
SSBSE-2018. Thelma Elita Colanzi and Phil McMinn Eds., LNCS 11036, p363–369,
Montpellier. 8-9 Sept. 2018. Springer. doi:10.1007/10.1007/978-3-319-99241-9 22
Preprint

Evolving Better Software Parameters

William B. Langdon and Justyna Petke

CREST, Computer Science, UCL, London, WC1E 6BT, UK

Abstract. Genetic improvement might be widely used to adapt existing
numerical values within programs. Applying GI to embedded parameters
in computer code can create new functionality. For example, CMA-ES
can evolve 1024 real numbers in a GNU C library square root to imple-
ment a cube root routine for C.
Keywords genetic improvement, SBSE, GGGP, software maintenance
of empirical constants, data transplantation, glibc, sqrt, cbrt

1 Literature on Maintaining Numbers within Code

Many programs contain embedded parameters. Typically these are numeric val-
ues (often float or double, but also integers, e.g. the GNU C library contains
more than a million integer constants, see Figure 1, also [1]). In many cases
these parameters relate to the software itself or to simple facts which are un-
likely to change during the program’s lifetime or period of active use. However,
many others aught to be updated. This maintenance problem has been known
for a long time (Martin and Osborne, 1983 [2, Section 6.8, page 24, Hard Coded
Parameters Which Are Subject To Change]).

 1

 10

 100

 1000

 10000

 100000

0 1 256 65536 16M 4G 1024G 256T 64Peta 16Exa

0 1 1000 1e6 1e9 1e12 1e15 1e18

c
o
u
n
t

number

0 1031122 positive integers
 29823 negative integers

Fig. 1. The GNU C library version 2.27 (excluding test suite) contains 1 202 711
integer constants. Zero is the most common, occurring a total of 141,874 times,
followed by 1 (19 203) and -1 (6 479). Every integer between -28 and 40 956 occurs
at least once.

1

http://ssbse18.irisa.fr
http://dx.doi.org/doi:10.1007/978-3-319-99241-9_22
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/J.Petke/
http://crest.cs.ucl.ac.uk/

Parameters may relate to heuristics within the code, which the developer
chose before contact with real users. Their values perhaps should have been
updated shortly after first release, or values (e.g. those relating to memory or
array sizes) may need updating due to operating on new hardware, as well as to
changes in patterns of use. Other parameters can relate to the problem itself. For
example, chemical reaction rate constants in ozone layer simulations [3]. In some
cases the exact numerical values are critical [3]. Some physical values are known
with very high precision, but for others the state of scientific knowledge can
improve over the operational life of the program. For example, the ViennaRNA
package [4] contains more than 50 000 binding energy values. These are derived
from scientific measurements of RNA molecules. Even so, during the relatively
short life of this suite of C programs, knowledge has moved on and various
newer versions of these parameters are available. Recently [5], we showed genetic
improvement could be used to adapt these 50 000 int values. (The GI values have
been distributed with ViennaRNA since version 2.4.5.)

As computing is now mature, maintaining software has become the dominant
cost. Marounek [6, page 51] quotes figures of more than 90% of total cost. More-
over, software maintenance routinely requires highly skilled experts [7, page 65].
Yet a forthcoming survey [8] starts by saying “a relatively small amount [of
SBSE research] is related to software maintenance”, whilst [9] does not give a
break down of the SBSE literature on software maintenance. Indeed it appears
that maintaining embedded constants within existing packages has received little
attention so far. For example, [10] considers the maintenance impact of names
given to constants in Java source code, but not how to maintain their values.
Similarly, [11] consider how to hide constant values, but not how to update them.

There is some research on parameter tuning. For example, ParamILS1 or
irace2 tools. However, there is scarcely any on updating parameters in the code
that are not specifically exposed to the user for tuning. The deep parameter
tuning work by Wu et al. [12] being the first known example, where they opti-
mised for runtime and memory consumption. Unlike Wu et al. [12], we focus on
adapting numerical values only. Previous work on evolving new features using GI
dealt with transplantation of portions of one program to another [13], or evolving
functionality separately and then adding them to existing code using automated
software transplantation [14] (so-called ‘grow-and-graft’). Our approach does not
require additional code, just changes within the existing code base.

In the next section we continue exploring automated parameter tuning by
taking existing code which relies on ≈1 thousand embedded constants from the
GNU C library to create a function, cbrt, which is not implemented by the
library. Section 2.3 shows its accuracy is typically better than 2 10−16 and not
worse than 10−15. (I.e. typically within one bit in the IEEE 754 double precision
representation.) Finally, in Section 3, we suggest there is a great need for research
into both automated data update and data transplantation.

1 http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
2 http://iridia.ulb.ac.be/irace/

2

https://www.tbi.univie.ac.at/RNA/changelog.html
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://iridia.ulb.ac.be/irace/

2 Example of Automated Parameter Tuning for Evolving
New Functionality

We use an existing implementation of the square root function and use genetic
improvement to evolve a cube root function. This is achieved by mutating the
constant values in the chosen code for square root.

The current release of the GNU C library (glibc-2.27, 1 Feb 2018, 851 080
lines of non-test code) was downloaded from https://www.gnu.org/s/libc/.
It contains multiple implementations of the square root function (sqrt). One
(../powerpc/fpu) which uses table lookup [15] was selected for use as a model
for a table-based version of the cube root function (cbrt).

2.1 Manual changes

We are primarily concerned with adjusting data values. However, a few changes
to the existing powerPC sqrt code were made by hand so that it could support
cbrt. Whilst in [5] no code changes were needed, we envision that such changes
may be required. For cbrt: 1) Various powerPC optimisations were disabled.
2) Replaced the trap for negative numbers by returning − 3

√
−x if x is negative.

3) Division of the exponent part of double precision numbers by three is rather
more tricky than division by two. Keeping track of the remainder required the
multiplication or division by 3

√
2 or

2
3

√
2 (Section 2.3). The existing constants

CBRT2 and SQR CBRT2 were used. 4) sysdeps/powerpc/fpu/e sqrt.c uses a
right shift to do two operations. Firstly to divide the exponent by two. And
secondly to combine the least significant bit of the exponent with the top eight
bits of the fractional part, forming a nine bit index into the table. Effectively
mapping numbers in the range 0.5 to 2 onto the table. The more tricky division
by three led to the decision to exclude the exponent and to just use the top nine
bits of the fractional part as the table index. So numbers in the range 1 to 2
are mapped onto the table, see also Figure 2. 5) The constant almost half was
replaced by new constant almost third = 0.3333333333333334.

2.2 Automatic changes to data table using CMA-ES

The t sqrt table contains 512 pairs of floats. The top 256 correspond to numbers
in the range 1 to 2. These were used as start points when evolving the 512 pairs
of floats in the new table t cbrt.

The Covariance Matrix Adaptation Evolution Strategy algorithm
(CMA-ES [16]) was downloaded from https://github.com/cma-es/c-cmaes/

archive/master.zip It was set up to fill the table of floats one pair at a
time. Each pair being initially set to either the corresponding pair of values in

t sqrt or the mean of two adjacent pairs. The initial mutation step sizes used
by CMA-ES were set (pairwise) to 3.0 times the standard deviation calculated
from the 512 pairs of numbers in t sqrt.

CMA-ES parameters The CMA-ES defaults (cmaes initials.par) were used,
except: the problem size (N 2), the initial values and mutation sizes are loaded
from t sqrt (see previous section) and various small values concerned with run
termination were set to zero (stopFitness, stopTolFun, stopTolFunHist, stop-
TolX). The initial seed used for pseudo random numbers was also set externally.

3

https://www.gnu.org/s/libc/
http://cma.gforge.inria.fr/cmaes_sourcecode_page.html#C
https://github.com/cma-es/c-cmaes/archive/master.zip
https://github.com/cma-es/c-cmaes/archive/master.zip

Fitness function Each time CMA-ES proposes a pair (N=2) of double val-
ues, they are converted into floats and loaded into t cbrt at the location that
CMA-ES is currently trying to optimise. The fitness function uses three fixed
test double values in the range 1.0 to 2.0. These are: the lowest value for the

t cbrt entry, the mid point and the top most value. The cbrt function is called
(using the updated t cbrt) for each and a sub-fitness value calculated with each
of the three returned doubles. The sub-fitnesses are combined by adding them.

Each sub-fitness takes the output of cbrt, cubes it and takes the absolute
difference between this and the corresponding test value. If they are the same,
the sub-fitness is 0, otherwise it is positive. Since when cbrt is working well,
the differences are very small, they are re-scaled for CMA-ES. If the absolute
difference is less than one, its log is taken, otherwise the absolute value is used.
However, in both cases, to prevent the sub-fitness being negative, log of the
smallest feasible non-zero difference DBL EPSILON is subtracted.

CMA-ES will stop when the difference on all three test points is zero.

Restart Strategy When CMA-ES failed to find a pair of values for which all
three test cases pass, it was run again with the same initial starting position and
mutation size, but a new pseudo random number seed. Mostly CMA-ES found
a suitable pair in one run, but in 107 of 512 cases it was run more than once.
(In no case was CMS-ES run more than 4 times on a particular pair.)

2.3 Testing the evolved cbrt function

The pairs of float values found by CMA-ES, called sg,sy in the system, are shown
in Figure 2. The glibc-2.27 powerPC IEEE754 table-based double sqrt function
claims to produce answers within one bit of the correct solution. On 1 536 tests
of large integers (≈ 1016) designed to test each of the 512 bins 3 times (min,
max and a randomly chosen point) the largest discrepancy between (cbrt(x)**3)
and x was three (i.e. 6.66 10−16). In all tests, including those described in the
rest of this section, this only arose when the exponent part of the double was not
a multiple of 3. This requires the cbrt code to do an extra multiply or divide by
3
√

2 or
2
3

√
2 (i.e. CBRT2 or SQR CBRT2, see Section 2.1), apparently resulting in

additional loss of precision.

As well as ad-hoc testing, and the large positive integer tests mentioned in
the previous paragraph, cbrt was tested with 5 120 random numbers uniformly
distributed between 1 and 2 (the largest deviation was two3 5 120 random sci-
entific notation numbers and 5 120 random 64 bit patterns. Half the random
scientific notation numbers were negative and half positive. Half were smaller
than one and half larger. The exponent was chosen uniformly at random from
the range 0 to |308|. In one case a random 64 bit pattern corresponded to NAN
(Not-A-Number) and cbrt correctly returned NAN. In most cases cbrt returned
a double, which when cubed was its input or within one bit of it. In some cases
the cubed answer was two from the input. The maximum deviation was 3.

3 2 at the least significant part of IEEE754 double precision corresponds to 4.44 10−16.

4

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

E
v
o
lv

e
d

 p
a
ir
s
 o

f
_

_
t_

c
b
rt

 t
a

b
le

 v
a
lu

e
s

Normalised input to cbrt(x)

sg
sy

Theory

Fig. 2. 512 (sg,sy) pairs of numbers found by CMA-ES for t cbrt. Horizontal
axis is the normalised argument of cbrt which corresponds to each pair in t cbrt.

3 The Importance of Automated Parameter Tuning

Section 1 has briefly covered the existing literature. It makes clear that, apart
from our own recent work [5], the problem of automatic update of values embed-
ded in existing software has been little studied. By page 2 it showed that the cost
of software maintenance is staggering, yet there is little research on automatically
adjusting software parameters, not exposed to the user for modification.

Currently the task of keeping constants embedded in existing software up-
to-date is labour-intensive and so there is great scope for automation.

Even parameters given by scientific measurement can be subject to change
in just a few years [5]. Andronescu et al. [17] had tried to update parameters
in RNAfold using constraint optimization. Nevertheless, our GI did better [5].
Section 2 expands this to the related task of creating new system software from
existing functions via automated parameter tuning. In Section 2 we use CMA-ES
to automatically adapt 1024 float constants, giving rise to cbrt, which does not
currently exist in the C run time library. In addition to 3

√
x, this framework could

be readily adapted to provide new maths double functions [18] where there is
an objective function, e.g. the inverse operation. It could also be used to port
existing functions to different hardware.

Previously [5] we have demonstrated using SBSE to adapt 50 000 parameters
to new scientific knowledge may be possible. Section 2 showed in less than five
minutes it can adapt more than a thousand continuous values. We have used
extensive testing to show the correctness of the automatically transplanted data.
Additionally, e.g. following [15], it may be feasible to verify our GI cbrt.

5

These very early experiments hint, in a world addicted to software, both
automated data maintenance and data transplantation could be vital new areas
for search based software engineering.

Code see http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gi cbrt.tar.gz

Acknowledgements My thanks to our EuroGP [5] anonymous reviewers.

References

1. Langdon, W.B., Petke, J.: Software is not fragile. In Parrend, P., et al., eds.:
CS-DC’15. Proceedings in Complexity, Springer (2015) 203–211 Invited talk.

2. Martin, R.J., Osborne, W.M.: Guidance on software maintenance. NBS Special
Publication 500-106, National Bureau of Standards, USA (1983)

3. Cao, L., Sihler, H., Platt, U., Gutheil, E.: Numerical analysis of the chemical
kinetic mechanisms of ozone depletion and halogen release in the polar troposphere.
Atmospheric Chemistry and Physics 14(7) (2014) 3771–3787

4. Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C.,
Stadler, P.F., Hofacker, I.L.: ViennaRNA package 2.0. AMB 6(1) (2011)

5. Langdon, W.B., Petke, J., Lorenz, R.: Evolving better RNAfold structure predic-
tion. In Castelli, M., et al., eds.: EuroGP. LNCS 10781, Springer (2018) 220–236

6. Marounek, P.: Simplified approach to effort estimation in software maintenance.
Journal of Systems Integration 3(3) (2012)

7. Dehaghani, S.M.H., Hajrahimi, N.: Which factors affect software projects mainte-
nance cost more? Acta Informatica Medica 21(1) (2013) 63–66

8. Mohan, M., Greer, D.: A survey of search-based refactoring for software mainte-
nance. Journal of Software Engineering Research and Development 6(1) (2018)

9. de Freitas, F.G., de Souza, J.T.: Ten years of search based software engineering:
A bibliometric analysis. In Cohen, M.B., O Cinneide, M., eds.: SSBSE 2011 18–32

10. Butler, S.: Analysing Java Identifier Names. PhD thesis, Open University, UK
11. Tiella, R., Ceccato, M.: Automatic generation of opaque constants based on the

K-clique problem for resilient data obfuscation. In: SANER 2017 182–192
12. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisa-

tion. In Silva, S., et al., eds.: GECCO, Madrid, ACM (2015) 1375–1382
13. Marginean, A., Barr, E.T., Harman, M., Jia, Y.: Automated transplantation of

call graph and layout features into Kate. In Labiche, Y., Barros, M., eds.: SSBSE.
LNCS 9275, Bergamo, Springer (2015) 262–268

14. Langdon, W.B., Harman, M.: Grow and graft a better CUDA pknotsRG for RNA
pseudoknot free energy calculation. In Langdon, W.B., et al., eds.: Genetic Im-
provement 2015 Workshop, Madrid, ACM (2015) 805–810

15. Markstein, P.W.: Computation of elementary functions on the IBM RISC Sys-
tem/6000 processor. IBM J Res. Dev. 34(1) (1990) 111–119

16. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2) (2001) 159–195

17. Andronescu, M., Condon, A., Hoos, H.H., Mathews, D.H., Murphy, K.P.: Effi-
cient parameter estimation for RNA secondary structure prediction. Bioinformat-
ics 23(13) (2007) i19–i28

18. Langdon, W.B.: Evolving square root into binary logarithm. Technical Report
RN/18/05, University College, London, London, UK (2018)

6

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gi_cbrt.tar.gz
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_csdc.html
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-106.pdf
http://dx.doi.org/10.5194/acp-14-3771-2014
http://dx.doi.org/10.1186/1748-7188-6-26
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2018_EuroGP.html
http://www.si-journal.org/index.php/JSI/article/view/123/99
http://dx.doi.org/10.5455/AIM.2012.21.63-66
http://dx.doi.org/10.1186/s40411-018-0046-4
http://dx.doi.org/10.1007/978-3-642-23716-4_5
http://oro.open.ac.uk/46653/
http://dx.doi.org/10.1109/SANER.2017.7884620
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wu_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Marginean_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
http://dx.doi.org/10.1147/rd.341.0111
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1093/bioinformatics/btm223
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_RN1805.html

	Evolving Better Software Parameters

