric sub-circuit,
meticulously studied for decades by Eve Marder. Though
absurdly simple anatomically, with only 30 neurons, and physi-
ologically, with only regular peristaltic oscillation, the relation
between the two is not only complex, but also polymorphous
in precisely the way described. The same functional physi-
ology can be arrived at from different individual neuronal
“settings”, both across time in the same animal and across
different animals (Marder & Bucher, 2007). We cannot presume
that the rules of human functional brain organisation are any
simpler.

Modelling polymorphous systems
We must confront the functional complexity of neural organi-
sation before us if translation from mechanisms of disease
to rational treatments is to be possible. How do we gener-
ate, estimate, and validate polymorphous neural models of
potentially incomprehensible complexity?

Model validation

Let us begin with the last step first: validation. It is conventional
to take goodness-of-fit, qualified by some statistical measure,
as evidence for the plausibility and utility of a model. But this is
of little use where the field of possible models is both vast and
sparsely sampled. That our model shows a degree of fit with the
data means little if uncountable very different models fit just as
well or better. The practice is kin with awarding oneself a gold
medal after finishing a race blind to the rest of the field. Nor
is limited model comparison acceptable, for differentiating
between a handful of models tells us little about the sea of
possibilities from which they are drawn.

Rather, we need to quantify the individual predictive power
of a model, across time or across individuals, in relation to
the future state of a system, or some outcome measure of inter-
est. Such prediction is naturally framed in standard terms
of sensitivity and specificity, derived from a comprehensive
spread of data the model has not seen (Dwork er al., 2015;
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Vapnik, 1998). A model with perfect predictive power
cannot be improved upon, so its competitors may be reasonably
dismissed. A model with imperfect predictive power is to be
stratified by metrics, leaving as much or as little room for
exploring others as its performance dictates.

Crucially, if a given model is powerfully predictive, none of
the constituent features can be treated as noise, no matter how
random they may appear when viewed in isolation. This approach
does not implicate any individual constituent feature mecha-
nistically, because functionally irrelevant incidentals (data
and/or features) may drive prediction, like correlation. But it
does imply no component feature leading to a good prediction can
be safely ignored.

Of course, the richer the parameterisation of a model, the
more susceptible it is to “overfitting” - the identification of
coincidences of features in a dataset arising by chance with no
predictive power beyond it (Hawkins, 2004). But that is no more
reason for avoiding such an approach than the possibility of
being dazzled is reason for keeping one’s eyes permanently
shut. It is in any event a practical, not a theoretical objection,
addressable through the use of large-scale, fully inclusive
datasets and high performance computing, as we discuss below.

Model generation and estimation

To insist on intuiting a hypothesis as the first investigative
step imposes a bias towards models couched in familiar
concepts within a contemporary sphere of comfort. Where the
hypothesis space is too large for our imaginations to traverse
confidently, relying on intuition is not principled but hubristic.
We need a formal hypothesis generation step, explicitly driven
by exploratory analysis of data at sufficient scale and with
adequate dimensional richness. The optimal scale and dimen-
sionality will vary unknowably with any specific problem, but
since both are likely to be very large, practical feasibility shall
generally be the limit (Ghahramani, 2015).

The manner of model generation constrains subsequent model
estimation. If the former requires high dimensionality so will
the latter. We cannot assume the underlying causal field to be
sparse, or that its components will be linearly separable. In
attempting to compress the dimensionality of models—explic-
itly through the use of a feature selection step, or implicitly
through the use of sparsity-promoting inferential methods—
we need to watch the impact on individual predictive power,
assessed over a sufficiently diverse sample. Where a smooth
decrement in prediction performance is seen with feature reduc-
tion, the underlying system is likely to be polymorphous, and
aggressive feature selection is likely to be counter-productive.
Equally, we cannot reliably rank input features taken in
isolation on their marginal contribution to predictability, for
this necessarily ignores their interactions (Draminski er al.,
2008).

In short, models need to be complex enough to be tractable only
with the highest capacity inferential architectures, such as the
neurally inspired forms that have so rapidly grown to dominate
the field of machine learning, notably in vision research. As in
that case, this conclusion reveals two crucial problems, namely
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sensitivity to data scale and interpretability, both widely dis-
cussed in the literature (e.g. (Bzdok & Yeo, 2017)). Rather than
rehearse the familiar difficulties they present, here we draw
attention to a few unexpected possibilities they reveal.

The blessing of dimensionality

We have seen that complex, polymorphous systems require
irreducibly many variables to achieve individually meaning-
ful predictions. The resultant expansion of the parameter space
under-determines models in proportion to the small scale of
commonly available data. This familiar curse of dimensionality
(Vapnik, 1998) makes good solutions hard to find and even harder
to generalize, for the risk of purely accidental fits increases
with the number of parameters.

But we should recognise that dimensionality also carries a
blessing. Consider the parameterisations of contrasting dimen-
sionality shown in Figure 1. Such individualisation as our
low-dimensional parameterisation may achieve—here the inter-
ocular distance—will be strongly dependent on the precision of
measurement, for everyone is differentiated along a single dimen-
sion. In contrast, with a high-dimensional parameterisation—such
as a crudely pixelated rendition of the image—the precision of
each individual variable is much less important, for the sig-
nal is conveyed in the covariance across variables. Crucially,
since the structure of the underlying high-dimensional pattern is
unlikely to resemble instrumental or other sources of noise, we
can achieve greater individualisation with lower quality data.
This is intuitively obvious in our ability to recognize faces from
noisy, low-resolution images, robust not only to affine trans-
forms of the data such as contrast, zoom, and skew, but also to
fairly complex non-linear distortions.

The conventional resistance to using routinely acquired data
on the grounds of noise and heterogeneity is only justified
where the analysis is low dimensional. When measuring (say)
total grey matter volume, it matters that one scanner will gener-
ate consistently greater estimates compared with another. But
when extracting the high-dimensional variation of grey matter
concentration across the brain, such effects will drop out as
irrelevant affine shifts that leave the complex, individuating
covariance patterns intact.

Perhaps the most important objection to high-dimensional
modelling—the scale of the data required—is thus address-
able through collections for another purpose, obtained outside a
research environment. In the domain of structural brain imaging,
the obvious source is clinical imaging (Frackowiak & Markram,
2015). Since brain imaging is carried out to resolve diagnos-
tic uncertainty towards normality almost as often as away from
it, such data need not be restricted to the realm of pathology.
Similarly, though smartphones may fall short of the precision
of dedicated psychophysical devices, their ubiquity and
critical mediating role in life enable the collection of rich,
high-dimensional data on a vast scale (Teki e al., 2016).

Of course, the correct balance between data size and data qual-
ity is an empirical question, to be settled case-by-case. But we
cannot assume the former must be gated by the latter, and
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discount a high-dimensional approach simply because a conven-
tional psychophysical laboratory cannot scale to thousands of
participants. Rather, we must reconsider what we actually need to
know, and what human activity may collaterally disclose it.

Living with opacity

What use are high-dimensional models if they are too
complex to understand? Where outcomes are highly variable,
as is the norm in cognitive neurology, prediction is clinically
invaluable, not simply because patients are consoled by accurate
prognosis but because interventions need to be guided by their
individually predicted responses. If a “black box” predic-
tor is the best guide to a correct choice of treatment actuarially,
it would be difficult to justify not following it merely because its
operations cannot be paraphrased in intelligible prose.

Moreover, clinical interventions are already primarily driven
by “black boxes” - the contents of our heads are a good exam-
ple. To give a reason for acting is not to specify a cause or
to imply an underlying causal model, it is kin with point-
ing to a latent variable. It is only rarely, where very simple
biological systems are concerned, never in the brain, that we have
a perspicuous, mechanistic explanatory model available. That
a human expert can cite a reason for his actions does not
make his decision-making less opaque than that of a synthetic
counterpart.

If a system requires a complex model to describe it, then it is
complex. Translational science needs to adjust to this emo-
tionally, not hopelessly attempt to change it intellectually. A
causal field so intricate it can only be specified as an artificial
neural network with a million parameters is explanatory, even if
its incomprehensibility makes us hesitate to use a word stronger
than predictive. We can no more hope to understand the brain
shackled to simple, linear models, than a literary critic could
hope to understand Shakespeare applying the basic rules of
grammar alone.
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Concluding remarks

Until a decade ago, the foregoing analysis would have been
unbearably nihilistic, for we had neither the data nor the
computational tools to realise the alternative it urges. The ground
is still new and uncertain, yet to be proven capable of support-
ing the structure we argue it is imperative we begin to erect on
it. But if we wish to move beyond discussions of tractability or
feasibility into translatable action, we must confront the single
most striking fact about the brain - its immense complexity.

The difficulties are all the greater for being distributed across
many intellectual, technological, even political domains, reach-
ing deep into the foundations of the very notion of biological
understanding. A cognitive neuroscience recast in the form we
propose will have more in common with meteorology than horol-
ogy. If so, then it will be because the fundamental nature of the
brain has compelled it, for what we urge here above all is
to let the data, not our own brains, speak first. And if effec-
tive prediction supplants defective understanding as a result,
those outside the field, whose lives cognitive neuroscience
and cognitive neurology seek ultimately to serve, will appreciate
the exchange.
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In “Lost in Translation”, Nachev et al. provide a bold and thought-provoking piece on the past and future of
cognitive neuroscience. Their thesis is that the classic inferential tools of neuropsychology, which also
formed some of the foundational building blocks of cognitive neuroscience, are inadequate to model and
understand the complexity of the brain. New paradigms are needed, and Nachev et al. offer a fresh,
theoretical argument for why we should embrace new concepts of distributed causality, nonlinearity, and
models that move beyond averaging over individuals to better capture inter-individual variation. The
implication is that only by embracing such models can cognitive neuroscience, and perhaps
neuroimaging in particular, develop models that are accurate enough to predict individual performance
and clinical status - in short, to be translationally useful.

Nachev et al.’s position has much to recommend it. One anchor point in their argument is that the brain
processes that drive (cause) feeling and behavior are distributed across neurons and/or brain
systems—and, if this is the case, then models and measures with coarse, distributed features (even if
noisy) will outperform those with only a few, high-precision features. | resonate with this point. There is
substantial evidence that the neural representations underlying multiple forms of cognition, emotion, and
action are population codes distributed across large numbers of neurons and (in the case of fMRI) brain
regions and systems (e.g., for review, see Kragel et al. 20187). In fMRI studies, distributed predictive
models that include activity across regions and systems can dramatically outperform those based on
even the best single brain regions (for recent reviews see, e.g., Arbabshirani et al. 20172; Bzdok &

Meyer-Lindenberg 2017°; Woo et al. 20174; Kragel et al. 2018, Figure 3 and text).

Units of analysis

The essential question when it comes to brain systems is “What are the units of analysis”™? The authors
imply that translational failures come from a localisationist approach, and provide a thought-provoking
theoretical argument for why the brain - at least with respect to cognition, feeling, and behavior - ought to
be treated as a system with broadly distributed causality. | agree in part. Lesioning isolated nodes in a
neural network typically does not catastrophically, or selectively, impair performance largely because the
single node (or neuron) is not the relevant unit of analysis. But if one were to lesion a layer, particularly a
layer dedicated to a particular function as in the structured, brain-inspired networks of O’Reilly et al. (Aisa
et al. 2008°; O’Reilly et al. 2017%), the effects on network behavior would be profound. Recent advances
in opto- and chemogenetics allow for the targeting and activation/inactivation of distributed sets of
neurons that collectively represent particular cognitions and actions (e.g., Ramirez et al. 20137), with
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strong effects on behavior. Likewise, when studying ecosystems, the loss of individual organisms
selected at random has little effect on the behavior of the system as a whole; but loss of a species can
have a profound effect. The species, but not the individual, can be characterized as having necessary and
sufficient roles in the system’s behavior. Likewise, individual neurons are likely not necessary or sufficient
for anything, but neural populations are.

A related point is Nachev et al.’s critique of averaging over individuals, which also hinges on the issue of
which units of analysis are averaged over. Nachev et al.’s “watch” example is an interesting case study.
They show that averaging over visual images of watch mechanisms does not elucidate the nature of
watches or produce anything like any of the individual watches. But the problem is not averaging per se -
it is knowing what to average over. Pixels in an image of the watch mechanisms are simply not the right
unit of analysis, so averaging over them is meaningless. However, the average watch has 2 gear wheels,
2 hands, and one battery; averaging over or otherwise characterizing the distributions over these
properties makes sense.

Perhaps we will discover that brain voxels are not the right features to average over, either (and | suspect
that they are not!). Cognitive neuroscience converges with machine learning in that a big part of the
endeavor is, and has always been, discovering the units (or features) and level of analysis that confer
maximal ability to understand the mind and predict future behavior.

Monomorphous and polymorphous

Another interesting contrast that Nachev et al. make is the distinction between monomorphous
populations, whose individuals are identical, and polymorphous populations, whose individuals vary.
Their central argument is that because human brains are polymorphous, we should not characterize them
using averages across individuals; rather, we should focus on more individualized models.

Clearly, humans are a polymorphous bunch. But does this mean that population-level studies that
characterize averages - or, alternatively, develop multivariate predictive models of behavior across
individuals - are useless? Really, the brain is both monomorphous and polymorphous, at different levels
of analysis. ldentifying patterns of commonality does not mean that all variation is noise. If | were trying to
describe to a space-faring alien what a car looks like, | would not assume that all cars are identical and
the difference between a Tesla and a Toyota is “noise”. But neither would | assume that every car is
completely different, which would preclude any sort of common description at all. The brain is similar in
this respect. Virtually all of us have an occipital lobe, which contains a primary visual cortex. We have a
primary motor cortex, a hippocampus, an inferior frontal junction, each of which plays consistent roles in
behavior across individuals. In my lab’s work, we find that systems that track and predict the intensity of
evoked pain experience are very similar across individuals - for example, the same brain pattern responds
to painful events to some degree in 95% of participants (the 5% might well be largely noise; see
Zunhammer et al., N = 603). But this does not mean that individual differences are unimportant! Rather,
these baseline commonalities are a launching point for understanding the ‘variations on a theme’ that
make individuals different from one another.

Lost and found

A final reflection: It is true that cognitive neuroscience has not developed many translational applications
that are used clinically or commercially (e.g., Woo et al. 2017). But this does not necessarily imply that
cognitive neuroscience has failed so far. We should remember that the goal of cognitive neuroscience
has been to understand the physiological representation of thought and behavior - one of the thorniest
challenges in all of science, and a basic (not clinical) goal at that. Like many forms of basic science, the
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hope is that by better understanding how the mind works, without tying it immediately to any commercial
venture or practical application, will yield new ways of thinking about the brain and mind, which in turn will
inspire future applications that were previously unimagined. In my own lab’s work on pain and emotion, |
have learned that the gaps between science and commercial application are not just about limitations in
the science. Even if current cognitive neuroscience-based models could reliably diagnose mental and
brain health conditions in individual people with perfect sensitivity and specificity, there would be gaps
related to business development, marketing, public understanding and policy, economic cost/benefit
ratios, equal access, insurance reimbursements, and more. | believe that in the past 2-3 years, cognitive
and clinical neuroscience has succeeded in developing models of brain function that could be useful for
characterizing dementia, depression, pain, autism, and more. Their clinical and commercial success will
depend largely on what society wants to do with the science.

This does not, of course, take away from the point that translation is a worthy and useful goal, both from a
humanitarian (e.g., Gabrieli et al. 2015°) and scientific perspective. Not only can it advance clinical
applications, translation also provides a concrete, objective yardstick against which to evaluate our
understanding of the brain. Clearly, we have a great distance to go; the good news is that we're moving
forward.
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In their excellent and timely contribution Nachev, Rees and Frackowiak tackle current limitation in the
models used to understand the brain functioning and the translation of this knowledge to the clinical
practice. The text is engaging, and the message is clear. The authors did not limit their focus on the
current problems but also provide clear new solutions and recommendations for future generations.

May | suggest the part on Dimensionality and individualisation to be linked up to a recent editorial entitled
'is a *single* brain model sufficient' (Thiebaut de Schotten and Shallice Cortex 2017). | think this is
appropriate but | leave it as optional for the authors.

Again, thank you for this elegant contribution soon to become a classic in the field.
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