
Integration of spatial information in
convolutional neural networks for
automatic segmentation of
intraoperative transrectal ultrasound
images

Nooshin Ghavami
Yipeng Hu
Ester Bonmati
Rachael Rodell
Eli Gibson
Caroline Moore
Dean Barratt

Nooshin Ghavami, Yipeng Hu, Ester Bonmati, Rachael Rodell, Eli Gibson, Caroline Moore, Dean Barratt,
“Integration of spatial information in convolutional neural networks for automatic segmentation of
intraoperative transrectal ultrasound images,” J. Med. Imag. 6(1), 011003 (2018),
doi: 10.1117/1.JMI.6.1.011003.

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 9/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Integration of spatial information in convolutional
neural networks for automatic segmentation of
intraoperative transrectal ultrasound images

Nooshin Ghavami,a,b,* Yipeng Hu,a,b Ester Bonmati,a,b Rachael Rodell,a,b Eli Gibson,a,b Caroline Moore,b,c,d and
Dean Barratta,b
aUniversity College London, UCL Center for Medical Image Computing, Department of Medical Physics and Biomedical Engineering,
London, United Kingdom
bUniversity College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
cUniversity College London, Division of Surgery and Interventional Science, London, United Kingdom
dUniversity College London Hospitals NHS Foundation Trust, Department of Urology, London, United Kingdom

Abstract. Image guidance systems that register scans of the prostate obtained using transrectal ultrasound
(TRUS) and magnetic resonance imaging are becoming increasingly popular as a means of enabling tumor-
targeted prostate cancer biopsy and treatment. However, intraoperative segmentation of TRUS images to define
the three-dimensional (3-D) geometry of the prostate remains a necessary task in existing guidance systems,
which often require significant manual interaction and are subject to interoperator variability. Therefore, auto-
mating this step would lead to more acceptable clinical workflows and greater standardization between different
operators and hospitals. In this work, a convolutional neural network (CNN) for automatically segmenting the
prostate in two-dimensional (2-D) TRUS slices of a 3-D TRUS volume was developed and tested. The network
was designed to be able to incorporate 3-D spatial information by taking one or more TRUS slices neighboring
each slice to be segmented as input, in addition to these slices. The accuracy of the CNN was evaluated on data
from a cohort of 109 patients who had undergone TRUS-guided targeted biopsy, (a total of 4034 2-D slices). The
segmentation accuracy was measured by calculating 2-D and 3-D Dice similarity coefficients, on the 2-D images
and corresponding 3-D volumes, respectively, as well as the 2-D boundary distances, using a 10-fold patient-
level cross-validation experiment. However, incorporating neighboring slices did not improve the segmentation
performance in five out of six experiment results, which include varying the number of neighboring slices from 1
to 3 at either side. The up-sampling shortcuts reduced the overall training time of the network, 161 min compared
with 253 min without the architectural addition. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported

License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1

.JMI.6.1.011003]
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1 Introduction
Prostate cancer is the most commonly diagnosed cancer in men
in the UK, with more than 11,000 deaths per year. Prostate-spe-
cific antigen (PSA) testing has been widely used for the diag-
nosis of prostate cancer, but there is a concern that an over-
reliance on PSA as a screening tool could led to an over-diag-
nosis of low-risk prostate cancer, and subsequent over-treatment
of patients with low-to-intermediate risk cancer undergoing con-
ventional radical treatments using radiation therapy or prostatec-
tomy, both of which carry a significant risk of side-effects.1

Therefore, both accurate patient stratification and less invasive
treatments are critical to improving prostate cancer care.

Recent attempts to address these challenges have led to an
emergence of transrectal-ultrasound (TRUS)-guided biopsies
and focal therapy techniques that are performed in a highly
targeted way. These techniques typically use diagnostic mag-
netic resonance imaging (MRI) to identify target regions
suspected or known to be harboring clinically significant

cancer,2 overcoming the difficulty associated with reliably dis-
tinguishing prostate tumors in a conventional B-mode of TRUS
images. However, TRUS remains a safe, low-cost, portable
method for guiding the insertion of needles and other instru-
ments into the prostate in real time; and in recent years, a grow-
ing number of guidance systems have become available
commercially, which spatially register (i.e., align) and fuse
MRI and TRUS data to aid targeted needle biopsy. Sankineni
et al.3 showed that in 26% of patients with prostate cancer,
TRUS-MRI fusion-guided biopsy detected the cancer, whereas
a conventional, systematic 12-core biopsy did not.

Fully automatic registration of preprocedural MRI with intra-
operative TRUS images is a challenging problem due to many
factors, such as patient motion, soft-tissue deformation, and
marked differences in the image intensity characteristics of
the different modalities. Consequently, a feature-based approach
is typically employed in commercial and research guidance sys-
tems in which the prostate is first segmented in the MRI and
three-dimensional (3-D) TRUS images, and the resulting seg-
mentations are aligned using either a rigid or nonrigid (i.e., elas-
tic) registration algorithm. Accurate manual segmentation of the
prostate to provide input data when using this approach can be
difficult and time-consuming, especially given that process may
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need to be repeated multiple times during a procedure to account
for prostate motion. Moreover, these segmentations are subject
to interobserver and intraobserver variability, which can intro-
duce variability in the registration accuracy.

Automating the image segmentation process provides a way
to reduce this variability, thereby improving standardization,
and reduce the need for extensive manual interaction during
a procedure. Furthermore, although fully automated registration
methods are starting to emerge that do not require explicit seg-
mentation of the input images,4 automated segmentation is still
very useful for training, monitoring, and evaluation purposes.

Most prior work on prostate image segmentation has focused
on the segmentation of T2-weighted MRI images.5,6

Convolutional neural networks (CNNs) have been shown to
achieve high accuracy for the segmentation of these images.7–9

Previous works on automatic segmentation of the prostate from
TRUS images have adopted a range of supervised and unsuper-
vised machine learning methods, including texture-feature-
extraction methods with support vector machines10–14 and neural
networks.15–17 From these last two studies, CNNs have shown to
achieve superior performance even for TRUS images compared
with other segmentation methods,18 and therefore, provide the
motivation to use in this work.

In this paper, we evaluate the accuracy of a CNN-based
method for automatic prostate segmentation on clinically
acquired TRUS images from 109 patients. We have added
two modifications to our preliminary work, which was first pre-
sented in Ref. 19; first, the incorporation of neighboring slices
into the network to be able to use 3-D information for each slice,
to take into account 3-D information, which the human observ-
ers often consider in the manual segmentation. Incorporating of
spatial information has already shown promising results in fetal
ultrasound segmentation.20 The second modification of this
work is an additive up-sampling shortcut architecture as pro-
posed in Ref. 21 for improved training time and performance.

2 Methods

2.1 Data and Preprocessing

The TRUS images used in this work were acquired as part of the
SmartTarget Biopsy Trial,22 and consist of 3-D TRUS images of
the prostate of 109 patients who underwent targeted transperineal
biopsy. For each patient, a continuous rotational 3-D acquisition
was used to acquire between 38 and 177 parasagittal slices to
cover the prostate gland. During these acquisitions, the TRUS
probe was rotated slowly while being held by a stepper cradle
equipped with digital position encoders to measure the rotation.
After sampling at 3-deg intervals, up to 59 slices per volume were
used, leading to a total of 4034 two-dimensional (2-D) slices. The
image slices used in this study had a pixel size of 0.18 × 0.16 mm
and an image size of 576 × 720 pixels, respectively.

The ITK-SNAP software23 was used to carry out the manual
delineation of the prostate gland (excluding the seminal
vesicles). Manual segmentations were performed independently
by two observers, with experience in prostate US image analysis
(NG/EB). A segmentation of each volume took ∼20 to 30 min to
complete. The segmentations from the first observer (NG) were
used as the ground-truth both for training of the algorithm and
for validating the network segmentation in a cross-validation
experiment described in Sec. 2.3, whereas the segmentations
from the second observer (EB) were used only for interobserver
comparison purposes.

2.2 Convolutional Neural Network Architecture

The algorithm used in this work uses a CNN, which is based on
an adapted U-network architecture24 proposed in our previous
work. The original network takes as input an ultrasound slice
of size S0 ¼ ½576 × 720� and this is propagated to feature
maps of the same size and 16 initial channels n0 using a con-
volution (Conv), a batch normalization (BN), and a nonlinear
rectified linear unit (ReLU). A kernel size of 3 × 3 is used
for the convolutions. For the present work, for each input
image slice, different combinations of the neighboring slices
are also considered as summarized in Sec. 2.3. The concatena-
tion between the slice to segment and additional neighboring
slices at either side act as 3-D spatial priors for the network.
The resulting feature maps are down-sampled to four different
resolution levels, where at each level, k ¼ 1; : : : ; 4, the image
size Sk is halved and the number of channels nk doubled, mean-
ing following the four downsampling layers the image size is 24

smaller than the original size. The down-sampling consists of a
troika of Conv, BN, and ReLU, followed by a max-pooling layer
with stride 2. This is then followed by a residual network unit
(Resnet) block consisting of two Conv layers with BN and
ReLU, including an identity shortcut over these layers. The net-
work architecture is shown in Fig. 1.

The up-sampling blocks reverse the down-sampling process
using transpose convolution layers with stride 2, replacing the
max-pooling layers, and output an image-sized logits layer to
represent the segmentation. Reverse Resnet blocks are also
included with the addition of additive up-sampling shortcut
layers after the transpose convolution layers.21 Summation
shortcuts are added before each down-sampling block to the out-
put feature maps from each up-sampling block, which is of a
compatible size. Summation shortcuts were used in our network
instead of concatenation as they have been shown to provide a
more smoothly propagated gradient flow and therefore improv-
ing the training efficiency,25 and provided competitive results in
segmenting prostate from MR images.26

2.3 Training and Validation

The network was implemented in Tensorflow™ and trained on a
12 GB NVIDIA® TITAN XP GPU for 10,000 iterations, using
the Adam optimizer with 64 images in each minibatch. The
results presented here were obtained by minimizing a negative
probabilistic dice score that is differentiable with an added L2-
norm weight-decay on the trainable parameters; the weighting
parameter was set to 10−6.

A 10-fold patient-level cross validation was carried in which
images from 11 patients were held out for testing, while the
remaining patients were used for training the networks. This
was repeated until each of all 109 patients was used for evalu-
ation once. For each automatic segmentation, the largest con-
nected component was chosen to eliminate any isolated
foreground segmentations, as a simple postprocessing step.
Segmentation metrics were calculated for each fold, by compar-
ing the automatic segmentations to the manually segmented
images (ground-truth) using both the binary dice similarity coef-
ficient (DSC) and the boundary distance. The boundary distance
was defined as the mean absolute value of the distances between
all the points from the automatically segmented boundary and
the closest boundary points found on the left-out ground-truth
segmentation. Additionally, dice scores were also calculated for
3-D volumes on the patient level. This was computed on
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volumes reconstructed with the slices from the individual
patient. The 3-D DSC is arguably more relevant to the registra-
tion application of interest, which requires 3-D prostate TRUS
volumes.

Furthermore, to evaluate the impact of the number of adja-
cent slices, we test the network with different combinations of
neighboring slices (on either side), leading to 3-D inputs with 3,
5, and 7 feature maps.

As described in the paper by Karpathy et al.,27 there are three
different ways of combining the spatial information: early
fusion, late fusion, and slow fusion. What we have described
in the paper is equivalent to the early fusion pattern. For com-
parison, we also implemented the slow fusion (using two-adja-
cent slices on either side) where the neighboring slices are
slowly combined through the network, at each layer combining

two sets of neighboring slices together and in doing so giving
access to more global spatial information as we go to deeper
layers, and the late fusion that takes two slices (five slices
apart) as two separate networks and only merges these at the
fully connected layer, as shown in Ref. 27.

As an additional experiment, the network was also trained by
taking a different percentage of the midsection of the prostate for
each patient, as shown in Fig. 2. The aim of this experiment was
to evaluate the effects of removing slices at the base and apex of
the prostate, where the boundary of the prostate is generally con-
sidered more difficult to identify.

3 Results and Discussion
The computed 2-D and 3-D DSCs and boundary distances aver-
aged over all slices are summarized in Table 1 for the three sets
of experiments, using 1, 2, and 3 neighboring slice(s) on each
side using the early fusion. From the table, it is shown that tak-
ing neighboring slices leads to an improvement in the 2-D DSCs
of ∼0.01 on average. Paired Student’s t-tests (α ¼ 0.05) were
performed to test statistically significant differences between
the network without using neighboring slices and those using

Fig. 2 Diagram illustrating the experiment for taking different percent-
ages of midsection prostate slices.

Fig. 1 Proposed network architecture.

Table 1 Segmentation metrics obtained from the automatic segmen-
tation results when using different numbers of neighboring slices.

Number of neighboring
slices included on
each side 2-D DSC 3-D DSC

Boundary
distance

None 0.88 ± 0.13 0.88 ± 0.06 1.80 ± 1.68

1 0.89 ± 0.12 0.89 ± 0.05 1.79 ± 2.05

2 0.89 ± 0.13 0.88 ± 0.04 1.77 ± 1.46

3 0.89 ± 0.12 0.88 ± 0.05 1.75 ± 1.77
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1, 2, and 3 slices, with results of p ¼ 0.69, p ¼ 0.04, and
p ¼ 0.49, respectively. Increasing the number of neighboring
slices seemed to lead to a decrease in the calculated boundary

distance, but with p ¼ 0.39, p ¼ 0.52, and p ¼ 0.48 for 1, 2,
and 3, respectively, when compared with that without using
neighboring slices. Among these results, only one case showed
significant difference with p ¼ 0.04 when comparing the DSC
from the two neighboring-slices case.

Comparison between the automatic and manually segmented
images for four example slices (each representing one of the
quartiles from the DSC), taking one neighboring TRUS slice
on either side, is shown in Fig. 3. The slices shown are chosen
with DSC approximately equal to the four quartile values, which
are 25th (DSC = 0.84), 50th (DSC = 0.92), 75th (DSC = 0.95),
and 100th (DSC = 0.98) quantiles. As illustrated by these exam-
ples in Fig. 3, the segmentations were generally more accurate
when the prostate boundary was more clearly defined, as seen in
slices C andD, respectively. This supports the issue of boundary
incompleteness as described in Ref. 11, which is shown to in-
fluence the results from the automatic segmentations. This com-
pares well with other works using neural networks for prostate
segmentation, reporting a mean DSC value of 0.92,13 evaluated
on 17 subjects.

The results presented in Table 1 were equivalent to using the
early fusion pattern, and as described in Sec. 2.3, the experimen-
tal results using two and three adjacent slices on either side, for
the slow and late fusion, respectively, are summarized in
Table 2. There was no statistically significant difference between
the early and slow fusions in terms of the DSC (p ¼ 0.34); how-
ever, there was a difference in the boundary distance (p ¼ 0.03)
and for both the DSC and boundary distance when comparing
the early and late fusion (p < 0.001 and p ¼ 0.03, respectively).

The results of the automatic segmentation for three example
slices when taking different numbers of neighboring slices for
each patient are shown in Fig. 4. Visually similar contours are
observed between each of the automatic segmentations (blue,
cyan, and yellow) and the manual ground-truth (red), which
is consistent with the results from Table 1. The slice shown
in C, however, shows a visual improvement in the yellow con-
tour (using three neighboring slices) when comparing with the
ground-truth shown in red, as opposed to the blue and cyan
segmentations.

Table 3 shows the segmentation metrics obtained when tak-
ing different percentages of slices from each patient (full set of
slices, 90% of slices, 75% of slices, and 60% of slices) while
incorporating one neighboring slice. There is no statistically sig-
nificant difference found in the boundary distances (p ¼ 0.14,

Fig. 3 Example comparisons between manual (red) and automatic
(blue) segmentations. (a)–(d) Represent the 25th, 50th, 75th, and
100th quantile with DSC of 0.84, 0.92, 0.95, and 0.98, respectively.

Table 2 Segmentation metrics obtained from the automatic segmen-
tation results when using slow and late fusion methods.

Fusion method 2-D DSC 3-D DSC
Boundary
distance

Slow (two adjacent slices
on each side)

0.89 ± 0.12 0.89 ± 0.05 1.68 ± 1.57

Late (three adjacent slices
on each side)

0.86 ± 0.12 0.85 ± 0.06 2.15 ± 1.59

Fig. 4 Differences in the automatically segmented prostate when incorporating different numbers of
neighboring slices. Manual segmentation (red), automatic segmentation using one adajcent slice
(blue), using two adjacent slices (cyan), and three adjacent slices (yellow) overlayed on top of the original
prostate slice.
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p ¼ 0.84, and p ¼ 0.67) when using 90%, 75%, and 60% of the
middle slices, respectively, nor the 2-D DSC (p ¼ 0.17 and
p ¼ 0.07), when using 90% and 75% of the slices; however,
a significant difference is observed using 60% of the slices
with p ¼ 0.04. This result and the reduction in the standard
deviation of both the DSC and boundary distance could suggest
that slices near the apex and base of the prostate are indeed more
challenging to segment.

The addition of the up-sampling shortcuts layer into the net-
work improved the training time from 253 min without any up-
sampling shortcuts to 161 min with these up-sampling shortcuts
for 10,000 iterations per fold.

3.1 Comparison between Different Observers

Figure 5 shows examples of manual segmentations from the two
different observers, overlaid on top of the original slices for
three randomly chosen slices. From the figure, we can see good
agreement between the two observers (shown in red and green
contours), which also agrees with the computed 2-D DSC
between the two observers of 0.92� 0.06. These results,
together with those reported above, provide a quantitative refer-
ence to compare the interobserver and intraobserver variabilities
with variability using automatic methods, such as the one pro-
posed in this study, especially under specific clinical context.

3.2 Comparison with Other Prostate Segmentation
Techniques

We compare the results obtained using our architecture with
a state-of-the-art segmentation technique proposed by Anas

et al.17 Their architecture uses gated recurrent units with the
use of residual convolution for improving the optimization of
the network. In addition, the authors use a recurrent interconnec-
tion between the feature extraction and upsampling branches,
which allows the network to incorporate lower-level features
in the output segmentation. The mean ± std DSC reported
for this paper on 1017 testing slices is 0.93� 0.03 and 1.12�
0.79 mm for the DSC and boundary distances, respectively.
Based on our implementation, their network needs significantly
more GPU memory (∼ > 300 times more based on a single-
slice stochastic gradient descent) than the one proposed in
this paper.

Previous prostate segmentation techniques using shape mod-
els, such as Refs. 11 and 12, report average boundary distances
of 0.39� 0.05 mm and 1.28� 0.03 mm, based on six and eight
validation patients’ data, respectively.

4 Conclusion
In this paper, we have extended the segmentation CNN we pre-
viously proposed in Ref. 19 to incorporate spatial information
from neighboring TRUS slices and an additive up-sampling
shortcuts in the decoder part of the network. Both qualitative
and quantitative results show good agreement between the auto-
matic and manually segmented images when taking a range of
neighboring slices, but the inclusion of neighboring TRUS slices
with the input image to be segmented was found to make very
little or no difference to the segmentation accuracy compared
with not including this data for training.

A limitation of this work is that the data used in this study
were acquired at a single center, which does not validate its gen-
eralization to data from different centers. For future work, the
network architecture may be improved specifically for slices
near the apex and base of the prostate, which are currently
the hardest to segment due to the boundary incompleteness,
therefore, by taking this problem into account may improve seg-
mentations results.
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