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ABSTRACT 1 

Purpose:  To examine associations between retinal vessel morphometry and 2 

cardiometabolic risk factors in older British men and women. 3 

Design:  Retinal imaging examination as part of the European Prospective Investigation into 4 

Cancer-Norfolk Eye study. 5 

Participants:  7411 participants underwent retinal imaging and clinical assessment.  Retinal 6 

images were analysed using a fully automated validated computerised system, which 7 

provides novel measures of vessel morphometry. 8 

Methods:  Associations between cardiometabolic risk factors, chronic disease and retinal 9 

markers were analyzed using multi-level linear regression, adjusted for age, sex and within 10 

person clustering, to provide percentage differences in tortuosity and absolute differences 11 

in width. 12 

Main outcomes measures:  Retinal arteriolar and venular tortuosity and width. 13 

Results:  279,802 arterioles, and 285,791 venules from 5947 participants (mean age 67.6 14 

years, SD 7.6, 57% female) were analysed.  Increased venular tortuosity was associated with 15 

higher BMI (2.5%, 95% CI 1.7,3.3% per 5 kg/m²) and HbA1c (2.2%, 95%CI 1.0,3.5% per %), 16 

and with prevalent type 2 diabetes (6.5%, 95%CI 2.8,10.4%); wider venules were associated 17 

with older age (2.6m, 95%CI 2.2,2.9m per decade), higher triglycerides (0.6µm, 95%CI 18 

0.3,0.9µm per mmol/L), BMI (0.7m, 95%CI 0.4,1.0 per 5 kg/m²) and HbA1c (0.4µm, 95%CI -19 

0.1,0.9 per %) and being a current smoker (3.0m, 95%CI 1.7,4.3m); similarly smoking was 20 

also associated with wider arterioles (2.1m, 95%CI 1.3,2.9m).  Thinner venules were 21 

associated with HDL (1.4m, 95%CI 0.7,2.2 per mmol/L).  Arteriolar tortuosity increased 22 

with age (5.4%, 95%CI 3.8,7.1% per decade), higher systolic blood pressure (1.2%, 95%CI 23 

0.5,1.9% per 10mmHg), in females (3.8, 95%CI 1.4,6.4%) and with prevalent stroke (8.3%, 24 
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95%CI -0.6,18%); no association was observed with prevalent myocardial infarction.  25 

Narrower arterioles were associated with age (0.8m, 95%CI 0.6,1.0m per decade), higher 26 

systolic blood pressure (0.5m, 95%CI 0.4,0.6m per 10mmHg), total cholesterol (0.2m, 27 

95%CI 0.0,0.3m per mmol/L) and HDL (1.2m, 95%CI 0.7,1.6m per mmol/L).   28 

Conclusions:  Metabolic risk factors show a graded association with both tortuosity and 29 

width of retinal venules, even among people without clinical diabetes, whereas 30 

atherosclerotic risk factors correlate more closely with arteriolar width, even excluding 31 

those with hypertension and cardiovascular disease. These non-invasive microvasculature 32 

measures should be evaluated further as predictors of future cardiometabolic disease 33 

among apparently healthy individuals. 34 

Keywords:  Retinal vessels, morphology, cardiometabolic risk factors 35 
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Cardiovascular disease (CVD), including coronary heart disease (CHD), heart failure and 36 

stroke, is responsible for a substantial burden of morbidity and disability.1  Type 2 diabetes 37 

is an increasing public health problem, affecting 1 in 10 adults globally, and a major cause of 38 

premature death and morbidities, especially CVD.2  Early detection and prevention both of 39 

CVD and Type 2 diabetes is key to limiting future morbidity and mortality.3;4  While disease 40 

risk factors for Type 2 diabetes, such as blood glucose levels and HbA1c, are yet to show 41 

good screening performance,5 established markers of early vascular disease are used in risk 42 

prediction models to estimate future risk of CVD, providing indications for medical / lifestyle 43 

interventions to alter disease trajectory.6;7  There have been a number of attempts to 44 

improve the performance of these risk prediction models, by adding other risk factors.6;745 

However, the addition of novel risk factors have added little to CHD prediction.8  Recent 46 

evidence suggests that early markers for the presence of vascular disease (as opposed to 47 

additional risk factors) are needed to improve risk prediction for population screening.5;948 

49 

Detailed retinal vasculometry may offer such a marker.  Growing evidence suggests that 50 

morphological features in retinal vessels, in particular vessel width, are early physiological 51 

markers of cardiometabolic risk and disease (as well as other disease processes).10-13  While 52 

strong evidence has accrued for some of these associations, particularly associations with 53 

Type 2 diabetes and CVD (and their related risk factors), other associations have remained 54 

inconsistent.  For instance, wider arterioles have been associated with higher levels of blood 55 

glucose, total cholesterol, triglycerides and inflammatory markers, but not in all studies.10;1256 

Similarly associations of venular width with blood pressure have also been inconclusive,1057 

although recent evidence suggests increased width associated with hypertension.14  Wider 58 
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venules also seem to be associated with diabetes, elevated glycosylated haemoglobin, lower 59 

levels of high density lipoprotein, inflammatory markers, smoking and obesity.10-1260 

However, some inconsistencies in the presence or absence of these associations (perhaps 61 

due to uncertainty caused by sample size) remain.11;12  Moreover, in comparison to studies 62 

examining vessel width, associations with vessel tortuosity have been little studied,1563 

especially in relation to metabolic markers, and may provide further insight into 64 

vasculometry changes associated with cardiometabolic risk.  Large population studies are 65 

needed to resolve these uncertainties, and to allow the comparative performance of width 66 

and tortuosity associations to be gauged.  However, the assessment of retinal vessel 67 

morphometry from retinal images, even with computerized assistance, has so far been 68 

heavily reliant on subjective operator involvement, which is time consuming and open to 69 

measurement error,16 limiting its use in large scale, preventative initiatives in a community 70 

setting.  We have developed a fully automated system for examining retinal vessel size and 71 

tortuosity, which overcomes many of these difficulties.17-19  We have used this system to 72 

examine the associations between cardiometabolic risk factors and retinal vascular 73 

characteristics in a large prospective population study of older British men and women, to 74 

confirm associations previously reported with vessel width, but to provide novel 75 

associations with measures of vessel tortuosity. 76 
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RESEARCH DESIGN AND METHODS 77 

Study Population:-  The European Prospective Investigation into Cancer (EPIC) study is a 78 

European based prospective cohort study designed to investigate the aetiology of major 79 

chronic diseases.20  The UK component of the study, EPIC-Norfolk, recruited from general 80 

practices in and around the city of Norfolk, and examined 25,639 participants (99.7% white 81 

European) aged 40 to 79 at baseline, between 1993 and 1997 (response rate 33%).21;2282 

Study participants had a detailed examination (including anthropometry, blood pressure, 83 

urine and venous blood sampling) and questionnaire assessment at entry (including 84 

information on pre-existing cardiovascular disease, type 2 diabetes and other medical 85 

conditions), and completed periodic questionnaires about their health (with a particular 86 

focus on dietary habits).  Participants have been followed up over a 13-year period for 87 

morbidity and mortality.  In addition to questionnaire data, participants were invited for 88 

further clinical examinations over this period, including repeat anthropometric assessment, 89 

venous blood sampling, retinal imaging, and physiological measures.2290 

91 

Third Follow-Up:  Between 2004 and 2011, 8623 participants provided updated information 92 

on medical history and lifestyle behaviour.22 Weight and height, were measured with 93 

participants in light clothing without shoes.  Weight was measured to the last 0.1 kg using 94 

regularly calibrated digital scales (Tanita TBF-300, Tanita UK Ltd, Middlesex, UK), and height 95 

to the last complete 0.1 cm using a stadiometer (Chasmors, UK).  Body mass index (BMI) was 96 

calculated as weight / height squared in kg/m².  Seated blood pressure was measured twice 97 

using an automated blood pressure monitor (Accutorr PlusTM, Datascope Patinet 98 

Monitoring, Huntington, UK); the mean of both measures was used.  A non-fasting venous 99 

blood sample was collected; details of the analytic measures have been published 100 
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previously.22  HbA1c was measured in whole blood using high performance liquid 101 

chromatography. Serum total cholesterol and HDL-cholesterol were measured using an 102 

auto-analyser (RA 1000 Technicon, Bayer Diagnostics, Basingstoke, UK).  LDL-cholesterol was 103 

calculated using the Fredrickson–Friedewald equation.23104 

105 

Ocular Examination:  Ocular assessment included measurement of vision, visual acuity 106 

(LogMAR acuity) and closed field auto-refraction (Humphrey model 500, Humphrey 107 

Instruments, San Leandro, California, USA).  Macular centred 45º digital fundus photographs 108 

were taken using a TRC-NW6S non-mydriatic retinal camera and IMAGEnet Telemedicine 109 

System (Topcon Corporation, Tokyo, Japan) with a 10 megapixel Nikon D80 camera (Nikon 110 

Corporation, Tokyo, Japan) without pharmacological dilation of the pupil.  Image processing 111 

was carried out using an automated computerised system (QUARTZ).17-19  The automated 112 

system distinguishes between right and left eyes (by optic disc localisation), venules and 113 

arterioles, identifies vessel segments, out-puts centreline coordinates, and measures vessel 114 

width and angular change between vessel centreline coordinates, as well as providing 115 

further measures of tortuosity.17-19;24  An ensemble classifier of bagged decision trees (with 116 

colour information) was used to classify vessels as being either venules or arterioles.  Only 117 

vessels which were classified with 80% or more probability were retained, to balance the 118 

number of venules and arterioles detected, as well as maximise the number of vessels 119 

included for analyses.18  The performance of the Arteriole/Venule (A/V) detection program 120 

was manually verified in a sub-set of images, and had detection rates of 84% for arterioles 121 

and 77% for venules, and corresponding false positive rates of 23% and 16% respectively.18122 

An automated assessment of image quality was also made based on the segmented 123 

vasculature.18  The system obtains thousands of measures of width and tortuosity from the 124 
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whole retinal image (dependent on image quality), not just concentric areas centred on the 125 

disc.10  These measures were summarised using mean width in microns and tortuosity with 126 

arbitrary units, weighted by segment length, for arterioles and venules separately for each 127 

image. In the case of multiple images per person, an automated algorithm developed to 128 

assess image quality allowed the best right eye and best left eye images to be selected for 129 

analyses.  A previously validated tortuosity measure which shows good agreement with 130 

subjective assessment of vessel tortuosity, based on the mean change in chord length 131 

between successive divisions of the vessel was used.24  System performance has been 132 

outlined in detail and validated previously, and allows automated batch processing of 133 

images from large population based studies.17-19  A model eye was used to quantify the 134 

magnification characteristics of the telecentric fundus camera used (Topcon TRC-NW6S), 135 

allowing pixel dimensions of vessel width to be converted to real size.25136 

137 

Ethics, Governance and Consent:  The EPIC-Norfolk Eye Study was carried out following the 138 

principles of the Declaration of Helsinki and the Research Governance Framework for Health 139 

and Social Care. The study was approved by the Norfolk Local Research Ethics Committee 140 

(05/Q0101/191) and East Norfolk and Waveney NHS Research Governance Committee 141 

(2005EC07L). All participants gave written, informed consent. 142 

143 

Statistical Analysis:  Statistical analyses were carried out using STATA software (version 13, 144 

StataCorp LP, College Station, TX).  Segment wise weighted mean widths and tortuosity 145 

were used, to provide a measure for venules and arterioles separately, for each eye.  146 

Histograms of retinal vessel widths showed normal distributions, while measures of 147 

tortuosity were positively skewed and log-transformed.  Multilevel linear regression models 148 
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adjusting for age and sex were used to examine associations of cardiometabolic risk factors 149 

and prevalent disease status to retinal vessel morphometry outcomes, allowing for repeated 150 

measures of vessel indices within the same person.  Regression models provided mean 151 

differences in width and percentage differences in tortuosity for venules and arterioles 152 

separately, per decade in age, females versus males, current smokers and former smokers 153 

versus never-smokers, or per unit increase in cardiometabolic risk factor (per 5 kg/m² 154 

increase in BMI, per 10 mmHg in systolic and diastolic blood pressure, per mmol/L increase 155 

in total cholesterol, high density lipoprotein, triglyceride, and per percentage rise in HbA1c).  156 

For disease outcomes, differences in vessel indices were obtained comparing those with 157 

prevalent disease present (including type 2 diabetes, MI, stroke, and known / treated 158 

hypertension) versus absent. Differences in associations between men and women were 159 

formally examined by inclusion of an interaction term between the risk factor and sex into 160 

the regression model. Risk factors found to be statistically significantly related to vascular 161 

measures at the 5% level were subsequently included in mutually adjusted models. We also 162 

examined associations after exclusion of participants with prevalent disease outcomes. 163 
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RESULTS 164 

Of 18,380 individuals invited to participate in this phase of the study, 8,623 (47%) took part 165 

(mean age 67.6 years, 57% female).  Supplemental Figure 1 shows a flow diagram of the 166 

numbers participating in the study.  Fundus imaging and refractive assessment were carried 167 

out in 7411 individuals, of whom 5,957 participants (80%) had at least one image of 168 

sufficient quality and classified vessels as arterioles or venules with a probability set at 80% 169 

detection.  It was not possible to obtain useful data from the remainder as images were 170 

miscentred, defocussed, or were obstructed by lashes and/or media opacities.  A small 171 

number had missing data for height, weight or blood pressure (n=10), leaving 5947 172 

participants with measures of vessel width and tortuosity for 565,593 vessel segments 173 

(279,802,arterioles, 285,791 venules) from 10,474 images; blood sample data were available 174 

for 5514.  Participant characteristics of EPIC participants at baseline, and those who took 175 

part in the third health examination with and without useable fundus images have been 176 

described previously.26  Those attending the 3rd Health Check (3HC) were younger at 177 

baseline, of higher BMI and socioeconomic status, and were less likely to be a current 178 

smoker compared to participants not followed-up.26  Participant characteristics of EPIC 179 

participants who took part in the third health examination, and who were included in the 180 

analyses compared with those who were not (5,947 versus 2,676 participants) are 181 

summarised in Table 1.  Other than those included being slightly younger (mean age 68 182 

years vs 71 years), there was no clear evidence of a systematic difference in 3HC participant 183 

characteristics.  Retinal vessel morphometry in those with useable fundus images are also 184 

summarised for arterioles and venules separately.  Histograms of arteriolar and venular 185 

width and tortuosity measures (with and without log transformation) are shown in 186 
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Supplemental Figure 2, and shows appreciable variation in these measures within this study 187 

population.   188 

189 

Differences in retinal vessel width in microns, and percentage differences in tortuosity by 190 

Type 2 diabetes and CVD risk factors and outcomes are shown by vessel type in Table 2.  191 

Arterioles were inversely associated and more tortuous with older age (0.8m, 95%CI 0.6, 192 

1.0m and 5.4%, 95%CI 3.8, 7.1% per decade respectively).  Wider venules were observed 193 

with older age (mean difference 2.6m, 95%CI 2.2,2.9m per decade), and amongst current 194 

smokers compared to never smokers (3.0m, 95%CI 1.7, 4.3m).  Narrower arterioles 195 

(0.5m, 95%CI 0.2,0.8) and more tortuous arterioles and venules were strongly associated 196 

with being female compared to male (3.8%, 95% CI 1.4, 6.4%; 2.2%, 95% CI 0.7, 3.6% 197 

respectively).   198 

Retinal vasculometry associations with metabolic risk factors:- 199 

Venular width was positively associated with Type 2 diabetes risk factors, including higher 200 

BMI (0.7m, 95%CI 0.4, 1.0m per 5 kg/m²), and HbA1c (0.4m, 95%CI -0.1, 0.9m per %).  201 

Wider venules were also positively associated with elevated levels of triglycerides (0.6m, 202 

95%CI 0.3, 0.9m per mmol/L).  Venular tortuosity was also positively associated with Type 203 

2 diabetes risk factors, as well as prevalent Type 2 diabetes.  Venules were 2.5% more 204 

tortuous (95% CI 1.7, 3.3%) per 5 kg/m² increase in BMI, 2.2% more tortuous (95% CI 1.0, 205 

3.5%) per percentage rise in HbA1c, and 6.5% more tortuous (95% CI 2.8, 10.4%) amongst 206 

those with Type 2 diabetes compared to those without.   207 

Retinal vasculometry associations with cardiovascular risk factors:- 208 

Arteriolar widths were inversely associated with age, systolic (0.5m 95%CI 0.4, 0.6m per 209 

10mmHg rise) and diastolic blood pressure (1.0m, 95%CI 0.9, 1.2m per 10mmHg rise).  210 
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Arteriolar tortuosity was also positively associated with systolic blood pressure (1.2%, 95% 211 

CI 0.5, 1.9% per 10mmHg respectively).  Arteriolar width was inversely associated with total 212 

cholesterol (0.2m, 95%CI 0.0, 0.3m per mmol/L) and HDL (1.2m, 95%CI 0.7, 1.6m per 213 

mmol/L).  Narrower venules and decreased venular tortuosity were associated with HDL 214 

cholesterol (1.4m, 95%CI 0.7, 2.1m, 1.8%, 95%CI -0.1, 3.7% less tortuosity per mmol/L).  215 

No associations were observed with prevalent MI, but there was a suggestion of increased 216 

arteriolar tortuosity with prevalent stroke (8.3%, 95%CI -0.6, 18%).  Arterioles were 217 

narrower and more tortuous with increasing age; venular width increased with age. Both 218 

vessel types were wider amongst smokers compared with lifelong never smokers. Figure 1 219 

shows the associations between retinal vessel indices and Type 2 diabetes and CVD risk 220 

factors by quintile; statistically significant associations appeared to be graded.  These 221 

associations remained after exclusion of those with prevalent disease, including MI, stroke, 222 

and diabetes (n=466).   223 

Sensitivity and multiple variable analyses:- 224 

Sensitivity analyses examined the differences in vessel width and tortuosity associated with 225 

cardiometabolic risk factors, excluding those with clinical diabetes / cardiovascular disease, 226 

and those with known / treated hypertension (data available on request).  Metabolic 227 

associations with venular width and tortuosity persist after exclusion of those with clinical 228 

diabetes, and arteriolar width associations with vascular risk factors (particularly blood 229 

pressure) remain after excluding those with cardiovascular disease and hypertension.    230 

Retinal vessel associations were similar in males and females (tests for interaction P>0.05), 231 

except for HDL, for which opposing associations with arteriolar tortuosity were apparent. 232 

Per mmol/L higher HDL, arteriolar tortuosity was 5.8% (95% CI 0.1, 11.8%) higher in men, 233 

but 4.0% (95% CI 0.0, 7.8%) lower in women (test for interaction p=0.006). 234 
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The mutual independence of these risk factor associations was also examined. Mutually 235 

adjusted risk factor associations are presented in Supplemental Table 1.  Risk factors that 236 

were statistically significantly associated with retinal vasculometry in Table 2 were included 237 

in multiple variable regression models.  Associations with both arteriolar morphometry 238 

measures and cardiometabolic risk factors remained remarkably stable.  Consistent 239 

associations were observed between arteriolar width and age, current smoking status, 240 

blood pressure and HDL cholesterol, but there was no evidence of an independent 241 

association with total cholesterol. Similarly strong associations remained for arteriolar 242 

tortuosity with age, sex and blood pressure.  Associations from mutually adjusted models 243 

for venular measures were also remarkably similar to the associations presented in Table 2.  244 

Venular width associations with age, current smoking, BMI and diastolic blood pressure 245 

were relatively unchanged, but associations with HDL cholesterol and triglycerides were 246 

attenuated towards the null.  Further investigation showed that associations with lipids 247 

were primarily confounded by BMI.  Venular tortuosity associations with sex and BMI were 248 

relatively unchanged. However, the association with HbA1c was attenuated (1.3%, 95%CI 249 

0.0,2.6%, increase in venular tortuosity per % increase in HbA1c), and the association with 250 

systolic blood pressure was weakened by adjustment for BMI.  Multilevel regression models 251 

adjusting for age, sex and blood pressure showed a stronger association with prevalent 252 

stroke than in Table 2, with 9.0% more tortuous arterioles amongst those who had suffered 253 

a stroke compare to those who had not (95%CI 0.1,18.8%, p<0.001), suggesting that the 254 

effect on arteriolar tortuosity is independent of systolic blood pressure.  Increased venular 255 

tortuosity among those with prevalent diabetes was independent of sex, BMI and blood 256 

pressure (5.5%, 95%CI 1.4%,8.9%). 257 
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DISCUSSION 258 

Our results are consistent with previously documented retinal vasculometry associations 259 

with Type 2 diabetes and CVD risk factors and outcomes,10-13 but provide further insight 260 

where uncertainties over the presence or absence of associations exist.  Moreover, novel 261 

associations with vessel tortuosity provide further evidence of vasculometry changes.  262 

Findings suggest that Type 2 diabetes risk factors and prevalent Type 2 diabetes are 263 

associated with the morphology of retinal venules, both in terms of width and tortuosity, 264 

while coronary risk factors have a greater influence on arteriolar width.  These associations 265 

remain after exclusion of those with prevalent diabetes, cardiovascular disease, and with 266 

known / treated hypertension, suggesting that these vessel changes may be indicative of 267 

preclinical phases of disease. 268 

269 

While retinal signs of diabetic eye disease are well described,27 there have been some 270 

uncertainties about the association between diabetes, particularly risk factors for Type 2 271 

diabetes, and retinal vessel morphometry, with inconsistencies between cross-sectional and 272 

longitudinal findings.28  However, a recent meta-analysis showed that wider venules, but not 273 

arterioles, were associated with diabetes;29 consistent with cross-sectional observations 274 

suggesting that wider venules are associated with increasing levels of fasting glucose and 275 

HbA1c levels.28  Findings from the present study are consistent with these risk factor 276 

observations, not only replicating the associations between increased venular width and 277 

glycosylated haemoglobin (although not formally statistically significant), but also showing 278 

coherent associations with other metabolic risk factors, including BMI, as well as novel 279 

associations with levels of triglyceride; associations which were absent with arteriolar width.  280 

The present study also showed that narrow venules were associated with increased HDL, 281 
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which when considered in relation to levels of triglyceride, might be considered as a further 282 

indicator of insulin resistance.30  However, venular width associations with HDL and 283 

triglycerides were weakened after multivariable adjustment, and HDL-tortuosity 284 

associations differed in males and females.  Reasons for these sex differences are unclear, 285 

but may relate to sex differences observed in retinal width-CHD associations, where 286 

associations are evident in women not men.13;31  Moreover, this study was novel in showing 287 

consistent metabolic associations with retinal vessel tortuosity, whereby increased venular 288 

tortuosity was associated with Type 2 diabetes risk factors (including levels of BMI and 289 

HbA1c), in addition to showing a strong association with prevalent Type 2 diabetes.  These 290 

associations persist after mutual adjustment, and exclusion of those with clinical diabetes, 291 

suggesting that these associations may be independent early markers of the disease 292 

process.  Associations observed in this study appear to contrast with those observed with 293 

overt disease, whereby arteriolar (not venular) tortuosity has been related to the duration 294 

of diabetes.32  Associations with Type 2 diabetes risk markers (including levels of BMI and 295 

HbA1c), as well as other cardiovascular risk factors (systolic blood pressure and blood 296 

cholesterol) were not observed amongst this diseased group.32  This may suggest 297 

differences in retinal vessel morphometry associations between disease development and 298 

overt disease. 299 

300 

Cross sectional and longitudinal associations between retinal vasculometry and CVD 301 

outcomes have been studied, including coronary heart disease (CHD), stroke and 302 

cardiovascular mortality.13;33-35  However, more recent evidence from prospective studies 303 

has raised some inconsistencies.  In particular, retinal vessel calibre changes are only 304 
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associated with CHD events in women not men,13;31 and in some studies vessel width 305 

associations with stroke appear only apparent in venules, which appears to contradict the 306 

perceived disease process.36  In the present study, we observed no association between 307 

retinal vascular width measures and prevalent CHD, although there was the suggestion of a 308 

positive association between arteriolar tortuosity and prevalent stroke, which was stronger 309 

after adjustment for age, sex and blood pressure.  An association between narrower 310 

arterioles and high blood pressure has been well documented.10;11;14;37  The present study 311 

confirms these findings, showing decreased arteriolar width associated with both increased 312 

systolic and diastolic blood pressure. 313 

Evidence examining associations between venular width and blood pressure have been less 314 

consistent,10 although a recent meta-analysis suggested increased width associated with 315 

hypertension.14  Our study showed a small but statistically significant decrease in venular 316 

width with increasing diastolic blood pressure, which remained after multivariable 317 

adjustment, although the magnitude of association was less than the association observed 318 

with arterioles.  This association was no longer statistically significant when those with 319 

prevalent cardiovascular disease and known / treated hypertension were excluded, but 320 

associations with systolic blood pressure remained.  The observation of an association 321 

between vessel width and systolic blood pressure amongst non-hypertensives, strengthens 322 

the potential additional use of retinal vessel morphometry assessment in routine health 323 

checks.  Of particular note were the different associations with vessel tortuosity, where 324 

increased arteriolar and venular tortuosity was associated with greater systolic blood 325 

pressure (but not diastolic blood pressure), while decreased venular tortuosity was 326 

associated with higher HDL.  The apparent different direction of associations with these 327 
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cardiovascular risk factors are potentially consistent, and replicate findings observed in one 328 

other large population based study.15329 

330 

By far the strongest associations observed were those with age and smoking, where per 331 

decade rise in age there was arteriolar narrowing and increased tortuosity, and with current 332 

smoking appreciable arteriolar and venular dilation.  There was also the suggestion of 333 

smaller arterioles and markedly greater tortuosity (both arteriolar and venular) in females 334 

compared to males.  However, sex differences in width were largely explained and 335 

differences in tortuosity partially explained by height (data not presented).  While 336 

differences in CVD risk between males and females may have contributed to these 337 

associations, explanations for potential sex differences in retinal vessel morphometry 338 

remain uncertain.  The effect of age was independent of blood pressure, as well as other 339 

cardiometabolic risk factors, but smaller compared to a body of literature suggesting a 2 to 340 

5µm decrease in arteriolar width per decade in age (although these later effect sizes were 341 

seen in relation to central retinal vessel equivalent sizes, which are 2-3 times larger as they 342 

are scaled-up from retinal measures taken within 0.5 to 1.5 disc diameters from the 343 

disc).10;38  Nevertheless, these observations demonstrate the well-known association 344 

between narrower more tortuous arterioles and older age.39  The vasodilatory effects of 345 

smoking have also been widely reported in venules, less so in arterioles.10  Increased carbon 346 

monoxide levels amongst smokers may well provide a biological explanation for these 347 

findings.40348 

349 
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Computerised assessment of vessels from retinal images have so far been heavily reliant on 350 

operator involvement, which is subjective, open to measurement error and time 351 

consuming,16 limiting its use in large population based studies.  The EPIC Eye study is such a 352 

study, which is richly phenotyped, allowing examination of multiple CVD risk factors within 353 

the same cohort.  Our fully automated system provides a rapid, detailed quantification of 354 

retinal vasculature in this population, for both arterioles and venules separately, since they 355 

show some opposing patterns of association with risk markers and disease states.41  The 356 

system has been extensively validated, and was successful in obtaining vessel measures in 4 357 

out of five who underwent retinal imaging.  It was not possible to obtain useful data from 358 

the remainder, as image quality was graded as insufficient (with the AV detection program 359 

unable to distinguish arterioles from venules), with images being decentred, defocussed, or 360 

obstructed by media opacities or lashes; an inevitable consequence of non-mydriasis, 361 

especially in this older age group.  This did not appear to reflect a selection bias, as there 362 

was no evidence of a marked differences in other phenotypes between those with and 363 

without vessel measures.  While those participating in the 3HC did appear to be select 364 

(being significantly younger, with higher BMI and of more privileged socioeconomic status 365 

compared to participants at baseline), this is unlikely to invalidate retinal vessel 366 

morphometry and cardiometabolic risk factor associations.42367 

368 

Our image analysis system has improved performance or is similar to earlier approaches,43-46369 

obtaining measures from the whole retinal image, not just concentric areas centred on the 370 

disc.10  Earlier studies have considered effect sizes in relation to central retinal artery and 371 

central retinal vein equivalents (CRAE, CRVE).10  It was not possible to directly compare 372 

measures with CRAE and CRVE, as the number of measures of width were considerably 373 
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more and located over the entire image.  Reducing the measurement area, typically 374 

between 0.5 to 1.5 disc diameters, to provide these measures would result in a huge data 375 

reduction, which might exclude vessel changes occurring elsewhere in the retina.  376 

Moreover, poor agreement between different systems has been highlighted, making direct 377 

comparisons in retinal calibre measures between systems problematic.47  Despite this we 378 

report similar effect sizes (e.g., the change in vessel width associated with smoking) in 379 

relation to a narrower mean width indicative of a far greater measurement area.  Vessel 380 

density is not uniform across the retina.48  Supplemental Figure 3 shows the extent of vessel 381 

measures in a typical image.  While the measures are not constrained to concentric areas 382 

close to the disc, as used in comparable systems,47 this was not perceived as a weakness 383 

given that our system is fully automated and does not allow for measurement areas to be 384 

selected.  Moreover, consistent inclusivity of measures across the whole image was 385 

observed in all images that were automatically selected as being of sufficient quality for 386 

inclusion, limiting any potential selection effects.19  Our approach is further supported by 387 

the first paper examining use of artificial intelligence (AI) in detecting cardiovascular 388 

disease, which appears to show that retinal vessels over their entire length are key areas of 389 

interest in estimating cardiovascular risk factors, such as age, blood pressure and HbA1c.49390 

While it is difficult at present to get precise information on how AI algorithms arrive at 391 

decisions, these findings suggest that retinal vasculometry studies, such as ours, are key to 392 

understanding processes associated with cardiometabolic disease. 393 

394 

We have condensed these measures to provide an overall summary of mean width, but it is 395 

possible that relative changes in vessel indices over time and perhaps variations in measures 396 

along the length of a vessel may be stronger predictors of vascular health than absolute size, 397 
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although this remains to be established.  The presence of differential retinal vasculometry 398 

associations with cardiometabolc risk factors underline the importance of making separate 399 

arteriolar and venular width and tortuosity measures, calling into question the validity of 400 

arteriolar / venular ratio measures for cardiovascular risk profiling. 401 

402 

The modest vasculometry association with prevalent stroke and the absence of associations 403 

with prevalent MI does not necessarily mean that retinal vasculometry measures are 404 

unlikely to have a role in CVD risk prediction.  Prevalent cases are likely to be very different 405 

to premorbid incident cases, with established cases often receiving vasoactive medications, 406 

which might have a modifying effect on vascular morphometry.  It is also possible that there 407 

was insufficient power to determine change in these dichotomous outcomes, given the 408 

small number of prevalent events within this study population.  However, retinal vessel 409 

associations with Type 2 diabetes risk markers and diabetes mellitus were observed, even 410 

after exclusion of those with prevalent outcome, suggesting that pre-clinical vasculometry 411 

changes are apparent.  This is commensurate with recent longitudinal evidence, raising the 412 

possibility that retinal vasculometry may have a role in risk prediction),50 as well as 413 

surveillance and disease management.  Power to determine change in continuous outcomes 414 

was greater, replicating previous observations and yielding a number of novel associations, 415 

particularly those with vessel tortuosity, as well as metabolic markers.  However, given the 416 

cross-sectional nature of data collection, these associations between cardiometabolic risk 417 

factors and retinal vessel abnormalities do not of themselves allow the potential role of 418 

retinal vessel quantification in disease risk prediction to be formally ascertained; future 419 

follow-up of this and other large cohorts with high quality retinal imaging data will allow this 420 

issue to be investigated. 421 
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FIGURE LEGENDS 

Figure 1:  Adjusted mean vessel width and tortuosity by quintiles of cardiovascular and Type 
2 diabetes risk factors, for venues and arterioles. Adjusted means (solid square symbols), 
95% CIs (error bars), regression lines (solid line) and associated 95% CIs (dashed lines) are 
from a multilevel model allowing for age, sex and repeated measure of vessel indices within 
person. 

Supplemental Figure 1:  Flow diagram of participant recruitment for different phases of the 
European Prospective Investigation of Cancer in Norfolk study, and in particular the third 
follow-up which included an eye examination. 

Supplemental Figure 2:  Histogram of arteriolar and venular width and tortuosity measures 
(including with and without log transformation for tortuosity measures). 

Supplemental Figure 3:  Automated arteriolar (red) and venular (blue) width measures 
recorded in one EPIC Eye image. 



Table 1.  Participant characteristics of EPIC participants who took part in the 3rd health check 
with and without useable fundus images (5947 versus 2676 participants) 

Characteristic Third Health Examination

Included in the 
analyses 

Excluded from the 
analyses 

Number 5947 2676

Age (SD) years 67.6 (7.6) 71.3 (8.6)

Gender n (% Female) 3,393 (57) 1,365 (51)

Current smokers n (%) 267 (4.5) 107 (4.0)

Former smoker n (%) 2,628 (44) 1284 (48)

Height (cm) 166.4 (9.1) 166.2 (9.2)

Weight (Kg) 74.4 (14.3) 74.6 (14.0)

BMI (Kg/m²) 26.8 (4.3) 27.0 (4.2)

Systolic blood pressure (mmHg) 135.7 (16.6) 137.3 (16.8)

Diastolic blood pressure (mmHg) 78.4 (9.2) 77.9 (9.6)

Total cholesterol (mmol/L) 5.4 (1.1) 5.3 (1.1)

LDL cholesterol (mmol/L) 3.2 (1.0) 3.1 (1.0)

HDL cholesterol (mmol/L) 1.5 (0.4) 1.5 (0.4)

Triglycerides (mmol/L) 1.7 (0.9) 1.6 (0.9)

HbA1c (%) 5.8 (0.6) 5.9 (0.7)

HbA1c (mmol/mol) 40 41 

Prevalent MI n (%) 187 (3.1) 106 (4.0) 

Prevalent stroke n (%) 118 (2.0) 67 (2.5) 

Prevalent Type 2 diabetes n (%) 237 (4.0) 156 (5.8) 

Mean axial length (SD) mm 23.6 (1.2) 23.5 (1.2) 

Mean best vision sphere (SD)
dioptres 0.2 (2.2) 0.2 (2.3) 

Mean arteriolar width (SD) microns 74.8 (6.9) -

Mean venular width (SD) microns 88.4 (11.3) -

Arteriolar tortuosity x 1000* 4.2 (1.6) -

Venular tortuosity x1000* 3.3 (1.3) -

Mean (SD) or n (%) as indicated.  
* Geometric mean (SD) 
For participants included in the analyses extent of missing data is as follows:- 
Cholesterol missing data for 429 participants 
LDL Cholesterol missing data for 511 participants 
HDL Cholesterol missing data for 428 participants 
Triglycerides missing data for 429 participants 
HbA1c missing data for 498 participants 
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Table 2.  Difference in vessel width (m) and tortuosity (%) associated with Type 2 diabetes and CVD risk factors and outcomes for individual 
factors in multivariable regression model age and sex adjusted

Risk marker
Difference in arteriolar 

width (95% CI) m
P-

value

Difference in venular 

width (95% CI) m 
P-

value 
Difference in arteriolar 
tortuosity (95% CI) % 

P-
value 

Difference in venular 
tortuosity (95% CI) % 

P-
value 

Per decade in age -0.79 (-1.00, -0.58) <0.001 2.56 (2.20, 2.91) <0.001 5.44 (3.80, 7.11) <0.001 -0.23 (-1.15, 0.69) 0.619

Female vs male -0.51 (-0.83, -0.19) 0.002 -0.32 (-0.86, 0.22) 0.245 3.83 (1.37, 6.35) 0.002 2.16 (0.74, 3.60) 0.003

Current vs never 
smoked 

2.13 (1.34, 2.91) <0.001 3.03 (1.71, 4.34) <0.001 -2.70 (-8.22, 3.16) 0.360 1.66 (-1.75, 5.18) 0.345

Former vs never 
smoked 

0.11 (-0.23, 0.44) 0.522 0.31 (-0.25, 0.87) 0.275 -0.21 (-2.67, 2.31) 0.870 0.88 (-0.58, 2.36) 0.240

Per 5 kg/m² in BMI 0.15 (-0.03, 0.34) 0.098 0.72 (0.41, 1.03) <0.001 -0.24 (-1.59, 1.13) 0.729 2.52 (1.71, 3.34) <0.001

Per 10mmHg in 
SBP 

-0.50 (-0.60, -0.41) <0.001 -0.06 (-0.23, 0.10) 0.458 1.20 (0.47, 1.94) 0.001 0.45 (0.02, 0.88) 0.039

Per 10mmHg in 
DBP 

-1.04 (-1.22, -0.87) <0.001 -0.32 (-0.61, -0.02) 0.035 0.75 (-0.56, 2.07) 0.263 -0.55 (-1.30, 0.21) 0.157

Per 1mmol/L in TC -0.18 (-0.33, -0.02) 0.024 -0.16 (-0.41, 0.10) 0.233 0.42 (-0.72, 1.58) 0.472 -0.52 (-1.18, 0.15) 0.131

Per 1mmol/L in 
LDL 

-0.09 (-0.26, 0.08) 0.313 -0.24 (-0.53, 0.05) 0.108 0.60 (-0.69, 1.90) 0.362 -0.39 (-1.14, 0.36) 0.310

Per 1mmol/L in 
HDL 

-1.18 (-1.62, -0.74) <0.001 -1.42 (-2.16, -0.69) <0.001 -0.61 (-3.82, 2.70) 0.714 -1.83 (-3.70, 0.07) 0.059

Per 1mmol/L in 
Triglycerides 

0.06 (-0.12, 0.23) 0.524 0.57 (0.27, 0.86) <0.001 0.29 (-1.01, 1.62) 0.661 -0.18 (-0.94, 0.59) 0.647

Per % in HbA1c per 0.22 (-0.08, 0.51) 0.148 0.41 (-0.07, 0.90) 0.097 0.95 (-1.21, 3.15) 0.393 2.24 (0.96, 3.53) 0.001

Prevalent MI vs 
absent 

0.66 (-0.27, 1.58) 0.165 1.20 (-0.35, 2.75) 0.129 4.36 (-2.57, 11.77) 0.224 1.87 (-2.14, 6.05) 0.366

Prevalent Stroke vs 
absent 

0.79 (-0.37, 1.95) 0.181 0.59 (-1.35, 2.53) 0.553 8.30 (-0.59, 17.99) 0.068 3.66 (-1.42, 9.01) 0.161

Prevalent DM vs 
absent 

-0.08 (-0.90, 0.75) 0.857 0.48 (-0.90, 1.86) 0.494 1.64 (-4.38, 8.03) 0.602 6.53 (2.78, 10.41) 0.001
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Number included n=5,942. Regression coefficients are from a multilevel model allowing for repeated images from the same person (random effect for person) and 
adjusting for age and sex as fixed effects.  Prevalent MI, stroke, DM (Diabetes Mellitus); n=187, 118, 238 respectively 
Cholesterol missing data for 429 participants 
LDL Cholesterol missing data for 511 participants 
HDL Cholesterol missing data for 428 participants 
Triglycerides missing data for 429 participants 
HbA1c missing data for 498 participants 
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