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Abstract 

Most land on Earth has been changed by humans and past changes of land can have lasting 

influences on current species assemblages. Yet few globally representative studies explicitly 

consider such influences even though auxiliary data, such as from remote sensing, are readily 

available. Time series of satellite-derived data have been commonly used to quantify 

differences in land-surface attributes such as vegetation cover, which will among other things 

be influenced by anthropogenic land conversions and modifications. Here we quantify 

differences in current and past (up to five years before sampling) vegetation cover, and assess 

whether such differences differentially influence taxonomic and functional groups of species 

assemblages between spatial pairs of sites. Specifically, we correlated between-site 

dissimilarity in photosynthetic activity of vegetation (the Enhanced Vegetation Index) with the 

corresponding dissimilarity in local species assemblage composition from a global database 

using a common metric for both, the Bray-Curtis index. We found that dissimilarity in species 

assemblage composition was on average more influenced by dissimilarity in past than current 

photosynthetic activity, and that the influence of past dissimilarity increased when longer time 

periods were considered. Responses to past dissimilarity in photosynthetic activity also differed 

among taxonomic groups (plants, invertebrates, amphibians, reptiles, birds and mammals), 

with reptiles being among the most influenced by more dissimilar past photosynthetic activity. 

Furthermore, we found that assemblages dominated by smaller and more vegetation-dependent 

species tended to be more influenced by dissimilarity in past photosynthetic activity than prey-

dependent species. Overall, our results have implications for studies that investigate species 

responses to current environmental changes and highlight the importance of past changes 

continuing to influence local species assemblage composition. We demonstrate how local 

species assemblages and satellite-derived data can be linked and provide suggestions for future 

studies on how to assess the influence of past environmental changes on biodiversity.  
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Introduction 

Throughout the Earth’s history, land has changed constantly by a combination of natural and 

anthropogenic forces. Palaeontological evidence indicates that humans have transformed 

approximately 75 % of the land at least once (Ellis et al. 2010, Ellis 2011), with changes in 

many land-surface attributes, such as vegetation cover, accelerating since the beginning of the 

industrial revolution (Lambin and Geist 2006, Steffen et al. 2015). Changes in vegetation cover 

may be caused by climatic factors, such as CO2 fertilization or altered precipitation patterns 

(Zhu et al. 2016), or anthropogenically caused land conversions, such as deforestation, re- and 

afforestation (Dupont et al. 2003, Hansen et al. 2013, Müller et al. 2014) or land modifications, 

such as degradation, intensification (Gibbs and Salmon 2015, Rufin et al. 2015) or return to 

less intensive forms of land use (Zomer et al. 2016). Over time, these changes have shaped 

both land and species assemblages in complex ways (Foster et al. 2003, Watson et al. 2014, 

Perring et al. 2016). 

Most global meta-analyses investigating the influence of differences in vegetation 

cover on species assemblages have assumed that any difference in vegetation cover at the time 

of biodiversity sampling is the dominant influence (Stein et al. 2014, Newbold et al. 2014, 

2015, Alroy 2017). However, this assumption might be incorrect as assemblages can be heavily 

influenced by legacy effects of past changes in vegetation cover (Foster et al. 2003, Watson et 

al. 2014, Ogle et al. 2015, Perring et al. 2016). For the recent past (e.g., up to five years prior 

to biodiversity sampling), ecological memory or carry-over effects, i.e. the capacity of past 

events to influence present and future ecological assemblages (Harrison et al. 2011, O’Connor 

et al. 2014, Ogle et al. 2015), have been proposed as mechanisms that shape species 

assemblages. These effects can arise through site-specific environmental factors, for instance 

altered conditions because of agricultural practices (Perring et al. 2016, 2018) or different 

sequences and successional recovery from changes in past vegetation cover (Johnson and 

Miyanishi 2008, Walker et al. 2010, Watson et al. 2014). No detailed global analysis to date 

has explicitly considered the influence of both current and past differences in vegetation cover 

on current species assemblages. 

While some differences in species assemblages can be traced back to changes in 

vegetation cover in the late quaternary (Vegas-Vilarrúbia et al. 2011, McMichael et al. 2017), 

there is some evidence that changes in vegetation cover in the more recent past can influence 

plant (Jakovac et al. 2016), invertebrate (Valtonen et al. 2013) or vertebrate assemblages 

(Newton et al. 2014, Cole et al. 2015, Graham et al. 2017). However, this has—to our 
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knowledge—not been assessed comparatively across multiple taxonomic groups. Furthermore, 

it is likely that species with specific traits, such as certain body size and/or trophic level, may 

be differentially affected by past changes in vegetation cover because of differences in their 

metabolic rate (for animals), longevity or dispersal abilities (Sutherland et al. 2000, Brown et 

al. 2004, Speakman 2005, Thomson et al. 2011, De Palma et al. 2015). Depending on the type 

and magnitude of a past changes in vegetation cover (as a proxy for land-surface changes) plant 

assemblages can either be dominated by small, fast sprouting or taller, nutrient-demanding 

species (Jakovac et al. 2016, Perring et al. 2018). Until now, our understanding of the influence 

of past differences in vegetation cover on species assemblages has been limited to case studies 

focused on specific regions or certain taxonomic and functional groups. However, a recently 

published globally representative dataset on species assemblages of broad taxonomic coverage 

(Hudson et al. 2017) and globally available satellite-derived data enable us to consider 

explicitly both current and past differences in land-surface attributes. 

 Satellite-derived data can provide internally consistent estimates of how land differs 

across time and space (Pettorelli et al. 2005, Kennedy et al. 2014). Land-surface attributes such 

as photosynthetic activity of vegetation can be quantified using spectral indicators from 

satellite-derived data (Gamon et al. 1995, Zhang et al. 2006). Changes in photosynthetic 

activity of vegetation can be related to both climatic (Fensholt et al. 2012, Zhu et al. 2016) and 

anthropogenic factors such as land conversions and modifications (Lambin et al. 2003, Mueller 

et al. 2014). Subtle differences in vegetation dynamics (as measured by various satellite-

derived vegetation indices), such as faster greening rate or differing seasonal amplitude, 

between years have been used to characterize land change (Lambin and Strahler 1994, 

Linderman et al. 2005, Lupo et al. 2007). Recent studies have used such differences to identify 

changes in land use such as pasture use intensity (Rufin et al. 2015), fallow periods in croplands 

(Estel et al. 2015, Tong et al. 2017), small-scale deforestation (DeVries et al. 2015) and broad 

scale land degradation and intensification (de Jong et al. 2011, Mueller et al. 2014).  

Dissimilarity metrics describing the entirety of recent land history (e.g. including both 

differences in land use and land cover as well as climatic and site-specific factors) can be 

calculated between spatial pairs of time series as the overall dissimilarity in photosynthetic 

activity (Linderman et al. 2005, Lhermitte et al. 2011). Increasingly such methods have been 

linked to dissimilarity in local species assemblage composition (Rowhani et al. 2008, Goetz et 

al. 2014, Nieto et al. 2015, Hobi et al. 2017), however few studies have explicitly distinguished 

between current and past dissimilarity in photosynthetic activity. 
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 Here we use a time series dissimilarity metric (the Bray-Curtis index) to quantify 

dissimilarity in a land-surface attribute, e.g. photosynthetic activity of vegetation, among 

spatial pairs of sites in the Projecting Responses of Ecological Diversity In Changing 

Terrestrial Systems (PREDICTS) dataset (Hudson et al. 2017). We explicitly distinguish 

between dissimilarity in current and past photosynthetic activity (BCEVI), defined here as the 

five years prior to the ‘current’ year, and assess how they influence compositional dissimilarity 

(BCBiodiversity) between species assemblages among paired sites. This pairwise comparison 

approach allows us to investigate (i) the overall influence of past relative to current 

dissimilarity in photosynthetic activity on species assemblages where we hypothesize that the 

influence of past dissimilarity increases with longer past periods considered. Furthermore, we 

investigate (ii) whether different taxonomic groups respond differently to past dissimilarity in 

photosynthetic activity, and (iii) if species with particular functional characteristics, i.e., those 

that are smaller and/or more vegetation-dependent, are more affected by past dissimilarity in 

photosynthetic activity than others.  

 

Data and Methods 

Remotely-sensed data 

A temporal profile of spectral reflectance values was derived from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) sensor on board NASA’s Terra and Aqua satellites. 

Since the year 2000, MODIS has provided continuous spectral data of medium-scale resolution 

(nominal ~500 m resolution) with high temporal revisit rates (a global image collection is taken 

every day) (Schaaf et al. 2002). We used the Bidirectional Reflectance Distribution Function 

and Albedo (BRDF) product (MCD43A4.005), which aggregates the highest quality daily 

spectral reflectance values into 8-day composites of seven spectral bands (Schaaf et al. 2002). 

Google Earth EngineTM was used to download and process temporal profiles of all spectral 

bands for each site (Gorelick et al. 2017). We calculated a spectral index measuring 

photosynthetic activity (the two-band Enhanced Vegetation Index – EVI; Jiang et al. 2008), 

which is based on a ratio between the near-infrared (nir, 841-876 nm) and red (red, 620-

670 nm) spectral band (𝐸𝑉𝐼 = 2.5
𝑛𝑖𝑟−𝑟𝑒𝑑

𝑛𝑖𝑟+2.4𝑟𝑒𝑑+1
). We used the EVI as it has been designed to 

reduce atmospheric contamination and not to saturate in high biomass regions such as tropical 

rainforests (Huete et al. 2002, Jiang et al. 2008). We applied the following pre-processing steps 
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(also see flowchart in Supplementary Fig. 1) to the nir and red BRDF bands individually to fill 

missing observations and filter out extreme data points.  

First, we detected and removed extreme outliers in the BRDF data that may have been 

introduced by cloud shadows, atmospheric haze, inversion errors or sensor failures. We 

calculated the absolute difference of all values from the median relative to the total median 

absolute deviation (MAD) of all values (Leys et al. 2013). Pixels which were more than a 

conservative threshold of two units deviation (but see Leys et al. 2013) away from the MAD 

as well as greater than 99 % of all other difference values were set to missing. This data-defined 

threshold removed only the most extreme outliers and retained fluctuations that are within the 

bounds of median conditions. We chose this procedure rather than using the MODIS BRDF 

quality data set (stored in the separate MCD43A2.005 product) to maintain the maximum 

number of observations assuming that bad quality inversions of the BRDF product are filtered 

and smoothed out by subsequent pre-processing steps. 

Second, we interpolated missing values using a Kalman filter, a smoother for estimating 

missing data points based on preceding data (Kalman 1960). Previous studies have shown that 

Kalman filters perform well in filling gaps in BRDF time-series especially in data-poor regions 

(Samain et al. 2008). The best model for the Kalman filter for a given time-series was estimated 

using the “forecast” R package (“auto-arima” function) by selecting the model with the lowest 

Akaike Information Criterion (AIC) (Hyndman and Khandakar 2008). We only interpolated 

consecutive gaps ≤ 40 days (i.e. five consecutive 8-day BRDF composites) as longer 

interpolations would reduce our ability to detect short-term changes in photosynthetic activity.  

We excluded all time-series from further analyses with more than 50 % remaining missing data 

(average proportion of missing data = 6.32 ± 10.31 %) in the time period considered (see 

Supplementary Fig. 2).  

Lastly, we applied a Savitzky-Golay filter (filter length = 5, “signal” R-package; Signal 

developers, 2014) to reduce the amount of random noise remaining in the time series, but retain 

small abrupt changes that might occur (Joensson and Eklundh 2004). The Savitzky-Golay filter 

performs well relative to other smoothing techniques in removing noise (Kandasamy et al. 

2013). Our pre-processing steps aimed to remove influential outliers and random noise from 

each time series, but we cannot rule out that some non-informative noise has remained in the 

time series. From these pre-processed BRDF data we calculated the EVI for each 8-day 

composite (Jiang et al. 2008). 
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Species assemblage data  

We used data on species’ abundance within local-scale assemblages from the PREDICTS 

database (Hudson et al. 2017; downloaded on 3 February 2016, see Supplementary Fig. 1), 

which is the largest global database investigating anthropogenic impacts on terrestrial species 

assemblages to date. The PREDICTS database has collated local-scale species assemblage 

records from the published literature (henceforth “sources”) comparing observations among at 

least two localities (henceforth “sites”) with differing land use or related pressures. Sources in 

the PREDICTS database having multiple sampling methodologies and taxonomic groups were 

split accordingly into different “studies”. Wherever sampling effort differed among sites within 

a study, we followed the approach of Newbold et al. (2014) and adjusted abundance values 

assuming that recorded abundance increase linearly with effort. Each study was assigned to 

one of six higher taxonomic groups based on the sampled species identity (Plants, 

Invertebrates, Amphibians, Reptiles, Birds and Mammals). We grouped plants and 

invertebrates into single individual groups as there were insufficient data to divide them into 

smaller groups (e.g., functional divisions such as flying vs ground-living insects). Studies of 

fungi were dropped from the analyses because of insufficient data. 

 Of the 25224 sites with abundance data, we removed 6109 sites because their sampling 

durations spanned more than a year or because the start of biodiversity sampling differed by 

more than three months among sites within a study. This was done to avoid seasonal effects 

confounding any link between species assemblage composition and remote-sensing derived 

estimates. Furthermore, we removed 10248 sites from studies that sampled biodiversity before 

the 18th of February 2006 to ensure MODIS data availability for at least five years prior to 

biodiversity sampling. We chose to use a five-year period to allow sufficient MODIS coverage 

(since year 2000) for the majority of studies in the PREDICTS database (median biodiversity 

sampling start date = 2007-07-17). In total 8867 sites were suitable to be linked with MODIS 

remote-sensing data. 

 The spatial extent of biodiversity sampling at PREDICTS sites typically differs from 

the resolution of MODIS data. We used the Maximum Linear Extent (MLE) information within 

the PREDICTS database, which summarises the spatial extent of sampling within a study in 

metres (Hudson et al. 2017). Sites from a few studies had large MLE (up to 40 km) and after 

visual exploration, we decided to keep only those sites that were within the 99 % quantile of 
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all MLE values (MLE < Q99 = 3000 m, removing 249 sites). Some studies had missing MLE 

information (25 % of all studies with abundance data, 728 sites), where no MLE estimate could 

be obtained during the PREDICTS data curation (Hudson et al. 2017). We filled missing MLE 

information with the average MLE estimate of each taxonomic group with corresponding 

sampling method, and any remaining missing MLE, for which no other combination of 

taxonomic group and sampling method had MLE estimates, with the average MLE for each 

taxonomic group. We tested the robustness of this assumption by removing 25 % of the existing 

MLE estimates at random and found interpolated MLE values to be reasonably accurate (r = 

0.73, p < 0.001). We used the centre coordinates for the rest of the sites (mean MLE ± SD = 

256.52 m ± 437.93 m) as their spatial extent roughly matched the nominal spatial resolution of 

the MODIS data (~500 m).  

We excluded studies from our analyses where all study sites fell within a single MODIS 

grid cell, to suit our hierarchical statistical approach (see below). Some sites within a study 

could fall into the same MODIS grid cell, therefore for all further analyses we randomly 

selected one site per study per grid cell 100 times (See section on analysis – pairwise 

differences below for description of permutation procedure and Supplementary Fig. 3 for a 

schematic), resulting in 100 different subsets that we used for all further analyses. Our final 

dataset included data from 198 studies with 4053 sites per permutation and model covering all 

major continents and most taxonomic groups (Fig. 1a). 

 

Species trait compilation  

A species’ size and trophic level are two of the most basic traits for understanding differences 

in species assemblage structure (Speakman 2005, Terborgh 2015). We classified studies into 

size and trophic bins based on a simple majority: small (>0-9 g animal body mass or > 0-9 cm 

plant height), medium (10 – 99 g or 10-99 cm) or large species (>= 100 g or >= 100 cm), or 

predominantly herbivore, omnivore, carnivore or detritivore species, by estimating the 

dominant number of species (simple sum of measurement) within a study. Studies with species 

of predominantly unknown size or trophic level were removed from the analysis. We thus 

classified entire studies to the dominant bins as each study’s methodology would likely 

constrain the average size of animals or plants that can be observed. Data on average adult 

body mass (in g) were collected for mammals (Jones et al. 2009) and birds (Myhrvold et al. 

2015), while for plants we used height (in cm) data from the TRY database (Kattge et al. 2011). 
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The estimates of species trophic levels originate from Kissling et al. (2014), Wilman et al. 

(2014) and other sources of the literature for invertebrates (mostly collected by L. Bentley). 

For species for which size or trophic level data were unavailable, we used the genus-wide 

average for size and the most common trophic level (at least 95 % of all species with data 

within a genus). We excluded studies (N=8) from further analyses where no clear majority of 

species (> 50 %) could be assigned to one of the bins (Supplementary Fig. 4), leaving a total 

of 65 studies with size information and 130 studies with trophic information.  

 

Analysis – Pairwise dissimilarity 

We linked dissimilarity in photosynthetic activity of vegetation with compositional 

dissimilarity in species assemblages globally. Specifically, we examined the differential 

influence of “current” (𝑦𝑟0, as the 365 days prior to species assemblage sampling) and “past” 

(𝑦𝑟𝑖, the i years prior to the current year, where i = 1,..,5) dissimilarity in photosynthetic activity 

between spatial pairs of sites (Fig 1b, Supplementary Fig 3). We separately considered past 

periods of increasing lengths (in years, so 𝑦𝑟1, 𝑦𝑟1:2, 𝑦𝑟1:3, 𝑦𝑟1:4 , 𝑦𝑟1:5). For example, if 

species assemblage sampling was conducted from the 1st of April until the 15th of July 2008, 

𝑦𝑟0 was the 365 days prior to 1st of April 2008, i.e. 1st April 2007 – 31th March 2008, and past 

i years as the period (number of full years i) before April 1st 2007. 

 We used the pairwise Bray-Curtis (BC) index, frequently used in community ecology 

studies, as a metric to quantify dissimilarity in species assemblage composition between sites 

(Bray and Curtis 1957, Faith et al. 1987, Su et al. 2004). We also considered the binary version 

of the BC index, the Sørensen similarity index, to assess whether our results are robust to metric 

choice. The BC index is a modified Manhattan distance, where the summed distances between 

values are standardised by the summed values of each site, thus quantifying pairwise 

dissimilarity from 0 (completely similar) to 1 (entirely different). We used the BC index to 

measure compositional dissimilarity in local species assemblages (BCBiodiversity) between sites 

within a PREDICTS study. We also applied the BC index to the EVI time series (BCEVI) to 

characterize the dissimilarity between sites in (inter- and intra-annual) vegetation dynamics 

measured through a proxy representing photosynthetic activity of vegetation in current (𝑦𝑟0) 

and past years (𝑦𝑟𝑖, where 𝑖 =  1 − 5), which to our knowledge is the first time the BC index 

has been applied to assess dissimilarity between remotely-sensed time series. 
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 The BC index is calculated between two pairs of sites with PREDICTS species 

assemblage records or two EVI time-series from sites x and y as follows:  

BC𝑥𝑦 = (
∑  |𝑥𝑘 − 𝑦𝑘 |𝑛

𝑘=1

∑ 𝑥𝑘
𝑛
𝑘=1 +  ∑ 𝑦𝑘

𝑛
𝑘=1

) 

For species assemblages, x and y are the abundances of observed species (n = total number of 

species) at both sites (non-occurring species were assumed to be absent and set to zero), while 

for the EVI time series x and y are observed EVI values on the same date (n = total number of 

dates) in the time series at both sites. The BCEVI was calculated on either single or multiple 

years (yri, where i =  1 − 5) of EVI time series (Figure 1b, Supplementary Fig. 3). 

 Compared to other metrics quantifying dissimilarity between time-series based on 

remotely-sensed data (Lhermitte et al. 2011) the BCEVI index has the advantages of (a) taking 

the actual spectral values as well as distance between them into account, meaning it can be 

compared between different land-cover types, and (b) using the same method for assessing 

dissimilarity between species assemblages and between remote-sensing observations. In 

remote-sensing terms, for any vegetation index (such as EVI), the BCEVI index can be 

interpreted as a measure of absolute differences between two sites in the amount and timing of 

photosynthetic activity scaled by the total amount of photosynthetic activity available. By 

calculating the BCEVI index on temporal profiles of EVI measurements, we incorporate all 

differences in EVI between two sites into a single dissimilarity metric. No further scaling has 

been done as range and unit of the BCEVI index values were identical for current and past BCEVI. 

 

Analysis – Statistical modelling 

The aim of the statistical modelling is to estimate the influence of current and past BCEVI on 

the BCBiodiversity (Fig. 1b). For different time periods (0-5 years) we estimated this influence 

using separate models rather than an interaction term as current and past BCEVI were highly 

collinear (Random permutation pick: Pearson’s r > 0.9, df = 4046, p < 0.001). A hierarchical 

modelling approach using generalized linear mixed models (GLMMs) with Gaussian link 

function was used to fit models of current and past BCEVI independently for each time period, 

taxonomic group, size and trophic bins. GLMMs account for differing sampling methodologies 

among the PREDICTS studies, by including the “study” as a random intercept in all models. 

We also allowed the effect of current and past BCEVI to vary for each study by incorporating it 
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as a random slope. From each model, we obtained the fixed effects (estimated slope) of the 

predicted BCBiodiversity per unit of current and past BCEVI. 

 As we are primarily interested in the influence of past BCEVI (of different periods) on 

differences in BCBiodiversity, we incorporated the influence of current BCEVI by transforming the 

average past BCEVI effects (across all permutations) relative to current effects (
𝑃𝑎𝑠𝑡

𝐶𝑢𝑟𝑟𝑒𝑛𝑡
 – 1). 

The resulting ratio describes whether the explicit influence of past BCEVI on BCBiodiversity is 

larger (> 0) or smaller (< 0) than the influence of current BCEVI (Figure 2). The precision 

estimates (predicted standard errors) of the effect of past BCEVI were also transformed relative 

to the precision estimates of current BCEVI (
𝐼𝑚𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑝𝑎𝑠𝑡

𝐼𝑚𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
). This helps to visually assess 

the added imprecision after accounting for the imprecision already present in current BCEVI.  

 Estimating pairwise comparisons in any regression model would imply substantial 

pseudo-replication. To account for this, we took the subdiagonal of 100 permuted site-by-site 

matrices (Supplementary Fig. 3) to construct the GLMMs of 100 separate permutations. This 

ensures that for each fitted GLMM, our pairwise comparisons are mutually independent subsets 

(Longacre et al. 2005, Newbold et al. 2016). Fixed effects and standard errors for both current 

and past BCEVI were averaged across all permutations. Furthermore, for each model we 

calculated a marginal and conditional pseudo R-square (Nakagawa and Schielzeth 2013) and 

significance estimate (Halekoh and Højsgaard 2014), and averaged them across all 

permutations. As for the fixed effects and precision estimates, the differences in explained 

marginal variance of past BCEVI were assessed relative to the explained marginal variance of 

current BCEVI. 

 All analyses were performed in R (ver 3.2.2, R Core Team 2015) using lme4 (ver. 1.10, 

(Bolker et al. 2009, Bates et al. 2015) for modelling, and vegan (ver. 2.2.3, Oksanen et al. 2015) 

for the BC calculation of species assemblages data. The processed MODIS data and R-code 

for the analyses are available on GitHub (https://github.com/Martin-

Jung/PastLandSurfaceConditions).  

 

Results 

The compositional dissimilarity of species assemblages (BCBiodiversity) increased with between-

site dissimilarity in current and past photosynthetic activity (BCEVI; current: β = 0.289, βSE = 

https://github.com/Martin-Jung/PastLandSurfaceConditions
https://github.com/Martin-Jung/PastLandSurfaceConditions
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0.063, p < 0.001; past yr1:5:  β = 0.334, βSE = 0.07, p < 0.001; Fig. 2, Supplementary Fig. 5). 

When the influence of past BCEVI was assessed relative to current BCEVI, the BCBiodiversity 

between sites was more pronounced – although the imprecision also increased - when longer 

time periods (of up to five years) of past BCEVI were considered (Fig. 3). Furthermore, the 

consideration of past BCEVI calculated up to five years prior to current BCEVI increased the 

relative explained marginal variance by 16.7 % (Supplementary Table 1). We ensured that the 

BC index was robust with regards to varying time period lengths (Supplementary Fig. 6), 

spatial autocorrelation (Supplementary Fig. 7) and other temporal and geographic biases 

(Supplementary Fig. 8). Similar results were found by using a different metric of species 

assemblage composition, the Sørensen similarity index, that does not require species 

abundance estimates (Supplementary Fig. 9). 

 The influence of past BCEVI on species assemblages was found to vary among 

taxonomic groups and time periods considered (Fig. 4). Dissimilarity in plant, invertebrate, 

reptilian and bird assemblage composition increased with increasing BCEVI of the past two to 

five years. In contrast, the influence of past BCEVI on mammalian assemblages was greatest for 

the first two years relative to the influence of current BCEVI but decreased when longer periods 

of three to five years of past BCEVI were considered. Meanwhile, amphibian assemblages were 

more influenced by current than past BCEVI between sites (Fig. 4). 

 The influence of past BCEVI differed with respect to body size (Fig. 5). Species 

assemblages that were dominated by small- (> 0-9 g body mass) and medium-sized (10-99 g) 

mammals were more influenced by differences in BCEVI over the past one to three years, while 

the influence on assemblages dominated by larger (>= 100 g) mammals increased with longer 

time periods. Compared to assemblages dominated by medium-sized birds, assemblages of 

large bird species were up to five times more influenced by past relative to current BCEVI. For 

plant assemblages with available information on size, we found that assemblages dominated 

by medium-sized plants were more influenced by past BCEVI compared to those assemblages 

dominated by larger plant species (Fig. 5).  

 Differences among trophic levels were also seen in the influence of past BCEVI on 

BCBiodiversity and increased with longer time periods considered (Fig. 6). Species assemblages 

dominated by omnivorous and herbivorous assemblages were more influenced by past BCEVI 

of even one year relative to the influence of current BCEVI, while detritivores assemblages were 

only more influenced by past BCEVI if periods of the past three years were considered (Fig. 6). 

In contrast, studies with predominantly carnivorous species were more influenced by current 

BCEVI and showed no overall trend with longer time periods of past BCEVI considered (Fig. 6).  
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Discussion 

The main aim of this study was to investigate if between-site dissimilarity in current and past 

photosynthetic activity of vegetation (BCEVI) can predict compositional dissimilarity in sites’ 

species assemblages (BCBiodiversity). In contrast to previous PREDICTS-based studies that used 

discrete measures of current land use and land-use intensity (Newbold et al. 2015, 2016), we 

used a continuous measure of between-site dissimilarity in remotely-sensed photosynthetic 

activity that summarises (inter- and intra-annual) vegetation dynamics in a single metric (the 

BCEVI). We explicitly differentiated between current (the full year prior to species assemblage 

sampling) and past BCEVI (periods of up to five years before current) that could have influenced 

compositional dissimilarity in species assemblages. Similar to previous studies using the same 

dataset to analyse compositional differences with respect to land use (Newbold et al. 2016), we 

found that sites with more different current BCEVI also had more different species assemblages 

(Fig. 2, Supplementary Fig. 5). However, the BCEVI calculated over five years prior to 

biodiversity sampling had, on average, an even greater influence on between-site dissimilarity 

in species assemblage composition compared to current BCEVI (Fig. 3). This pattern was 

consistent across most taxonomic (Fig. 4) and functional groups (Fig. 5 and 6). Here we discuss 

potential causes and implications of the observed patterns as well as factors that can affect the 

BCEVI. 

 

Potential drivers of dissimilarities in photosynthetic activity  

Dissimilarities in photosynthetic activity can be caused by many natural (Fensholt et al. 2012, 

Zhu et al. 2016) and/or anthropogenic factors (Lambin and Geist 2006, Turner et al. 2007). The 

latter were likely the dominant cause of current differences between sites in our analyses, given 

that the PREDICTS database includes only studies of mostly small geographic extent with a 

difference in current human land use or land-use intensity (Hudson et al. 2017), however 

climatic factors likely influence the BCEVI as well. Dissimilarity metrics of photosynthetic 

activity can be considered a coarse approximation of overall differences in land use and land 

cover as well as in climatic and other abiotic factors between sites (Linderman et al. 2005, 

Lupo et al. 2007, Lhermitte et al. 2011). Past studies have linked differences in vegetation 

dynamics with the use intensity of agriculture (Estel et al. 2015, Tong et al. 2017), land-cover 

change such as deforestation events (Lambin and Strahler 1994, DeVries et al. 2015), or land 
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degradation and intensification (de Jong et al. 2011, Mueller et al. 2014). The BCEVI, similar 

to other metrics used to monitor remotely-sensed vegetation dynamics (Linderman et al. 2005, 

Rowhani et al. 2008, Lhermitte et al. 2011), quantifies dissimilarity in photosynthetic activity 

across different types of land cover, by exploiting both distance between time series (the 

absolute difference in EVI data) and amount (area under the time series) of photosynthetic 

activity. Besides differences in land use and land cover, dissimilarity metrics such as the BCEVI 

will also be affected by climatic differences in precipitation and radiation (Fensholt et al. 2012, 

Zhu et al. 2016), soil properties (Ahmed et al. 2017) or plant species composition (He et al. 

2009). The BCEVI thus quantifies dissimilarity in vegetation dynamics caused by both natural 

and anthropogenic factors affecting EVI time-series. 

 However, some natural and anthropogenic factors cannot be directly quantified from 

remotely-sensed time series (Peres et al. 2006, Turner et al. 2007) and the BCEVI is limited to 

those aspects that affect photosynthetic activity of vegetation. Furthermore, because of the way 

the BCEVI is calculated, it can only represent overall dissimilarity in photosynthetic activity but 

cannot be used to infer directionality or timing of change (vegetation regrowth or loss, 

disturbances such as fires, etc.). By using entire periods (i.e. five full years, instead of the fifth 

year) it is not possible to disentangle overall dissimilarity and any ‘change’ in photosynthetic 

activity per se (cf. Linderman et al. (2005)). Calculating the BCEVI index on longer time periods 

did not affect the possible range of observed values (Supplementary Fig. 6), however it likely 

enhances our ability to capture aspects of past variability in vegetation dynamics caused by 

either natural and/or anthropogenic drivers. We recommend that future studies evaluate the 

performance of the BCEVI relative to other time-series dissimilarity metrics.  

 

Influences of current and past dissimilarities in photosynthetic activity on biodiversity 

Our results suggest that species assemblage composition was consistently more dissimilar 

between sites with greater current dissimilarity in photosynthetic activity of vegetation (as 

quantified by the BCEVI) (Fig. 2, Supplementary Fig. 5). This is in line with previous studies that 

have correlated some measurement of dissimilarity in current ‘environmental heterogeneity’ 

with compositional dissimilarity in species assemblage composition (Buckley and Jetz 2008, 

He et al. 2009, Newbold et al. 2016). However species assemblages might also be explicitly 

influenced by past dissimilarity in photosynthetic activity (Johnson and Miyanishi 2008, 

Watson et al. 2014, Ogle et al. 2015, Perring et al. 2016).  
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 Differences in past BCEVI were on average more correlated with dissimilarity in species 

assemblages than differences in current BCEVI (Fig. 2-3). This could indicate that past 

dissimilarity in photosynthetic activity continues to have a lasting influence or memory effect 

on species assemblages (Ogle et al. 2015), especially as the effect generally increased as longer 

periods of past BCEVI were considered (Fig. 3), therefore increasing the likelihood that past 

changes in photosynthetic activity of vegetation have been captured. Longer periods of past 

BCEVI also increased the explained marginal variance (Supplementary Table 1), although most 

of the variance was already explained by differences in study identity (thus by sampling 

methods and local factors). The marginal variance explained was modest, but comparable to 

other broad-scale studies using the same species assemblage dataset (Newbold et al. 2014, De 

Palma et al. 2015, Jung et al. 2017). It is a limitation that we used data from a wide variety of 

sources (Hudson et al. 2017), which were typically not designed to study lag or memory effects 

of past changes in land-surface attributes such as photosynthetic activity. At many of the sites 

in our analyses inter-annual photosynthetic activity could have remained relatively stable 

during the past five years, which would reduce our ability to differentiate any effects of past 

BCEVI. Similarly, any dissimilarity in photosynthetic activity among pairs of sites could have 

been even greater before the monitoring period of MODIS (since year 2000), which we were 

unable to quantify using these data.  

 Notably, species assemblages of some taxonomic groups were more dissimilar in 

composition than others if past dissimilarity in photosynthetic activity was considered (Fig. 4). 

The influence of past BCEVI on reptilian species assemblages was large (~35 % more different 

than current) even for the relatively short period of five years (Fig. 4). Potentially many of the 

sites of the reptilian studies have been subjected to relatively recent changes in photosynthetic 

activity of vegetation prior to species assemblage sampling. Indeed, in one of the studies, 

Woinarski et al. (2009) explicitly suggested an influence of past fires and varying grazing 

intensity on reptilian species assemblages. In contrast, we found that amphibian species 

assemblages were less influenced by past compared to current BCEVI, despite being more 

influenced by current BCEVI than all other taxonomic groups (Supplementary Fig. 5). An 

explanation could be that most compositional differences between amphibian assemblages that 

are attributable to past dissimilarities in photosynthetic activity are already explained by current 

dissimilarity in BCEVI. It may be that amphibian assemblages are more influenced by factors 

other than past photosynthetic activity (such as microclimatic conditions). Disentangling broad 

taxonomic groups into functional groups may assist in highlighting specific responses to past 

dissimilarities in photosynthetic activity. 
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 Differences in functional traits can influence species responses to dissimilarity in 

photosynthetic activity (Newbold et al. 2013, De Palma et al. 2015) and we expect that on 

average smaller species would be more affected by recent dissimilarity in photosynthetic 

activity (a few years before sampling). Our results confirm this assumption as species 

assemblages with predominantly small- or medium-sized plants, birds and mammals were 

relatively more influenced by past BCEVI over two to three years prior to sampling than by 

current BCEVI (Fig. 5). Smaller species tend to live shorter lives and disperse less far than larger 

species (Brown et al. 2004, Thomson et al. 2011, Stevens et al. 2014), which might make them 

more susceptible to dissimilarity in photosynthetic activity shortly before sampling (Watson et 

al. 2014). Similar to previous studies (Jakovac et al. 2016) we showed that smaller plant species 

were more influenced by past dissimilarity in photosynthetic activity over up to five years prior 

to sampling as quantified by the BCEVI (Fig. 5). For assemblages dominated by larger plants 

we did not detect such an influence and it is likely that the considered period (five years) was 

too short to show measurable influences. Overall our results indicate that assemblages 

dominated by smaller species might have been more influenced by past dissimilarity in 

photosynthetic activity,  possibly because of carry-over or ecological memory effects (Harrison 

et al. 2011, Ogle et al. 2015). Other functional traits, such as generation time or dispersal 

capability (Watson et al. 2014), as well as better coverage of existing traits for underrepresented 

taxonomic groups could assist in further disentangling these influences especially given the 

large uncertainty across most influences (Fig. 5).  

 The response of species assemblages to dissimilarities in past photosynthetic activity 

also differed between trophic bins. Except for carnivores, species assemblage composition of 

all trophic bins were on average more influenced by longer periods of past rather than by 

current dissimilarity in photosynthetic activity, as measured by BCEVI (Fig. 6). Yet we found 

noticeable lags in the observed influence of past BCEVI with varying time periods. Relative to 

the influence of current BCEVI, the influence of past BCEVI was larger for assemblages 

dominated by autotrophs, herbivores, omnivores and detritivores (Fig. 6). Notably, detritivores 

were more correlated with past BCEVI only if past periods of three to four years were 

considered. This supports previous studies which have shown that plant-dependant species are 

highly sensitive to variability in current and past photosynthetic activity as quantified by remote 

sensing (Pettorelli et al. 2006, Newton et al. 2014). In contrast, we found predominantly 

carnivorous assemblages to be less influenced by past BCEVI compared to current BCEVI 

regardless of the considered time period. Possibly, carnivore abundance was more influenced 

by contemporary prey density (Terborgh 2015) than past dissimilarity in photosynthetic 
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activity (Fig. 6). Because of a lack of data for carnivores and herbivores co-occurring at the 

same site, we were unable to investigate such interactions.  

  

Study implications and conclusions 

Knowledge about past dissimilarities in land-surface attributes, such as photosynthetic activity, 

and their influence on species assemblages is important for both the design of ecological studies 

and interpretation of dissimilarities in current composition of species assemblages. We found 

that sites with more dissimilar past than current photosynthetic activity (as quantified by the 

BCEVI) were more strongly correlated with compositional dissimilarity in local species 

assemblages among spatial pairs of nearby sites. Ignoring such past influences can lead to 

biased biodiversity estimates by not accounting for extinction debts or immigration credits still 

to be paid (see Tilman et al. 1994) or lasting ecological memory and carry-over effects because 

of higher variability in past photosynthetic activity (Rowhani et al. 2008, Harrison et al. 2011, 

Ogle et al. 2015). We suggest that future broad scale studies investigating biodiversity 

responses to environmental changes should explicitly consider legacy effects that influence 

species assemblages in a study area and we demonstrate how remote sensing can help to 

quantify such effects globally. Our approach could be extended to incorporate differences in 

the vegetation dynamics of the surrounding landscape. There is some evidence that landscape-

wide temporal differences in photosynthetic activity can affect species assemblage composition 

in the wider landscape (Manning et al. 2009, Fernández et al. 2016). In conclusion, we have 

demonstrated that compositional dissimilarity of species assemblages, of various taxonomic 

and functional groups, are not only influenced by dissimilarity in current photosynthetic 

activity, but also by dissimilarity in past photosynthetic activity over the last five years. Future 

studies should investigate the influence of disturbance events and directionality of changes in 

photosynthetic activity for more than five years before local biodiversity sampling. 
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Figure legends 

 

Figure 1: (a) Locations of 198 species assemblage studies (centroid of each study) coloured by 

taxonomic group. (b) Diagram of the modelling approach to investigate influences of current 

and past dissimilarity in photosynthetic activity on species assemblages. The Bray-Curtis index 

(BCEVI) was calculated between pairs (blue arrows) of remote-sensing time series (black solid 

lines) and of species assemblages (BCBiodiversity) collected at paired sites. Independent statistical 

models were constructed for both current (i - black) and past BCEVI of varying length (ii - 

orange) and their model effects compared (iii – Estimated fixed effects). 

Figure 2: Shows the estimated influence of current (black) and past (orange; assessed over the 

past five years) BCEVI on differences in species assemblages (N = 198 studies). Rugs show the 

distribution of values from a single randomly selected permutation. The difference between the 

slopes (arrow) is the relative influence (as ratio) shown in Figures 3-6. Shading shows the 

predicted standard error. 

Figure 3: Overall influence on species assemblage composition of past BCEVI relative to current 

BCEVI, estimated individually for past periods of differing length (yr1 to yr1:5, representing 1 

year and up to 5 years current BCEVI). The predicted effects and their precision (standard error) 

of past BCEVI (yr1:5) on dissimilarity in species assemblages were transformed relative to the 

effects and precision of current BCEVI (𝑦𝑟0). Note that error bars indicate the predicted 

precision of differences in past BCEVI relative to the precision of differences in current BCEVI. 

Positive values indicate that differences in past BCEVI lead to greater differences in species 

assemblages than differences in current BCEVI.  

Figure 4: Influence of past BCEVI on species assemblage composition across different 

taxonomic groups. Visualized as relative influence of past BCEVI compared to current BCEVI as 

described in Figure 3. The number of studies and contributing sites (N | NSites) is indicated for 

each group. 

Figure 5: Influence of past BCEVI on species assemblages (N = 65) of predominantly small (> 

0 - 9), medium (10 - 99) and large sized animals and plants (≥ 100). Available size was 

measured as adult body mass (in g) for all birds (blue) and mammals (red) and height for plants 

(green, in cm). Within each study all species were binned into one size group and the study 

categorized based on which size group is predominant across all sites. The bar chart shows the 
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number of studies that contributed to each taxonomic group and body size bin. Visualized as 

relative influence of past BCEVI compared to current BCEVI as described in Fig. 3 and methods.  

Figure 6: Influence of past BCEVI on trophic bins across studies (N = 130). Within each study 

all species were categorized as one trophic level and the study categorized based on which level 

is predominant across all sites. Colours indicate the influence of current and past BCEVI for 

autotroph plants (light green, N=28), herbivores (dark green, N=49), omnivores (yellow, N= 

29), carnivores (red, N=13) and detritivores (brown, N=9). Visualized as relative influence of 

past BCEVI compared to current BCEVI as described in Fig. 3. 
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