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Abstract

We show that for each integer n ≥ 3 any finite group G acts smoothly and
freely on a connected sum (Sn × Sn+1) # . . . . . .# (Sn × Sn+1)︸ ︷︷ ︸

r

for some r.

Moreover, as a module over Z[G], the middle dimensional homotopy group can
be specified in advance to belong to the stable syzygy ΩG

n+1(Z).
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Let G be a finite group. We consider smooth, closed manifolds M of odd dimension
2n+ 1 ≥ 5 having fundamental group G and whose universal coverings M̃ are highly
connected in the sense of Wall [32]; that is, where

πr(M̃) = 0 for 0 ≤ r < n.

The first significant invariant of M̃ is then the middle dimensional homotopy group
πn(M̃) = πn(M). As πn(M) is a module over the group ring Λ = Z[G] we ask:

Question : Which Λ-modules J can be realised as J ∼=Λ πn(M) where M is a
smooth closed (2n+ 1)-manifold with highly connected universal cover ?

The modules J we consider belong to the stable syzygy ΩG
n+1(Z), the definition of

which is given in §1. Observing that for integers n ≥ 2 the connected sum

Σ(2n+ 1; r) = (Sn × Sn+1) # . . . . . .# (Sn × Sn+1)︸ ︷︷ ︸
r

is a highly connected manifold of dimension (2n+ 1) we prove:

Theorem I: Let G be a finite group and let J ∈ ΩG
n+1(Z); if n ≥ 3 then there

exists a smooth closed (2n+ 1)-manifold M with π1(M) ∼= G such that

i) πn(M) ∼=Λ J and

ii) M̃ ∼=diff Σ(2n+ 1; rkZ(J)).

The argument carries through in the case n = 2 subject to an additional hypothesis;
say that J ∈ ΩG

n+1(Z) is geometrically realisable when there exists a finite connected
n-dimensional complex K for which π1(K) = G, πr(K) = 0 for 1 < r < n and
πn(K) ∼=Λ J.
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Theorem II: Let G be a finite group and let J ∈ ΩG
3 (Z); if J is geometrically

realisable there exists a smooth closed 5-manifold M with π1(M) ∼= G such that

i) π2(M) ∼=Λ J

ii) M̃ ∼=diff Σ(5; rkZ(J)).

When n = 2 the question of whether every J ∈ ΩG
3 (Z) is geometrically realisable

forms part of the D(2) problem (cf [14] Chap 10) which, to date, has been solved only
for comparatively few groups G. This condition does not intervene in Theorem I as,
when n ≥ 3, every J ∈ ΩG

n+1(Z) is geometrically realisable ([15], p.163).
By Theorem I any finite group acts smoothly and freely on some Σ(2n + 1, r).

These manifolds thus occupy something of a universal position in regard to the general
study of free actions of finite groups on highly connected manifolds. By contrast,
whilst this general problem has a longstanding history (cf [6]), for the most part the
existing literature has dealt either with obstructions to free actions [4], [19] or with
actions on quite specific examples [7]. For an significant class of finite groups we can
improve upon Theorem I as follows:

Theorem III : Let G be a finite group with free cohomological period d ≥ 4; then
G acts freely and smoothly on Sd−1 × Sd.

Historically (cf. [20], [29]), considerable effort has been invested in studying the
extent to which finite groups G of periodic cohomology can act freely on spheres of
odd dimension, these being the simplest type of highly connected manifold. A classic
result of Milnor [22] shows that this cannot happen when G has a noncentral element
of order 2. Consequently, the dihedral groups of order 2p

D2p = 〈x, y | xp = 1, y2 = 1, yx = xp−1y〉

cannot act freely on any sphere. However, when p is prime D2p has free period 4; in
fact, an explicit such free resolution may be found in [16]. Hence each integer 4m is
a free period of D2p so that, in contrast to Milnor’s prohibition, we have:

Corollary IV : D2p acts freely and smoothly on S4m−1 × S4m for each m ≥ 1.

Our construction makes essential use of the theory of canonical neighbourhoods in
the sense of Mazur [21]. However, rather than following Mazur directly, we found it
technically easier to adapt an old approach of the author [11] based on Siebenmann’s
technique of end completion [24]. Likewise, although no explicit use is made of it,
we have inevitably been influenced by Wall’s more detailed study [31], especially in
regard to the identification of universal coverings in §4.

We give no consideration to the even dimensional analogue of the question con-
sidered here. We shall pursue this aspect in a subsequent paper [17].

We wish to thank the referee for suggesting a number of notational clarifications.
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§1 : Syzygies and algebraic complexes:
Let Λ denote the integral group ring Λ = Z[G] where G is finite. By a Λ-lattice

we mean a Λ-module whose underlying additive group is free abelian of finite rank.
If J , J ′ are Λ-modules we say that J , J ′ are stably equivalent, written J ∼ J ′, when
J ⊕ Λa ∼= J ′ ⊕ Λb for some integers a, b ≥ 0. Let

(F) · · · ∂n+2→ Fn+1
∂n+1→ Fn

∂n−→ . . . · · · ∂2→ F1
∂1−→ F0

∂0→ Z→ 0

be a resolution over Λ of the trivial module Z in which each Fr is a finitely generated
free module. The syzygy modules (Jr)1≤r of F are the intermediate modules

Jr = Im(∂r) = Ker(∂r−1).

The stable syzygy ΩG
r (Z) is then defined to be the stable class [Jr] of any such Jr.

It is a standard consequence of Schanuel’s Lemma that ΩG
r (Z) is independent of the

particular choice of F . We note for future reference that:

(1.1) If J ∈ ΩG
n+1(Z) then J is a Λ-lattice.

By an algebraic n-complex over Λ we mean an exact sequence of Λ-modules

E∗ = (0→ J → En
∂n→ En−1

∂n−1→ . . . · · · ∂2→ E1
∂1→ E0 → Z→ 0)

in which each Er is finitely generated projective and stably free. For such a complex
E∗ it is clear that J ∈ ΩG

n+1(Z). We define(†) Hn(E) = Ker(∂n : En → En−1).
As G is finite then the Eckmann-Shapiro Lemma shows that Extn+1(Z,Λ) = 0.
Consequently, it follows from (8.18) of [15] (p.159) that:

(1.2) For any J ∈ ΩG
n+1(Z) there is an algebraic n-complex E∗ for which J ∼= Hn(E).

We say that J ∈ ΩG
n+1(Z) is geometrically realizable when there exists a finite, con-

nected n-dimensional cell complex K such that π1(K) = G, πr(K) = 0 for 1 < r < n
and πn(K) = J ; any such complex K is called a realising complex for J . In conse-

quence, if Kn is a realising complex for J ∈ ΩG
n+1(Z) then K̃n is homotopy equivalent

to a wedge of n-spheres; in fact:

(1.3) K̃n ' Sn ∨ . . . · · · ∨ Sn︸ ︷︷ ︸
rkZ(J)

.

(1.4) If n ≥ 3 then every J ∈ ΩG
n+1(Z) is geometrically realizable.

The conclusion of (1.4) is a consequence of a general theorem of Wall [30] ; see also
[15] ((8.27), p. 163) for a more direct proof. By contrast, for reasons associated with
the D(2)-problem ([13], [14], [30]), the geometric realisability of elements of ΩG

3 (Z) is
problematic. Note that a finite presentation G = 〈X1, . . . , Xg |W1, . . . ,Wr 〉 of G

† At the referee’s suggestion we have here written Hn(E) rather than πn(E) which is the notation

used in [15]. In the geometric context the two notations are equivalent via the Hurewicz Theorem.
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gives rise to a geometrically realisable 2-complex, the Cayley complex, thus:

C∗(G) = (0→ π2(G)→ Λr → Λg → Λ→ Z→ 0).

We then have:

Proposition 1.5: J ∈ ΩG
3 (Z) is geometrically realisable if and only if J ∼= π2(G)

for some finite presentation G.

Only in a small number of cases ([14], Chap. 10) is it known that every J ∈ ΩG
3 (Z)

is realisable. By contrast, there are cases where geometric realisability seems highly
problematic [13]. The difficulty is concentrated at the lower levels of ΩG

3 (Z). A
theorem of Browning [1] shows:

(1.6) For all J ∈ ΩG
3 (Z) there exists n ≥ 1 such that J ⊕ ΛN is geometrically

realisable whenever N ≥ n.

§2 : Canonical neighbourhoods :
We review the notion of canonical neighbourhoods of tamely imbedded polyhedra.

Thus suppose that Kk is a compact connected polyhedron, Xk+c is a topological
manifold of dimension k + c, and that i : K ↪→ X is a continuous imbedding such
that i(K) ∩ ∂X = ∅. When no confusion is caused we shall write K = i(K). We
say such an imbedding is tame when X − K is locally 1- connected at infinity (cf
[5], [11]). By a canonical neighbourhood of K we mean a compact submanifold N of
codimension zero in X having properties (2.1) - (2.3) below:

(2.1) K ⊂ IntN and the boundary ∂N of N is locally bicollared in X;

(2.2) the inclusion i : K ↪→ N is a simple homotopy equivalence;

(2.3) there is a homeomorphism η : ∂N × [0, 1)
'−→ N −K such that η(x, 0) = x.

We note that if j : ∂N → N is the inclusion it is a consequence of the definition that

(2.4) K is a strong deformation retract of N ; that is, there exists a continuous
mapping r : N → K such that r ◦ i = IdK and i ◦ r 'i(K) IdM .

General dimensional arguments imply relations between the homotopy groups πr(∂N )
and πr(N ) provided r ≤ c − 1. Although these are well known, at the referee’s
suggestion we recall them briefly for the sake of completeness. By general position, a
mapping f : Sr → N can be deformed by homotopy to a mapping f ′ : Sr → N −K
provided that k + r < k + c. It follows that the inclusion ι : N − K ↪→ N induces
a surjection ι∗ : πr(N − k) � πr(N ) provided r ≤ c− 1. Taken in conjunction with
the homeomorphism ∂N × [0, 1) ∼= N −K of (2.3) we see, in particular, that

(2.5) j∗ : πc−1(∂N )
'−→ πc−1(N ) is surjective.

When r < c− 1 this can be improved upon. Given a homotopy F : Sr × [0, 1]→ N
in which F (Sr × {t}) ⊂ N − K for t = 0, 1, then, provided r < c − 1, F can be a
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deformed, leaving the ends fixed, to a mapping F ′ : Sr × [0, 1] → N − K so that

ι∗ : πr(N − k)
'−→ πr(N ) is an isomorphism r < c− 1. Hence it follows that:

(2.6) j∗ : πr(∂N )
'−→ πr(N ) is an isomorphism for r < c− 1.

Moreover, denoting by ρ the restriction of the retraction r to ∂N we have :

(2.7) ρ∗ : πr(∂N )
'−→ πr(K) is an isomorphism for r < c− 1 and

(2.8) ρ∗ : πc−1(∂N )
'−→ πc−1(K) is surjective.

When X is a combinatorial manifold, a canonical neighbourhood N is called a PL-
canonical neighbourhood when N is a PL-submanifold of X and ∂N imbeds as a
piecewise linear submanifold in X. Likewise if X is a smooth manifold then a canon-
ical neighbourhood N is called a DIFF-canonical neighbourhood when N is a smooth
submanifold of X and ∂N imbeds in X as a smooth submanifold. Now suppose
that C is one of the categories TOP, PL, DIFF. We have the following existence and
uniqueness theorem.

Theorem 2.9 : Let Kk is a compact connected polyhedron, let Xk+c be a C-
manifold of dimension k + c and suppose that i : K ↪→ X is a tame imbedding such
that i(K) ∩ ∂X = ∅; if k + c ≥ 6 and c ≥ 3 then

i) any open neighbourhood U of K in X contains a C-canonical neighbourhood N ;

ii) if N1, N2 are C-canonical neighbourhoods of K in X there exists a C-canonical
neighbourhood N0 of K such that N0 ⊂ Int(N1 ∩N2) and a C-isomorphism

h : N1
'−→ N2 such that h|N0

= Id.

Theorem 2.9 is well known. In its purely topological form it is a special case of the
main result (Theorem 3.5) of [11]. As the proof in [11] requires only handle theory
for topological manifolds of dimension ≥ 6, the translation to the categories PL and
DIFF is straightforward. From (2.9) it is straightforward to derive

Proposition 2.10 : Let N , N ′ be closed C-neighbourhoods of K in X and suppose
that there exists a C-isomorphism equivalence h : N → N ′ such that h|K = IdK . If
N is a C-canonical neighbourhood of K then so also is N ′.

Using the S-cobordism theorem we obtain the following recognition criterion for
canonical neighbourhoods.

Proposition 2.11 : Let i : Kk ↪→ N k+c be a tame imbedding into a the inte-
rior of a connected C-manifold with connected boundary for which the induced map
π1(∂N )

'−→ π1(N ) is an isomorphism. Suppose that k + c ≥ 6 and c ≥ 3; if i is a
simple homotopy equivalence then N is a C-canonical neighbourhood of K.
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Proof : Choose C-canonical neighbourhoods N0 and N1 of K such that

N0 ⊂ IntN1 ⊂ IntN .

By the S-cobordism theorem there is C-isomorphism

η : N − IntN0
'−→ ∂N0 × [0, 1]

which maps ∂M0 to isomorphically to ∂M0 × {0} via the mapping z 7→ (z, 0) and
∂M isomorphically to ∂M0 × {1}. Consequently we may represent N in the form

N = N0

⋃
η ∂N0 × [0, 1]

Likewise we may represent N1 in the form N1 = N0

⋃
η′ ∂N0× [0, 1]. Thus there is

a C-isomorphism N → N1 which extends the identity on N0. Hence N is C-canonical
neighbourhood of K by (2.10) 2

Corollary 2.12 : N be a compact connected C-manifold with connected boundary
∂N in which the inclusion ∂N ↪→ ∂N induces an isomorphism π1(∂N )

'−→ π1(N ).

Let K1, K2 be connected polyhedra and let Kk
1

i1
↪→ N and Kk

2

i2
↪→ N be tame imbed-

dings with codimension c ≥ 3 . Suppose that h : K2 → K1 is a simple homotopy
equivalence such that i2 ' i1 ◦ h; then

N is a canonical neighbourhood of K1 ⇐⇒ N is a canonical neighbourhood of K2

§3 : Neighbourhood covering theorem:

If we work purely within the PL-category then canonical neighbourhoods exist
without the dimensional restrictions of (2.9) and can be constructed directly.

Proposition 3.1: Let i : Kk ↪→ X be a piecewise linear imbedding of a compact,
connected polyhedron in a combinatorial manifold X satisfying the condition that
i(K) ∩ ∂X = ∅. Then i(K) has a canonical neighbourhood in X.

Proof : Take Kk to be a compact polyhedron, Xk+c to be a combinatorial manifold
and suppose that the imbedding i : Kk ↪→ Xk+c is piecewise linear; then we may
assume (cf [10] p.84) that X is triangulated by a simplicial complex in such a way
that i(K) is a finite subcomplex.Taking N to be the star neighbourhood of i(K) in
the second derived subdivision of X, we claim that N is a canonical neighbourhood of
i(K). A theorem of Whitehead [33] then shows that there is a retraction r : N → K
which is a composition r = cm ◦ cm−1 ◦ . . . c2 ◦ c1 where each ci is an elementary
simplicial collapse. Furthermore (cf [2]) there is a piecewise linear equivalence of
triples (N ; ∂N , i(K)) ∼=PL (Cρ; ∂N×{0}, i(K)) where ρ : ∂N → K is the restriction
of the retraction r to the boundary ∂N and where Cρ = ∂N × [0, 1] ∪ρ K is the
mapping cylinder of ρ. The properties (2.1) - (2.3) of canonical neighbourhoods now
follow from this description. 2

In regard of (3.1) we note that piecewise linear imbeddings are necessarily tame.
Canonical neighbourhoods constructed in the manner of (3.1) via simplicial collaps-
ing are usually referred to regular neighbourhoods. Beyond the existence of regular
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neighbourhoods, in [33] Whitehead also considered their uniqueness based only on
the technique of simplicial collapsing. Accounts of this purely combinatorial theory
can be found in the texts both of Hudson [10] and Stallings [27]. The most general
account is that of M.M. Cohen [3]. The following is straightforward:

Proposition 3.2 : Let K be a subcomplex of a finite simplicial complex L and
suppose that L↘ K. Suppose also that L̂ is a finite simplicial complex admitting a
surjective simplicial mapping π : L̂ → L for which the induced map on geometrical
realisations |π| : |L̂| → |L| is a fibre bundle with finite fibres; then L̂ ↘ π−1(K).

Now suppose that Kk is a compact, connected k-dimensional polyhedron imbed-
ded piecewise linearly in Rc+k and that N is a closed regular neighbourhood of K.

Theorem 3.3 : Let p : N̂ → N be a connected regular covering of N having finite
degree d ≥ 2 and let K̂ = p−1(K); if k < c then N̂ is combinatorially equivalent to

a PL-canonical neighbourhood of K̂ with respect to some piecewise linear imbedding
j : K̂ ↪→ Rc+k.

Proof : Let T be a finite simplicial complex which triangulates N in such a way that
K is triangulated by a subcomplex S of T and such that the inclusion i : N ↪→ Rc+k

is affine on each simplex of T . For each r ≥ 1, let T (r) (resp. S(r)) be the
rth barycentric subdivision of T (resp. S) and let N(r) be the star neighbourhood
of i(S(r)) in i(T (r)). In particular, {N(r)}1≤r is a fundamental system of closed
neighbourhoods of K in Rc+k.

Clearly N̂ is a polyhedron. As the degree d is finite then N̂ is compact. For r ≥ 1,
let T̃ (r) be the simplicial covering of T (r) induced from p : N̂ → N and let N̂(r) be

the geometric realisation of the star neighbourhood of Ŝ(r) in T̂ (r); then:

i) each N̂(r) is a compact subpolyhedron and

ii) {N̂(r)}1≤r is a fundamental system of closed neighbourhoods of p−1(K) in N̂ .

Let {ur}1≤r≤m denote the vertices of T . For any choice of points {f(ur)}1≤r≤m in
Rc+k let f : N → Rc+k be the map defined on each simplex by affine extension of the
assignment ui 7→ f(ui). It follows by Mazur’s Stability Theorem (cf [27], p.53) that

iii) there exists ε > 0 such that if f(u1), . . . , f(um) ∈ Rc+k are chosen so that
|f(ur)− i(ur)| < ε for all r then f is also an imbedding.

Let {w1, . . . , wdm} be a labelling of the vertices of T̂ such that {w1, . . . , wµ} is a

labelling of the vertices of Ŝ. For each r, 1 ≤ r ≤ dm choose vr ∈ Rc+k such that

iv) |vr − ip(ur)| < ε for all r and {v1, . . . , vdm} are in general position.

Thus we have a mapping j : N̂ → Rc+k defined on each simplex by affine extension
of the assignment j(wi) = vi. It follows easily from iii) that

v) j : N̂ → Rc+k is locally injective.
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Moreover, as k < c and {v1, . . . , vµ} are in general position then

vi) j : K̂ → Rc+k is injective.

As {N̂(r)}1≤r is a fundamental system of closed neighbourhoods of K̂ in N̂ it follows

from v) and vi) that for some s j : N̂(s) → Rc+k is injective. The interior of N(s)

is an open subset of Rc+k. As N̂(s) is locally homeomorphic to N(s) it follows from

Brouwer’s Open Mapping Theorem and the injectivity of j on N̂(s) that:

vii) j(Int(N̂(s)) is an open subset of Rc+k.

As N̂(s) is compact then j(N̂(s)) is closed in Rc+k. Thus j(N̂(s)) is a closed poly-

hedral neighborhood of j(K̂) in Rc+k. By (3.2) it follows that N̂(s) collapses onto K̂

so that N̂(s) is a canonical neighbourhood K̂ under the imbedding j : K̂ ↪→ Rc+k.

The stated conclusion follows as N̂ is combinatorially equivalent to N̂(s). 2

The conclusion of (3.3) is well known as a ‘folk theorem’ but difficult to locate in the
literature in this precise form. The above proof is a simplification of an argument of
Spivak (cf Proposition 4.6 of [26]). Spivak’s argument is complicated by allowing the

degree of the covering to be infinite. In such cases the space K̂ is non-compact and
the inclusion K̂ ↪→ Rk+c requires a further stabilisation, by increasing the codimen-
sion, in order to imbed K̂ as proper polyhedral subset and so construct a genuine
infinite regular neighbourhood in the sense, for example, of [25]. This elaboration is
unnecessary when the degree of the covering map is finite. Consequently we require
only that the codimension be at least k + 1.

We next consider the direct construction of canonical neighbourhoods of imbed-
dings i : Kk ↪→ Xk+c where X is a smooth manifold. To do this we note that any
smooth manifold X has a well defined class of C∞ triangulations τ : |L| → X (cf [23]
, [34]) where L is a simplicial complex whose geometric realisation |L| is a combina-
torial manifold. If K is a compact polyhedron we say that an imbedding i : K → X
is piecewise smooth when X admits a C∞ triangulation τ : |L| → X such that τ−1 ◦ i
is piecewise linear. Hirsch ([9]) has shown that for such piecewise smooth imbeddings
i(K) admits a neighbourhood N in which N is a compact smooth submanifold of
codimension zero in X and ∂N is a smooth submanifold of X and where X admits
a C∞ triangulation τ : |L| → X for which τ−1(N ) is a regular neighbourhood of
τ−1 ◦ i(K) in the combinatorial manifold |L|. Such a neighbourhood N is called a
smooth regular neighbourhood.

Corollary 3.4 : Let Kk be a compact, connected k-dimensional polyhedron imbed-
ded piecewise linearly in Rc+k and let N be a smooth regular neighbourhood of K.
Let p : N̂ → N be a connected regular covering of N having finite degree d ≥ 2 and
let K̂ = p−1(K); if k < c then N̂ diffeomorphic to a DIFF-canonical neighbourhood

of K̂ with respect to some tame imbedding j : K̂ ↪→ Rc+k.
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§4 : Decomposing canonical neighbourhoods as connected sums:

Let N1, N2 be topological (n + 1)-manifolds each with nonempty boundary and
let Di ⊂ ∂Ni be a closed n-disc possessing an open neighbourhood Ui ⊂ ∂Ni such
that there is a homeomorphism of pairs hi : (Ui, Di)

'→ (Bn, Dn) where

Bn = {x ∈ Rn | ||x|| < 2} ; Dn = {x ∈ Rn | ||x|| ≤ 1}.

We define N1 �N2 = (N1

∐
N2) / ∼

where x ∼ h−1
2 ◦ h1(x) for x ∈ D1.

N1�N2 is called the connected sum in the boundary of N1, N2. Up to homeomorphism
the description is independent of the pairs (Ui, Di) and the homeomorphisms hi.
Moreover, it is straightforward to see that:

(4.1) ∂(N1 �N2) ∼= ∂N1 # ∂N2.

Here ‘#’ denotes ‘connected sum’ in the usual sense. The above construction is
defined for topological manifolds. The analogous construction for differential man-
ifolds however requires a slight elaboration. Thus suppose that N1, N2 are smooth
(n+ 1)-manifolds and that h1, h2 are diffeomorphisms. As it stands the construction
N1�N2 is a ‘smooth (n+1)-manifold with singularity in the boundary’, the singularity
occurring along the set

Σ = h−1
1 (Sn−1) = h−1

2 (Sn−1).

In fact putting V− = U1 − Int(D1) and V− = U2 − Int(D2) then although here are
diffeomorphisms

Σ× (−1, 0] ∼= V− ; Σ× [0, 1) ∼= V+

the homeomorphism Σ × (−1, 1) ∼= V− ∪ V+ obtained by glueing fails to be differ-
entiable at Σ× (−1, 1). Using the standard technique of ‘corner smoothing’ one may
make a variation in the homeomorphisms hi so as to give a diffeomorphism

V− ∪ V+
∼= Σ× (−1, 1) ∼= Sn−1 × (−1, 1).

With this qualification, N1 � N2 is then a manifold with smooth boundary. Up to
diffeomorphism the result is again independent of the above choices.

If Σ1, . . . , Σd−1, Σd are topological spaces with respective base points ∗r ∈ Σr we
define Σ1 ! · · · · · ·! Σd to be the identification space

Σ1 ! · · · · · ·! Σd = (Σ1

∐
. . . . . .

∐
Σd−1

∐
Σd

∐
[1, d])/ ∼

where ∗r ∼ r for 1 ≤ r ≤ d. We concentrate on the case when Σ1, . . . ,Σd−1,Σd

are smooth, closed connected manifolds each of dimension k ≥ 2; then we can regard
Σ1 ! · · · · · · ! Σd as a ‘smooth, compact, stratified set’ (cf [12], [28]) whose
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singularities are of such an elementary nature that it should no confusion if we adopt
an extension of standard terminology as follows. Given a continuous imbedding

f : Σ1 ! · · · · · ·! Σd ↪→M

to a smooth manifold M ; we describe f as a smooth imbedding when

i) f is injective :

ii) each restriction f : Σr →M is a smooth imbedding ; and

iii) the restriction f : [1, d]→M is also a smooth imbedding.

It is an elementary exercise in approximation to show that:

(4.2) If k < c then any continuous mapping f : Σ0 ! · · · · · ·! Σd −→ Rk+c

can be approximated arbitrarily closely by a smooth imbedding.

Now suppose that for 1 ≤ r ≤ d we are given a smooth imbedding fr : Σr ↪→ Rk+c

where 3 ≤ c. By translating images we may suppose, without loss of generality, that

Im(fr) ∩ Im(fs) = ∅ for r 6= s.

That is, we may construct a smooth imbedding f0 : [1, d] → Rk+c with the property
that Im(f0) ∩ Im(fr) = ∗r. Then f0, f1, . . . , fd together define a smooth imbedding

f : Σ1 ! · · · · · ·! Σd −→M

We claim that :

Proposition 4.3 : For any smooth canonical neighbourhood N of Im(f) in Rk+c

there is a diffeomorphism N ∼=diff N1�· · ·�Nd−1�Nd where Nr is smooth canonical
neighbourhood of Im(fr) in Rk+c.

We now focus attention on the special case where each Σr = Sk where k ≥ 2.
Recall ([8], [18]) that Kervaire showed that the normal bundle to a smooth imbedding
i : Sk ↪→ Rµ is trivial provided 3k + 1 < 2µ. On writing µ = k + c, Kervaire’s
condition becomes k < 2c− 1. This is clearly satisfied when c = k + 2.

Proposition 4.4: Let N be a smooth canonical neighbourhood of Im(f) where
f : Sk! · · · · · ·! Sk︸ ︷︷ ︸

d

↪→ R2k+2 is a smooth imbedding; if 2 ≤ k then

N ∼=diff (Sk ×Dk+2) � . . . · · · � (Sk ×Dk+2︸ ︷︷ ︸
d

)

Proof : f is a smooth imbedding of Σ1 ! · · · · · ·! Σd where each Σr
∼=diff Sk.

Taking Nr to be a closed canonical neighbourhood of Σr, it follows from (4.3) that
N ∼=diff N1 � · · · � Nd−1 � Nd. However, by Kervaire’s Theorem it follows that
Nr ∼=diff S

k ×Dk+2, whence the conclusion. 2
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§5: Proof of Theorems I and II:
We now specialise the above discussion by fixing the following notation:

Kk : a realising complex for some J ∈ ΩG
k+1(Z) where 2 ≤ k;

i : Kk ↪→ R2k+2 : a piecewise linear imbedding

N : a smooth canonical neighbourhood of i(Kk). .

PutM = ∂N . The codimension c of the imbedding is then c = k+ 2 and evidently
satisfies 3 ≤ c ; hence:

(5.1) π1(M) ∼= π1(K) = G.

The middle dimension of M̃ is k as dim(M) = 2k + 1. Writing c− 1 = k + 1, we

see from (2.7) that πr(M̃) ∼= πr(K̃) for r ≤ k. Consequently, with these conditions
we have:

(5.2) M̃ is highly connected and µ(M) ∼= πk(K̃) = J .

We again note that the condition c = k + 2 implies the condition k < 2c − 1
required by Kervaire’s Theorem.

Theorem 5.3: With the above restrictions we have

M̃ ∼=PL (Sk × Sk+1) # . . . . . .# (Sk × Sk+1︸ ︷︷ ︸
d

).

Proof : By (3.3), Ñ imbeds as a PL submanifold of R2k+2 and thereby induces

an imbedding j : K̃ ↪→ R2k+2 relative to which Ñ is a smooth canonical neigh-
bourhood of K̃. Let ĩ : K̃ ↪→ Ñ be the inclusion. As K is a realising complex
then K̃ is (k − 1)-connected so that we have a homotopy equivalence K̃ '
Sk ∨ . . . · · · ∨ Sk︸ ︷︷ ︸

d

where d = rkZ(J). Consequently there are homotopy equivalences

Sk! · · · · · ·! Sk︸ ︷︷ ︸
d

' Sk ∨ . . . · · · ∨ Sk︸ ︷︷ ︸
d

' K̃ Choosing a homotopy equivalence

h : Sk! · · · · · ·! Sk︸ ︷︷ ︸
d

'−→ K̃ then ĩ ◦ h : Sk! · · · · · ·! Sk︸ ︷︷ ︸
d

'−→ Ñ is also

a homotopy equivalence which is necessarily simple as the spaces involved are simply
connected. Under the hypothesis k < c, one may approximate ĩ◦h arbitrarily closely
by a smooth imbedding

j : Sk! · · · · · ·! Sk︸ ︷︷ ︸
d

↪→ Ñ

11



which is homotopic to ĩ ◦ h and hence also a simple homotopy equivalence. It fol-
lows that Ñ is also a canonical neighbourhood of Im(j) so that, by (4.4), there is a
diffeomorphism

N ∼= (Sk ×Dk+2) � . . . · · · � (Sk ×Dk+2︸ ︷︷ ︸
d

).

Hence, as claimed, we have a diffeomorphism

M̃ = ∂Ñ ∼= (Sk × Sk+1) # . . . . . .# (Sk × Sk+1︸ ︷︷ ︸
d

). 2

In the above, the existence of a k-dimensional finite, connected complex Kk with
the properties that π1(K) ∼= G and that πr(K̃) = 0 for r < k is assumed as given.

The module J = πk(K̃) is thereby dependent on the choice of K. In the lowest case
k = 2, the conclusions of (5.1) - (5.4) prove Theorem II of the Introduction.

When k ≥ 3, however, we may specify J ∈ ΩG
k+1(Z) in advance and, as noted

in (1.4), then construct a realising complex K for J . The conclusions of (5.1)- (5.4)
thereby also prove Theorem I.

§6: Proof of Theorem III:
If G is a finite group with free period d then there exists an exact sequence

0→ Z→ Ed → Ed−1 → · · · → E1 → E0 → Z→ 0

of modules over Λ = Z[G] in which each Er is finitely generated and free. Conse-
quently the trivial module Z belongs to Ωd(Z). Provided d ≥ 4 (which is necessarily
the case when G is non-abelian) then, observing that rk(Z) = 1, Theorem I guar-
antees that G acts freely on Sd−1 × Sd. This proves Theorem III.

Finally suppose that p is an odd prime; as is well known, the dihedral group D2p

of order 2p has free period 4. (An explicit free resolution of period 4 may be found,
for example, in [16]). Consequently D2p acts freely and smoothly on S3 × S4. More
generally, each integer 4m ≥ 4 is a free period for D2p so that D2p acts freely and
smoothly on S4m−1 × S4m. This proves Corollary IV.

F.E.A. Johnson
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Gower Street, London WC1E 6BT, U.K.
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