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Abstract: Bioluminescence imaging (BLI) is a non-contact, optical imaging technique based 
on measurement of emitted light due to an internal source, which is then often directly related 
to cellular activity. It is widely used in pre-clinical small animal imaging studies to assess the 
progression of diseases such as cancer, aiding in the development of new treatments and 
therapies. For many applications, the quantitative assessment of accurate cellular activity and 
spatial distribution is desirable as it would enable direct monitoring for prognostic evaluation. 
This requires quantitative spatially-resolved measurements of bioluminescence source 
strength inside the animal to be obtained from BLI images. This is the goal of 
bioluminescence tomography (BLT) in which a model of light propagation through tissue is 
combined with an optimization algorithm to reconstruct a map of the underlying source 
distribution. As most models consider only the propagation of light from internal sources to 
the animal skin surface, an additional challenge is accounting for the light propagation from 
the skin to the optical detector (e.g. camera). Existing approaches typically use a model of the 
imaging system optics (e.g. ray-tracing, analytical optical models) or approximate corrections 
derived from calibration measurements. However, these approaches are typically 
computationally intensive or of limited accuracy. In this work, a new approach is presented in 
which, rather than directly using BLI images acquired at several wavelengths, the spectral 
derivative of that data (difference of BLI images at adjacent wavelengths) is used in BLT. As 
light at similar wavelengths encounters a near-identical system response (path through the 
optics etc.) this eliminates the need for additional corrections or system models. This 
approach is applied to BLT with simulated and experimental phantom data and shown that the 
error in reconstructed source intensity is reduced from 49% to 4%. Qualitatively, the accuracy 
of source localization is improved in both simulated and experimental data, as compared to 
reconstruction using the standard approach. The outlined algorithm can widely be adapted to 
all commercial systems without any further technological modifications. 
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1. Introduction 

Bioluminescence Imaging (BLI) is a highly sensitive and non-invasive pre-clinical imaging 
technique based on the detection of visible and near-infrared light produced by, for example, 
luciferase-catalyzed reactions (bioluminescence) [1]. This method allows for the non-invasive 
detection and visualization in 2D of functional activity within intact living animals and is 
becoming widespread due to the prognostic insights it can provide into established model of 
disease. However, the quality and quantitative accuracy of the information that BLI can 
provide is tempered by the limitations of the 2D planar information obtained. 

BLI allows non-invasive imaging of whole organisms, whereby bioluminescent emissions 
at a given wavelength (typically 500 – 650 nm) are recorded and maps of ‘molecular beacons’ 
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are used to infer cellular activity and spatial distribution [2]. It offers near real-time 
monitoring of spatial and temporal progression of molecular processes in the same animal, as 
opposed to euthanizing a cohort of animals. One major advantage of such a technique is the 
possibility of acquiring a whole-body image within one exposure cycle (typically in order of 
minutes), which can significantly shorten the subject study time. However, accurate 
quantification of the spatial location and intensity of the light (which is then often used to 
infer the cellular activity) cannot be established due to several factors, including the often 
limited number of wavelengths measured and inaccurate mapping of the measured signal on 
the 2D detector (often a CCD) onto the 3D surface of the animal (free-space light propagation 
mapping) as well as the unknown underlying and spectrally varying tissue optical properties 
[3]. These are the primary reasons that almost all commercially available systems only use 
‘topographic’ (2D surface) single wavelength pseudo-mapping of bioluminescence (that is an 
acquired image of the bioluminescence signal superimposed onto a textured image of the 
animal). 

To allow a more quantitative analysis from BLI, methods that allow the recovery of 
spatially resolved tomographic maps of bioluminescence source location and intensity have 
been proposed to allow Bioluminescence Tomography (BLT) [4–8]. The basic idea is to 
employ a ‘forward’ model of light propagation through tissue to the skin surface in 
conjunction with an optimization algorithm to reconstruct the underlying bioluminescence 
source distribution. For single-wavelength data, this inverse problem is highly non-unique [9], 
i.e. identical measurements are produced by many different light source distributions. 
However, as bioluminescent sources have broadband emission spectra (e.g. 500-650 nm for 
firefly Luciferase/luciferin), spectrally-resolved detection schemes (e.g. bandpass filters) can 
be used to measure the emission due to the bioluminescence activity at the surface of the 
tissue at several wavelengths in order to reduce the non-uniqueness. 

To date, all reported BLT reconstruction algorithms have either used a priori information 
to constrain the solution and keep the computation time low [8], or analytical solutions which 
limit the problem to a homogenous tissue volume with regular shapes [6]. To achieve 
quantitatively accurate recovery of sources in a complex and heterogeneous model, there is a 
need to derive and construct a robust method that can accurately model light propagation in 
heterogeneous and complex tissue, using for example, the Finite Element Method (FEM) of 
light propagation in tissue [10]. 3D modeling and reconstruction algorithm as applied to 
multi-wavelength 3D BLT image reconstruction have widely been developed and to improve 
the image recovery accuracy and computation time, we have previously reported the 
reciprocity approach [5], which is similar to that used in Diffuse Optical Tomography (DOT) 
and Fluorescence DOT [11]. Furthermore, it has also been demonstrated that through 
accounting and modeling for the system characteristics such as filter bandwidth the accuracy 
of the recovered bioluminescence distribution can be improved [12]. 

In all cases for tomographic reconstruction of bioluminescence source distribution, the 
data used for the parameter recovery has been based on ‘intensity’ of the measured 
bioluminescence, rather than the more conventionally used ‘logarithm of intensity’ as in 
DOT, where the ‘logarithm of intensity’ is utilized to overcome the large dynamic range of 
the measured data and to improve sensitivity of the problem [13]. However, when considering 
Fluorescence Tomography, it has been demonstrated that the use of ‘normalized born-ratio’ 
where the emission data is normalized by the excitation data to account for the unknown 
tissue attenuation has shown to be more robust for parameter recovery [14, 15]. To date 
however, the utilization of neither the ‘logarithm of intensity’, nor the ratio-metric data has 
been investigated in BLT. 

The underlying optical properties of the animals being imaged are determined by the 
concentrations of different tissue chromophores such as oxy and deoxy hemoglobin, water 
and fat, as well as the scattering properties of tissue. Therefore, a change in the underlying 
‘spectrally’ varying optical properties will lead to a change in attenuation of the tissue, 
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resulting in a different surface fluence arising from an internal bioluminescent source, which 
can be overcome through use of a dual-modality DOT and BLT [16]. Additionally, given that 
all bioluminescence imaging systems are based on a non-contact configuration, it has been 
demonstrated that a change in position of the animal can result in a different measured signal, 
which can however be accounted for by modelling the propagation of light from the surface 
of the animal to the CCD using a free-space model [17]. This free-space model accounts for 
the propagation of light from the surface of the imaging subject to the CCD calculating a 
mapping matrix which describes the contribution of each point on the surface of the imaging 
subject to each pixel in the CCD. Inverting this relationship enables CCD data to be mapped 
back on to the surface of the imaging subject, determining true surface fluence values which 
are independent of the position of the imaging subject. However, this requires an accurate 
knowledge about the 3D surface topology of the domain being imaged, which may not always 
be available and therefore an image reconstruction which is independent of the domain 
geometry and positioning would be advantageous. 

In this work, we present the importance of the domain geometry and animal position on 
the measured bioluminescence fluence and demonstrate that unless accounted for, it will lead 
to erroneous parameter recovery. A new image reconstruction algorithm is outlined and 
validated which is based on the spectral derivative of the measured spectral data. Through 
both simulations and phantom data measurements, the benefits of using ‘logarithm of 
intensity’ for image reconstruction which allows for spectral derivate data to be utilized in 
BLT is highlighted which is shown to overcome this so called ‘free-space’ light propagation 
error. 

2. Methods and results 

2.1 Intensity variation due to surface geometry 

An experiment was undertaken to demonstrate the impact of the imaging system and animal 
position on BLI measurements in a commonly utilized commercial scanner. Images were 
acquired using an IVIS Spectrum (Perkin Elmer) with an “open” filter using a 4 pixel binning 
(providing images of 256 by 256 resolution). The imaged object was a cylindrical phantom 
(Biomimic, INO, Quebec, Canada) of dimensions Ø25 x 50mm (~mouse-sized). The phantom 
is made of a solid plastic with homogeneous spectrally-varying optical absorption and 
scattering properties that have been characterized within the range of 500 to 850nm in terms 
of the absorption coefficient, μa = [0.007 – 0.12]mm−1, and the reduced scattering coefficient, 
μs’ = [1.63 – 1.79]mm−1 [18]. Within the phantom body there are two tunnels with a diameter 
of 6mm at depths of 5mm and 15mm in which rods (cylindrical inclusions) can be inserted to 
match the background, effectively creating a solid homogeneous cylinder. In this study, 
bioluminescence is achieved by placing a light source half way along a tunnel enclosed 
between two rods of background matching material. 

To mimic in vivo bioluminescence experiments, a small self-sustained tritium-based light 
source (Trigalight Orange III; MB-Microtec, Niederwangen, Switzerland) was used as an 
artificial bioluminescence source which is 0.9 × 2.5mm in size. The emission spectrum of the 
tritium-based light source is a Gaussian-like curve with a central peak at 606nm and a full-
width-half-maximum of approximately 100nm, meaning that it is similar to the spectral 
output of a bioluminescent reporter. The light source was placed at a depth of 5 mm inside the 
cylinder phantom which was then rotated from 0 – 330 degrees in steps of 30 degrees in 
order, such that the effective target source location was kept at a constant depth by varying 
angles with respect to the imaging camera, Fig. 1. 
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camera. To demonstrate this, the same maximum photon count shown in Fig. 2(a) is also 
plotted as function of this cosine angle and shown in Fig. 2(b). This demonstrates that there is 
a linear dependency which must be accounted for to ensure quantitative analysis. It should 
also be highlighted that for angular rotations between 90 and 270 degrees, as the surface 
normal at the point of maximum intensity is not visible to the camera, there will also exist 
variations in intensity due to optical attenuation of the signal, which accounts for the larger 
deviations from the expected linear relationship shown in Fig. 2(b) for these angles. In a 
system, where views from wider angles are possible, due to for example use of mirrors, we 
have demonstrated that this variation in intensity does follow a Lambertian nature [17]. 

2.2 Image reconstruction: the conventional approach 

Given the underlying spectrally varying optical properties of the object being imaged, the aim 
of the image reconstruction is the recovery of the unknown bioluminescence source at each 
point within the volume using measurements of bioluminescence light from the tissue surface. 
This can be represented as a set of linear equations of the form: 

 A x bλ λ=  (1) 

where A is a sensitivity matrix for a given wavelength λ calculated using the Adjoint model, 
which relates changes in the measured boundary data b (at the surface) at the same 
wavelength with respect to the spatially varying bioluminescence distribution x. As the 
imaging problem is known to be non-unique, it has been shown that using measurements at 
multiple wavelengths can help overcome this issue due to the unique spectrally varying 
attenuation of biological tissue. Therefore, typically b is the measured intensity at a number of 
wavelengths, spanning the emission spectrum of the bioluminescence source (typically 
between 550 – 650 nm) and therefore A is also calculated for the same wavelengths. 
Assuming a total of 4 wavelengths Eq. (1) becomes: 

 

1 1
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3 3
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 (2) 

which then can be solved for x. In this work a compressive sensing conjugate gradient 
(CSCG) based method is utilized, which assumes a sparse source distribution, as is typically 
the case when studying the growth and kinetics of localized cancerous tumors, which has 
been shown to reduce the inherent ill-posed nature of BLT reconstructions [19]. 

Consider the case where there exists an angular dependent offset for each measurement b, 
as demonstrated in in Fig. 2. Equation (2) then becomes: 

 A x b nλ λ=  (3) 

where n is a measurement point specific angular dependent offset, which is assumed to be 
spectrally invariant. This assumption is valid, as the path of light at these wavelengths is only 
dependent on the external geometry of the medium as well as the intrinsic properties of the 
lens and location of the imaging camera. It is therefore apparent that assuming the offset n 
can be defined by the relationship shown in Fig. 2(b), then the recovered maps of the spatial 
distribution of the bioluminescence source will be heavily corrupted through the inversion 
step of the image reconstruction. 
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2.3 Image reconstruction: the spectral derivative approach 

The use of the spectral derivative of the measured data has been previously shown to 
overcome the effects of unknown source and detector noise (coupling coefficients), as applied 
in Near Infrared Spectroscopy (NIRS) [20]. Due to the typically large dynamic range of NIRS 
data, the logarithm of the measured intensity is used which then allows the cancellation of 
these unknown and yet spectrally constant coupling coefficients. In the case of BLT, Eq. (3) 
needs to be modified such that the right-hand side of the equation is dependent on the 
logarithm of the measured intensity. Given that: 

 
log

log
b

b b
b

=  (4) 

then both sides of Eq. (3) can be multiplied by 
log( )b n

b n
λ

λ
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λ
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The spectral derivative method relies on the fact that rather than using data at each given 
wavelength, as defined in Eq. (2), the difference of data between each nearest wavelength is 
instead utilized. By this definition, for two neighboring wavelengths λi and λi + 1: 
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and subtracting Eq. (7) from Eq. (6): 
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where any offset in the right-hand side of the equation, due to geometrical shape of the object 
being imaged or camera properties (intrinsic and extrinsic) that are spectrally independent and 
constant, are cancelled from the right-hand side of the equation. Although the sensitivity 
matrix A is normalized by the data containing n, this is not consequential as the normalized 
measurement (right-hand-side of Eq. (8)) no longer depends on this unknown parameter n. It 
is also worth highlighting that this normalization of the A matrix, whereby the relationship is 
transformed to its logarithm is also known and shown to be less ill-posed than its original 
intensity one [13]. 

2.4 Numerical simulations 

To demonstrate the effects of the uncalibrated errors due to geometrical shape of the object 
being imaged or camera properties on the image reconstruction using the conventional 
method (Eq. (2)) and the advantage of using the spectral derivative method based on 
‘logarithm of intensity’ data (Eq. (8)), 2D simulations are performed. All simulations are 
performed in NIRFAST which is an open-source Finite Element model-based image 
reconstruction for diffuse optics and molecular imaging (www.nirfast.org). 

A circular mesh, having a radius of 12.5 mm is used having 2030 nodes corresponding to 
3901 linear triangular elements. The model is a spectral model, consisting of a concentration 
of oxy-hemoglobin and deoxy-hemoglobin of 0.01 mM each, water content of 40% with 
scattering power and density of 1. A bioluminescence source having an arbitrary strength of 
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Table 1. The total expected and recovered bioluminescence intensity (AU) using different 
reconstruction algorithms 

 Actual Conventional Spectral derivative 

0% white noise 750 1062 779 
1% white noise 750 1039 759 
2% white noise 750 1095 761 

2.5 Experimental validation 

To demonstrate the application of the proposed spectral derivative method on experimental 
data, a mouse phantom (XFM-2, Perkin Elmer Inc., Waltham, MA, USA) embedded with a 
self-illuminated rectangular source of dimensions 9.8 mm x 2.8 mm x 2 mm (Trigalight, Mb-
Microtec, Niederwangen, Switzerland) was imaged in the BLT system designed for small 
animal radiation research platform (SARRP) [21]. Multi-spectral and multi-projection 
bioluminescent images were acquired using filters and a rotating 3-mirror system in the 
optical system. The mirror can rotate 180 degrees around imaged object, from −90 to + 90 
degrees, and reflect the bioluminescence signal to charge-coupled device (CCD) camera 
(iKon-L 936; Andor Technology, Belfast, UK). BLIs were acquired with 20 nm wide 
bandpass filters (Chroma Technology Corp, Bellows Falls, VT, USA) at 590, 610, 630 and 
650 nm at 3 projections (−90, 0 and + 90 degrees). BLIs were acquired first at 4 pixel binning 
(~0.4 mm physical size at imaging plane) and exposure time of 1 second. After optical 
imaging, the phantom along with mouse bed was transferred to the small-animal radiation 
research platform (SARRP) for cone beam CT (CBCT) imaging. The phantom CBCT was 
then used to generate the tetrahedral mesh for BLT reconstruction. Since the SARRP acquired 
CBCT image defines the coordinate used for BLT reconstruction, multi-projection and multi-
spectral 2D BLIs need to be mapped to the animal surface of CBCT image. This was 
achieved using a geometry calibration method to map the 2D optical images acquired at 
multiple viewing planes onto the animal surface of the 3D CBCT image based on pinhole 
camera model [21]. This method includes two steps, mapping the CBCT coordinate to the 3D 
optical coordinate and then projecting the 3D optical coordinate to the 2D optical imaging 
plane. Once the 3D CBCT and 2D optical coordinates are registered, for a given projection, 
one can map the surface optical image to the animal surface of the 3D CBCT image. As the 
data mapping process requires the knowledge of the system geometrical parameters, image 
markers were placed on the mouse bed for geometrical calibration from which the marker 
positions can be located in both CBCT and 2D optical images. An optimization routine was 
then used to retrieve the geometrical parameters by minimizing the difference between the 
measured and calculated marker positions in the 2D optical coordinate. The average mapping 
accuracy is within 0.3 mm per marker point. This geometry calibration was performed for 
every run of the BLT reconstruction to ensure high accuracy of surface data mapping. At the 
overlapped region between the two mapped projections, for a given surface node, the 
maximal value between the two projections was chosen as the detector value and data larger 
than 10% of the maximum value among all the surface data were used for BLT 
reconstruction. 

The mouse phantom, surface image of the mapped boundary data, and images 
reconstructed using both the conventional raw data and spectral derivative method are shown 
in Fig. 4. The reconstructed image using the ‘raw’ data has recovered a single high intensity 
source at approximately the correct coronal slice, but it is absent in the transverse slice, 
whereas with the spectral derivative data, its location has been recovered accurately, as 
observed in both views. The mesh used for image reconstruction consisted of 31611 nodes, 
corresponding to 175518 linear tetrahedral elements. 
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demonstrated that the utilization of raw data which is not calibrated to account for these 
variations, using conventional algorithms fails to provide an accurate map of the internal 
bioluminescence source distribution. To overcome this, it is possible to employ a free-space 
model as outlined previously [17], but this can often be time consuming and complex due to 
the need to accurately model paths of photons from each surface of the animal onto the 
measurement device pixel and to accurately calculate the inverse of its associated transfer 
function [17, 24]. Therefore, there is a need to develop image reconstruction algorithms that 
are independent of such errors in data to further improve accuracy of recovered 
bioluminescence source recovery without the need of complex and intensive computation. 

The use of derivative data in diffuse optical imaging and spectroscopy is commonplace, 
where the derivative data can be either in spectral [20, 25] or temporal [26, 27] and these are 
used to account for unknown factors within the measured data. In all cases of diffuse optical 
imaging and spectroscopy, the data utilized for parameter recovery has been transformed 
from ‘raw intensity’ data to ‘logarithm of intensity’ to account for the large dynamic range of 
measurements, whereas image reconstruction in BLT has always used ‘raw intensity’ data. In 
order to implement a spectral derivative algorithm for BLT, a data transformation is presented 
in Eq. (4), which when utilized across neighboring wavelengths allows for the cancellation of 
the angular dependent variations discussed above, Eq. (8). The proposed algorithm is tested 
using both the simplified 2D model, Fig. 3, as well as experimental data from a phantom, Fig. 
4. In both cases, it is demonstrated that the utilization of spectral derivative data significantly 
improves the accuracy of calculated spatial map of the internal bioluminescence source 
distribution. The data with simulated models has shown to be robust to errors due to the 
angular dependent measurement errors, reducing the quantitative error for the reconstructed 
source intensity from 49% to 4%. Using experimental data, although the true value of the 
intensity is not known, qualitatively the improved accuracy of the reconstructed source is 
apparent in Fig. 4. 

The proposed algorithm in this work does not require additional data collection and does 
not rely on any modification to most non-contact optical imaging systems. The normalization 
of the measured data with respect to its logarithm are shown to be simple and do not require 
intensive computation. This should be valid for any combination of wavelengths as long as 
the assumption that the light-path between the domain being imaged and the detection camera 
is correctly assumed to be constant. It is shown here that such modification to measured data 
to allow the utilization of spectral derivative measurements are beneficial and although 
known for their application to diffuse optical and Fluorescence tomography, have not been 
reported or considered for Bioluminescence imaging. 

4. Conclusions 

This work highlights the importance of accounting for both the imaging domain’s shape and 
relative position with respect to the measurement device in non-contact Bioluminescence 
Imaging and Tomography. It is shown that the measured intensity from a non-contact system, 
due to an internal light source can vary by as much as 41% due to rotational variation of 60 
degrees. A new 3D image reconstruction algorithm is presented, whereby instead of utilizing 
raw spectral intensity data, the spectral derivative of the logarithm of data is incorporated to 
account for errors in data which are spectrally independent. The basis of the algorithm has 
been presented together with data from a mouse shaped phantom study to demonstrate its 
accuracy and effectiveness. This proposed algorithm is easily adaptable to all commercial 
systems and does not require any additional hardware calibration, design or implementation. 
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