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Abstract

We show that for each integer n > 3 any finite group G acts smoothly and
freely on a connected sum  (S" x ST # .. ... #(S™ x 8™ for some 7.

T
Moreover, as a module over Z[G], the middle dimensional homotopy group can
be specified in advance to belong to the stable syzygy QgH(Z).
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Let G be a finite group. We consider smooth, closed manifolds M of odd dimension
2n+1 > 5 having fundamental group G and whose universal coverings M are highly
connected in the sense of Wall [32]; that is, where

WT(M) =0 for 0<r<n.

The first significant invariant of M s then the middle dimensional homotopy group
(M) =7, (M). As m,(M) is a module over the group ring A = Z[G] we ask:

Question : Which A-modules J can be realised as J =, m,(M) where M is a
smooth closed (2n + 1)-manifold with highly connected universal cover ?

The modules J we consider belong to the stable syzygy QSH(Z), the definition of
which is given in §1. Observing that for integers n > 2 the connected sum

Y2n+1;7r) = (5" x ST #. L. # (9" x St

J/

is a highly connected manifold of dimension (2n 4 1) we prove:

Theorem I: Let G be a finite group and let J € QS (Z); if n > 3 then there

exists a smooth closed (2n + 1)-manifold M with m (M) = G such that
i) m,(M) =p J and

The argument carries through in the case n = 2 subject to an additional hypothesis;
say that J € Q% ,(Z) is geometrically realisable when there exists a finite connected
n-dimensional complex K for which m(K) = G, m.(K) = 0 for 1 < r < n and
7Tn(K ) gA J.



Theorem II: Let G be a finite group and let J € Q§(Z); if J is geometrically
realisable there exists a smooth closed 5-manifold M with 7 (M) = G such that

1) 7T2(M) gA J
i) M =g 2(5: rkg(J)).

When n =2 the question of whether every J € QY (Z) is geometrically realisable
forms part of the D(2) problem (cf [14] Chap 10) which, to date, has been solved only
for comparatively few groups G. This condition does not intervene in Theorem I as,
when n > 3, every J € QY. |(Z) is geometrically realisable ([15], p.163).

By Theorem I any finite group acts smoothly and freely on some ¥(2n + 1,7).
These manifolds thus occupy something of a universal position in regard to the general
study of free actions of finite groups on highly connected manifolds. By contrast,
whilst this general problem has a longstanding history (cf [6]), for the most part the
existing literature has dealt either with obstructions to free actions [4], [19] or with
actions on quite specific examples [7]. For an significant class of finite groups we can
improve upon Theorem I as follows:

Theorem III : Let G be a finite group with free cohomological period d > 4; then
G acts freely and smoothly on S91 x S9.

Historically (cf. [20], [29]), considerable effort has been invested in studying the
extent to which finite groups G of periodic cohomology can act freely on spheres of
odd dimension, these being the simplest type of highly connected manifold. A classic
result of Milnor [22] shows that this cannot happen when G has a noncentral element
of order 2. Consequently, the dihedral groups of order 2p

Dy, = (z,y | 2? = 1,y* = 1, yz = 2P ly)

cannot act freely on any sphere. However, when p is prime Dy, has free period 4; in
fact, an explicit such free resolution may be found in [16]. Hence each integer 4m is
a free period of Dy, so that, in contrast to Milnor’s prohibition, we have:

Corollary IV : Dy, acts freely and smoothly on S*"~! x §*™ for each m > 1.

Our construction makes essential use of the theory of canonical neighbourhoods in
the sense of Mazur [21]. However, rather than following Mazur directly, we found it
technically easier to adapt an old approach of the author [11] based on Siebenmann’s
technique of end completion [24]. Likewise, although no explicit use is made of it,
we have inevitably been influenced by Wall’s more detailed study [31], especially in
regard to the identification of universal coverings in §4.

We give no consideration to the even dimensional analogue of the question con-
sidered here. We shall pursue this aspect in a subsequent paper [17].

We wish to thank the referee for suggesting a number of notational clarifications.



81 : Syzygies and algebraic complexes:

Let A denote the integral group ring A = Z[G| where G is finite. By a A-lattice
we mean a A-module whose underlying additive group is free abelian of finite rank.
If J, J' are A-modules we say that J, J' are stably equivalent, written J ~ J', when
J @ A* = J' @ AP for some integers a, b > 0. Let

(F) R < DRAE ) R U N AN

be a resolution over A of the trivial module Z in which each F, is a finitely generated
free module. The syzygy modules (J,)1<, of F are the intermediate modules

J. = Im(0,) = Ker(d,—1).

The stable syzygy QS (Z) is then defined to be the stable class [J,] of any such J,.
It is a standard consequence of Schanuel’s Lemma that Q¢ (Z) is independent of the
particular choice of F. We note for future reference that:

(1.1) If J € Q% (Z) then J is a A-lattice.

By an algebraic n-complex over A we mean an exact sequence of A-modules

E. = 0=5JoE 238, ... 38 %8 20

in which each F, is finitely generated projective and stably free. For such a complex
E. it is clear that J € Q¢ ,(Z). We define¥ H,(E) = Ker(d, : E, — E,_1).
As G is finite then the Eckmann-Shapiro Lemma shows that Ext"™(Z,A) = 0.
Consequently, it follows from (8.18) of [15] (p.159) that:

(1.2) Forany J € QS (Z) there s an algebraic n-complex E, for which J = H,(E).

We say that J € QS (Z) is geometrically realizable when there exists a finite, con-
nected n-dimensional cell complex K such that m(K) = G, m.(K)=0for 1 <r <n
and 7,(K) = J; any such complex K is called a realising complez for J. In conse-
quence, if K™ is a realising complex for .J € Q¢ 1(Z) then K" is homotopy equivalent
to a wedge of n-spheres; in fact:

(1.3) K" o~ S"V.....-VS§" .

rkz(J)

(1.4) Ifn >3 then every J € QS ,(Z) is geometrically realizable.

The conclusion of (1.4) is a consequence of a general theorem of Wall [30] ; see also
[15] ((8.27), p. 163) for a more direct proof. By contrast, for reasons associated with
the D(2)-problem ([13], [14], [30]), the geometric realisability of elements of QS (Z) is
problematic. Note that a finite presentation G = (Xy,..., X, |Wi,...,W,) of G

T At the referee’s suggestion we have here written H, (E) rather than ,(E) which is the notation

used in [15]. In the geometric context the two notations are equivalent via the Hurewicz Theorem.



gives rise to a geometrically realisable 2-complex, the Cayley complex, thus:

Ci(G) = (0=>m(G) > A" > AN - A—>Z—0).
We then have:

Proposition 1.5: J € Q§(Z) is geometrically realisable if and only if J = 7(G)
for some finite presentation G.

Only in a small number of cases ([14], Chap. 10) is it known that every J € QS (Z)
is realisable. By contrast, there are cases where geometric realisability seems highly
problematic [13]. The difficulty is concentrated at the lower levels of QS(Z). A
theorem of Browning [1] shows:

(1.6) For all J € Q§(Z) there exists n > 1 such that J @& A" is geometrically
realisable whenever N > n.

§2 : Canonical neighbourhoods :

We review the notion of canonical neighbourhoods of tamely imbedded polyhedra.
Thus suppose that K* is a compact connected polyhedron, X**¢ is a topological
manifold of dimension k& + ¢, and that ¢ : K — X is a continuous imbedding such
that i(K) N9dX = (. When no confusion is caused we shall write K = i(K). We
say such an imbedding is tame when X — K is locally 1- connected at infinity (cf
[5], [11]). By a canonical neighbourhood of K we mean a compact submanifold A of
codimension zero in X having properties (2.1) - (2.3) below:

(2.1) K C Int NV and the boundary ON of N is locally bicollared in X;

(2.2) the inclusion i : K < A is a simple homotopy equivalence;

(2.3) there is a homeomorphism 7 : ON x [0,1) — N — K such that n(z,0) = z.
We note that if 7 : 9N — N is the inclusion it is a consequence of the definition that

(2.4) K is a strong deformation retract of N; that is, there exists a continuous
mapping 7 : N — K such that roi = Idg and ior =~k Idy.

General dimensional arguments imply relations between the homotopy groups 7, (ON)
and 7.(N) provided r < ¢ — 1. Although these are well known, at the referee’s
suggestion we recall them briefly for the sake of completeness. By general position, a
mapping f : S” — N can be deformed by homotopy to a mapping [’ : S™ - N — K
provided that k +r < k + c. It follows that the inclusion ¢ : N' — K < N induces
a surjection ¢, : m-(N — k) — m.(N) provided r < ¢ — 1. Taken in conjunction with
the homeomorphism ON x [0,1) & N — K of (2.3) we see, in particular, that

(2.5) j.: Te1(ON) — m._1(N) is surjective.

When r < ¢— 1 this can be improved upon. Given a homotopy F : S” x [0,1] = N
in which F(S" x {t}) C N = K for t = 0,1, then, provided r < ¢ — 1, F can be a
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deformed, leaving the ends fixed, to a mapping F’ : S x [0,1] — N — K so that
Ly T (N — k) — 7,.(N) is an isomorphism 7 < ¢ — 1. Hence it follows that:

(2.6) j,:m(ON) — 7.(N) is an isomorphism for r < ¢ — 1.

Moreover, denoting by p the restriction of the retraction r to N we have :
(2.7) p,: 71 (ON) —= 7.(K) is an isomorphism for r < ¢ — 1 and

(2.8) pu: Te1(ON) — 7.1 (K) is surjective.

When X is a combinatorial manifold, a canonical neighbourhood N is called a PL-
canonical neighbourhood when N is a PL-submanifold of X and N imbeds as a
piecewise linear submanifold in X. Likewise if X is a smooth manifold then a canon-
ical neighbourhood N is called a DIFF-canonical neighbourhood when N is a smooth
submanifold of X and ON imbeds in X as a smooth submanifold. Now suppose
that C is one of the categories TOP, PL, DIFF. We have the following existence and
uniqueness theorem.

Theorem 2.9 : Let K% is a compact connected polyhedron, let X**¢ be a C-
manifold of dimension k + ¢ and suppose that i : K < X is a tame imbedding such
that i(K)NoX = 0;if k+c¢>6 and ¢ > 3 then

i) any open neighbourhood U of K in X contains a C-canonical neighbourhood N/;

ii) if N7, Ny are C-canonical neighbourhoods of K in X there exists a C-canonical
neighbourhood N of K such that My C Int(N; N A3) and a C-isomorphism
h: Ny — Ny such that hy,, = Id.

Theorem 2.9 is well known. In its purely topological form it is a special case of the
main result (Theorem 3.5) of [11]. As the proof in [11] requires only handle theory
for topological manifolds of dimension > 6, the translation to the categories PL and
DIFF is straightforward. From (2.9) it is straightforward to derive

Proposition 2.10 : Let N, N/ be closed C-neighbourhoods of K in X and suppose
that there exists a C-isomorphism equivalence h : N' — N’ such that hjx = Idg. If
N is a C-canonical neighbourhood of K then so also is N.

Using the S-cobordism theorem we obtain the following recognition criterion for
canonical neighbourhoods.

Proposition 2.11 : Let i : K* < AN**¢ be a tame imbedding into a the inte-
rior of a connected C-manifold with connected boundary for which the induced map
T (ON) — 7 (N) is an isomorphism. Suppose that k + ¢ > 6 and ¢ > 3; if i is a
simple homotopy equivalence then A is a C-canonical neighbourhood of K.



Proof : Choose C-canonical neighbourhoods Ny and N; of K such that
No CIntN; C Int N.

By the S-cobordism theorem there is C-isomorphism
n: N — IntN, — 0N, x [0,1]

which maps M, to isomorphically to M, x {0} via the mapping z — (z,0) and
OM isomorphically to My x {1}. Consequently we may represent A/ in the form

N = No LJT7 8/\/0 X [0,1]

Likewise we may represent NV; in the form Ny = Ny U,, 9N, x [0,1]. Thus there is
a C-isomorphism N — N, which extends the identity on Ny. Hence N is C-canonical
neighbourhood of K by (2.10) O

Corollary 2.12 : N be a compact connected C-manifold with connected boundary
ON in which the inclusion ON < ON induces an isomorphism 7, (ON) — 71 (N).

Let K;, K, be connected polyhedra and let K¥ <4 N and Kk & A be tame imbed-
dings with codimension ¢ > 3 . Suppose that h : Ky — K; is a simple homotopy
equivalence such that io ~ 7; o h; then

N is a canonical neighbourhood of K; <= N is a canonical neighbourhood of K,

83 : Neighbourhood covering theorem:

If we work purely within the PL-category then canonical neighbourhoods exist
without the dimensional restrictions of (2.9) and can be constructed directly.

Proposition 3.1: Let i : K* — X be a piecewise linear imbedding of a compact,
connected polyhedron in a combinatorial manifold X satisfying the condition that
i(K)N0X = (. Then i(K) has a canonical neighbourhood in X.

Proof : Take K* to be a compact polyhedron, X**¢ to be a combinatorial manifold
and suppose that the imbedding i : K* — X**¢ is piecewise linear; then we may
assume (cf [10] p.84) that X is triangulated by a simplicial complex in such a way
that i(K) is a finite subcomplex.Taking A to be the star neighbourhood of i(K) in
the second derived subdivision of X, we claim that N is a canonical neighbourhood of
i(K). A theorem of Whitehead [33] then shows that there is a retraction r : N' — K
which is a composition r = ¢, 0¢,_10 ... 0 ¢; where each ¢; is an elementary
simplicial collapse. Furthermore (cf [2]) there is a piecewise linear equivalence of
triples (N;ON,i(K)) =p (Cy; ON x{0},i(K)) where p : ON — K is the restriction
of the retraction r to the boundary ON and where C, = 0N x [0,1] U, K is the
mapping cylinder of p. The properties (2.1) - (2.3) of canonical neighbourhoods now
follow from this description. O

In regard of (3.1) we note that piecewise linear imbeddings are necessarily tame.
Canonical neighbourhoods constructed in the manner of (3.1) via simplicial collaps-
ing are usually referred to regular neighbourhoods. Beyond the existence of regular
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neighbourhoods, in [33] Whitehead also considered their uniqueness based only on
the technique of simplicial collapsing. Accounts of this purely combinatorial theory
can be found in the texts both of Hudson [10] and Stallings [27]. The most general
account is that of M.M. Cohen [3]. The following is straightforward:

Proposition 3.2 : Let K be a subcomplex of a finite simplicial complex L and
suppose that L \, K. Suppose also that L is a finite simplicial complex admitting a
surjective simplicial mapping 7 : L — L for which the induced map on geometrical
realisations || : |L| — |L]| is a fibre bundle with finite fibres; then L N\, 77 '(K).

Now suppose that K* is a compact, connected k-dimensional polyhedron imbed-
ded piecewise linearly in R°** and that N is a closed regular neighbourhood of K.

Theorem 3.3 : Let p: N — N be a connected regular covering of N having finite
degree d > 2 and let K = p~'(K); if k < ¢ then N is combinatorially equivalent to

a PL-canonical neighbourhood of K with respect to some piecewise linear imbedding
j: K — Rt

Proof: Let T be a finite simplicial complex which triangulates N in such a way that
K is triangulated by a subcomplex S of T" and such that the inclusion i : N < Re¥
is affine on each simplex of 7. For each r > 1, let T(r) (resp. S(r)) be the
r" barycentric subdivision of T' (resp. S) and let N(r) be the star neighbourhood
of i(S(r)) in i(T(r)). In particular, {N(r)}i<, is a fundamental system of closed
neighbourhoods of K in R

Clearly Nisa polyhedron. As the degree d is finite then N is compact. For r > 1,
let T(r) be the simplicial covering of T'(r) induced from p: N — N and let N(r) be

the geometric realisation of the star neighbourhood of S(r) in 7'(r); then:
i) each N(r) is a compact subpolyhedron and
i) {N (r)}1<» is a fundamental system of closed neighbourhoods of p™'(K) in N.

Let {u,}1<r<m denote the vertices of 7. For any choice of points {f(u,)}1<r<m in
Rt* let f: N — R be the map defined on each simplex by affine extension of the
assignment u; — f(u;). It follows by Mazur’s Stability Theorem (cf [27], p.53) that

iii) there exists e > 0 such that if f(u1),..., f(u,) € R are chosen so that
|f(u,) —i(u,)| <e forall r then f is also an imbedding.

Let {wi, ..., wan} be a labelling of the vertices of T such that {w,... ,wy} is a
labelling of the vertices of S. For each r, 1 <r < dm choose v, € R“t* such that
iv) |v. —ip(u,)| < e forall rand {vy,...,vg4n} are in general position.

Thus we have a mapping j : N — R°** defined on each simplex by affine extension
of the assignment j(w;) = v;. It follows easily from iii) that

v) J: N — R is locally injective.



Moreover, as k < c and {vy,...,v,} are in general position then
vi) j: K — R is injective.

As {N (1) }1<» is a fundamental system of closed neighbourhoods of K in N it follows
from v) and vi) that for some s j : N(s) — R is injective. The interior of N(s)
is an open subset of R*%. As N (s) is locally homeomorphic to N(s) it follows from
Brouwer’s Open Mapping Theorem and the injectivity of j on N (s) that:

vii) j(Int(N(s)) is an open subset of R+,

As ]\Af(s) is compact then ](]/\7(3)) is closed in R°™. Thus ](]/\\7(3)) is a closed poly-
hedral neighborhood of j(K) in R**. By (3.2) it follows that N(s) collapses onto K
so that N(s) is a canonical neighbourhood K under the imbedding j : K < R,
The stated conclusion follows as N is combinatorially equivalent to N (s). a

The conclusion of (3.3) is well known as a ‘folk theorem’ but difficult to locate in the
literature in this precise form. The above proof is a simplification of an argument of
Spivak (cf Proposition 4.6 of [26]). Spivak’s argument is complicated by allowing the
degree of the covering to be infinite. In such cases the space K is non-compact and
the inclusion K < RF*¢ requires a further stabilisation, by increasing the codimen-
sion, in order to imbed K as proper polyhedral subset and so construct a genuine
infinite regular neighbourhood in the sense, for example, of [25]. This elaboration is
unnecessary when the degree of the covering map is finite. Consequently we require
only that the codimension be at least k£ + 1.

We next consider the direct construction of canonical neighbourhoods of imbed-
dings i : K¥ — X**¢ where X is a smooth manifold. To do this we note that any
smooth manifold X has a well defined class of C* triangulations 7 : |L| — X (cf [23]
, [34]) where L is a simplicial complex whose geometric realisation |L| is a combina-
torial manifold. If K is a compact polyhedron we say that an imbedding 7 : K — X
is piecewise smooth when X admits a C* triangulation 7 : |L| — X such that 77! o4
is piecewise linear. Hirsch ([9]) has shown that for such piecewise smooth imbeddings
i(K) admits a neighbourhood A in which N is a compact smooth submanifold of
codimension zero in X and N is a smooth submanifold of X and where X admits
a C* triangulation 7 : |L| — X for which 771(N) is a regular neighbourhood of
771 04(K) in the combinatorial manifold |L|. Such a neighbourhood N is called a
smooth reqular neighbourhood.

Corollary 3.4 : Let K* be a compact, connected k-dimensional polyhedron imbed-
ded piecewise linearly in R** and let A/ be a smooth regular neighbourhood of K.
Let p: N'— N be a connected regular covering of N having finite degree d > 2 and
let IA( = p Y(K);if k < ¢ then N diffeomorphic to a DIFF-canonical neighbourhood

of K with respect to some tame imbedding j : K < Rtk



84 : Decomposing canonical neighbourhoods as connected sums:

Let Nj, Ny be topological (n + 1)-manifolds each with nonempty boundary and
let D; C ON; be a closed n-disc possessing an open neighbourhood U; C dN; such
that there is a homeomorphism of pairs h; : (U;, D;) — (B™, D") where

B" = {xeR"| |x]| <2} ; D" ={xeR"| [[x|| <1}.
We define N1<>N2 = (N1 H NQ)/N

where X ~ hy'ohi(x) for x € Dy.

N10Ns is called the connected sum in the boundary of Ny, N5. Up to homeomorphism
the description is independent of the pairs (U;, D;) and the homeomorphisms h;.
Moreover, it is straightforward to see that:

(4.1) G(Nl <>N2) = 8]\71 # 8]\72

Here ‘#’ denotes ‘connected sum’ in the usual sense. The above construction is
defined for topological manifolds. The analogous construction for differential man-
ifolds however requires a slight elaboration. Thus suppose that N;, N, are smooth
(n + 1)-manifolds and that hy, hy are diffeomorphisms. As it stands the construction
N1o Ny is a ‘smooth (n+1)-manifold with singularity in the boundary’, the singularity
occurring along the set

- hl—l(Sn—1> — h2—1(Sn—1>‘

In fact putting V. = U; — Int(D;) and V_ = U, — Int(Dy) then although here are
diffeomorphisms
Yx(-1,00 = V. ; ¥x]0,1) = V,

the homeomorphism ¥ x (—1,1) = V_ UV, obtained by glueing fails to be differ-
entiable at ¥ x (—1,1). Using the standard technique of ‘corner smoothing’ one may
make a variation in the homeomorphisms h; so as to give a diffeomorphism

V.UV, =2 Yx(-1,1) =2 S"'x(-1,1).

With this qualification, N; ¢ Ny is then a manifold with smooth boundary. Up to
diffeomorphism the result is again independent of the above choices.

If >, ..., 341, X4 are topological spaces with respective base points *, € >, we
define Xj e~ oo vv e «~ Y4 to be the identification space

By e Ny o= (] 11 Sat 1184 11 [1.d])/ ~

where x,. ~ r for 1 < r < d. We concentrate on the case when Xi,...,%X4 1,%4
are smooth, closed connected manifolds each of dimension k£ > 2; then we can regard
Yp e -+ -ovs e XN, as a ‘smooth, compact, stratified set’ (cf [12], [28]) whose



singularities are of such an elementary nature that it should no confusion if we adopt
an extension of standard terminology as follows. Given a continuous imbedding

to a smooth manifold M; we describe f as a smooth imbedding when
i) f is injective :
ii) each restriction f: ¥, — M is a smooth imbedding ; and

iii) the restriction f : [1,d] — M is also a smooth imbedding.
It is an elementary exercise in approximation to show that:

(4.2) If k£ < ¢ then any continuous mapping f : g e - -+ s Ny — RFHe
can be approximated arbitrarily closely by a smooth imbedding.

Now suppose that for 1 < r < d we are given a smooth imbedding f, : &, < RF*¢
where 3 < ¢. By translating images we may suppose, without loss of generality, that

Im(f,) N Im(fs) = 0 for r#s.

That is, we may construct a smooth imbedding fy : [1,d] — R¥*¢ with the property
that Im(fo) NIm(f,.) = *,. Then fy, f1,..., fa together define a smooth imbedding

We claim that :

Proposition 4.3 : For any smooth canonical neighbourhood A of Im(f) in R¥*¢
there is a diffeomorphism N g5 Nio---oNy_1 0Ny where N, is smooth canonical
neighbourhood of Im(f,) in RF*e.

We now focus attention on the special case where each ¥, = S* where & > 2.
Recall ([8], [18]) that Kervaire showed that the normal bundle to a smooth imbedding
i:S* < RMis trivial provided 3k +1 < 2u. On writing g = k + ¢, Kervaire’s
condition becomes k < 2¢ — 1. This is clearly satisfied when ¢ = k + 2.

Proposition 4.4: Let A be a smooth canonical neighbourhood of Im(f) where

FriSF ems oo S5 <y R2ig a smooth imbedding; if 2 <k then
4
N Zgg (SFx DF2) o ...0 (S* x DF?)
4
Proof : f is a smooth imbedding of ¥; ¢ - - ---- e« ¥; where each ¥, 2gg S*.

Taking N, to be a closed canonical neighbourhood of ¥,, it follows from (4.3) that
N Zag Nio---o Ny © Ny, However, by Kervaire’s Theorem it follows that
N, Zaig S* x D¥*2 whence the conclusion. O
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85: Proof of Theorems I and II:
We now specialise the above discussion by fixing the following notation:

Kk . arealising complex for some J € Qf, | (Z) where 2 < k;
i: KF — R?*2 . g piecewise linear imbedding
N :asmooth canonical neighbourhood of i(K*).

Put M = ON. The codimension c of the imbedding is then ¢ = k + 2 and evidently
satisfies 3 < ¢ ; hence:

(5.1) mM) = m(K) = G.

The middle dimension of M is k as dim(M) = 2k+ 1. Writingc—1 = k+ 1, we

see from (2.7) that WT(/\/I) ~ 1 (K) for r < k. Consequently, with these conditions
we have:

(5.2) M is highly connected and (M) = m(K) = J

We again note that the condition ¢ = k 4+ 2 implies the condition k& < 2¢—1
required by Kervaire’s Theorem.

Theorem 5.3: With the above restrictions we have

M pp (S x SEFY 4 4 (SF x SFHLY.

Proof : By (3.3), N imbeds as a PL submanifold of R2**2 and thereby induces
an imbedding j : K = R%Jr2 relative to which N is a smooth canonical neigh-
bourhood of K. Let i : K < N be the inclusion. As K is a realising complex
then K is (k — 1)-connected so that we have a homotopy equivalence K ~

SV ....--v S* whered = rkgz(J). Consequently there are homotopy equivalences
M
§k s e s SE §'k V...--V S’i ~ K Choosing a homotopy equivalence
M M
h:§kew> ~~~~~~ wS’jiKthen ioh:§ke«w ------ ew»S'j =5 N isalso

d
a homotopy equivalence which is necessarily simple as the spaces involved are simply
connected. Under the hypothesis k£ < ¢, one may approximate ioh arbitrarily closely
by a smooth imbedding

d
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which is homotopic to 70 h and hence also a simple homotopy equivalence. It fol-
lows that NNV is also a canonical neighbourhood of Im(j) so that, by (4.4), there is a
diffeomorphism

N = (8¥xDF?%) o ....0 (S¥ x DFF).

d

Hence, as claimed, we have a diffeomorphism

—~

M = ON = (S5 x Sk+1y 4 ... # (SF x S, O

(. /

In the above, the existence of a k-dimensional finite, connected complex K k with
the properties that m(K) = G and that m.(K) = 0 for r < k is assumed as given.
The module J = mx(K) is thereby dependent on the choice of K. In the lowest case
k =2, the conclusions of (5.1) - (5.4) prove Theorem II of the Introduction.

When k > 3, however, we may specify J € QF ,(Z) in advance and, as noted
in (1.4), then construct a realising complex K for J. The conclusions of (5.1)- (5.4)

thereby also prove Theorem I.

86: Proof of Theorem III:
If G is a finite group with free period d then there exists an exact sequence

0—=2Z—-E;—E;y = —=E =-Ey,—=7Z—0

of modules over A = Z[G] in which each E, is finitely generated and free. Conse-
quently the trivial module Z belongs to Q4(Z). Provided d > 4 (which is necessarily
the case when G is non-abelian) then, observing that rk(Z) = 1, Theorem I guar-
antees that G acts freely on S9! x S¢. This proves Theorem III.

Finally suppose that p is an odd prime; as is well known, the dihedral group Dy,
of order 2p has free period 4. (An explicit free resolution of period 4 may be found,
for example, in [16]). Consequently Dy, acts freely and smoothly on S® x S*. More
generally, each integer 4m > 4 is a free period for Dy, so that Ds, acts freely and
smoothly on S#m~! x S This proves Corollary IV.
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