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1. Introduction

Intra-channel and inter-channel fiber nonlinearities aremajor impairments in coherent transmission
systems that limit the achievable transmission distance [1]. Consequently, digital signal processing
techniques for compensating or mitigating the effects of fiber nonlinearities and for exploiting fiber
nonlinearities have been investigated. Key distinguishing features of these techniques are their
complexities and their capabilities to deal with intra-channel and/or inter-channel nonlinearities.
An important challenge is to achieve useful improvements in system performance with acceptable
levels of computational and implementation complexity.
In broad terms, the techniques for reducing the impact of fiber nonlinearities on system
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performance include those that compensate the nonlinearity-induced signal distortion and those
that mitigate the distortion by making the signal propagation more tolerant to fiber nonlinearities.
They include perturbation solutions to the coupled nonlinear Schrödinger equation (CNLSE),
single-channel and multi-channel digital backpropagation, Volterra series nonlinear equalizers,
pulse shaping, and advancedmodulation formats. Furthermore, a fundamentally different approach
exploits fiber nonlinearity by encoding information in the nonlinear Fourier spectrum, thereby
raising the prospect of replacing conventional dense wavelength division multiplexing with
nonlinear frequency division multiplexing. In this paper, digital signal processing techniques for
contending with fiber nonlinearities are reviewed with specific examples illustrating the diversity
of techniques that have been explored.

2. Perturbation based pre-compensation

The perturbation-based pre-compensation technique is based on approximate time-domain
solutions to the CNLSE that express the impact of fiber nonlinearities on a propagating signal
as a first-order perturbation term [1, 2]. This approach has been shown to be effective for
both pre-compensation [3, 4] and post-compensation [5, 6] of intra-channel fiber nonlinearities.
Assuming that the transmitted optical pulses have a Gaussian shape, analytical expressions in
terms of the exponential integral function exist for the perturbation expansion coefficients [1, 4].
Extensions of the original approach include an additive-multiplicativemodel [7], a power weighted
model [8–10], and its application to Nyquist pulse shapes [11,12] and to multi-subcarrier signals,
which also serve to mitigate the performance implications of fiber nonlinearities [13, 14].

The perturbation-based technique can be used to pre-compensate accumulated intra-channel
fiber nonlinearities with only one computation step for the entire link and can be implemented using
one sample per symbol [1, 4]. However, calculation of the nonlinear perturbation involves single
and double summations that are functions of the transmitted symbol sequence and perturbation
expansion coefficients

{
Cm,n

}
where m and n denote symbol indices relative to the current

symbol. Advances aimed at reducing the computational and implementation complexity of this
pre-compensation technique include aggressive quantization of the expansion coefficients [15],
and the use of symmetric electronic dispersion compensation (SEDC) and root-raised-cosine
(RRC) pulse shaping [16]. The quantization of the expansion coefficients has also been considered
in the context of simultaneous optimization of the intervals and levels using a minimum mean
square error criterion [17] and a decision directed least mean square algorithm [18]. With SEDC,
two simplifications result: 1) all the real parts of the coefficients Re

[
Cm,n

]
are zero and 2) all

the imaginary parts of the coefficients Im
[
Cm,n

]
are calculated based on half of the link length

L/2. This reduces the dispersion induced pulse spreading and hence the required number of
terms in the truncated summations. A RRC pulse shape also reduces the dispersion induced pulse
spreading and thus the number of terms in the truncated summations.

The perturbation-based pre-compensation of a signal includes intra-channel self-phase modu-
lation (iSPM), intra-channel cross phase modulation (iXPM) and intra-channel four-wave-mixing
(iFWM). With SEDC, the optical field for the current symbol (at time 0) of the x-polarization
signal after nonlinear pre-compensation is:

Aout
0,x =

(
Ain

0,x − AIFWM
0,x

)
· exp

(
−∆ψ0,x

)
'

(
Ain

0,x − AIFWM
0,x

)
·
(
1 − ∆ψ0,x

)
, (1)

where
∆ψ0,x = ψ0,x − E

{
ψ0,x

}
, (2)

ψ0,x = 2P

[
C0,0 (L/2)

(��A0,x
��2 + ��A0,y

��2) +∑
m,0

Cm,0 (L/2)
(
2
��Am,x

��2 + ��Am,y

��2)] , (3)
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AIFWM
0,x = 2 jP3/2

[ ∑
m,0, n,0

Im
[
Cm,n (L/2)

] (
An,x Am,x A∗m+n,x + An,y Am,x A∗m+n,y

)
+

∑
m,0

Im
[
Cm,0 (L/2)

] (
A0,y Am,x A∗m,y

)]
. (4)

The corresponding equations for the y-polarization signal are obtained by exchanging the
subscripts x and y in Eqs. (1) - (4). The nonlinear perturbation coefficients

{
Cm,n

}
depend on

the pulse shape, fiber properties, and fiber length L [1, 4, 16]. P is the transmitted optical power,
An,x/y is the sequence of complex transmitted symbols for the x- and y-polarization signals
with zero dispersion, E denotes expectation, and j =

√
−1. Equation (3) represents the phase

perturbation due to iSPM and iXPM while Eq. (4) represents the iFWM. It is important to note
that for a dual polarization signal there are cross-polarization contributions in Eqs. (3) and (4).
The perturbation for the x-polarization signal depends on the transmitted symbol sequences for
both the x- and y-polarization signals. The complexity of the algorithm is primarily determined
by the second terms in Eq. (3) for iXPM and Eq. (4) for iFWM (and the corresponding equations
for the y-polarization signal). The summations are truncated in practice based on the values of��Cm,n

�� being larger than a specified criterion.
The Cm,n coefficients are fixed for a given transmission spectrum and fiber length. For a RRC

pulse shape with a roll-off factor of 0.1 and matched filtering, the coefficients are calculated
numerically as an analytical solution is not known [1]

Cm,n(z) = jγk
[

1
Lspan

∫ Lspan

0
fpd(z′)dz′

] ∫ z

0
Im,n(z′)dz′, (5)

Im,n(z) =
∫

u∗0(z, t)u0(z, t − Tn)u0(z, t − Tm)u∗0(z, t − Tm+n)dt, (6)

where γ is the fiber nonlinear coefficient, 0 < k ≤ 1 is an optimization factor that may be used to
yield the best compensation [11,18], Lspan is the span length, fpd(z) is the power distribution
profile along the link, T is the symbol period, Tm = mT , u0(0, t) is the pulse shape with zero
accumulated dispersion (z = 0), and u0(z, t) is the dispersed pulse shape corresponding to a fiber
length z which is calculated according to

u0(z, t) = F−1
{
F (u0(0, t)) exp

(
− jβ2 (2π f )2 z/2

)}
. (7)

In Eq. (7), F denotes the Fourier transform, F−1 denotes the inverse Fourier transform, f is
frequency, and β2 is the first order group velocity dispersion coefficient [1].
For a fiber length of 3600 km, with the RRC pulse shape and SEDC,

��Im[Cm,n(L/2)]
�� is

plotted in Fig. 1. The bandwidth of a RRC pulse shape with a roll-off factor of 0.1 yields a small
dispersion induced pulse spreading and hence a reduction in the number of terms in truncated
approximations to Eqs. (3) and (4) compared to a Gaussian pulse or a RRC pulse with a larger
roll-off factor.
For a single 128 Gbit/s polarization-multiplexed (PM) 16QAM signal and transmission

over 3600 km of standard single mode fiber with EDFA amplification, the dependence of the
bit error ratio (BER) on launch power is shown in Fig. 2(a) for linear post-compensation for
dispersion (LC), symmetric linear pre- and post-compensation for dispersion (LC-SEDC), and
RRC-SEDC nonlinear pre-compensation. The roll-off factor for the RRC pulse shape was 0.1
and the number of terms in the truncated summations for the RRC-SEDC algorithm was based
on 20 log10

��Cm,n/C0,0
�� > −35 dB. The dependence of the BER at optimum launch power on

fiber length for the three algorithms is shown in Fig. 2(b). For a forward error correction (FEC)
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coding BER threshold of 0.02, transmission over 4200 km of fiber was achieved with RRC-SEDC
nonlinear pre-compensation, an increase of 900 km relative to LC and LC-SEDC.
The perturbation-based technique can be used to pre-compensate accumulated intra-channel

fiber nonlinearities based on one sample per symbol and one computation step for the entire
link. Advances that further reduce the computational and implementation complexity without
sacrificing performance would be beneficial. The potential improvements in system performance
offered by the technique need to be explored in the context of optical superchannels and flexible-
grid networks, including the possibility of extending the algorithm to account for inter-subchannel
nonlinearities.
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Fig. 2. (a) Dependence of the BER on the optical launch power for a single 128 Gbit/s
PM-16QAM signal and a fiber length of 3600 km. (b) Dependence of the BER at optimum
launch power on the fiber length. LC: linear post-compensation for dispersion; LC-SEDC:
symmetric linear pre- and post-compensation for dispersion; RRC-SEDC: symmetric
linear pre- and post-compensation for dispersion, root-raised-cosine pulse shaping, and
perturbation-based pre-compensation. Experimental results originally published in [16].
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3. Wideband digital backpropagation performance

Digital backpropagation (DBP) is arguably the most popular digital signal processing (DSP)
technique to compensate for nonlinear optical fiber transmission impairments [19–21]. The
effectiveness of the algorithm lies in its ability to fully undo deterministic signal-signal nonlinear
interference (NLI) effects.

Despite its theoretical beneficial effects, many factors can contribute to limit the performance
of this algorithm, such as: NLI arising from the interaction between the signal and amplified
spontaneous emission (ASE) noise [22], polarization-mode dispersion [23–25], DSP complexity
at the receiver [24,26], and limited nonlinearity compensation (NLC) bandwidth. In particular,
using analytical tools it has been shown that in fully-loaded wavelength division multiplexing
(WDM) systems, DBP gains are severely reduced when DBP is applied over NLC bandwidths
that are relatively small compared to the overall transmitted optical bandwidth [27]. If confirmed,
this would represent a major setback on the effectiveness of multi-channel DBP performance,
as further increasing the NLC bandwidth does not currently appear as a viable option. On the
other hand, very few numerical results have been produced to test the accuracy of the available
analytical models in predicting the performance of DBP for large NLC bandwidths.

In this section, the analytical tools provided in [28,29] are validated via numerical results based
on the split-step Fourier method (SSFM) in a wideband transmission scenario using multichannel
DBP. Then, closed-form expressions are used to describe the behaviour of the signal-to-noise
ratio (SNR) gains achievable through DBP.

3.1. Validation of analytical tools for DBP performance estimation

The effect of DBP when applied over a bandwidth BNLC, less than or equal to the transmitted
bandwidth B, can be predicted by resorting to a perturbation analysis [30, Sec. II]. To the
first-order, the DBP contribution can be considered as a subtraction of a fraction of the received
NLI power. Such fraction is equal to the one generated in the forward propagation by the signal
within the bandwidth BNLC if it was transmitted alone.

The receiver SNR after DBP is applied can be therefore written as

SNR =
P

NsPASE + [η(B, Ns) − η(BNLC, Ns)] P3 + ηsnζPASEP2 , (8)

where P is the transmitted power per channel, Ns is the number of fiber spans, PASE is the ASE
noise power over the channel bandwidth, η(B, Ns) is the signal-signal NLI factor over a bandwidth
B and Ns spans, ηsn is the signal-ASE NLI factor over one span, B is the total transmitted
bandwidth, BNLC is the NLC bandwidth, ζ =

∑Ns

k=1 k1+ε is the signal-ASE NLI accumulation
factor, and ε is the NLI coherence factor.
In the denominator of Eq. (8), three terms can be distinguished (from left to right): the total

accumulated ASE noise power, the residual signal-signal NLI power after DBP is applied, and
the signal-ASE NLI power. As discussed in [31, 32], DBP does not modify the signal-ASE NLI
power generated in the forward direction. In fact, DBP undoes the signal-ASE NLI originating
from the first spans in the forward direction, but replaces it with the one generated by the ASE
noise in the last spans in the backward direction.
The η factor and its dependency on system parameters, such as B and Ns, vary based on the

specific model adopted. For instance, the GN-model [33] offers a simple closed-form expression
for η(B, Ns), although with a certain degree of inaccuracy due to its inability to account for certain
features of the transmitted signal, such as the modulation format. More recent models [28,30,34]
have instead captured the NLI dependence on the modulation format and thus have been shown
to be more accurate in the estimation of the NLI power. However, this generally comes at the
cost of a higher complexity of the analytical expressions. Recently, in [29], an approximate
closed-form expression was proposed for the model in [28], which is derived from an extension
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Parameter Value
Transmission parameters

Symbol rate 32 Gbaud
Number of channels 31
Channel spacing 33 GHz
Modulation format PM-16QAM

Pulse shape Root-raised-cosine
Roll-off factor 0.03

Link parameters
Fiber attenuation (α) 0.2 dB/km
Fiber dispersion (D) 17 ps/nm/km
Fiber nonlinearity (γ) 1.2 (W· km)−1

EDFA gain 16 dB
EDFA noise figure 4.5 dB

Simulation parameters
Number of transmitted symbols 217

Simulation bandwidth 2.04 THz
Numerical method Adaptive log-step size SSFM [35]

Table 1. Parameters of the system used for the numerical study of DBP performance.

of the GN-model, hence called the enhanced GN-model (EGN). This expression for the analytical
estimation of the NLI is used here.

The comparison between analytical and numerical results based on the SSFM is performed for
a wideband transmission system, whose parameter values are shown in Table 1. The transmission
of 31×32 Gbaud PM-16QAM channels with 33 GHz spacing (B ≈1 THz) is simulated using an
adaptive logarithmic step-size SSFM [35]. The transmission link consists of standard single-mode
fiber with EDFA amplification. At the receiver, DBP is performed ideally, using the same step-size
distribution used in the forward propagation. Ideal polarization demultiplexing is then applied
and no carrier phase estimation is used as laser phase noise is neglected.

In Fig. 3, the dependence of the SNR on the transmitted power is shown when either electronic
dispersion compensation (EDC) or DBP over different NLC bandwidths is performed at the
receiver. It can be observed that the agreement between the analytical expressions and the SSFM
simulations is within 0.2 dB for all cases shown. We attribute this residual gap partly to the fact
that the closed-form expression for η(B, Ns) strictly holds only for a perfectly rectangular channel
spectrum (roll-off factor of 0), whereas the roll-off factor here is set to 0.03. This result confirms
the validity of Eq. (8), where η(B, Ns) is obtained from the closed-form expression proposed
in [33].

3.2. DBP SNR gains

In the previous subsection, the use of closed-form expressions to fully describe DBP performance
in a wideband transmission scenario was justified. In this subsection, Eq. (8) is used to describe
the analytical behaviour of DBP SNR gain.
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For small enough NLC bandwidths, it can be assumed that

[η(B, Ns) − η(BNLC, Ns)] P3 � ηsnζPASEP2 (9)

and thus the signal-ASE NLI can be neglected in the denominator of Eq. (8). The region where
Eq. (9) holds depends on the specific transmission distance and transmitted power. By setting
the derivative of Eq. (8) with respect to the transmitted power to zero, the optimum SNR can be
found for all NLC bandwidths (including the EDC case). The DBP gain compared to the EDC
case (at their respective optimum launch powers) is found in closed-form as

GDBP ≈ 3

√
η(B, Ns)

η(B, Ns) − η(BNLC, Ns)
. (10)

In the regime opposite to the one indicated by Eq. (9), i.e., in a close neighbourhood of the
full-field NLC bandwidth, the DBP gain can be approximated as

GDBP ≈
3 3√2

4

(
2 + ε

3

)
1

η(B, 1)1/6P1/3
ASEN1/2+ε/6

s

. (11)

This approximation holds when Eq. (9) can be considered true in the EDC case, which implies
small enough ηsn, PASE and Ns . However, this is the case for typical transmission scenarios. Two
additional assumptions are made in the derivation of Eq. (11): (i) the dependence of η on the
number of spans Ns is assumed for simplicity to be the one predicted by the GN-model, and
(ii) ηsn = 3η(B, 1), which rigorously holds only when the WDM signal spectrum is flat and its
bandwidth B is equal to the ASE noise bandwidth. The validity of Eq. (11) will be shown in the
following.
Eq. (11) shows that the full-field DBP gain is weakly dependent on the ASE noise (P−1/3

ASE )
and transmitted bandwidth (η−1/6), whereas it is more strongly dependent on the transmission
distance (N−1/2

s ).
The two asymptotes in Eqs. (10) and (11) are illustrated in Fig. 4(a), where GDBP is shown as

a function of the NLI reduction factor for different transmission distances. The NLI reduction
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factor can be defined as
ρ ,

η(B, Ns)
η(B, Ns) − η(BNLC, Ns)

(12)

and signifies the reduction of signal-signal NLI due to DBP. For small values of NLI reduction,
i.e., where signal-signal NLI is dominant compared to signal-ASE NLI, Eq. (10) indicates that
the DBP SNR gain increases with a slope of 0.33 dB/dB, i.e., 1 dB higher gain for every 3 dB
of suppressed signal-signal NLI. Due to the larger amount of signal-ASE NLI in long-distance
transmissions, the gain starts to saturate at smaller values of ρ. For higher values of ρ, the gain
approaches the full-field gain predicted by Eq. (11).
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Fig. 4. DBP gain as a function of (a) NLI reduction and (b) normalized NLC bandwidth for
the system in Table 1.

Finally, using the closed-form expressions in [29], the DBP gain can be expressed in terms of
the NLC bandwidth BNLC. This relationship is illustrated in Fig. 4(b), where GDBP is shown as
a function of BNLC normalized with respect to the transmitted bandwidth B = 1.023 THz (see
parameters in Table 1), and for different transmission distances. DBP gains are similar (within 0.5
dB difference) for all distances when DBP is applied up to approximately 60% of B. For small
BNLC relative to B, the SNR gain is observed to increase slowly. For instance, in order to achieve
1 dB gain, DBP needs to be applied over approximately 10% of the transmitted bandwidth (≈100
GHz), whereas to attain a 3 dB gain, a BNLC between 57% (≈580 GHz) and 63% (≈650 GHz)
of B is required, depending on the transmission distance. A rapid gain increase can instead be
obtained when the full-field BNLC is approached, particularly for shorter transmission distances.
Indeed, in this case, the small amount of residual signal-ASE NLI causes the gain to increase
abruptly as the signal-signal NLI is fully cancelled. Higher amounts of signal-ASE NLI instead
result in a more gradual increase.

In summary, we have shown, by comparison with SSFM results, that currently available closed-
form expressions can accurately predict the receiver SNR of transmission systems employing
multichannel DBP to compensate for both intra- and inter-channel NLI. Closed-form relationships
between DBP gain and the main system parameters allow quick and intuitive insight into the
performance of this algorithm. For NLC bandwidths up to 60% of B, the relationship between
DBP gain and NLI reduction (in dB) is linear through a factor of 1/3. In this region, SNR gains
are between 1 and 3 dB. Beyond this region, and as BNLC approaches the full-field bandwidth B,
the DBP gain experiences a rapid increase which is dependent on the amount of signal-ASE NLI.
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4. Volterra based nonlinear compensation

The Volterra series is a well-known numerical tool for the modelling and compensation of
nonlinear dynamic phenomena [36]. It is based on a polynomial expansion, truncated to nth
order, including memory effects through a series of convolution integrals. The Volterra series
was first proposed for the modelling of optical fiber transmission systems in [37]. It was applied
to solve the NLSE in the frequency-domain, enabling the extraction of a set of nth order nonlinear
transfer functions for a single-mode optical fiber, the so-called Volterra series transfer function
(VSTF). The same analytical formulation was also independently developed in [38] in the context
of OFDM transmission.

By inverting the 3rd order nonlinear transfer function, an inverseVSTF (IVSTF)was first applied
for the compensation of fiber nonlinearities in single-polarization optical transmission [39, 40].
It was shown that, when applied at a low sampling-rate (2 samples per symbol), a 3rd order
truncated IVSTF could provide higher performance than split-step-based DBP due to the
avoidance of recursive time/frequency transitions [39]. In its polarization multiplexed form, the
frequency-domain nonlinear compensated optical field for the x-polarization signal, ÃNL

x , is given
by

ÃNL
x (ωn, z − L) = − j

8
9
ξγK1(ωn, L)

N∑
m=1

N∑
k=1

K3(ωn, ωk, ωm)Ãx(ωn+m−k, z)

×
[
Ãx(ωk, z)Ã∗x(ωm, z) + Ãy(ωk, z)Ã∗y(ωm, z)

]
, (13)

where Ãx is the frequency-domain received signal in the x-polarization, γ is the nonlinear
coefficient, L is the IVSTF step-size (multiple of the span length, Ls), 0 < ξ ≤ 1 is a free
optimization parameter, N is the fast Fourier transform (FFT) block-size, and ωn is the angular
frequency at index n in the FFT block. The multi-span linear kernel, K1, accounts for attenuation
and chromatic dispersion as

K1(ωn, z) = exp
(
α

2
Ls − j

β2
2
ω2
nz

)
, (14)

where α and β2 are the attenuation and group velocity dispersion coefficients, respectively. β2 is
evaluated at the central wavelength of the back-propagated channel. Finally, the multi-span 3rd
order nonlinear kernel, K3, is given by

K3(ωn, ωk, ωm) =
1 − exp

(
αLs − jβ2(ωk − ωn)(ωk − ωm)Ls

)
−α + jβ2(ωk − ωn)(ωk − ωm)

F(ωn, ωk, ωm), (15)

where F(ωn, ωk, ωm) is the multi-span phased-array factor [38] accounting for the coherent
accumulation of nonlinearities between fiber spans

F(ωn, ωk, ωm) = exp
(
− j

β2(ωk − ωn)(ωk − ωm)
2

(L − Ls)
)

sin (β2(ωk − ωn)(ωk − ωm)L/2)
sin (β2(ωk − ωn)(ωk − ωm)Ls/2)

.

(16)
The nonlinear equalized optical field, ÃNL

x , is finally summed with the chromatic dispersion
equalization (CDE) signal, yielding the output optical field after each IVSTF step as

Ãeq
x (ωn, z − L) = K1(ωn, L)Ãx(ωn, z) + ÃNL

x (ωn, z − L) (17)

Note that the equalization of the y-polarization signal is simply obtained by exchanging the
subscripts x and y in Eqs. (13) and (17).
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(a) (b)

Fig. 5. Normalized (a) real and (b) imaginary components of the 3rd order IVSTF kernel
coefficients at three distinct angular frequencies inside a 256-samples FFT block (ωn = 1,
ωn = 128 and ωn = 256). Vertical and horizontal axes correspond to the k and m indices
in Eq. (13), respectively. The represented IVSTF inverts a single standard single mode fiber
span, with signal transmission at 32 Gbaud and sampling rate of 64 GSa/s.

The major challenge associated with the numerical implementation of the IVSTF lies in the
O(N2) dependence of the total number of operations per equalized sample, arising from the
double summation in Eq. (13). This may limit the use of large step-sizes, since the minimum
required FFT block length, N , grows with the accumulated chromatic dispersion. To tackle this
issue, several approaches have been addressed. In [41], a simplified IVSTF implementation model
with O(log(N)) complexity was proposed, resorting to parallel nonlinear equalization branches,
each of which includes cascaded linear and nonlinear operations in a similar fashion to the SSFM.
This approach exploits the linkage between the VSTF and the regular perturbation method [42],
employing a frequency-flat approximation to enable time-domain processing of nonlinearities.
However, this approximation may affect the performance of the algorithm, which in [41] was
shown to underperform relative to single-step per span SSFM-based DBP. Alternatively, in [43],
a factorization procedure has been applied to the 3rd order kernel, yielding an n-steps serial
model, similarly enabling a reduction of the complexity down to O(log(N)), but also suffering
from a performance penalty relative to the full IVSTF model.
Penalty-free approaches have also been proposed, such as the use of symmetric electronic

dispersion compensation to reduce the amount of accumulated dispersion to be inverted by the
IVSTF [44] and the use of a cascaded IVSTF structure [45], where the position of the linear
kernel, K1, is changed in order to relax the FFT block length requirements for the evaluation of
K3.
Another way of reducing the computational effort of the IVSTF is through the inspection

and selective pruning of the K3 coefficients, whose distribution of real and imaginary parts is
illustrated in Fig. 5 for an exemplary standard single mode fiber span. For ease of visualization,
all coefficients are normalized with respect to the absolute maximum value of the real component.
Regular coefficient patterns and column/diagonal symmetries can be clearly observed. Depending
on the combination of angular frequencies, different nonlinear phenomena can be identified and
categorized as:

• iSPM: when the three optical field components coincide in frequency, i.e., for ωm = ωk =

ωn;

• iXPM: when the conjugated optical field component coincides in frequency with only one
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other component, i.e., for ωm = ωk , ωn or ωn = ωk , ωm;

• degenerate iFWM: when the two non-conjugated optical field components coincide in
frequency, i.e., for ωk = ωn+m−k ;

• iFWM: for all other possible combinations of ωm, ωk and ωn.

As can be easily perceived from the inspection of Eq. (15), all iSPM and iXPM occurrences
take the same real-valued coefficient, to which corresponds the maximum relative contribution
in the K3 kernel (unitary values in Fig. 5). Based on this inspection of the 3rd order kernel, a
simplified Volterra series nonlinear equalizer (VSNE) has been proposed in [46], where the full
K3 matrix is gradually reconstructed as a series of one-dimensional parallel frequency-domain
filters, building up from the iSPM+iXPM components and accounting for the symmetries in K3.
An exact full reconstruction of the K3 kernel was shown to yield a reduction of the computational
complexity by a factor of ∼3 without any performance penalty [46]. Further simplification can
be achieved by exploiting the iXPM-like behavior of the coefficients in the vicinity of the true
iXPM components, as can be seen in Fig. 5. Therefore, within a region of validity all coefficients
can be forced to the iXPM value incurring only a small error, with a significant reduction in
the implementation complexity by avoiding the double summation in (13). This frequency-flat
approximation differs from other similar assumptions in the literature [41], since it is associated
with an incomplete kernel reconstruction process that departs from the true iXPM component and
stops at an optimum number of additional coefficients [46]. Therefore there is a tradeoff between
the error generated by the frequency-flat approximation and the error due to an incomplete kernel
representation. Building upon this simplified VSNE, equivalent time-domain realizations have
also been derived in [48] and experimentally demonstrated in [49], yielding SSFM-like structures
with parallel nonlinear compensation branches [50], similar to [41].
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Fig. 6. BER performance and maximum signal reach of 124.8 Gbit/s PM-64QAM enabled
by CDE and IVSTF. (a) BER versus number of spans for different channel launch powers;
(b) Maximum reach versus launch power. Experimental results originally published in [47].

The IVSTF and its simplified versions proposed in [46] have been experimentally demonstrated
in [47], for the nonlinear compensation of a 10×124.8 Gbit/s PM-64QAM optical system. The
signal was transmitted over pure silica core fiber with an effective area of 150 µm2, span length
of 54.44 km, attenuation of 0.161 dB/km and dispersion parameter of 20.7 ps/nm/km.
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The results depicted in Fig. 6 show an improvement of ∼25% in the maximum reach (from
∼1200 km to ∼1500 km) at a BER of 2.7 × 10−2, provided by nonlinear compensation with
the 3rd order IVSTF. A single step IVSTF (step-size L equal to the full transmission length)
was sufficient to achieve the maximum equalization performance. In turn, the frequency-flat
simplified VSNE was found to require a total of 4 steps to enable the same maximum reach.
Nevertheless, despite the increased processing latency due to 4 cascaded steps, the simplified
VSNE was found to reduce the total computational effort by more than 3 orders of magnitude
relative to the full matrix-based IVSTF.
Recent advances on IVSTF-based nonlinear compensation have demonstrated similar equal-

ization performance to the widely used SSFM-based DBP, with comparable or even lower
computational effort. The full potential of Volterra-based nonlinear compensation is still however
far from being achieved. Additional research efforts are required to tackle key implementation
aspects such as fast and adaptive coefficient estimation [51] and expansion of the algorithms to
account for inter-channel nonlinear compensation in the context of optical superchannels.

5. Advanced modulation for nonlinear transmission

The effect of advanced modulation formats on the performance of optical fiber transmission
systems can be studied by estimating the achievable information rate (AIR). The AIR provides an
upper bound on the maximum data rate, which can be transmitted through a fiber, while also
setting a lower bound on the total fiber channel capacity. The AIR is calculated from the mutual
information (MI) between the channel input sequence XK

1 and channel output sequence YK
1 of

length K

I(X;Y ) = lim
K→∞

1
K
I(XK

1 ;YK
1 ) = lim

K→∞

1
K

[
H(XK

1 ) − H(X
K
1 |Y

K
1 )

]
, (18)

whereH is the entropy function. The AIR is usually expressed in bits/symbol.
The modulation alphabet X has an effect on the AIR both through the entropyH(XK

1 ) and the
conditional entropyH(XK

1 |Y
K

1 ). While the former sets an upper bound on the AIR and the spectral
efficiency, the latter is a metric of the quality of the received signal, and is usually implicitly used
as a design metric. For example, constellation alphabets which reduce nonlinear interference
noise (NLIN) increase the signal-to-noise-plus-interference ratio, also referred to as the effective
signal-to-noise ratio (SNR) in this section. NLIN is comprised of the signal-signal, signal-ASE
and ASE-ASE nonlinear interference effects.This usually leads to reduced uncertaintyH(XK

1 |Y
K

1 ).
On the other hand, such constellations can lead to reduced entropyH(XK

1 ) due to constraints in
their construction, leading to a contradiction in the design. It is noted that the output sequence yK1
are the samples right before demapping to bits, and the received effective SNR=Ek[|yk − xk |2]
thus includes all the penalties from the non-ideal DSP chain (e.g., analog-to-digital conversion,
filtering, equalization, phase noise recovery, etc.).
Constellation design in general includes both the positions of the points in the I/Q plane and

their probabilities. The former is referred to as geometric shaping and the latter as probabilistic
shaping.

5.1. Geometric shaping

One of the first papers on geometric shaping for optical fiber communications was [52]. The main
idea was to restrict high-energy symbols in the constellation, thus lowering the peak-to-average
power ratio and mitigating the nonlinear effects. To that end, ring constellations were studied and
optimized for fiber transmission.
A similar approach to constellation design was studied and demonstrated in [53]. Iterative

methods were used for optimizing the radii and the number of symbols on each ring with the
constraint of 256 symbols in total. An example of the designed polar modulation format is given
in Fig. 7b, together with the reference 256QAM format in Fig. 7a. The received constellation
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diagrams are for a linear AWGN channel with SNR=25 dB and input constellations X scaled
to unit power. The energy for the polar modulation format is more concentrated towards the
origin, thereby allowing for shaping gains over the uniform QAM format in terms of MI for a
linear channel. Furthermore, the peak-to-average power ratio is reduced compared to QAM, thus
resulting in lower NLIN power. Single channel experimental results were demonstrated for 256
polar modulation [53] with more than 1 dB gain over 256QAM for a 400 km, 28 Gbaud link.
Several other works study geometric signal shaping by imposing constraints on the allowed

multi-dimensional sequences, where the considered dimensions are state of polarization and time
slots. Lattices were studied in [54] for multi-dimensional constellation design. An optimized
minimum Euclidean distance can be (asymptotically) achieved with such constructions, which
allows for reduced symbol error rate on a linear AWGN channel. However, a performance penalty
was observed in the presence of nonlinearities [54]. Furthermore, bit-to-symbol mapping is
non-trivial for such constellations.

Polarization balanced multi-dimensional signaling was considered in [55]. Polarization
balancing is achieved by constraining the multi-dimensional symbols such that the multi-
dimensional energy is constant. Similar to the idea of ring constellations, where the high-energy
signals are avoided, such multi-dimensional constellations reduce the NLIN power. The 256 polar
modulation from [53] does not change the entropy H(X) with respect to 256QAM due to the
preserved cardinality of the constellation. In contrast, due to the constellation restriction, this
entropy and thereby the spectral efficiency is reduced with multi-dimensional signaling as in [55].
Taking this reduction into account, around 1 dB of of net system margin was achieved with an
8D QPSK constellation with respect to the standard BPSK constellation at the same spectral
efficiency of 2 bits per time slot in a fully-loaded WDM system with a modulation rate of 35
Gbaud per channel and optical dispersion compensation.
The theoretical gains of such systems were analyzed in [56], where the constellation was

restricted to a multi-dimensional ball, for which the mass is concentrated on a multi-dimensional
sphere when the number of constellation symbols is large. It was shown that the gains potentially
exceed the ultimate shaping gain on an AWGN channel of 1.53 dB. Operating such systems
at high spectral efficiency is non-trivial due to the complexity of the DSP at the receiver side.
Optimal detection generally requires that each possible input combination of symbols is evaluated,
which generally results in an exponential increase in complexity both with the dimensionality
(time slots) and the spectral efficiency (cardinality) of the base modulation format (restricted to
QPSK in [55]).

5.2. Probabilistic shaping

As mentioned, probabilistic shaping attempts to increase the MI by optimizing the probability
mass function (PMF) pX (X) of the input symbols. This directly results in reduced entropy
H(X) and thus maximum spectral efficiency of the format. However, near capacity achieving
systems operate in a region for which the AIR is not limited by the entropy as much as by the
effective SNR at the receiver, thus benefiting from a non-uniform PMF. Probabilistic shaping was
performed in [57] by the method of trellis shaping, and near-capacity performance was reported
in a simulation. Probabilistic shaping in a 4D space (I/Q dimensions of 16/64QAM in each
polarization) was considered in [58], where the 4D PMF was such that, similar to the geometric
shaping approach, the points with smaller multi-dimensional amplitude appear more often. Gains
of a few hundred kilometers in transmission distance can be achieved with such schemes.

Optimization of the PMF was performed in [59], where the PMF was taken from the Maxwell-
Boltzmann (MB) family, for which pX (X = x) ∝ exp (λ |x |2), i.e., the PMF is also amplitude
driven. By carefully optimizing the scaling parameter λ, the PMF can be matched to the channel
conditions (the effective SNR). An example of such a PMF for λ = −0.4 and a 256QAM
constellation is given in Fig. 7(c). Since low-energy points appear more often, the constellation is
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(a) (b) (c)

Fig. 7. Constellation diagrams for AWGN channel with SNR=25 dB and constellations,
normalized to unit power. (a) Standard 256QAM, (b) geometrically shaped 256 polar
modulation, (c) probabilistically shaped 256QAM with Maxwell-Boltzmann distribution.
Different probability mass functions (PMFs) result in different scaling, and thereby different
Euclidean distance. However, non-uniform PMFs result in reduced entropyH(X) and thus
reduced maximum spectral efficiency.

scaled, and for unit power and the same SNR as the uniform PMF from Fig. 7(a), the Euclidean
distance is increased, resulting in decreased uncertainty H(XK

1 |Y
K

1 ) and increased MI. Gains
of up to 400 km in transmission distance were achieved in [59] in a simulation. Experimental
demonstration for a selection of MB PMFs was carried out in [60] in combination with a
low-density parity check convolutional code. The same gains were experimentally confirmed for
a variety of AIRs, which were achieved by rate-matching the independent identically distributed
input binary data to the specific MB PMF. Most recently, a system was demonstrated for a
transoceanic distance with a record high capacity [61]. The simplicity of the rate matcher, together
with its transparency to the FEC makes it attractive for optical fiber communications. An iterative
approach to probabilistic shaping was taken in [62], where the PMF was not restricted to the MB
family. The PMF was optimized by a modified Blahut-Arimoto algorithm, and it was shown that
probabilistic shaping outperforms the geometric shaping scheme from [52]. In order to achieve
the non-uniform PMF of the output, a many-to-one bit-to-symbol labeling was proposed in a
combination with a convolutional turbo code. It was shown in [63], that this optimization slightly
outperforms the MB family, which for two constellation symbols xi and xj has the restriction
of p(xi) > p(xj) for |xi | < |xj |. However, similar experimental gains were achieved as in [60],
suggesting that the specific PMF shape is non-consequential in practice under the constraint of
independent symbols in each time slot. The performance of the system is given for 256QAM
and 1024QAM in Fig. 8 for a 5×10 Gbaud WDM system and distances between 800 and 1700
km at the optimal launch power. The received effective SNR is given in Fig. 8(a). Since the
peak-to-average power ratio of the shaped system, particularly for the 1024QAM constellation, is
increased, the NLIN noise is enhanced, resulting in slightly decreased effective SNR. However,
the AIR with 1024QAM is still superior to the other formats (see Fig. 8(b)) by ≈ 0.2 bits/symbol,
which translates to 300 km (3 spans) gain at 1200 km (≈ 25% reach increase).

It is noted that advanced constellations, such as the ones described here require non-standard
equalization and/or phase noise recovery. It was demonstrated in [61, 63], that pilot symbols
can be used at a rate of 1-2% for both purposes. This technique also improves the tolerance to
phase slips, allows for adaptive equalization, and can potentially be used for frequency and clock
recovery. However, improving the DSP performance both in terms of effective received SNR and
reduced pilot rate is of interest in practice.

Most of the constellations considered in this section (with the exception of themulti-dimensional
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QPSK [55]) operate on a memoryless basis, that is, p(xK1 ) =
∏

k p(xk). Similar gains of about
2-4 fiber spans (200-400 km) are achieved in all the above references under this assumption.
In order to improve the gains, PMFs with memory are required. Optimizing such PMFs is not
trivial due to the increased dimensionality, and furthermore, optimal processing at the receiver
becomes exponentially complex (as mentioned previously) for high spectral efficiency systems.
Such multi-dimensional PMFs with jointly optimized geometric and probabilistic constellation
properties, and with practical receiver processing are of interest.
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Fig. 8. Performance of probabilistically optimized QAM. (a) Even though 1024QAM with
probabilistic shaping results in increased nonlinear distortion and thus reduced effective
received SNR, (b) it achieves ≈ 0.2 bits/symbol of gain, or equivalently ≈ 300 km.

6. Encoding in the nonlinear Fourier spectrum

For their discovery in the 1970s of the mathematical framework underlying the nonlinear Fourier
transform, C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura received the prestigious
2006 Leroy P. Steele Prize for a Seminal Contribution to Research, awarded by the American
Mathematical Society. In describing this work in [64], the author wrote that “nonlinearity has
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undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.” This
section describes how this tool may be exploited by encoding information in the nonlinear Fourier
spectrum (also often called the inverse scattering transform or IST) of a signal transmitted over
an optical fiber.
Pulse propagation over an optical link of standard single-mode fiber with ideal distributed

Raman amplification is well modelled using the generalized NLSE [65]. In normalized form
(see [66]), with time t and distance z along the fiber expressed in dimensionless “soliton units”,
this equation is given as

j
∂q
∂z
=
∂2q
∂t2 − 2s |q |2q + n(t, z) (19)

where j =
√
−1, s ∈ {±1}, q(t, z) is the complex envelope of the signal, and n(t, z) is noise, usually

modelled as a white Gaussian random process. The first term on the right-hand side expresses
the effect on the transmitted waveform of chromatic dispersion, and the second term expresses
the effect of Kerr nonlinearity. The equation does not include a loss term, as all losses are
assumed to be ideally compensated by Raman amplification. When s = −1, this equation models
signal propagation in the so-called “focusing” regime corresponding to anomalous dispersion
(which supports the propagation of soliton pulses), while taking s = +1 gives propagation in
the “defocusing” regime corresponding to normal dispersion. In the absence of noise, i.e., with
n(t, z) = 0, Eq. (19) is referred to simply as the NLSE (without the word “generalized”).

In their landmark paper [69], Zakharov and Shabat discovered a Lax pair (L, M) for the NLSE,
thereby establishing its integrability. Fixing z and writing q(t) for q(t, z), the nonlinear Fourier
transform (NFT) of the signal q(t) is defined in terms of the Zakharov-Shabat system

dv(t, λ)
dt

=

[
− jλ q(t)

sq∗(t) jλ

]
v(t, λ) (20)

where λ ∈ C is a spectral parameter—an eigenvalue of the L operator—and v(t, λ) is a
corresponding 2×1 eigenfunction. Let u(t, λ) = [u1(t, λ), u2(t, λ)]T denote the solution of Eq. (20)
under the boundary condition v(t, λ) → [1 0]T e−jλt as t → −∞. Define the spectral coefficients
a(λ) and b(λ) as

a(λ) = lim
t→∞

u1(t, λ)e jλt, b(λ) = lim
t→∞

u2(t, λ)e−jλt, (21)

and let a′(λ) = d
dλa(λ). Finally, denote the upper-half complex plane (i.e., the set of complex

numbers with positive imaginary part) as C+, and let D = {λ ∈ C+ : a(λ) = 0}. Since a(λ) is
analytic in C+, the set D consists of isolated points [66]; furthermore D is finite when q has finite
energy. The NFT of q(t) is the function Q : R ∪ D→ C defined by

Q(λ) =
{

b(λ)
a(λ), λ ∈ R,
b(λ)
a′(λ), λ ∈ D.

(22)

Thus, unlike the ordinary Fourier transform, the NFT spectrum generally consists of two
components: the continuous spectrum supported on R and the discrete spectrum supported on
D. When D is empty, the discrete spectral function is absent. In the defocusing regime (when
s = +1), D is necessarily empty. For small signal amplitudes, the continuous spectrum coincides
with the ordinary Fourier transform of q(t), and D is empty. When present, the discrete spectrum
corresponds to the so-called solitonic components of q(t). A nonzero signal with a zero continuous
spectrum and a discrete spectrum supported on N points is referred to as an N-soliton. As noted
in [66], the NFT shares many of the properties of the ordinary Fourier transform, including the
generalized Parseval identity
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∫
t∈R
|q(t)|2dt =

1
π

∫
λ∈R

ln(1 + |Q(λ)|2)dλ + 4
∑
λ∈D

Im(λ). (23)

The solitonic signal components influence energy only via the location of the imaginary part of
λ ∈ D, with larger imaginary part in direct proportion to larger energy. In effect, the NFT is a
reformulation of the so-called “scattering data” associated with the IST.
Restoring the z-dependence, Q(λ, z) denotes the nonlinear Fourier transform of the signal

q(t, z). The signal q(t, 0) is applied at the channel input. Under mild assumptions (that q(t, 0) is
absolutely integrable and decays to zero as |t | → ∞), an extremely simple relationship exists
between Q(λ, 0) and Q(λ, z) at any point z, namely

Q(λ, z) = Q(λ, 0) exp(4 jsλ2z), λ ∈ R ∪ D. (24)

In other words, the NFT of the signal q(t, z) observed at distance z is obtained by multiplying
the NFT of the input signal q(t, 0) by a nonlinear frequency response H(λ, z) = exp(4 jsλ2z).
The analogy with linear time-invariant systems is immediate: the NFT plays the same role for
systems defined by the NLSE that the ordinary Fourier transform plays for linear time-invariant
systems. Note that multiplication by H(λ, z) preserves energy, since for real-valued λ, H(λ, z)
corresponds to an all-pass filter that preserves the energy of the continuous spectral component,
while for λ ∈ D, multiplication by H(λ, z) does not influence the location of Im(λ), which is all
that determines the energy of the solitonic component. Energy-preservation is to be expected,
since the NLSE models an ideal lossless (and noiseless) system.

An immediate application is an information transmission strategy that is the nonlinear analog
of orthogonal frequency-division multiplexing (OFDM), termed nonlinear FDM (or NFDM), that
encodes information in the nonlinear spectrum of the signal [68,70]. Indeed, the idea of encoding
information in just the discrete spectrum was first proposed in [88], with recent generalizations
given in [73, 89]. A number of recent papers [71–74] have studied various aspects of NFT-based
transmission strategies in both the focusing and non-focusing cases. Experimental demonstrations
of NFDM schemes and conventional transmission schemes using NFT-based signal detection are
described in [75–81]. Numerical methods focused on fast algorithms are described in [82–84].
Of course, actual channels are noisy, and therefore are described by the generalized NLSE

Eq. (19). The addition of noise as a forcing term corrupts integrability and the elegant NFT
approach does not apply directly. In practice, however, the noise is small, and so can be treated
as a perturbation. Depending on the approach taken, various noise models result [68, 85, 86].
Bounds on the “per-soliton” capacity, which include the effects of noise, are provided in [87].

Recent results use numerical methods to estimate the spectral efficiencies that can be achieved
using the NFT approach [94–96]. In particular, [94] estimates achievable spectral efficiencies
of approximately 10.7 bits per symbol in a 500 GHz bandwidth over a transmission distance
of 2000 km in the focusing case (s = −1), while [95, 96] estimates achievable rates in excess
of 10.5 bits per complex degree-of-freedom at the same distance in both the defocusing case
(s = +1) and the focusing case. In all three papers, the transmitted information is encoded in the
continuous spectrum, fiber parameters are set to practically relevant values, and the transmission
power is set to a large value, where the impact of nonlinearity would seriously degrade the
performance of conventional transmission techniques. Provided that information is encoded only
in the continuous spectrum, there is little difference, from the NFT perspective, between the
defocusing and focusing cases, though the latter case does support soliton transmission as well.

Some papers on NFT-based information transmission have incorporated other channel models.
It has been shown that the requirement of ideal distributed Raman amplification can be relaxed for
modulation of the continuous spectrum [90,91]. A “lossless path-averaged” (LPA) NLSEwas used
to deal with lumped amplification from EDFAs as well as non-flat Raman gain profiles. Another
recent paper has extended eigenvalue modulation to the polarization multiplexed case [92].
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Despite their apparent promise at achieving relatively large spectral efficiencies and enabling
transmission at higher launch powers than conventional techniques, considerably more work
needs to be done before any of these NFT-based techniques will be competitive in practice. The
computational resources required to compute forward and inverse NFTs numerically, even using
the fast algorithms of [82–84], is substantial. The impact on the overall transmission system of
larger launch powers and nonstandard waveforms needs to be assessed. Interoperability with
conventional systems remains a question. Although in principle NFDM does not suffer from
deterministic crosstalk effects, achieving nonlinear multiplexing to replace conventional WDM
would seem to require access to all co-propagating signals (e.g., the entire C-band), a daunting
and presently impractical task. Though more work needs to be done, NFT-based methods may
indeed have a role to play in improving future optical fiber transmission systems.

7. Summary

Digital signal processing techniques that compensate, mitigate and exploit fiber nonlinearities in
coherent optical fiber transmission systems have been reviewed. These include pertubation-based
pre-compensation, digital backpropagation, inverse Volterra series transfer function, advanced
modulation formats, and encoding in the nonlinear Fourier spectrum.
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